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Abstract

Clustering streaming data is gaining importance as automatic data acquisition technologies
are deployed in diverse applications. We propose a fully incremental projected divisive clus-
tering method for high-dimensional data streams that is motivated by high density clustering.
The method is capable of identifying clusters in arbitrary subspaces, estimating the number
of clusters, and detecting changes in the data distribution which necessitate a revision of the
model.

The empirical evaluation of the proposed method on numerous real and simulated datasets
shows that it is scalable in dimension and number of clusters, is robust to noisy and irrelevant
features, and is capable of handling a variety of types of non-stationarity.

1 Introduction

High dimensional data stream clustering is increasingly relevant as automatic data generation and
acquisition technologies are adopted in diverse applications. Data streams are encountered in a
variety of settings. These include: computer network traffic monitoring, Web page requests, cus-
tomer click streams, sensor networks, as well as transactions data from stock and foreign exchange
markets, to name a few. The volume of data involved in these applications is far too large to fit in
main memory. Hence random access to past observations is costly. Linear scans are the only ac-
ceptable access method in terms of computational efficiency (Guha et al., 2003; Silva et al., 2013).
A defining property of data streams is that the population distribution is subject to changes over
time. This phenomenon is known as population drift (Babcock et al., 2002). These characteristics
pose significant challenges for clustering. Streaming clustering algorithms must be incremental,
with time and storage requirements independent of the size of the stream. In addition they must be
capable of adapting to population drift by revising the cluster structure, distinguishing emerging
clusters from noise, and discarding expired clusters (Jain, 2010).

The majority of existing streaming clustering algorithms consist of two components. The
first is an online component that incrementally updates data structures that summarise the data
sample. The second component operates offline, and performs the actual clustering, operating
on the data summaries, rather than the original data samples (Aggarwal et al., 2003; Cao et
al., 2006). However, clustering algorithms for static datasets invariably involve parameters which
are application dependent, e.g. the number of clusters in k-means. Using such methods in the
offline component of a streaming algorithm implicitly assumes that appropriate values for these
parameters remain constant over the duration of the data stream. This is hard to justify in the
presence of population drift. Existing algorithms attempt to handle population drift through
simple heuristics, like sliding windows (Aggarwal et al., 2003; Kranen et al., 2009) and forgetting
factors (Aggarwal et al., 2004; Cao et al., 2006), which are user-determined and static over the
length of the stream. The important aspect of change detection is largely ignored (Silva et al.,
2013). Finally, the majority of traditional clustering algorithms rely on the Euclidean distance
between data samples, which becomes less meaningful as dimensionality increases (Kriegel et al.,
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2009). Few streaming algorithms are capable of handling very high dimensional data, and in
general these are limited to detecting clusters only in axis parallel subspaces (Aggarwal et al.,
2004; Ntoutsi et al., 2012; Hassani et al., 2102, 2014).

The framework we propose draws on the standard nonparametric statistical definition of clusters
as regions of high density in the underlying probability distribution (Hartigan, 1975; Cuevas and
Fraiman, 1997; Rigollet and Vert, 2009). In this approach, a high-density cluster is defined as
a connected component of the level set of the (unknown) density function. When the density is
unimodal the level set is connected, otherwise it can be connected or not. If it is disconnected, high-
density clusters correspond to regions around modes of the density (Menardi and Azzalini, 2014).
Identifying connected regions of high density of an unknown density is a challenging task even in
moderate dimensions. Existing methods rely on an approximation of the density (Azzalini and
Torelli, 2007; Cuevas et al., 2001), or attempt to infer local properties of the density (Menardi and
Azzalini, 2014; Stuetzle and Nugent, 2010). Due to the curse of dimensionality such approaches
are only effective on problems in up to tens of dimensions (Menardi and Azzalini, 2014). In
higher dimensions, graph theoretic formulations have been used to approximate these high density
regions (Cuevas et al., 2001; Rinaldo and Wasserman, 2010).

The influential DBSCAN algorithm (Ester et al., 1996), combines a kernel density estimate
using uniform kernel with a graph theoretic approach to determine clusters. Data points whose
density exceeds a chosen threshold, λ > 0, are considered high-density points. A graph is con-
structed by connecting each high density point with each other point within a radius equal to
the bandwidth of the kernel density estimator. Connected components of the graph define clus-
ters, while singletons are interpreted as noise. This approach is efficient from a computational
perspective, but only applies to the uniform kernel.

A basic weakness of algorithms that attempt to identify high-density clusters for a single, user-
defined density level, is that both the number and the shape of the clusters depends on the choice
of this parameter. In addition using a single density threshold can fail to detect clusters of varied
densities (Ankerst et al., 1999; Stuetzle, 2003). To overcome this limitation one can compute the
clustering structure that arises by considering all possible values of the density level. The collection
of clusters which arises is known as the cluster tree (Hartigan, 1975). Recent algorithms that
attempt to estimate the cluster tree include OPTICS (Ankerst et al., 1999), and Gslclust (Stuetzle
and Nugent, 2010). A general approach to detect clusters at a local level from a cluster tree is
discussed in (Campello et al., 2013).

In this article we propose a framework for streaming data clustering that relies on a different
approach to high-density clustering. Instead of attempting to estimate high-density clusters di-
rectly, it partitions the data sample hierarchically using linear separators (hyperplanes) that pass
through regions of low density. It thereby avoids splitting high-density clusters. This was first
proposed for static data clustering by Tasoulis et al. (2010). An attractive feature of this approach
from a computational perspective is that it requires only one-dimensional projections to identify
low density separators. Expanding on this we propose a framework for streaming data clustering,
which we refer to as High-dimensional Streaming Divisive Clustering (HSDC), that is able to: (i)
identify clusters of arbitrary orientation; (ii) estimate the number of clusters automatically using a
statistically motivated divisive procedure; (iii) update the clustering result incrementally without
any offline component; (iv) utilise information about structural variation of the model to influence
forgetting, instead of relying on static parameters; and (v) identify changes in the population dis-
tribution that require the revision of the clustering model. This is achieved through synthesising
and extending results from incremental dimensionality reduction, kernel density estimation, and
change detection.

The remaining paper is organised as follows. In Section 2 we discuss some existing data stream
clustering algorithms. Section 3 gives a more formal description of the problem we consider and
discusses challenges associated with a data stream implementation. Section 4 describe our method-
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ology for introducing components to the model, as well as how to accommodate population drift.
In Section 5 we give a brief summary of the algorithmic structure of the method, as well as investi-
gate the computational complexity of the model updates. In Section 6 we document the results of
an extensive simulation study and performance on publicly available data sets. Finally in Section 7
we give some concluding remarks.

2 Related Work

Many existing data stream clustering algorithms extend classical clustering algorithms, such as
k-means, k-medians, fuzzy c-means, and DBSCAN, to the data stream framework (Guha et al.,
2003; Zhang et al., 1996; Aggarwal et al., 2003, 2004; Cao et al., 2006; Kranen et al., 2009).

One of the most influential data stream clustering algorithms is CluStream (Aggarwal et al.,
2003). CluStream uses microclusters to summarise the data received by the algorithm incremen-
tally. These microclusters are then clustered offline using a weighted k-means algorithm. Mi-
croclusters store first and second order summary statistics of spatial and temporal information,
and possess useful additive, subtractive and multiplicative properties, making them well suited
to windows and forgetting factors. To handle non-stationarity, CluStream stores snapshots of the
microclusters which enable it to approximate the clustering result over a window, which is specified
by the user.

HPStream (Aggarwal et al., 2004) is a modification of CluStream to handle high dimensional
data. Distance calculations are performed within axis parallel subspaces so as to minimise the radii
of the microclusters. Assigning potentially differing subspaces to the clusters negates the additive
and subtractive properties of the microclusters, and so HPStream treats the microclusters as
actual clusters rather than data summaries. Snapshots also become meaningless, and so temporal
variation is handled by fixed forgetting factors.

DenStream (Cao et al., 2006) is a density-based algorithm that uses microclusters. To handle
noise it distinguishes between outlier and potential microclusters, the latter defined by a threshold
on the weighted number of points falling within a sphere of fixed radius. Weights are exponentially
decreasing functions of time, enabling the algorithm to adapt to population drift. The offline
component of DenStream is a variant of DBSCAN, thus, enabling the estimation of the number
of clusters, and the detection of clusters of arbitrary shape. Recently proposed extensions of Den-
Stream include HDDStream (Ntoutsi et al., 2012), PreDeConStream (Hassani et al., 2102), and
DMMStream (Amini et al., 2014). HDDStream and PreDeConStream handle high dimensional
data by scaling up the contribution of preferred dimensions within distance calculations. DMM-
Stream enables the detection of density connected clusters on differing scales, through the use of
mini microclusters.

