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Abstract 

A role for conceptual representations in cross-sensory correspondences has been linked to the 

relative (context-sensitive) mapping of feature values, whereas a role for sensory-perceptual 

representations has been linked to their absolute (context-insensitive) mapping.  

Demonstrating the relative nature of the automatic mapping underlying a cross-sensory 

correspondence therefore offers one way of confirming its conceptual basis.  After 

identifying several prerequisites for relative and absolute mappings, we provide the first 

compelling demonstration that an automatically induced congruity effect based on a cross-

sensory correspondence (i.e., that between haptic size and visual brightness) can be largely 

contingent on the relative mapping of the two features, thereby implying a conceptual basis 

for the correspondence.  Participants in a speeded classification task were faster to classify a 

visual stimulus as brighter or darker when this required them to press a hidden response key 

that, incidentally, was relatively small or big, respectively.  Importantly, the same levels of 

brightness (Experiment 1) and key size (Experiment 2) at different times corresponded to 

contrasting levels of the other feature depending on the context provided by the alternative 

stimuli with which they appeared.  For example, the same medium key was congruent with a 

brighter stimulus when paired with a bigger key, but was congruent with a darker stimulus 

when paired with a smaller key.  Reflecting on the broader implications of this finding, it is 

noted that the involvement of cross-sensory correspondences in some forms of sound 

symbolism in language also requires the relative coding of stimulus features.   

Keywords: size-brightness correspondence, cross-sensory correspondences, speeded 

classification, relative and absolute mapping, context-sensitive feature coding 
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Cross-Sensory Mapping of Feature Values in the Size-Brightness Correspondence can be 

more Relative than Absolute 

That there exist systematic associations between the basic features of stimuli from 

different sensory channels is well known.  Sounds that are higher in auditory pitch, for 

example, are found to correspond reliably to smaller (Gallace & Spence, 2006), sharper 

(Parise & Spence, 2009), brighter (Hubbard, 1996), thinner (Evans & Treisman, 2010), and 

spatially higher visual stimuli (Parise, Knorre, & Ernst, 2014; Rusconi, Kwan, Giordano, 

Umiltà, & Butterworth, 2006), to faster and more rapidly ascending visual objects (Collier & 

Hubbard, 2001), to more elevated tactile sensations (Occelli, Spence, & Zampini, 2009), and 

to (the names of) foodstuffs having sweet and sour tastes (Crisinel & Spence, 2009, 2010a, 

2010b), to name but a few.   

Such cross-sensory correspondences sometimes appear to reflect mappings between 

the sensory-perceptual representations of feature values across different sensory domains.  On 

other occasions, however, the mappings could reflect the fact that extreme feature values 

from different sensory domains share the same verbal labels (e.g., high and low auditory pitch 

corresponding with high and low visuo-spatial elevation), potentially giving the illusion of a 

correspondence (e.g., Ben-Artzi & Marks, 1995).  In his tutorial review, Spence (2011) notes 

instances where correspondences also appear to reflect mappings among conceptual 

representations, although the extent to which this is the case remains to be determined.  

Following Karwoski, Odbert, and Osgood (1942), P. Walker and L. Walker (2012) recently 

proposed that all cross-sensory correspondences can have a conceptual basis, supplementing 

whatever other bases are available.  In particular, they claim that there exists a core set of 

systematic associations connecting stimulus features encoded in different sensory channels, 

and that these cross-sensory correspondences are observed because there is crosstalk (cross-

activation) between correspondingly positioned feature values on different conceptual 
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dimensions.  The representation of feature values along these dimensions is assumed to be 

conceptual because the values concern abstracted aspects of the stimulus features, such as 

their status as the brighter, smaller, or higher feature value in a context-defined set of feature 

values (or, indeed, specification of their ordinal position in this set).  For this reason the 

absolute value of a feature is not sufficient to specify its status within the set of values against 

which it is being compared.  Such specification requires the relevant set of values to be 

determined and the stimulus feature under consideration to be compared against them.  The 

representation of feature values is also assumed to be conceptual when they are abstracted 

further to transcend the sensory channel through which the features are encoded, thereby 

embracing features from different sensory domains (see L. Walker, P. Walker, & Francis, 

2012; P. Walker, 2012; P. Walker, L. Walker, & Francis, 2015).  On the assumption that 

cross-sensory correspondences can have a conceptual basis of this kind, P. Walker and L. 

Walker predicted a novel correspondence between haptic size and surface brightness.  They 

went on to demonstrate the existence of this correspondence, with the details of their results 

containing additional, indirect evidence for the role of conceptual processing. 

