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[1] There is growing interest in the application of ‘‘continuous simulation’’ conceptual
rainfall-runoff models for flood frequency estimation as an adjunct to event-based or
statistical design methodology. The approach has advantages that stem from the use of
models with continuous water balance accounting. Conceptual rainfall-runoff models
usually require calibration, which in turn requires gauged rainfall and flow data. One of
the key challenges is therefore to develop ways of generalizing models for use at
ungauged sites. Recent work has produced a prototype scheme for achieving this aim
in Great Britain for two catchment models by relating model parameters to spatial
catchment properties, such as soils, topography, and geology. In this paper we present an
analysis of the uncertainty associated with one of the generalized models (the ‘‘probability
distributed model’’) in terms of confidence intervals for simulations at test sites that
are treated as if they were ungauged. This is done by fitting regression relationships
between hydrological model parameters and catchment properties so as to estimate the
parameters as distribution functions for the ungauged site case. Flood flow outputs are
then simulated from the parameter distributions and used to construct approximate
confidence intervals. Comparison with gauged data suggests that the generalized model
may be tentatively accepted. Uncertainty in the modeled flood flows is often of a similar
order to the uncertainty surrounding a more conventional statistical model, in this case a
single-site generalized Pareto distribution fitted to the gauged data. INDEX TERMS: 1821

Hydrology: Floods; 1860 Hydrology: Runoff and streamflow; 9335 Information Related to Geographic
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1. Introduction

[2] This paper explores the calculation of uncertainty in
modeled estimates of river flows, and, in particular, of flood
frequencies. The ‘‘continuous simulation’’ (CS) approach to
modeling flood frequency is being researched in the UK as
a future method for routine flood risk assessment [Calver et
al., 1999]. Continuous simulation is based on modeling
long time series of river flow data, typically using a discrete
time step conceptual rainfall-runoff model. Flood peaks
may then be extracted and used, in effect, as a proxy data
set to develop derived flood frequency curves.
[3] The CS method has a number of advantageous

hydrological features. In comparison with the event-based
design hydrograph approach that has been applied in
engineering practice for many years, continuous simulation
does not require arbitrary base flow separation, there is no
need for calculation of storm antecedent conditions (because
of adopting continuous water balance accounting), and

rainfall design storms do not have to be constructed for
particular return periods associated with a design flood
estimate. The CS approach is also flexible, in that any
chosen quantity can potentially be derived from the mod-
eled flow series, for example peak flows averaged over
different time step lengths, accumulated volumes, periods
exceeding a certain flow threshold, or, indeed, measures of
interest for low-flow analysis as well as for flood risk.
[4] Early work demonstrating the potential to use contin-

uous simulation for flood frequency analysis focused on the
outputs of calibrated rainfall-runoff models at gauged catch-
ments [Bras et al., 1985; Beven, 1987]. However, a key
requirement for a general method is the ability to model a
range of catchments of different scale and type. Crucially,
practical applications may also include ungauged sites,
where measurements of river flows are not available and
model calibration is therefore not possible. Parameterizing a
model to meet these requirements can be thought of as
‘‘spatial generalization’’.
[5] Progress in spatial generalization of the CS method in

Great Britain has been reported by Calver et al. [1999] and
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Lamb et al. [2000a, 2000b], who used linear regression to fit
relationships between CS model parameters (as calibrated
at gauged sites) and physically based catchment properties
(e.g., indices describing soils, topography and vegetation).
The work reported in this paper adopts the same basis for
spatial generalization, but extends the analysis by investigat-
ing uncertainty in the generalized modeling. Estimates of
uncertainty, to be characterized in this case by approximate
confidence intervals about derived flood frequency curves,
are motivated by three main factors: There is an imperative
for knowledge of uncertainty in planning and policy guid-
ance (for example, Department for Environment, Food and
Rural Affairs (DEFRA) [2001] in the UK), there is scope to
use confidence intervals as a measure of precision of the
generalized CS method, and such intervals have the potential
to be interpreted heuristically as analogues for significance
tests to guide acceptance or rejection of the generalized CS
parameterizations.

2. Approach

[6] Attempts have been made to generalize conceptual
hydrological models in a number of studies, not necessar-
ily motivated by flood estimation [e.g., Abdulla and
Lettenmaier, 1997; Post et al., 1998; Sefton and Howarth,
1998]. Spatial generalization of model parameters remains a
difficult problem for which there is, arguably, no standard
methodology. However, a typical approach is as follows.
[7] 1. Select a sample of n gauged catchments representing

a range of physiographic characteristics and with good
quality rainfall and flow records extending over several
years.
[8] 2. For each catchment k (k = 1, . . ., n), collate a range

of p catchment properties, xk = (x1,k, x2,k, . . ., xp,k), that
describe fixed or relatively stationary characteristics, such
as topography, geology, soils and stream network topology.
Selected properties should be available geographically as
widely as possible.
[9] 3. Calibrate the vector of m parameters, Qk, of a

chosen CS hydrological model at each catchment using the
observed rainfall and flow data.
[10] 4. Treat the calibrated parameters as if they are