Grid based density clustering algorithms have also been proposed. DStream (Chen et al., 2007)
is similar to DenStream, except that dense grid cells (cells containing relatively high approximate
integrated density) are used instead of microclusters. The number of grid cells however depends
exponentially on the dimension of the data. DDStream (Jia et al., 2008) is an extension of DStream
which allows the absorption of data at the boundaries of clusters into adjacent dense cells, thereby
reducing the number of active grid cells.

A potential feature of data streams is that the rate at which new data is observed can vary over
time. Anytime algorithms are able to produce a clustering result after any amount of processing
time, but are also capable of refining this result when more time is available (Kranen, 2011).
Anytime stream clustering was first discussed in relation to the ClusTree algorithm (Kranen et
al., 2009). ClusTree stores a hierarchy of microclusters, with each internal node representing an
aggregation of its children. Arriving data are inserted at the root and traverse the hierarchy via the
nearest microcluster at each level. This insertion is halted if there is insufficient time. Halted data
can “hitchhike” further down the hierarchy with similar arriving data at a later stage. In this way
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CluStree is capable of handling not only extremely high velocity data streams, but also streams in
which the velocity varies. SubClusTree (Hassani et al., 2014) extends ClusTree to high dimensional
applications by establishing multiple hierarchies, each existing within a different subspace.

A comprehensive review and categorisation of existing data stream clustering algorithms is
provided in two recent surveys (Aggarwal, 2013; Silva et al., 2013). A review focused on density
based methods for streaming data is provided in (Amini et al., 2014).

3 Problem Description

Our aim is to generate a hierarchical partition of the Euclidean space Rd such that the modes of a
probability density, f , over Rd, are uniquely contained within different cells of the partition. The
density, f , is not known, and instead we receive a sequence of realisations of the random variable X
with density f . The learning process is constrained by standard memory and computation limits
associated with data stream learning. We do not assume that f is constant in time, and so modify
the model as changes in the empirical distribution of realisations suggests is necessary.

This problem can be formulated in the context of high density clustering, wherein the modes
of the density f can be associated with its level sets.

Level Set For level λ ≥ 0 and density function f , the level set of f above λ, or λ level set of f ,
is defined as {x ∈ Support(f)|f(x) ≥ λ}.

As λ increases, the λ level set centers around the modes of f above λ, and therefore the
number of modes, or clusters, can be associated with the number of maximal connected subsets
of the level sets. We refer to these maximal connected subsets as the components of the level
set. Identifying the components of level sets of a high dimensional probability density function is
extremely costly in terms of computational effort, and often these are approximated using graph
theoretic formulations (Cuevas et al., 2001; Rinaldo and Wasserman, 2010). In addition, the density
function f is unknown and must be approximated. Standard methods, such as Kernel Density
Estimation (KDE), become less effective at accurately representing the underlying probability
density as dimensionality increases (Scott, 2009). Building an approximation of f incrementally
in a data stream setting introduces yet further challenges, since only summaries of the data can
be stored and hence further approximations are necessary.

The dePDDP algorithm (Tasoulis et al., 2010) attempts to separate the modes of a distribution
via a hierarchy of low density separating hyperplanes. The algorithm recursively projects (subsets
of) the data into a one dimensional subspace and splits the projected data above and below the
lowest antimode of their estimated density. The KDE of the projected data provides an upper
bound on the value of the full dimensional KDE, as shown in the following lemma, which is
adapted from Tasoulis et al. (2010).

Lemma 1 Let X = {x1, ..., xN} be a d-dimensional data set, and let v ∈ Rd have unit length

and let b ∈ R. Let f̂ denote the d-dimensional kernel density estimate of the distribution of X
with bandwidth matrix hI using the multivariate Gaussian kernel. Let f̂1 be the univariate kernel
density estimate of the distribution of v ·X with bandwidth h using the univariate Gaussian kernel.
Then for any x ∈ Rd s.t. v · x = b,

f̂(x) ≤ hd−1f̂1(b).

Splitting at the lowest antimode of the projected density estimate, therefore, avoids intersecting
high level sets of the full dimensional estimated density. Separating clusters by regions of low
density has also been shown to yield more stable clusters (von Luxborg, 2010), which fits well with
the possibility of smooth time variations in f . While this approach avoids the explicit estimation of
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the full dimensional density, the model structure is limited to cases where the modes of the density
can be separated by a hierarchy of hyperplane separators. In particular it is limited to cases in
which the convex hulls of the modes are non-overlapping. Despite this limitation, the approach
has shown good empirical performance in a number of high dimensional applications (Boley, 1998;
Tasoulis et al., 2010). The dePDDP algorithm projects data onto their first principal component,
using the justification that directions with high variability are likely to display high between cluster
variability. This will tend to lead to good separation of the clusters, and hence low antimodes in
the projected density estimate.

A hyperplane can be parameterised by a vector v ∈ Rd and scalar b ∈ R as the set {x|v ·x = b}.
No generality is lost by assuming that v is unit length. We adopt the approach of learning v,
which we will refer to as the projection vector, from the full dimensional realisations of X, and
then using the projections of these realisations onto v to inform our choice of b, which we refer to
as the split point. The problem of incremental principal component analysis is well studied (Artac
et al., 2002; Li et al., 2003; Weng et al., 2003), and computationally efficient algorithms exist. In
order to determine the split point, projections of the data onto the projection vector are used to
approximate the density of the random variable v ·X. Low empirical density regions in this density
approximation suggest the location of low density hyperplanes. Combining these provides a readily
available framework for an online version of dePDDP, such as that adopted by SPDC (Tasoulis et
al., 2012). Such a straightforward implementation, however, has important limitations.

Incremental updates to the projection vector, which we henceforth index by t to indicate the t-
th step estimate, mean that the sample of projections at time t is given by {v1 ·x1, v2 ·x2, ..., vt ·xt},
which is not a sample from the random variable vt ·X. With successive updates to vt the accuracy of
the projected points at estimating the empirical distribution of vt ·X diminishes, which affects the
accuracy of the spit point. Futhermore, if the splitting rule at a node in the hierarchy is updated
with each observation, then the sets of data being passed to its children will vary. This variability
propagates down the hierarchy and renders projection vector updates and splitting decisions at
lower levels increasingly inaccurate and unstable. Moreover, if the underlying distribution changes
in time, these projections and splitting rules are rendered even more inaccurate, unless these
changes are suitably accommodated.

In what follows we detail our approach to overcoming these limitations. We describe the
incremental updates to a node of the hierarchy. The time indices, t, relate to the t-th update to
the node, and not the t-th update to the entire hierarchy. Similarly, the t-th datum refers to the
t-th datum received by the node, and not the t-th datum in the entire stream.

4 Methodology

In this section we discuss in detail the three components of the High-dimensional Streaming Divisive
Clustering (HDSC) framework. HSDC constructs incrementally a hierarchical clustering model
which consists of a collection of separating hyperplanes. The hyperplanes pass through regions of
low density, and are orthogonal to directions of high variance. These hyperplane separators are
maintained within the model until there is sufficient evidence indicating that they no longer pass
through regions of low density. Whenever this occurs the hyperplane in question, and therefore
the part of the hierarchy rooted at it, is removed from the model and the corresponding node is
re-initialised.

Section 4.1 details how we find high variance projection directions incrementally using the
CCIPCA algorithm (Weng et al., 2003). Section 4.2 describes how low density hyperplanes are
identified using information from the projected data only. In Section 4.3 we discuss how population
drift can be handled within this framework.
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4.1 Learning High Variance Projections

The k-th principal component of a data set, X , is given by the k-th largest eigenvector of its
covariance matrix. Many incremental methods for principal component estimation require that
the full covariance matrix be approximated, leading to high computation and storage costs for
large problems. The CCIPCA algorithm (Weng et al., 2003) instead focuses directly on the eigen-
problem Cov(X )u = λu. The algorithm is based on the recursion,

vt =
t− 1

t
vt−1 +

1

t

xt · vt−1
‖vt−1‖

xt, (1)

where {xt}∞t=1 is a sequence with zero mean. Weng et al. (2003) have shown that the recursion of
Eq. (1) converges almost surely to ±λu for the maximum value of λ, i.e., u is the first principal
component. Lower order eigenvectors are found by first projecting data into the null space of all
approximate higher order eigenvectors.