‘‘observations’’ and fit, for each parameter individually, a
regression relationship of the form q = M(X) + e between
the calibrated parameters and a subset of catchment
properties, X.
[11] 5. Use the fitted regression equations to estimate

model parameters at ungauged locations, nationally or
within specified regions.
[12] Using an empirical technique (in this case least

squares regression) to estimate hydrological model param-
eters from catchment properties will introduce a degree of
uncertainty. The main focus of this paper is on implications
for flood estimates of the uncertainty associated with step 4
and, consequently, expected in step 5.
[13] There is also uncertainty involved in the calibration

of hydrological model parameters against gauged flow data.
Reasons for this include the difficulty of measuring what
constitutes the ‘‘best fit’’ and the numerical interaction
between parameters, such that sets of different values can
often provide very similar hydrological simulations [e.g.,
Beven, 1993; Duan et al., 1992]. The problems of
calibration uncertainty have received considerable attention

in the literature; see, for example, Sorooshian and Dracup
[1980], Kuczera [1983], Beven and Binley [1992]. Lamb
[1999] investigated the calibration of the Probability
distributed model (PDM) hydrological model, also used in
this paper, and found that combining measures of the model
fit to flood peaks and flow duration curves could help to
constrain the calibration. To enable us to concentrate in this
paper on the analysis of ‘‘generalization uncertainty’’, the
issue of calibration uncertainty has not been examined in
detail. It has instead been assumed for simplicity that model
parameters can be fitted to flow data at gauged sites to
produce point estimates that have some practical utility.
Calibration uncertainty has been reflected only in terms of
the variance of the calibrated values within the regression
model for each parameter. However, suggestions are also
made about the extension of the approach to incorporate
calibration uncertainty more explicitly.
[14] Although the parameters of conceptual hydrological

models are mostly designed to be physically meaningful,
relating them to corresponding physical properties can be
very difficult in large part because of nonuniqueness reflected
in the calibration uncertainties. This issue has been noted by
Fernandez et al. [2000], who proposed a regional calibration
approach to simultaneously fit a monthly water balance
model to gauged data and catchment properties. Cameron et
al. [1999] also investigated uncertainty in the calibration of
the conceptual rainfall-runoff model TOPMODEL [Beven
and Kirkby, 1979; Beven et al., 1995] for use in flood
frequency estimation. In their work, TOPMODEL was
combined with a stochastic model for area-averaged rainfall,
parameterized at each study catchment using rainfall data
derived by Lamb and Gannon [1996], and the combined
models were run within the GLUE [Beven and Binley, 1992]
Bayes Monte Carlo framework.
[15] The use of a rainfall model allows long synthetic

simulations to be run, from which estimates of rare floods
can be derived. Estimates of the 100-year flood have been
derived in this way by Calver and Lamb [2001] for the set
of catchments used in this paper. In this study, we
concentrate solely on the spatial generalization of hydro-
logical model parameters rather than extension of the
continuous simulation approach to model rare events using
simulated rainfall. The main reasons for this are to avoid
having to incorporate potential errors from rainfall modeling
and because there are very few (if any) gauged flow records
long enough to support objective testing of simulated flood
frequencies at the longer return periods.

3. Data and Study Sites

[16] Rainfall and river flow data from 40 gauged catch-
ments in Great Britain were used for model calibration. The
calibration data are at an hourly time resolution. This was
selected as a practical compromise for use over the set of
catchments ranging in scale from 1 km2 to 532 km2 (mean
156 km2) and with typical response times of 3 to 24 hours
(mean 8 h), as indicated by the unit hydrograph time to peak
(defined for British catchments according to Institute of
Hydrology [1999] variable Tp(0)). The location of the
calibration sites is shown in Figure 1.
[17] There are on average 9 years of continuous hourly

rainfall and river flow data at each site. In total, the data set
comprises more than 300 station years of continuous hourly
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data. Daily average potential evaporation (PE) series were
derived from UK MORECS [Thompson et al., 1981]
synoptic site data.
[18] Spatial data describing catchment properties were

derived from a number of sources, and included variables
available digitally on a 1 km grid over Britain. Some of the
catchment properties were derived from the hydrology of
soil types (HOST) soils classification scheme [Boorman et
al., 1995] and a comprehensive integrated hydrological
digital terrain model (IHDTM) of the UK developed at the
Institute of Hydrology, Wallingford. Other properties were
derived from geological maps, river network properties and
topography. In total, 58 catchment property variables were

available to use as a basis for seeking relationships with
calibrated model parameters.

4. Hydrological Model

[19] The hydrological model we have used is the proba-
bility distributed model (PDM), developed by Moore and
Clarke [1981]. The PDM was chosen as typical of the
relatively simple model structures that have the potential to
be applied effectively for many parts of the UK. It is based
on conceptual stores and transfers, as shown in Figure 2,
and attempts to represent nonlinearity in the transformation
of rainfall to runoff using a probability distribution of soil
moisture storage capacity. This distributed soil moisture
store determines the time-varying proportion of the
catchment contributing to runoff. Runoff is split into ‘‘fast’’
and ‘‘slow’’ pathways, which are routed via parallel storage
components. The two pathways are then combined to
determine the final simulated streamflow.
[20] It is worth noting that the generic continuous simu-

lation approach does not require any particular rainfall-
runoff model, although model complexity may have
implications for the ability to generalize successfully to
ungauged sites. The PDM is one of two models for which
particular experience has been gained in spatially generalized
CS flood frequency estimation in Great Britain. The other
model used in this context has been the time-area topographic
extension (TATE) model ofCalver [1993, 1996], which is of
a similar basic structure. Various other CS hydrological
models have also been applied to model flood frequency
[see, e.g., Beven, 1987; Bradley and Potter, 1992; Bras et
al., 1985; Hashemi et al., 2000; Goel et al., 2000].
[21] The PDM and its variants have been widely used in

many studies and only a brief algorithm description is given
here (for a full description of the original theory of the
PDM, see Moore [1985]). Rain falling during each time step
accumulates in the soil moisture store. At any time, there
will then be a critical depth (shown in Figure 2) at which the
storage capacity, c, is equal to the accumulated depth of
water. Parts of the catchment where the storage capacity is
less than this critical depth will only be able to store
accumulated rainfall to a depth c, and the remainder spills

Figure 1. Location of hourly gauged catchments used in
this study.

Figure 2. Structure of the simplified PDM catchment model used in this study. The five parameters are
a volume adjustment fc, the base flow routing constant kb, the maximum soil moisture storage capacity
cmax, the fast flow routing constant k1, and the proportional split (vc) between the base flow and fast flow
pathways.
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over as runoff. The area of the catchment generating this
runoff can be computed by integrating under the probability
distribution of storage capacity, as illustrated in Figure 2.
For this study, a uniform distribution was assumed because
this is a simple form that requires only one parameter to be
fitted.
[22] The soil moisture storage is depleted by evaporation

as a function of the potential rate and the volume in storage.
In the current study, a linear relationship was assumed. The
soil moisture store is updated at each time step according to
rainfall inputs and evaporation losses. In the current model,
the slow response (or ‘‘base flow’’) has been calculated as a
fixed proportion of the runoff, which is a simplification
introduced to keep the number of parameters small. The
slow and fast runoff volumes are routed to the catchment
outlet using simple storage-based routing. After initial trials,
best results were obtained by using a linear storage function
for fast flow routing and a cubic store for slow flow routing.
[23] The PDM, as configured for this study, has five

parameters. The water balance parameters are fc, a constant
adjustment factor applied to rainfall inputs and cmax, the
maximum depth in mm of the uniform soil moisture storage
capacity distribution. Parameter vc is the constant propor-
tional split between runoff entering the fast and slow routing
paths. The final two parameters are k1 and kb, the constants
of the fast flow and slow flow routing stores. Units for k1
and kb are hours and (mm2), respectively.
[24] The formulation is a somewhat simplified version of

a more general 7-parameter PDM structure used for flood
frequency estimation as described in greater detail by Lamb
[1999]. The simplification was driven by potential benefit
for spatial generalization of reducing the number of
parameters in order to produce a robust model. Wheater
[2002] has noted that this parsimonious modeling approach
has allowed progress to be made in regionalization of
continuous simulation modeling. While accuracy in some
details of hydrograph simulation may be sacrificed, the
simpler model has been found [Lamb et al., 2000a, 2000b]
to produce improved generalized flood frequency simula-
tions when combined with a spatial generalization technique
as described below.
[25] As a further simplification, the split between fast and

slow runoff paths, vc , was specified to be proportional to
catchment property HOSTSPR, which is a catchment-
averaged estimate of standard percentage runoff derived
from soils information. Since vc was specified in this way as
a fixed quantity, rather than being fitted to catchment
properties by a regression relationship, it was treated as
being known without uncertainty. The four parameters fc,
cmax, k1 and kb therefore remained to be estimated from
relationships fitted to catchment properties.

5. Spatial Generalization Method

[26] The basis of the method we have used for spatial
generalization is, as outlined above, to fit regression rela-
tionships between calibrated parameters of the PDM and
catchment properties using ordinary least squares (OLS).
Calibration of the PDM was carried out at each gauged site
using a combination of computationally intensive uniform
random sampling of a wide parameter space with manual
‘‘fine-tuning.’’ The criteria for calibration were a combina-
tion of two objective functions. The first objective function

measured the summed absolute differences between ranked
flood peaks extracted from simulated and observed flow
data,

OP ¼
Xn
i¼1

qi � q̂ij j; ð1Þ

where qi is the magnitude of the ith-ranking extracted peak
in the observed flow record, and q̂i is the ith-ranking peak in
the simulated flows. Peaks were extracted as a partial
duration series with an implicit threshold such that a total of
3L peaks would be available for an L-year period of record.
The second objective function OM was the Nash and
Sutcliffe [1970] efficiency measure, applied to series of
30-day averages calculated from the modeled and gauged
flows.
[27] There is a degree of arbitrariness in deciding how to

combine measures. In this case, the overall aim was to
maximize the agreement between observed and simulated
flood peaks for each gauged site, with the fitting of monthly
flows being used as a measure of overall hydrological
consistency. However, the volume adjustment factor fc
was first calibrated solely by fitting to monthly flows. For
calibration of the remaining three parameters, the two
objective functions were weighted equally and the set of
Pareto-optimal solutions was identified to indicate the range
of parameter values best suited as constraints on the
calibration. Pareto-optimal solutions are those for which no
other parameter set Qk can be found to have better
performance in terms of two or more objective functions
(see, for example, Gupta et al. [1998] for further
discussion).
[28] The trade-offs between the multiple possible solu-

tions were then considered by selecting conceptually rea-
sonable members of the Pareto set and carrying out further
calibration based on visual inspection of simulated and
observed data. Although it introduces a subjective element,
this manual calibration also allowed flexibility in applying
hydrological judgment rather than adopting an automated
rule for the final selection of the parameter values. This was
considered to be particularly important because of the need
to nominate a single ‘‘optimum’’ parameter set from what
may in some cases be a relatively wide range of possible
parameter values. Lamb [1999] discussed some of the issues
raised by calibration of the PDM when used for flood
frequency estimation, in particular the limitations of
inferences drawn from typical objective functions.
[29] A further constraint was placed on the calibration