Early updates to the projection vector are highly variable, making it more challenging to
approximate the marginal distribution along it. Passing promising projection vectors down the
hierarchy to act as initial projection vectors in the child nodes can help to ameliorate this problem.
When a node is split, a hyperplane orthogonal to its projection vector is introduced to the model.
The truncation induced by a separating hyperplane tends to reduce the variability in the normal
direction (i.e., along the projection direction) more than in directions orthogonal to it. The second
most highly variable direction is therefore a good candidate for a high variance projection in
the child nodes. We investigate a variation on the basic HSDC model, which we call projection
inheritance, in which each node (besides the root node) learns both its own projection and a high
variance projection to be passed to its children. So that this inheritance is not lost to natural
variations in the data, it is given additional weight in subsequent updates equal to the number
of updates already undergone. Orthogonality to the parent’s projection vector is also enforced
in subsequent updates after being passed down. This increased stability in the projection vector
can be crucial to estimating the distribution along it. If the updates are highly variable, then the
projections made onto it will be less reliable at representing the target distribution.

Below we describe formally the updates to the projection and inheritance vector with the
arrival of the t-th datum xt. Let ut be the (unnormalised) projection vector at time t, and zt
the inheritance vector. Also, if ut was initialised by inheritance, let N be the number of updates
undergone prior to inheritance and let p be the projection vector of the parent node (otherwise
assume p = 0 and adopt the convention that 0/0 = 0).

x̄t =
t− 1

t
x̄t−1 +

1

t
xt

xC := xt − x̄t
x0 := xC −

xC · p
‖p‖2

p

ut =
t+N − 1

t+N
ut−1 +

1

t+N

x0 · ut−1
‖ut−1‖

x0

xC = xC −
xC · ut
‖ut‖2

ut

zt =

{
xC , t = 1
t−1
t zt−1 + 1

t
xC ·zt−1

‖zt−1‖ xC , otherwise.

In subsequent sections we will assume that the projection vector is normalised, and denote it by
vt.
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4.2 Splitting Based on a Projected Sample

High density clustering associates clusters with modes of the underlying probability density. In-
troducing a new split to the hierarchical model is therefore only done when the corresponding
truncation of the density, induced by the hierarchical partition of Rd, contains multiple modes.
Assessing the modality of a high dimensional probability density is difficult, however by consider-
ing one dimensional projections of the underlying random variable, X, we only need to assess the
modality of a univariate sample. Cases exist in which the full dimensional density is unimodal, but
in which the marginal distribution of a univariate projection is multimodal, and vice versa, and in
these cases the accuracy of our model will be compromised as components may be split between
different elements of the partition.

4.2.1 Assessing Modality

In this subsection we assume that we observe a univariate sample corresponding to the projections
of the underlying random variable. The excess mass test (Müller and Sawitzki, 1991) is used to
asses the modality of a sample from an unknown distribution function F over R, with density
function f . The excess mass of f at level λ is defined as,

E(λ) =

∫
R

(f(x)− λ)+dx.

The excess mass therefore measures the integrated density above level λ. The excess mass can also
be formulated in terms of the distribution function F ,

E(λ) = sup
I1,...,Ic(λ)

c(λ)∑
i=1

(F (Ii)− λ‖Ii‖) , (2)

where c(λ) is the number of connected components of the λ level set of f and ‖I‖ is the diameter
of the set I. The supremum is taken over all collections of size c(λ) of disjoint intervals. The latter
formulation allows for the empirical excess mass based on a sample, X , from F to be calculated
by replacing F in (2) with the empirical distribution FX , defined as

FX (z) =
1

|X |
∑
x∈X

I[z ≥ x].

In practice, the number of connected components c(λ) will not be known, and so the empirical
excess mass is compared for different values. We use the notation Êc(λ) to mean the empirical
excess mass for c intervals. The excess mass statistic for comparing c1 with c2 > c1 components is
defined as

∆(c1, c2) = sup
λ
{Êc2(λ)− Êc1(λ)}.

The larger ∆(c1, c2), the more evidence in favour of c2 over c1. In our context, we are interested
in whether or not a density has more than one mode, and therefore are interested in the case
c1 = 1, c2 = 2. This case can equivalently be assessed via the dip (Hartigan and Hartigan, 1985).
The dip of a distribution function F over R measures the departure from unimodality of F and
is given by the supremal distance between F and the distribution function with unimodal density
for which this supremal distance is minimal. Formally,

Dip(F ) = min
U∈U
‖F − U‖∞,

where U is the class of distribution functions with unimodal density. It has been shown that the dip
is equal to half the excess mass statistic ∆(1, 2), and can therefore be used equivalently to assess
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multimodality when the dip of FX is considered. To assess the significance of the dip or excess
mass, a null unimodal distribution is specified and the quantiles under this null distribution esti-
mated using Monte Carlo simulation. The benefits of using the dip relate to the computationally
efficient algorithm given by Hartigan (1985), which is linear in the sample size. The corresponding
unimodal distribution can be extracted from the algorithm, and hence the value of λ corresponding
to the excess mass can be obtained. We make use of this value of λ in the approximation of the
underlying density (Section 4.2.4).

While the calculation of the dip is linear in the size of the sample, it cannot be calculated in-
crementally. In the context of a data stream, this violates the fixed storage and computation
limits. To remedy this, we propose an approximation method which requires bounded memory
and computation time. This is achieved by approximating the sample using a fixed number of
compact intervals which are dynamically adjusted to always contain the entire sample. Storing
only the endpoints of the intervals and the number of data falling in them allows us to construct an
approximation of the sample which leads to a lower bound on the dip of the empirical distribution
of the sample. Thus, this approximation method leads to a uniformly more conservative test of
unimodality, which fits well with our objective to avoid prematurely splitting clusters.

4.2.2 Compactly Approximating the Sample

Our approximation method relies on the notion of a uniform set, which is defined as follows.

Uniform Set Let X be a finite sample in R and I = [a, b], a ≤ b ∈ R. Then the uniform set of X
and I is defined as

Unif(X , I) =

n⋃
i=1

{
m+

i− 1

n− 1
(M −m)

}
,

where n = |X ∩ I|, m = min{X ∩ I}, and M = max{X ∩ I}.

We lose no generality by assuming that the endpoints of the interval I, a and b, are elements of X .
For the purpose of approximating the empirical distribution, the uniform set replaces the empirical

distribution on I with the distribution function of the random variable YI := ‖I‖
|X∩I|−1U + min{I},

where U ∼ U [0, |X ∩ I| − 1] is the discrete uniform random variable on {0, 1, ..., |X ∩ I| − 1}.
Notice that we have again adopted the convention 0/0 = 0. For a collection of disjoint intervals
I1 < I2 < ... < Ik, which jointly contain the entire sample, the approximate distribution is given
by,

F̃ (x) =
1

|X |

k∑
i=1

|X ∩ Ii|FYIi ,

where FYIi is the distribution function of YIi , defined as above.

With the arrival of a new datum, x, F̃ must be updated such that the number of intervals used does
not exceed the predefined limit. If x lies within one of the existing intervals, then no adjustment
to the above formulation is necessary. Otherwise, an interval I = [x, x] is added, and then two
adjacent intervals are replaced with the convex hull of their union. The intervals merged in this
way are the adjacent pair which minimise the supremal distance between F̃ before and after the
merger. If intervals i, i+ 1 are merged, then this distance is given by,

1

|X |
max

{∣∣∣∣|X ∩ Ii| − ⌈ ‖Ii‖
‖Ii:i+1‖

⌉ ∣∣X ∩ Ii:i+1

∣∣∣∣∣∣ ,∣∣∣∣|X ∩ Ii|+ 1−
⌈

min Ii+1 −min Ii
‖Ii:i+1‖

⌉ ∣∣X ∩ Ii:i+1

∣∣∣∣∣∣} ,
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where Ii:i+1 = Ii ∪ Ii+1. With the above formulation of F̃ we arrive at the following result, the
derivation of which can be found in the appendix. We also discuss therein how a slight modification
to the dip algorithm allows one to calculate the dip of the sample approximation in O(k) time,
where k is the number of intervals.

Lemma 2 Let X be a univariate sample of distinct points. For any collection of disjoint, compact
intervals I1 < I2 < ... < Ik satisfying

X ⊂
k⋃
j=1

Ij ,

we have Dip(F̃ ) ≤ Dip(FX ).

This result ensures that the approximation method used cannot lead to additional false dis-
covery of multimodality when compared with the true sample of observations. While the result is
stated for an unweighted sample, it also holds for weighted samples for which the data within each
interval are given the same weight. This is important as in the next subsection we describe how
reweighting the data can be useful in better approximating the distribution of a sample projected
onto a vector which is continually being updated.

4.2.3 Accommodating a Shifting Projection

Our aim is to approximate the distribution of the projected random variable, v ·X, where ‖v‖ = 1.
However, we only observe realisations of a sequence of random variables vt · Xt, where under
the assumption that X1, X2, ... are i.i.d., we know that vt converges almost surely to a vector v.
Even under this assumption, the realisations vt · xt still represent a sample from a nonstationary
distribution due to the shifting projection vt. With consecutive updates to vt, the accuracy of
the observed projections as a representation of the target distribution diminishes. The influence
of these observations on the approximate distribution should therefore diminish with subsequent
updates. Forgetting factors impose a decaying weight mechanism to control the influence of past
observations on the current estimate, however they are difficult to tune in practice. If wt,i is the
weight associated with observation i at time t, then wt,i = (1− λt)wt−1,i, where λt ∈ [0, 1] is the
forgetting factor at time t. Weights associated with new observations are initialised at 1, and so
we have,

Wt :=

t∑
i=1

wt,i = 1 + (1− λt)
t∑
i=1

wt−1,i

= 1 + (1− λt)Wt−1.

Our approximate distribution F̃ is a mixture of discrete uniform distributions, in which the weight
associated with each component is equal to the number of atoms in its support. Using forgetting
factors we can adjust these weights to obtain a more accurate approximation to the distribution on
the current projection. The update to F̃ , which we now index by t to represent the approximation
after t observations, is therefore given by,

F̃t =
1

Wt
FY[xt,xt]

+ (1− λt)
Wt−1

Wt
F̃t−1,

where xt is the observation at time t. If the number of intervals then exceeds the upper limit, the
merging of two adjacent intervals is performed as described in Section 4.2.2. As λt approaches
zero, past and present observations become equally weighted, while higher values of λt increase
the influence of recent observations on F̃ . In problems with an explicit loss function, forgetting
factors can be tuned using stochastic gradient descent (Haykin, 1999; Anagnostopoulos et al.,
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2012; Pavlidis et al., 2011), but this is not true in our context. We propose an adaptive scheme
which is complementary to the incremental estimation of the projection in that it uses information
about the angles between consecutive updates to vt to quantify the variability of the projected
distribution over time. In detail, with the arrival of the (t + 1)-th datum, first vt is updated as
described in Section 4.1, and then λt is set to,

λt+1 = min{Λ, γλt + (1− γ) arccos(vt+1 · vt)}, (3)

where Λ ∈ (0, 1] is a chosen maximum forgetting factor. We use an exponentially weighted moving
average (EWMA) with parameter γ ∈ (0, 1) to smooth the impact on λt of isolated large fluctua-
tions in arccos(vt+1 · vt) arising from natural variation in vt. The following proposition states that
the adaptive scheme of (3) converges almost surely to 0, whenever vt converges almost surely. The
distribution approximation will therefore stabilise as the projection converges, which is almost sure
under the CCIPCA algorithm as long as the underlying distribution does not change.

Proposition 3 If {vt}∞t=1 converges almost surely and ‖vt‖ = 1 ∀t, then λt
a.s.−−→ 0, where λt is as

in (3).

Reweighting the projected data in this way means that the approximate dip or excess mass
must be compared with the quantiles for a sample of size equal to the effective sample size of the
reweighted data, which we calculate as the sum of the weights in the approximation F̃ .

When the null hypothesis of unimodality is rejected based on the dip of the approximate sample
distribution, the associated node is split. The projection direction and split point are then kept
fixed. In the following we describe how to approximate local minima in the density along the
projection, thereby allowing one to determine such a split point based on this density.

4.2.4 Approximating Anti-modes

The distribution function F̃ is discontinuous, and therefore using this distribution directly to ap-
proximate an antimode in the underlying density is challenging. A standard approach to generating
smooth density approximations is to consider a convolution with a smooth distribution function,
having density K. The density K is referred to as a kernel. The convolution of a discrete distribu-
tion associated with a random variable Y , having mass function p(y), with a smooth distribution,
gives rise to the canonical kernel density estimate,

f̂(x) =
1

h

∑
y∈Support(Y )

p(y)K

(
x− y
h

)
.

The parameter h is called the bandwidth, and controls the smoothness of the resulting density
estimate. A common choice of kernel is the standard Gaussian distribution given by,

K(x) =
1√
2π
e−x

2/2.

In this case the bandwidth directly relates to the standard deviation of the smoothing density. The
support of the random variable underlying our approximation F̃ still contains |X | atoms, despite
the compression of its representation. The evaluation of the associated kernel density estimate at
a fixed number of points is O(|X |). Knowledge that F̃ represents a mixture of discrete uniform
distribution functions leads us to instead consider the convolution of the corresponding continuous
uniform distribution functions with the kernel K. For those intervals which contain only a single
point, there is no associated continuous distribution, and so the standard kernel convolution above
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is used. The convolution of the uniform density on [a, b], a < b ∈ R with the Gaussian distribution
with variance h2 is given by

f(x) =
Φ((x− a)/h)− Φ((x− b)/h)

b− a
,

where Φ is the distribution function of the standard Gaussian random variable. With this formu-
lation the associated kernel density estimate has k components, rather than |X |.

How to choose h remains a very active area of research, and no universal guidelines exist for
every context. We use the equivalence of the dip and excess mass tests, and the implications of the
rejection of their null hypotheses, to inform our choice of h. Rejection of the null hypothesis of the
excess mass test is equivalent to favouring two λ level set components over one. The corresponding
value of λ can be extracted from the dip algorithm. We choose h such that the associated density
estimate has λ level set consisting of two components. The minimum such value of h is chosen, as
this leads to more sharply defined modes and anti-modes.

4.3 Handling Population Drift

A generic approach to detect time-variations in f that invalidate our clustering model is to sequen-
tially consider the hypothesis that each hyperplane passes through a region of low relative f density
(low-density separation hypothesis). If this hypothesis is false then a revision of the corresponding
part of the hierarchical model is necessary. Notice that the low-density separation hypothesis is
not a hypothesis of overall stationarity of f . Indeed, as Figure 1 shows, considerable variation in
f is possible without invalidating the model. The figure also shows that testing this hypothesis
for all separating hyperplanes enables us to identify and revise only the relevant part of the clus-
tering hierarchy when a change is detected, rather than resetting the entire model. Moreover, the
low-density separation hypothesis is independent of the type (abrupt, or gradual) and the speed of
drift. Lastly, testing this hypothesis corresponds to a one-dimensional change detection problem,
since each low-density hyperplane is identified through an estimate of a one-dimensional marginal
density.

With each hyperplane added to the model we initialise a Bernoulli CUSUM change detection
regime, as described in Reynolds and Stoumbos (1999), to detect significant increase in the fre-
quency of data arising in a small neighbourhood of the hyperplane. This frequency is determined
relative to the frequency in a larger neighbourhood extending to the adjacent modes of the pro-
jected density. In this way the local density behaviour is better represented. If such a significant
increase is observed, the corresponding node and the subhierarchy it anchors are removed from the
model, and the node is re-initialised. We determine the larger region, which we denote by R, by
the location of the adjacent modes in the density estimate described in Section 4.2.4. The smaller
neighbourhood, N , of the hyperplane is taken to be some proportion, β ∈ (0, 1) of the region R.

To implement a Bernoulli CUSUM, a pre- and post-change frequency must be specified. We
obtain an initial estimate of the pre-change frequency, p0, using the estimated density described
in Section 4.2.4, and then update this estimate with new observations to obtain a more accurate
estimate. With this updating regime, the threshold parameter must be recalculated with each such
update. We set the post-change frequency, p1, equal to the average density over R, since this is
the supremal possible frequency while the hyperplane is at an anti-mode of the projected density
with adjacent modes beyond the boundaries of R.

The Bernoulli CUSUM statistic, S0, is initialised at 0. Note that the time index here, unlike
previously, relates to the t-th datum since the hyperplane was introduced to the model. With the
arrival of datum xt+1 the CUSUM statistic is updated as follows. If xt+1 6∈ R, then the datum is
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Figure 1: Different changes in distribution and their impact on the clustering model. Red lines
indicate necessity of model revision. Green lines indicate changes which can be addressed by
extending the model without revision

(a) Cluster Location (b) Cluster Shape (c) New Clusters

not relevant, and St+1 = St. If xt+1 ∈ R, then,

B =

{
1, if xt+1 ∈ N
0, otherwise

,

St+1 = max{0, St}+B

+ log

(
1− p1
1− p0

)
log

(
p1(1− p0)

p0(1− p1)

)−1
.

A change is detected when St exceeds a threshold α. We set α conservatively, corresponding to
the maximum for chosen run lengths under p0 and p1, which we calculate according to the method
in Reynolds and Stoumbos (1999).