procedure in an attempt to account, at least in part, for the
problem of functional interaction between model parame-
ters. Examination of profile plots of OP and OM produced
by uniform random sampling showed that the ability of the
PDM to fit the observed flow data was generally more
sensitive to some of the PDM parameters than to others.
Profile plots for fc were by far the most likely to indicate a
clear single optimum value (which is not surprising, given
the critical role fc plays in controlling the overall modeled
responses). The parameter fc was therefore chosen to be the
first for which a regression relationship was fitted to
catchment properties.
[30] For each catchment, the fitted relationship was used

to calculate an ‘‘as-ungauged’’ estimate f *c,k = M1(xk), where
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the asterisk is used to denote a regression estimate and xk is
the vector of catchment properties for catchment k. The
remaining PDM parameters were then recalibrated for each
catchment, conditional upon the fixed, as-ungauged, values
f *c. Again, the parameter judged to have produced greatest
sensitivity in the objective function response surfaces was
chosen, and the process repeated until all four parameters
had been calibrated and used to fit regression relationships
against catchment properties. This process has been referred
to as the ‘‘sequential generalization’’ procedure [Lamb et
al., 2000a, 2000b].
[31] It is important to note that the sequential generaliza-

tion procedure effectively combines model ‘‘calibration’’
(i.e., fitting qk to local gauged flow data) with what is often
referred to as ‘‘regionalization’’ (i.e., transferring informa-
tion, in this case to estimate q*k from catchment properties).
Instead of two separate steps, our sequential procedure
attempts to fit a spatially generalized model that incorpo-
rates both local fit to gauged data and spatial fit to
catchment properties. For convenience, we refer to
‘‘calibrated’’ model parameters where these have been
fitted to flow data, but it should be noted that the calibration
for parameter qi (i 6¼ 1) is conditional upon catchment
properties used to predict qi�1.
[32] Regression equations were fitted at each step by an

exhaustive search of catchment properties based on
explained variance, R2. This resulted in a number of
alternatives with similar R2 but with different combinations
of catchment properties and regression coefficients. The
best alternatives were compared and a final regression
equation selected for each PDM parameter based on

judgments about the hydrological explanation offered by
the selected catchment properties, although it has to be
accepted that there will not always be a simple physical link
between catchment properties and conceptual model param-
eters. It is also likely that catchment properties may act as
surrogates in some cases; for example location and altitude
attributes will, to a degree, reflect geology, soil type and
rainfall regimes in Britain.
[33] The resulting equations are summarized in Table 1.

Definitions of the relevant catchment properties (i.e., the
explanatory variables in the regression models) are given in
Table 2. Many of these properties are widely available for the
UK as part of the Flood Estimation Handbook ‘‘Catchment
Descriptors’’ data set. The explanatory variables are
significant to at least 88% probability, with the exception
of the regression for kb. Here, there is some correlation
between base flow index (HOSTBFI) and effective porosity
(HOSTP). It might be expected that the uncertainty for
regression predictions of kb based on the four-variable
equation would therefore be inflated. However, the equation
shown in Table 1 provided a visually better prediction of the
calibrated values of kb and tests showed that the effect on
the regression model uncertainty of removing one of the
correlated variables was negligible. The Table 1 equation
was therefore accepted for the present study, although
further work would be recommended to seek a potentially
more robust regression relationship for wider application of
the generalized-parameter model.
[34] Figure 3 compares the values of PDM parameters

obtained by calibration with estimates generated from
catchment properties data via the fitted regression equa-

Table 1. Regression Equations Used to Relate PDM Parameters to Catchment Propertiesa

Equation R2

fc = 0.71 + 6.6 * 10�4 * DPSBAR + 0.0016 * MEDWET � 0.40 * HOSTP 0.7
cmax = �96.6 + 10.6 * SKEW + 4.97 * DPLBAR + 0.056 * S6190 � 1175.3 * URBFRAC 0.7
k1 = �42.7 + 62.4 * HOSTBFI + 14.8 * SDIST + 1.1 * RESIDM � 19.9 * SUBFRAC 0.8
kb = 32.2 � 224.5 * HOSTBFI + 0.33 * PORO + 25.5 * GEOLP + 524.6 * HOSTP 0.6
vf = 0.01 * HOSTSPR fixed

aDescriptions of the catchment properties are given in Table 2.