5 The HSDC Algorithm

Having detailed the constituent elements of the method in Section 4, in this section we give a
brief summary of the overall algorithm. The clustering model constructed by HSDC comprises
a hierarchy of separating hyperplanes, each defined by a projection vector, v ∈ Rd, of norm 1,
and split point b ∈ R. Associated with each hyperplane is a CUSUM statistic, S, in place to
detect changes in the underlying distribution which lead to instability of the clustering result.
The leaf nodes of the hierarchy (i.e. those for which the truncated density has not been deemed
multimodal) each have associated with them an updating projection, as well as an approximate
univariate distribution associated with the projection onto it. Leaf nodes might also contain
inheritance vectors, z, to be passed to their children as projections in the event that the node is
split.

Algorithm 1 describes an update to the hierarchical model with the arrival of a datum x. We
associate with each node an identifying tag, ID, which informs the algorithm where to direct data
down the hierarchy. Each internal node has 2 children, LChild and RChild, associated with the
halfspaces induced by the node’s hyperplane.

The datum traverses the hierarchical structure until it reaches the appropriate leaf node. At
each internal node along its path, the corresponding CUSUM statistic is updated as in Section 4.3.
If a change is detected, the associated node is reinitialised, and it becomes a leaf. Otherwise, the
datum is projected onto the node’s projection vector, and is passed to the appropriate child node.
Once the datum arrives at a leaf, the leaf’s projection vector is updated as described in Section 4.1.
The datum is projected onto this updated vector, and this projected datum is used to update the
node’s sample approximation, as described in Sections 4.2.2 and 4.2.3. The dip statistic of the
sample approximation is then calculated, and if the hypothesis of unimodality is rejected, the node
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is split. The split point is given by the lowest anti-mode between the components of the associated
level set of the estimated density, as in Section 4.2.4.

Algorithm 1: HSDC Update

Input: New datum x;
[Set index to root node]
ID = root;
[Find relevant leaf node]
while nodeID is internal do

SID = updateCUSUM(SID|x) (Section 4.3);
if SID > αID then

removeSubhierarchy(ID), re-initialise node ID;
else

p := v>ID(x− x̄ID);
ID = ifelse(p < bID, LChildID, RChildID);

end

end
[Update leaf node and split if necessary]
(vID, zID) = updateProjection(vID, zID|x) (Section 4.1);

p = v>ID(x− x̄ID);
XID = updateSample(XID|p) (Sections 4.2.2-4.2.3);

if Reject H0 := F̃ID is unimodal then

bID := Minimum Antimode Between λ Level Set of f̂ID (Section 4.2.4);
initialise nodes LChildID and RChildID.

end

5.1 Computational Complexity

We consider the worst case cost of updating the HSDC hierarchy. Suppose the model contains C
clusters. The maximum depth of the hierarchy is therefore C (in general the depth of the hierarchy
is much lower, with minimum value log2(C)). For each internal node along a path to a leaf node,
a datum is projected onto the corresponding projection vector, with a computational cost O(d).
This projected datum is used within an update to the corresponding CUSUM statistic with cost
O(1). The maximal cost of finding the appropriate leaf node is thus O(C(d + 1)). Updates to
a leaf node include updating its projection (and inheritance) vector, O(d), updating the sample
approximation, O(k), and calculating the dip statistic, O(k). For an update which does not result
in a new split being introduced, the computational cost is therefore O((C+ 1)(d+ 1) + k). In high
dimensional applications, we have Cd� k, and so the behaviour is O((C + 1)(d+ 1)).

When a node is split, we determine the minimum bandwidth, h, giving the correct level set
of the density estimate. This is done by a bisection method, which has log2((hmax − hmin)/ε)
iterations, where hmax and hmin are upper and lower bounds on h respectively, and ε is the
tolerance level. Within each iteration, the kernel density estimate is calculated, at a cost of O(k2).
The split point is calculated within this procedure.

For existing data stream clustering algorithms based on microclusters, the primary cost asso-
ciated with the online step lies in determining the nearest microcluster. This has computational
cost O(md), where m is the number of microclusters. The time complexity of the offline step
depends on the clustering algorithm being employed. Algorithms based on k-means are technically
NP hard, however practical implementations run in O(mkd) time. Density connectivity methods
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based on DBSCAN have time complexity O(dm log(m)).
Density based methods based on grids have time complexity of the online step O(g), where g

is the number of active grid cells. Without pruning methods, this is exponential in d (Aggarwal,
2013). For the offline component, the approach of DStream (Chen et al., 2007) only requires
processing those grid cells which changed since the last offline step. If t is the number of time
steps since the last offline step, the computational cost is O(t). This means that the total cost of
all offline steps up to time point T has worst case cost O(T ).

In general the number of microcluster and grids cells is substantially larger than the actual
number of clusters, i.e., C � m, g. (The HPStream algorithm is an exception.) For standard
updates therefore HSDC compares favourably with existing data stream clustering algorithms in
terms of update time, especially on high dimensional examples. Updates to HSDC which result in
the introduction of a new split have an additional cost of O(k2). However, in practice these updates
requiring a new split being introduced are infrequent, and the overall complexity is dominated by
standard update steps. Most importantly however, HSDC has no offline clustering component.

6 Experimental Results

We compare the performance of the following methods.

1. CluStream (Aggarwal et al., 2003): We use the implementation in the R package streamMOA,
and the parameters suggested in (Aggarwal et al., 2003).

2. HPStream (Aggarwal et al., 2004): HPStream, like CluStream, requires an offline initialisa-
tion step, for which we give it 2000 data and provide it with the correct number of clusters
for the initial stream segment. We set the average dimensionality of the clusters to 80% the
total dimensionality of the data, and the forgetting factor was set to 0.002. These parameters
improved performance over the suggestions made in (Aggarwal et al., 2004).

3. SPDC (Tasoulis et al., 2012): We set the number of kernels for the M -kernel density estimator
to 50.

4. Our method, HSDC and HSDC(I) (with projection inheritance): The null distribution for the
dip test was the Gaussian, and we use the 95th centile from the Monte Carlo simulations as
a threshold. We use 100 intervals for the sample approximation. The smoothing parameter,
γ, for the EWMA associated with the forgetting factor was set to 0.9. Expected run lengths
for CUSUM statistics were set to 106 and 250 for p0 and p1 respectively.

We also considered the density based algorithms DenStream (Cao et al., 2006) and DMM-
Stream (Amini et al., 2014), however neither produced meaningful clusterings in high dimensional
applications and therefore results are omitted.

To avoid ambiguity we will refer to true clusters in the data as classes and the assignments
made by an algorithm as clusters. An ideal clustering model should (i) correctly cluster data
from the same class; and (ii) assign data from each class to a single cluster. It is therefore
important to consider the class distribution within each discovered cluster as well as the cluster
distribution withing each class. We compare algorithms using Purity (Zhao and Karypis, 2001)
and V-Measure (Rosenberg and Hirschberg, 2007). Purity takes values in (0, 1], with higher values
indicating a clustering in which each cluster contains observations almost exclusively from a single
class. A disadvantage of this measure is that it does not penalise the splitting of data from
one class between multiple clusters. V-Measure is defined as the harmonic mean of homogeneity
and completeness. Homogeneity measures the conditional entropy of the class distribution within
each cluster. Completeness is symmetric, and measures the conditional entropy of the cluster
distribution within each class. V-Measure takes values in [0, 1], with high values indicating a
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clustering in which each cluster contains almost uniquely data from one class, and each class is
contained almost entirely within a single cluster.

To compare the performance of algorithms we evaluate them on stream segments of length 100
taken every 200 time steps. Performance plots show performance evolution through time, indicating
convergence rates and the ability of algorithms to react to and recover from non-stationarity, while
tables document the overall performance of the algorithms on each stream environment.

6.1 Simulations

For all simulations data were generated from a mixture of C multivariate Gaussian distributions.
Covariance matrices were randomly generated according to,

Σi = 4

(
i

C

)2

S>S, Sj,k ∼ N(0, 1).

The coefficients 4(i/C)2 lead to classes with highly variable scales. The mixture proportions
were determined by pi ∝ ui, ui ∼ U [1, 2]. The component means were uniformly sampled from
a d-dimensional hypercube, µi ∼ U [0, Cd1/4]d. Reported results for simulated experiments are
averages over 50 experiments.

6.1.1 Static Environments

We first consider static environments of dimensionality 50, 100 and 500 with 10, 20 and 30 classes.
Streams were of length 500C to allow algorithms without an offline component to build their
models. Figure 2 shows the case with 20 classes in 500 dimensions. The offline initialisation of
CluStream and HPStream ensures good performance from the early stages of the stream. However,
our algorithm is quickly able to surpass them. SPDC is less conservative in introducing splits than
HSDC, however its instability causes the improvements to tail off rapidly. HSDC(I) generates
robust splits more rapidly than HSDC because of projection inheritance, and so it is able to
achieve high performance after fewer time steps. Table 1 contains a summary of the algorithms’
performance on the final stream segment of length 100. The performance in the final segment
of a static stream is most indicative of model performance since the algorithms have been given
opportunity to converge and maintain their models. Our algorithms achieve substantially higher
performance in the high dimensional examples, while being competitive in every case considered.