Table 2. Catchment Descriptors Used for Estimating Parameters of the PDM Hydrological Model

Name Units Sourcea Description

DPLBAR km FEH mean drainage path length
DPSBAR m/km FEH mean slope of drainage paths to the site
GEOLP Geol assessment of relative groundwater permeability
HOSTBFI FEH base flow index, calculated from weighted average of hydrology of soil types (HOST)

soils classes covering each catchment
HOSTP HOST index of porosity as weighted average of values inferred from HOST soils classes covering each catchment
HOSTSPR % FEH standard percent runoff calculated from weighted average of soils classes over the catchment
MEDWET days FEH* median length of periods of soil moisture deficit (SMD) less than 6 mm between 1961 and 1990
PORO % Soils estimated total soil porosity
RESIDM % Soils estimated residual soil moisture
S6190 mm FEH standard average annual rainfall, 1961–1990
SDIST DTM distance from gauge at which number of channels is a maximum, measuring along the channel network
SKEW DTM skew of distribution of the log(area/slope) index [Beven and Kirkby, 1979]
SUBFRAC FEH* suburban fraction of total catchment area
URBFRAC FEH* urbanized fraction of total catchment area

aData sources are as follows: FEH, properties appearing in digital form from Institute of Hydrology [1999]; FEH*, properties derived from FEH data, but
not included in the current FEH CD-ROM database; DTM, properties derived from the CEH-Wallingford integrated hydrological digital terrain model
(IHDTM); Geol, derived by interpretation of geological map and aquifer properties information; Soils, soil physical parameters derived from the UK
SEISMIC soils database; HOST, properties derived from the HOST soils classification system [Boorman et al., 1995].
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tions. Clearly there is a degree of scatter in these plots,
but relatively little indication of bias. Given the difficulty
of attempting to relate hydrological model parameters
to catchment properties data, and the relatively small
sample size available here, the regression relationships
are considered to be a useful first step toward a national
application.

6. Uncertainty Estimation Method

[35] The regression relationships developed using the
sequential fitting procedure are the basis for parameter-
izing the PDM for ungauged catchments. However, our
interest here is the distribution of values surrounding the
regression lines, as well the mean estimate. Expressing
the estimated PDM parameters as distributions for each
catchment, we used Monte Carlo simulation to generate
corresponding model output distributions of simulated
river flows and hence flood frequency curves. Approxi-
mate confidence intervals were then computed from the
simulated output distributions. The overall procedure is
illustrated in Figure 4 and described in more detail
below.
[36] For any catchment k, each estimated PDM parameter

q*k is the mean of a distribution for which an estimate of the
variance is sd

2 = SSr/d, where SSr is the sum of squares of
the residuals in the regression relationship and d is the
corresponding number of degrees of freedom. The quantity
q*k is the ‘‘as-ungauged’’ parameter estimate, and, following

standard statistical theory [see, e.g., Draper and Smith,
1998], the 100(1 � a)% confidence limits may be written

qk*� t d; 1� 1

2
a

� �
sd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTk XTX

� ��1
xk

q
¼ qk*� gk a; dð Þ: ð2Þ

In equation (2), t(d, 1 � a/2) is the value from the t
distribution with d degrees of freedom with area (1 � a/2)
to its left and a/2 to its right, X is the matrix with row i
consisting of relevant catchment properties for the ith
gauged catchment (and including a row for catchment k, if
this is ungauged) and xk is the vector of catchment
properties at catchment k.
[37] Equation (2) was used to produce a cumulative

distribution function for the as-ungauged estimate
for each PDM parameter for each study catchment by
plotting (1 � a/2) against q*k + gk(a; d) for a in [0, 2].
Figure 5 shows two examples. In the case of the River Taff
at Pontypridd (57005) the median estimate is in close
agreement with the calibration value for all parameters
except cmax. In contrast, the as-ungauged estimates for
the Dove at Izaak Walton (28046) seem to demonstrate a
failure of the regression-based parameter generalization.
The Dove has been chosen as an example here because,
contrary to the relatively poor as-ungauged parameter
estimates illustrated in Figure 5, the simulated flood
frequency confidence intervals will be seen to be much
better than expected.

Figure 3. Regression estimates of four PDM catchment model parameters: (a) volume adjustment fc,
(b) slow flow routing constant kb, (c) maximum soil moisture storage capacity cmax, and (d) fast flow
routing constant k1. Horizontal axes are calibrated values (based on model fit to gauged flow data), and
vertical axes are corresponding regression estimates (based on catchment properties).
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[38] For each of the study catchments, we then generated
a distribution of hydrological model outputs (i.e., flow data)
by running R = 1000 realizations of the PDM, randomly
drawing values from the regression-estimate cdf for each

model parameter. The choice of R = 1000 was made after
tests with values as large as 10,000 revealed very little
difference in the outputs. For simplicity, we assumed in this
experiment that the forcing (rainfall and PE) data are known

Figure 4. Schematic of the method used to calculate approximate confidence intervals using Monte
Carlo simulation (MCS) for catchments treated as ungauged.

Figure 5. Cumulative distribution functions of PDM parameters for two example catchments treated as
ungauged. Vertical bars indicate calibration values. ‘‘57005’’ and ‘‘28046’’ are U.K. National Water
Archive catchment index numbers.
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with negligible uncertainty, at least when compared to the
uncertainty about parameterization of the hydrological
model. The same, fixed, rainfall and PE data were therefore
used to drive the hydrological model in each realization of
the PDM.
[39] A peaks-over-threshold (POT) series was extracted

from each simulation, adopting an extraction rate of three
peaks per year. This results in a total of (1000 � 3 � L)
peaks being extracted in rank order of magnitude for
each catchment, where L is the length of record for
the catchment in years. The extraction rules stated by the
Natural Environment Research Council (NERC) [1975,
vol. 1] were followed. Approximate 90% confidence
intervals were then constructed as follows for each
catchment: For a given rank l (l = 1, . . ., 3L), the
1000 simulated POT data were arranged in a series in
order of magnitude and the 50th and 950th values were
recorded (i.e., for z% confidence intervals take the
{(R/100)(100 � z)/2}th values, counting in from each
end of the series). Note that this procedure provides
intervals only at the plotting position corresponding to
each value in the extracted POT series. Curves have been
plotted by piecewise linear interpolation between each
series of simulated points.