6.1.2 Static Environments with Irrelevant Features

In high dimensional applications, often certain features are irrelevant to the class identity of the
data. Being able to handle data with irrelevant or noisy features is therefore critical. We consider
cases with 20 classes described by 100 relevant features. We explore the robustness of the algorithms
to the number of irrelevant features as well as the degree of variability therein. The 100 relevant
features were generated as described above. The data were then augmented with scaled standard
(zero mean and identity covariance) Gaussian measurements for a variety of dimensions (d) and
scaling factors (S). Figure 3 shows the case with 100 irrelevant dimensions with scaling factor
20. The performance of CluStream and HPStream is stable, but substantially diminished by the
presence of the irrelevant features. HSDC and HSDC(I) both quickly surpass them and maintain
stable performance after convergence. SPDC also outperforms CluStream and HPStream, but
cannot achieve the same high levels of performance as our method. Table 2 contains a summary of
the algorithms’ performance on the final stream segment. HSDC and HSDC(I) are robust to the
number of irrelevant features and the degree of noise therein, except in the most extreme case (S =
30, d = 200), where the high level of noise coupled with the large number of irrelevant features leads
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Figure 2: Performance on Static Data Stream with 20 Classes in 500 Dimensions
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(a) C = 20, d = 500: Purity
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Table 1: Clustering Performance. Static environments. Average performance on the final stream
segment. Standard deviation in parentheses. Highest performance in bold. Significantly lower
performance indicated by *, based on a one sided t-test at the 5% level

d = 50 d = 100 d = 500
C = 10 Purity V-Measure Purity V-Measure Purity V-Measure
HPStream 0.89 (0.04) 0.85 (0.03)* 0.86 (0.05) 0.84 (0.04)* 0.81 (0.05)* 0.82 (0.04)*
SPDC 0.88 (0.14) 0.87 (0.10) 0.89 (0.16) 0.88 (0.15) 0.79 (0.25)* 0.82 (0.23)*
CluStream 0.44 (0.06)* 0.49 (0.06)* 0.37 (0.05)* 0.41 (0.06)* 0.30 (0.04)* 0.30 (0.05)*
HSDC 0.84 (0.16)* 0.83 (0.15) 0.88 (0.19) 0.86 (0.20) 0.90 (0.14) 0.91 (0.12)
HSDC(I) 0.82 (0.16)* 0.81 (0.15)* 0.88 (0.17) 0.86 (0.15) 0.94 (0.12) 0.92 (0.08)
C = 20
HPStream 0.87 (0.05)* 0.91 (0.03)* 0.86 (0.04)* 0.89 (0.03)* 0.85 (0.03)* 0.89 (0.03)*
SPDC 0.92 (0.15)* 0.93 (0.11)* 0.85 (0.21)* 0.90 (0.15)* 0.81 (0.16)* 0.90 (0.11)*
CluStream 0.94 (0.04)* 0.97 (0.02) 0.94 (0.04) 0.97 (0.02) 0.83 (0.13)* 0.89 (0.09)*
HSDC 0.98 (0.03) 0.97 (0.02) 0.96 (0.13) 0.95 (0.10) 0.97 (0.08) 0.97 (0.05)
HSDC(I) 0.98 (0.02) 0.96 (0.02)* 0.96 (0.09) 0.95 (0.06)* 0.99 (0.03) 0.98 (0.02)
C = 30
HPStream 0.90 (0.06)* 0.92 (0.04)* 0.85 (0.09)* 0.90 (0.06)* 0.84 (0.06)* 0.90 (0.04)*
SPDC 0.81 (0.20)* 0.89 (0.13)* 0.73 (0.22)* 0.84 (0.16)* 0.77 (0.20)* 0.86 (0.18)*
CluStream 0.94 (0.03)* 0.97 (0.01) * 0.95 (0.02) 0.98 (0.01) 0.94 (0.04)* 0.97 (0.04)
HSDC 0.98 (0.06) 0.98 (0.03) 0.97 (0.12) 0.97 (0.07) 0.96 (0.14) 0.97 (0.11)
HSDC(I) 0.95 (0.13) 0.96 (0.08) 0.97 (0.09) 0.97 (0.05) 0.98 (0.08) 0.98 (0.05)
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Figure 3: Clustering Performance. Static Environment with Irrelevant Features. 20 Classes in 100
Relevant and 100 Irrelevant Dimensions with Moderate Variability
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(a) S = 20, d = 100: Purity
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(b) S = 20, d = 100: V-Measure

HSDC (0 0), HSDC(I) (4 4), CluStream (+ +), HPStream (� �), SPDC(∗ ∗)

to slower splitting and a much higher incidence of false detection of change. CluStream achieves
the highest performance in this most extreme case. HPStream seems unable to distinguish classes
when the number of irrelevant features dominates the number of relevant ones (d=200).

6.1.3 Non-Stationary Environments

For these experiments we simulated environments in which the distribution undergoes abrupt
changes at discrete points in time. Plots for the 500 dimensional cases are found in Figures 4-6,
and a full summary of the results from non-stationary examples is found in Table 3. For these
experiments we consider the performance of algorithms throughout the data streams. The table
therefore reports the average and standard deviation of the average performance of each algorithm
on stream segments of length 100 taken every 200 time steps.

Variable Number of Classes For results which lend themselves better to interpretation, we
simulate two separate cases; streams with an increasing number of classes and streams with a
decreasing number. For the former we split a randomly selected class every 1000 time steps,
beginning with 20 classes and ending with 60. The reverse procedure was adopted for the case
of decreasing number of classes. CluStream requires a fixed number of classes throughout. This
was set to 40, the average number of classes over the stream. HPStream was initialised with the
correct number for the initial stage of the stream.

For a decreasing number of classes (Figure 4) the performance of all algorithms improves as the
stream progresses, since the environment becomes easier to model. Following initial convergence,
the performance of our method surpasses the others. In the case of increasing number of classes
(Figure 5) the performance of CluStream and HPStream deteriorates as the stream progresses. This
highlights the limitation of having to specify a fixed number of clusters for the entire data stream.
In contrast the performance of our method is stable after initial convergence. The sustained high
performance indicates that HSDC is able to identify when clusters are being split.

Distribution Overhaul In this set of experiments the distribution undergoes complete change
at regular intervals. We consider the case with 20 classes, whose parameters are reinitialised every
15000 time steps. The performance plots show a sudden deterioration in the performance of our
method following each change. This is expected as the separating hyperplanes are likely redundant
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Table 2: Clustering Performance. Static environments with irrelevant features. Average perfor-
mance on the final stream segment. Standard deviation in parentheses. Highest performance in
bold. Significantly lower performance indicated by *, based on a one sided t-test at the 5% level

d = 50 d = 100 d = 200
S = 10 Purity V-Measure Purity V-Measure Purity V-Measure
HPStream 0.42 (0.12)* 0.56 (0.10)* 0.46 (0.08)* 0.59 (0.08)* 0.10 (0.02)* 0.01 (0.04)*
SPDC 0.85 (0.24)* 0.90 (0.17)* 0.80 (0.22)* 0.86 (0.16)* 0.83 (0.20)* 0.89 (0.15)*
CluStream 0.94 (0.03)* 0.97 (0.02) 0.94 (0.04) 0.97 (0.02) 0.91 (0.08)* 0.95 (0.05)
HSDC 0.99 (0.02) 0.97 (0.02) 0.92 (0.21) 0.92 (0.19) 0.96 (0.11) 0.96 (0.07)
HSDC(I) 0.97 (0.07)* 0.96 (0.03)* 0.92 (0.20) 0.91 (0.20) 0.97 (0.07) 0.96 (0.05)
S = 20
HPStream 0.44 (0.10)* 0.58 (0.09)* 0.46 (0.08)* 0.59 (0.08)* 0.11 (0.02)* 0.01 (0.04)*
SPDC 0.83 (0.22)* 0.89 (0.17)* 0.78 (0.22)* 0.86 (0.17)* 0.71 (0.24)* 0.80 (0.19)*
CluStream 0.92 (0.05)* 0.96 (0.03) 0.67 (0.07)* 0.79 (0.05)* 0.65 (0.08)* 0.78 (0.06)*
HSDC 0.97 (0.09) 0.96 (0.06) 0.96 (0.09) 0.96 (0.05) 0.87 (0.21)* 0.89 (0.19)*
HSDC(I) 0.96 (0.12) 0.95 (0.08) 0.97 (0.06) 0.96 (0.04) 0.94 (0.10) 0.95 (0.06)
S = 30
HPStream 0.42 (0.12)* 0.56 (0.09)* 0.40 (0.10)* 0.51 (0.11)* 0.11 (0.02)* 0.02 (0.05)*
SPDC 0.73 (0.23)* 0.81 (0.19)* 0.64 (0.21)* 0.76 (0.18)* 0.49 (0.20)* 0.62 (0.22)*
CluStream 0.72 (0.07)* 0.83 (0.05)* 0.72 (0.07)* 0.75 (0.08)* 0.71 (0.07) 0.79 (0.05)
HSDC 0.88 (0.20) 0.90 (0.19) 0.70 (0.28)* 0.77 (0.26)* 0.14 (0.10)* 0.07 (0.18)*
HSDC(I) 0.88 (0.20) 0.89 (0.18) 0.85 (0.20) 0.88 (0.17) 0.56 (0.27)* 0.65 (0.28)*

Figure 4: Clustering Performance. Decreasing Classes. 500 Dimensions
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Figure 5: Clustering Performance. Increasing Classes. 500 Dimensions
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Figure 6: Clustering Performance. Distribution Overhaul. 20 Classes in 500 Dimensions
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or intersect the new classes, and thus the model must be rebuilt from scratch. In all cases, however,
HSDC is able to rebuild good quality clustering models, with no apparent deterioration after
multiple changes. The instability of a direct implementation of projected divisive clustering is
indicated by the performance of SPDC. CluStream is least affected by the changes, but cannot
achieve the high performance of HSDC. Because of the multiple rebuilding stages, CluStream is
able to achieve higher average performance than our method when taken over the entire stream.

6.2 Publicly Available Data Sets

In this section we compare the performance of the algorithms on two publicly available data sets
where the true class label is known. The first, Forest Cover Type, is lower dimensional and so (at
best) we hope to achieve results comparable with state of the art standard data stream clustering
algorithms such as CluStream. The second, Gas Sensor Array, is higher dimensional and we expect
HSDC to perform better.
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Table 3: Clustering Performance. Drifting environments. Average performance on segments taken
every 200 time steps. Standard deviation in parentheses. Highest performance in bold. Signifi-
cantly lower performance indicated by *, based on a one sided t-test at the 5% level

Increasing Classes Decreasing Classes Overhaul
d = 100 Purity V-Measure Purity V-Measure Purity V-Measure
HPStream 0.85 (0.03)* 0.93 (0.01) 0.93 (0.02) 0.94 (0.01) 0.91 (0.02)* 0.93 (0.00)*
SPDC 0.83 (0.08)* 0.89 (0.06)* 0.83 (0.07)* 0.89 (0.04)* 0.51 (0.06)* 0.56 (0.07)*
CluStream 0.90 (0.01) 0.92 (0.00)* 0.90 (0.01)* 0.92 (0.01)* 0.94 (0.00) 0.97 (0.00)
HSDC 0.91 (0.04) 0.93 (0.03) 0.90 (0.04)* 0.92 (0.03)* 0.82 (0.04)* 0.84 (0.04)*
HSDC(I) 0.91 (0.04) 0.93 (0.02) 0.89 (0.04)* 0.92 (0.03)* 0.82 (0.04)* 0.83 (0.03)*
d = 500
HPStream 0.79 (0.03)* 0.92 (0.02)* 0.85 (0.03)* 0.93 (0.01)* 0.46 (0.07)* 0.57 (0.07)*
SPDC 0.81 (0.08)* 0.89 (0.05)* 0.83 (0.07)* 0.89 (0.05)* 0.53 (0.06)* 0.63 (0.05)*
CluStream 0.88 (0.01)* 0.91 (0.01)* 0.88 (0.01)* 0.91 (0.01)* 0.86 (0.03) 0.91 (0.03)
HSDC 0.91 (0.03) 0.93 (0.03) 0.93 (0.03) 0.94 (0.03) 0.78 (0.04)* 0.80 (0.03)*
HSDC(I) 0.87 (0.03)* 0.92 (0.02) 0.89 (0.03)* 0.93 (0.02)* 0.82 (0.03)* 0.83 (0.03)*

Figure 7: Class Proportions of Forest Cover Type
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6.2.1 Forest Cover Type

The Forest Cover Type data set, taken from the UCI Machine Learning Repository (Bache and
Lichman, 2014), contains 581012 observations characteristed by 54 features, where each observation
corresponds to one of seven forest cover types. As in the analyses in (Aggarwal et al., 2004;
Tasoulis et al., 2012) we use only the ten continuous features. A plot of the class proportions
(Figure 7) suggests considerable variability in the data distribution through the stream. Figure 8
shows the performance of the various algorithms through the stream (the series of performance
values were smoothed for better interpretability). CluStream achieves the highest performance
through the majority of the stream. The average purity of all algorithms is similar; in decreasing
order: CluStream = 0.86, HSDC(I) = 0.85, SPDC = 0.84, HSDC = 0.83, HPStream = 0.82. The
average V-Measure of CluStream is substantially higher than the other algorithms at 0.31. The
other algorithms achieved average V-Measure of: HSDC(I) = 0.27, SPDC = 0.27, HSDC = 0.25,
HPStream = 0.22.

6.2.2 Gas Sensor Array

The Gas Sensor Array Drift data set, available from the UCI Machine Learning repository (Bache
and Lichman, 2014), contains 13910 measurements from each of 16 chemical sensors (amounting
to 128 features in total per datum) used in simulations of drift compensation for the purpose of
discriminating between six different gases (Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol,
and Toluene) at various levels of concentration. The experiment was designed for the task of
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Figure 8: Clustering Performance. Forest Cover Type Data
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Figure 9: Clustering Performance. Gas Sensor Array Data
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achieving al degradation in discriminatory performance over time as possible to evaluate strategies
able to handle non-stationarity or drift (Vergara et al., 2012). The average number of dimensions for
HPStream was set to 80 after experiments indicated this resulted in better performance. Figure 9
shows the performance of the algorithms through the stream (again the series are smoothed for
better interpretability). Our method is the only one to obtain good discriminatory performance
in the latter part of the stream, indicated by the purity performance. The instability of SPDC
is again highlighted by its severe performance degradation with drift. The average purity (and
V-Measure), in decreasing order: HSDC(I) = 0.94 (0.44), HSDC = 0.90 (0.39), CluStream = 0.87
(0.39), HPStream = 0.80 (0.30), SPDC = 0.67 (0.12).

6.3 Discussion of Experimental Results

We compared our method with three existing data stream clustering algorithms from the literature,
CluStream, HPStream, and SPDC. We investigated the scalability of the method in terms of
dimensionality and number of clusters. HSDC and HSDC(I) outperformed the compared methods
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in most cases, and especially in the highest dimensional examples. Next we investigated robustness
to irrelevant/noisy features. The performance of our method was affected to a lesser degree than
the other methods except in the most extreme case. When the number of irrelevant dimensions
dominated the number of relevant ones, and in addition the degree of variability in the irrelevant
dimensions was large, HSDC failed to detect clusters reliably. The stability added by projection
inheritance improved matters, but the performance was still strongly affected. Following that
we introduced non-stationarity, considering three types: Clusters dividing, clusters merging, and
distribution overhaul. Our method obtained the highest overall performance when the number
of clusters varied (clusters dividing/merging). For distribution overhaul, because our method is
required to rebuild its model from scratch, the average performance was strongly affected. Despite
this fact, HSDC and HSDC(I) were always able to rebuild high quality clustering models, with no
apparent degradation with repeated overhauls.

Finally we considered two real world applications: Clustering Forest Cover Types, and Gas
Sensor Array Data. The former is lower dimensional (10 dimensions used), and our method
obtained similar performance to the other methods considered. The latter is higher dimensional,
and our method strongly outperformed the compared algorithms.

It is important to notice that in almost all cases where our approach does not yield the best
performance, it is still close to the best performing method, while there are numerous examples in
which our method far outperforms all others.

7 Conclusions

We introduced a framework for projected divisive clustering that is consistent with high density
clustering, and which accommodates central challenges associated with data streams, including
high dimensional data and non-stationarity. The derived method is able to identify clusters in
arbitrary subspaces, estimate the number of clusters automatically and identify changes in the data
distribution which affect the validity of the model. The algorithm is also fully incremental, requiring
no offline component. To our knowledge, no other algorithms achieve all of these simultaneously.