7. Results

[40] Previously reported work [Lamb et al., 2000a,
2000b] gave an indication of the uncertainty about
spatially generalized flood estimates by simulating flood
quantiles (using as-ungauged rainfall-runoff model param-
eters) and then plotting histograms of the magnitudes of
differences between the simulations and corresponding
observations for a group of catchments. The standard
deviations of errors in simulated flood quantiles, expressed
as a percentage of the corresponding value on the
‘‘observed’’ flood frequency curve, were 18 for a return
period of T = 2 years, 21 for T = 10 years and 23 for T =
20 years. However, when it is considered that the
uncertainty arising from spatial generalization is expressed
in the distributions of regression estimates of (in this case)
four parameters, and that the parameters interact in a very
nonlinear fashion to produce simulated flow data, then it
seems likely that the location and coverage of the
calculated approximate confidence intervals may vary
between catchments. It will be seen that our results
confirm this.
[41] Figure 6 shows approximate 90% confidence inter-

vals for as-ungauged simulation, calculated using the
methods described in the preceding section. The confi-
dence intervals are accompanied by a flood frequency
curve corresponding to using the mean parameter esti-
mates q* (i.e., the best single estimate for the ungauged
case). Also plotted are peaks extracted from the observed
flow series along with a curve showing the generalized
Pareto distribution (GPD), fitted to the observed peaks
using probability weighted moments [Hosking and
Wallis, 1987]. We will refer to this curve as the ‘‘empirical
flood frequency curve.’’ The GPD is used because it has
been found to be a suitable distribution for fitting peaks-
over-threshold data for many UK catchments [Naden,
1992].

[42] In most cases, the empirical flood data shown in
Figure 6 lie within the approximate 90% intervals con-
structed from the generalized-parameter PDM simulations.
We interpret this result as a partial validation of the spatially
generalized modeling approach. It can only be partial,
however, because the empirical flood frequency curves
cross the simulated 90% intervals in other cases. Taking
return periods of 2, 5 and 10 years for reference, the
empirical curve plotted outside of the 90% intervals at
one or more of these return periods for 14 of the study
catchments. Figure 6 includes two examples, catchments
30004 (Partney Lymn at Partney Mill) and 54034 (Dowles
Brook at Oak Cottage) where the observed flood peak data
lie entirely outside of the 90% intervals. There were four
catchments in the study set of 40 where this type of failure
was noted.
[43] The aim of this study was to investigate a new

method for fitting a spatially generalized rainfall-runoff
model, and assessing its performance. For this reason, we
were interested to observe both successful and unsuccessful
cases. For future applications, where the aim is to fit the best
possible generalized model, a greater number of catchments
would be used. In this case, catchments where the flow data
could not be modeled successfully would be removed from
the generalized fitting procedure.
[44] For catchments such as 30004 and 54034, where

the generalized model has not worked well, it is worth
asking whether the reason is the spatial generalization
procedure, or an underlying inability of the model to
simulate flows at the particular catchment, even when
calibrated locally using gauged data. The two examples
help to illustrate the issues.
[45] In the case of catchment 30004, the generalized

simulations and confidence intervals underestimate the
gauged peak flows. Using the as-ungauged parameter
estimates q* as a starting point, manual recalibration was
carried out for this catchment, by varying the routing store
constants k1 and kb. The results are plotted in Figure 7,
along with the empirical frequency curve, spatially general-
ized 90% confidence intervals, and the simulation corre-
sponding to setting parameters equal to the estimates, q*. It
can be seen that the recalibration (even for only two of the
PDM parameters) considerably improves upon the general-
ized estimates. However, there remains a problem in that the
recalibration overestimates the larger flood peaks and tends
to underestimate the smaller peaks. The mismatch in fitted
distribution shape between the empirical curve and the
modeled data remains, and further attempts to improve the
calibration by varying cmax and fc were not able to resolve it.
Although it is difficult to ‘‘prove a negative’’ in model
calibration, it appears that the PDM formulation used here
may not be able to model the distribution of peak flows in
this catchment effectively. The station is known to be by-
passed at high flows, and it may be that the larger peaks
visible in Figure 7d are therefore underestimated in the
gauged data.
[46] In the case of catchment 54034 recalibration suc-

cessfully corrected the simulated peak flows (Figure 8).
The calibrated values and as-ungauged estimates of the
model parameters for this catchment were, respectively,
fc = 0.8, f *c = 0.8, cmax = 7 mm, c*max = 61 mm, k1 = 25 h,
k*1 = 25 h and kb = 24 h(mm)2, k*b = 107 h(mm)2. Setting
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cmax and kb to their calibrated values would obviously be
expected to improve the simulation, but, in fact, all that was
required to obtain the improved fit shown in Figure 8 was to
reset kb to the calibrated value. In this case, it therefore
appears that the reason for the failure of the generalized
simulation is the calibration and generalization process
itself, rather than any particular difficulty in simulating
catchment responses with the PDM.
[47] It is recognized that the curves we refer to as

confidence intervals are only approximate, and depend on
the fitting of a combined hydrological and regression model
that, as is generally the case for such models, has to be
accepted as an imperfect model of the physical system. It is
however of interest to compare the uncertainty about the
generalized PDM simulations with the uncertainty associ-
ated with the generalized Pareto distribution (GPD) that has
been fitted to the gauged flow data using the method of
probability weighted moments. To construct confidence

intervals for the GPD we used a likelihood-based approach
described by Clarke [1994]. The log likelihood is

l ¼ �N log s� 1� kð Þ
XN
i¼1

� 1

k
log 1� kyi

s

� 	
; ð3Þ

where N is the number of extracted peak flow data, yi = qi �
u is the ith exceedance above threshold u, and s and k are
scale and shape parameters of the GPD,

F yð Þ ¼ 1� 1� ky
s

� 	1


k
: ð4Þ

The log likelihood was maximized using the Nelder-Mead
simplex algorithm within the MATLAB5.3 package to
perform a local search of the (s, k) parameter space. The
search was initialized from the probability weighted

Figure 6. Flood frequency curves showing peak flow on vertical axes, plotted against average return
period in years. Five digit numbers are U.K. National Water Archive catchment index numbers.
‘‘Modeled flow’’ and ‘‘90% confidence interval for generalized continuous simulation’’ were simulated
using spatially generalized parameters to represent an application to an ungauged catchment.
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moment estimates (which, in practice, were found to be very
close to the resulting maximum likelihood estimates). The
(s, k) space was then searched to define the confidence
region

2 max l s; k; yð Þf g � l s; k; yð Þ½ �  c2
d;a ; ð5Þ

where cd,a
2 is the c2 distribution for d = 2 degrees of

freedom with significance level a. Now 100(1 � a)%
confidence intervals correspond to the largest and smallest
quantile values of the GPD obtained for all (s, k) on the
boundary of the confidence region defined by the inequality
(5). These quantile intervals were calculated for each of the
plotting positions defined by the N exceedances in the
peaks-over-threshold series.
[48] The GPD confidence intervals consistently enclose

the observed flood peak data. This is to be expected, given

that the GPD was fitted directly to these data. However, the
uncertainty about the GPD as a ‘‘model’’ for the flood
frequency data was not found to be markedly less than the
uncertainty in the generalized hydrological model simula-
tions. For many of the study catchments, the 90% GPD
confidence intervals were found to be qualitatively compa-
rable in width to the spatially generalized hydrological
model intervals, as shown in Figure 6. We have interpreted
this tentatively to suggest that although the continuous
simulation model can fail for some specific catchments,
the uncertainty in the spatially generalized hydrological
model is not necessarily greater than the sample uncertainty
present when fitting a distribution directly to a relatively
short, single-site, gauged flow record.
[49] In many cases, the GPD confidence intervals are

much narrower for lower return periods, but then expand
rapidly for longer return periods toward the tail of the

Figure 7. Recalibration for catchment 30004 (Partney Lymn at Partney Mill, 60 km2) showing
(a) hourly rainfall (mm), (b) modeled flow time series (solid line is as-ungauged estimate using
parameters derived from catchment properties, and shaded line is recalibrated model), and (c) gauged
flows. (d) Flood peaks and fitted distributions, including 90% confidence intervals for the generalized
model, representing an application to an ungauged catchment.

Figure 8. Recalibration for catchment 54034 (Dowles Brook at Oak Cottage, 42 km2); explanation
same as for Figure 7.
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distribution. The joint confidence region of the GPD param-
eters was found to extend into k < 0 for many of the study
catchments, in which case the GPD confidence intervals
would always tend to expand steeply toward longer return
periods, owing to the very nonlinear nature of equation (4).
This is not, however, inevitable for the generalized CS
intervals, reflecting perhaps the greater physical/conceptual
structure of the PDM (or any other CS model).

8. Discussion

[50] The generalized continuous simulation confidence
intervals are often similar in width to comparable intervals
plotted around a flood frequency distribution fitted to
gauged flows. The relatively large impact of sampling
uncertainty for the GPD, especially for the tail of the
distribution, is one of the motivations for the use of pooled
or regional analyses in statistical frequency estimation. The
pooled analysis can be viewed as ‘‘borrowing’’ information
from other sources to constrain uncertainty in fitting a
statistical model at a specific location (which may be either
a gauged or an ungauged site). An important interpretation
of the results presented in this paper may be that the
combination of a conceptual hydrological model (which
implicitly includes some structural constraints on runoff
responses) with parameterization based on catchment prop-
erties can lead to similar constraints on uncertainty.
[51] For reasons stated earlier, we have only considered

flood return periods up to the limits imposed by available
gauged flow records, whereas, for most practical purposes,
there is an interest in longer return periods. At longer return
periods, the slope of the rainfall growth curve increasingly
controls the flood frequency curve [Sivapalan et al., 1990],
presumably making continuous simulation of rare floods
sensitive to uncertainty in modeled rainfall. Future work
should test whether continuous simulation driven by rainfall
modeling provides flood estimates with comparable con-
fidence to a pooled statistical analysis at an ungauged site.
[52] A fundamental problem remains the multivariate