The method constructs a hierarchy of low-density hyperplane separators, thereby enabling it
to handle high dimensional data. This is achieved by establishing directions of high variability and
approximating the projected distribution along them. We propose a simple approach to speed up
the incremental approximation of such directions, hence reducing the time required to construct the
cluster hierarchy. We introduce new components to the model only when the marginal distribution
along the projection is found to be multimodal. For this purpose, a fixed memory approximation
to the dip test is developed, and shown to lower bound the true value.

The framework incorporates a novel formulation to detect arbitrary changes in the population
distribution that affect the validity of the current clustering model. The approach relies on de-
tecting increases in the density local to a separating hyperplane, which signal that the hyperplane
intersects regions of high density. This enables us to not only provide indication of the timing
of such changes but also to isolate the parts of the hierarchical model that require revision. To
our knowledge this is the first general purpose clustering algorithm able to detect changes in the
underlying distribution.

Experimental results show that algorithms derived from the proposed framework obtain the best
overall performance on a range of problem types, when compared with state of the art algorithms
for data stream clustering. Among the competing methods, CluStream achieved an on-average
better performance when the population distribution underwent the most extreme type of abrupt
change. The reason is that reconstructing the entire clustering hierarchy invariably requires more
time than the adaptation of centroid-based methods. This result however is conditional on the a
priori specification of the correct number of clusters for such algorithms. When this is not the case
our methods fare better.
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Appendix A. Proofs

Before we can prove Lemma 2, we require the following preliminaries.
The algorithm for computing the dip of a distribution function F constructs a unimodal dis-

tribution function G with the following properties: (i) The modal interval of G, [m,M ], is equal
to the modal interval of the closest unimodal distribution function to F , which we denote by FU ,
based on the supremum norm; (ii) ‖F − G‖∞ = 2‖F − FU‖∞; (iii) G is the greatest convex mi-
norant of F on (−∞,m]; (iv) G is the least concave majorant of F on [M,∞). By construction,
the function G is linear between its nodes. A node n ≤ m of G satisfies G(n) = lim infx→n F (x),
while a node n ≥ M of G satisfies G(n) = limsupx→nF (x). If F is the distribution function of a
discrete random variable, then G is continuous.

The function FU can be constructed by finding appropriate values b < m, B > M s.t. FU is
equal to G+Dip(F ) on [b,m], equal to G−Dip(F ) on [M,B], linearly interpolating between G(m)
and G(M) and given any appropriate tails, which we choose to be linearly decreasing/increasing
to 0 and 1 respectively.

Before proving Lemma 2, we require the following preliminary result, which relies on the notion
of a step linear function.

Step Linear A function f is step linear on a non-empty, compact interval I = [a, b], if

f(x) = α+ β

⌊
(x− a)

n

b− a

⌋
, ∀x ∈ I,

for some α, β ∈ R and n ∈ N.

A step linear function is piecewise constant, and has n equally sized jumps of size β spaced equally
on I with the final jump ocurring at b. The approximate empirical distribution function F̃ (Section
4.2.2) is therefore step linear over the approximating intervals.

Proposition 4 Let f be step linear on an interval I = [a, b], and satisfy limx→a− f(x) = α − β,
where α, β as in the above definition for f . Let g be liner on I and continuous on a neighbourhood
of I. Then

sup
x∈I
|f(x)− g(x)| ≤ max {limsupx→a|f(x)− g(x)|,

limsupx→b|f(x)− g(x)|} .

Proof Let fm and fM be linear on a neighbourhood of I s.t. they form the closest lower and upper
bounding functions of f on I respectively. Since f is step linear, we have,

lim
x→a−

f(x) = fm(a), limx→b− f(x) = fm(b),

f(a) = fM (a), f(b) = fM (b).

We therefore have, by above and the fact that g, fm, and fM are linear on I,

sup
x∈I
|f(x)− g(x)| ≤ max

{
sup
x∈I
|fM (x)− g(x)|,

sup
x∈I
|fm(x)− g(x)|

}
= max

{
|fM (b)− g(b)|,

|fM (a)− g(a)|, |fm(a)− g(a)|,
|fm(b)− g(b)|}

= max {limsupx→a|f(x)− g(x)|,
limsupx→b|f(x)− g(x)|} .
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We are now in a position to prove Lemma 2, which states that the dip of a compactly approximated
sample, as described in Section 4.2.2, provides a lower bound on the dip of the true sample.

Proof of Lemma 2. Let I = [a, b] be any compact interval and FI the empirical distribution
function of (X ∩ Ic) ∪Unif(X , I). Assume |X ∩ I| > 1, since otherwise FI = FX and we are done.
We can assume that the endpoints of I are elements of X since this defines the same uniform
set. FX and FI are therefore equal on Int(I)c. In fact, since X consists of unique points, ∃ε > 0
s.t. FI(x) = FX (x) ∀x 6∈ (a + ε, b − ε). Define F ′I to be equal to FUX for x 6∈ Int(I) and linearly
interpolating between FUX (a) and FUX (b). By construction F ′I is a continuous unimodal distribution
function.

We now show ‖FI −F ′I‖∞ ≤ ‖FX −FUX ‖∞. To see this, suppose that it is not true, i.e., ∃x s.t.
|FI(x)− F ′I(x)| > supy |FX (y)− FUX (y)|. Clearly x ∈ Int(I) due to the equalities discussed above

and the construction of F ′I . Because of the continuity of FUX and F ′I and the equality of FX and
FI on (a, a+ ε) ∪ (b− ε, b), we have

limsupy→a|FI(y)− F ′I(y)| = limsupy→a|FX − FUX (x)|

and
limsupy→b|FI(y)− F ′I(y)| = limsupy→b|FX − FUX (x)|.

But by Proposition 4 one of these left hand sides is at least as large as |FI(x)− F ′I(x)|, leading to
a contradiction.

We have shown that the addition of a single interval cannot increase the dip. We can apply
the same logic to the now modified sample (X ∩ Ic)∪Unif(X , I), iterating the addition of disjoint
intervals to obtain a non-increasing sequence of dips. �

In the above proof, we do not show that F ′I is the closest unimodal distribution function to
FI , however its existence necessitates the closest one being at least as close. Now, the sample
approximations we employ still contain a full t atoms after t observations, however, they can be
stored in O(k) for k intervals. We can easily show that the dip of such a sample approximation
can be computed in O(k) time.

Proposition 5 The dip of a sample consisting of k uniform sets with disjoint ranges can be
computed in O(k) time.

Proof We begin by showing that there exists a unimodal distribution function which is linear on
the ranges of the uniform sets and which achieves the minimal distance to the empirical distribution
function of the sample.

Let F be a continuous unimodal distribution function s.t. ‖F − F̃‖∞ = Dip(F̃ ). Define F ′

similarly to in the above proof to be the continuous distribution function which is equal to F
outside and at the boundaries of the intervals defining the uniform sets and linearly interpolating
on them. Using the same logic, we know that supx |F ′(x) − F̃ (x)| ≤ supx |F (x) − F̃ (x)|, hence
‖F ′ − F̃‖∞ = Dip(F̃ ).

Proposition 4 ensures that points in the interior of the intervals will not be chosen by the dip
algorithm as end points of the modal interval of G, nor points at which the difference between the
functions is supremal. The possible choices for these locations is therefore O(k), and the algorithm
need not evaluate the functions except at the endpoints of the intervals. �

Finally, we provide a proof of Proposition 3.
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Proof of Proposition 3. For s > 1 we have ‖vs−vs−1‖ = ‖vs‖‖vs−vs−1‖ ≥ |vs · (vs−vs−1)| =
|vsvs−1 − 1|, since ‖vt‖ = 1 ∀t. Therefore, since {vt}∞t=1 is almost surely convergent, and therefore

almost surely Cauchy, we have vs ·vs−1
a.s.−−→ 1⇒ arccos(vs ·vs−1)

a.s.−−→ 0. Now, we can easily show
that,

λt ≤ γt−1λ1 + (1− γ)

t−2∑
i=1

γi arccos(vt−i · vt−i−1).

Take ε > 0 and t large enough that γt−1λ1 < γε, and t > k+2, where k = blog(ε(1−γ)/2π)/ log(γ)−
1c. Consider,

t−2∑
i=1

γi arccos(vt−i · vt−i−1) ≤
k∑
i=1

arccos(vt−i · vt−i−1)

+
πγk+1

1− γ
,

and πγk+1

1−γ ≤
ε
2 . In all,

λt > ε⇒
k∑
i=0

arccos(vt−i · vt−i−1) > ε/2.

Notice that k does not depend on t. With probability 1, for any given ε > 0 there is a T s.t. T > T
implies

∑k
i=0 arccos(vT−i · vT−i−1) ≤ ε/2, implying λT ≤ ε for all T > T , and the result follows.�
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