nature of the calibration/generalization problem. The sequen-
tial procedure described in this paper, in which catchment
properties are used to help in constraining the model calibra-
tion process, is suggested as one practical way of addressing
this issue. Even for a highly simplified hydrological model,
we have still found that interactions between parameters can
produce some unexpected results. Consider, for example, the
generalized simulations for catchments 28046 and 57005, for
which the as-ungauged parameter estimates q* were plotted
in Figure 5. In both cases the 90% intervals enclose the
empirical flood frequency curve (Figure 6). Inspection of the
parameter estimates in Figure 5 reveals that for catchment
57005, the calibrated estimates are within the distributions
surrounding the spatially generalized regression estimate, as
might be expected. In contrast, however, the calibrated values
for 28046 differ significantly from the generalized estimates
based on catchment properties, even allowing for uncertainty
around the regression relationships. Despite this, the gener-
alized estimate of flood flows at catchment 28046 is a
relatively good one and the simulated 90% intervals largely
contain the empirical data.
[53] A limitation in judging how well the spatially gen-

eralized model has worked is that there is not a truly

independent group of sites available for testing. Long
continuous hourly records, as used in this work, are costly
and time consuming to collate. Given a limited number of
catchments, it was decided to make use of all available sites
in the generalization procedure, rather than split the sites
into separate groups for fitting the generalized parameters
and subsequent testing.
[54] A procedure based on the jackknife could, in

principle, be used to provide a more objective test. In
brief, this would involve excluding one site when fitting
the relationships between PDM parameters and catchment
properties, with the process being repeated n times,
excluding each site in turn. However, the sequential
approach tested here is a new development that has not so
far been implemented in a completely automated form, and
so each iteration of the above procedure would be a
nontrivial task. It is largely for this pragmatic reason that we
have assumed, for present purposes, that the regression
relationships fitted across the available sites are reasonably
independent of any one site.
[55] A basic test of the assumption was carried out by

assessing whether particular catchments exert strong lever-
age on the fitted regression relationships. For each of the
regression models for the four PDM parameters, the lever-
ages (given by the diagonal elements of the matrix
X(XTX)�1XT) were calculated and examined. If p is the
number of explanatory terms in the regression, then sites
that have a leverage of greater than 2p/n exert a strong
control on the regression relationship. For cmax, k1 and kb,
only one catchment (in each case) was found to have a high
degree of leverage. For fc there were three catchments where
the leverage was greater than 2p/n. We tested the influence
of these sites by removing them from the fitted relationships
and examining the resulting changes in ‘‘predicted’’ PDM
parameter values. The changes were found to be very small
(on average less than a factor of 0.02), with the exception of
one catchment for which the value of cmax predicted from
catchment properties was much improved in the refitted
regression model.
[56] The simple test, described above, does not ac-

count for the effects that excluding a site might have
through successive steps in the sequential model gener-
alization procedure. However, it does at least suggest
that the model parameters calculated from catchment
properties are not dominated by any single site in the
current analysis. Given that the sites were chosen to be
qualitatively representative of a broad range of catchment
types, we can therefore speculate that the results
obtained (i.e., the simulated flood frequency confidence
intervals) would be similar for an independent group of
test catchments.
[57] The methods used in this paper do not explicitly

account for uncertainty in the calibration of the PDM
against gauged flow data. This is not an oversight, rather
a deliberate decision to simplify the development of a
procedure for estimating uncertainty in the spatially gener-
alized model. The issue is discussed here because of the
implications for generalized parameterization. Having dif-
ferent but similarly good estimates of model parameters for
a single site may arguably be tolerated in some circum-
stances (for example if a model is used to in-fill short
periods of data, and is not used for extrapolation), but for

W07501 LAMB AND KAY: CONFIDENCE INTERVALS FOR CONTINUOUS SIMULATION

11 of 13

W07501



spatial generalization it raises the question of which esti-
mate should be used?
[58] An alternative approach would be to account

explicitly in some way for the uncertainty about the
calibration estimates of parameters. In this paper, we
have used point estimates of parameter values inferred
from gauged flows, which, despite the many recent
advances in methods for handling calibration uncertainty,
remains a common approach in practice. Calibration
uncertainty enters into this analysis in the sense that there
is assumed to be a random error component implicit in
fitting a regression equation using each ‘‘sample’’ of
calibrated parameter values; parameter interactions leading
to uncertainty are mitigated by use of a parsimonious
hydrological model. A different approach will be needed
to allow for this calibration uncertainty more explicitly,
albeit at the cost of greater complexity.
[59] To account more completely for calibration uncer-

tainty, an approach should be taken that would allow the
variance of the regression estimates to reflect uncertainty
about the calibrated values in a more general way. One
approach that we have experimented with is based on
importance sampling, where the calibration uncertainty at
gauged sites was expressed by assigning weights within the
parameter space according to how well each set of model
parameters could simulate gauged flows. We hope to report
the results in a later paper. The methodology presented here
is, however, a first attempt to make a quantitative assess-
ment of uncertainty in generalized flood estimation by
continuous simulation.

Notation

a confidence level (tail probability).
cmax PDM maximum soil moisture storage capacity.

d degrees of freedom.
k1 PDM fast flow routing store constant.
kb PDM slow flow (base flow) routing store constant.
vc constant proportion of PDM runoff entering fast flow

routing pathway.
k shape parameter of the generalized Pareto distribu-

tion (GPD).
l log likelihood for GPD.
m number of model parameters.
M regression model.
n number of catchments.
O objective function.
p number of catchment properties.
q river flow.
q hydrological model parameter.
fc constant PDM rainfall/volume adjustment factor.
s scale parameter of the GPD.
s standard deviation.
t quantile of the t distribution.
u threshold of the GPD.
x catchment property.
X matrix of catchment properties.
xk properties for catchment k.
y flow exceedance series.
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