Participants in P. Walker and L. Walker’s (2012) study were presented with 

individual circles at one of six levels of luminance on a mid-grey background.  Three levels 

appeared brighter than the background, and three appeared darker, and participants were 

required to classify each circle as quickly and accurately as possible according to whether it 

appeared to be brighter or darker than the background.  Participants confirmed their decision 

by pressing one of two hidden response keys with their left and right hand.  As a task-

irrelevant aspect of the situation, the response keys differed in size, so that on any given trial 

the key needing to be pressed was either the smaller or the bigger of the two keys available.  

P. Walker and L. Walker observed the congruity effect predicted from the size-brightness 

correspondence, with participants classifying brighter (darker) circles more quickly when the 
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key needing to be pressed was the smaller (bigger) of the two.  Their results also contained 

evidence, albeit indirect, that the size-brightness congruity effect originated from processes 

taking place after the brightness classification of each circle.  Particularly pertinent in the 

context of the present study was their finding that variations in perceived surface brightness 

within each task-defined category of brightness (i.e., within those levels of brightness that 

were perceived to be brighter than the mid-grey background, and within those levels of 

brightness that were perceived to be darker than the mid-grey background) did not interact 

with key size to yield a congruity effect.  That is, participants did not respond more quickly 

when higher (lower) levels of perceived brightness within a task-defined category of 

brightness were paired with the smaller (bigger) key.  This indicates that the size-brightness 

congruity effect reflects context-sensitive interactions among representations at or beyond the 

level at which visual stimuli are categorised for the purpose of response selection.  As P. 

Walker (2012, p. 1805) stated, this accords with Martino and Marks’ (2001) claim that cross-

sensory correspondences can be based on the context-sensitive coding of stimulus features, 

providing that context-sensitivity refers not only to the other stimuli being presented, but also 

to the specific requirements of the task (e.g., how the stimuli are being classified). 

Absolute and Relative Cross-Sensory Mappings 

As alluded to above, cross-sensory correspondences can reflect two types of 

mappings.  The first are mappings based on absolute feature values, with particular values on 

one feature dimension equalling particular values on the other (as has been suggested for the 

mapping between visual brightness and auditory loudness, see Lewkowicz & Turkewitz, 

1980).  The second are mappings based on relative feature values, with individual mappings 

adapting to the context provided by, for example, the other values within the particular set 

being explored.  Marks (1987, p. 385) notes that whereas relative mappings seem especially 

compatible with correspondences rooted in higher level, conceptual processes, absolute 
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mappings seem more compatible with correspondences rooted in lower level, sensory-

perceptual processes.  If true, then demonstrating more directly that the size-brightness 

congruity effect derives from the relative, context-sensitive mapping of feature values along 

these two dimensions would provide converging evidence that the size-brightness 

correspondence, and, by implication, other cross-sensory correspondences (see, e.g., L. 

Walker, P. Walker, & Francis, 2012), can reflect interactions among conceptual 

representations, as P. Walker and L. Walker (2012) suggested. 

The extent to which the mapping of stimulus features across sensory domains is 

absolute or relative has been assessed in several studies in the belief that the type of mapping 

indicates the level of processing at which the correspondence takes effect (see Chiou & Rich, 

2012; Gallace & Spence, 2006; Guzman-Martinez, Ortega, Grabowecky, Mossbridge, & 

Suzuki, 2012; Lunghi & Alais, 2013; Lunghi, Binda, & Morrone, 2010; Marks, 1974, 1987, 

1989; Marks, Szczesiul, & Ohlott, 1986; Orchard-Mills, van der Burg & Alais, 2013; 

Orchard-Mills, Alais, & van der Burg, 2013).  In line with Marks’ (1987) observation (see 

above), the consensus view from these studies is that absolute mappings indicate interactions 

at sensory-perceptual levels of representation, whereas relative mappings indicate interactions 

at conceptual levels of representation. 

The nature of cross-sensory mappings has sometimes been explored using tasks in 

which participants make explicit comparisons of stimuli from different modalities.  In 

general, such tasks have confirmed the preponderance of relative mapping (e.g., Marks, 1974, 

1989), though one study provided evidence for an equal mix of absolute and relative mapping 

(Marks et al., 1986).  Such studies of cross-modality matching might not be best placed to 

allow absolute mapping to be revealed.  One reason is that cognitive processes are 

sufficiently flexible to override any absoluteness in the underlying correspondence, most 

likely by generating rules for mapping that are relational in nature.  For example, depending 
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on the specific feature value (e.g., the level of pitch) of the first presented stimulus that is to 

be altered until it matches a reference stimulus in another domain, people might make very 

different inferences about the range of values available for mapping (e.g., Marks, 1974; 

Marks et al., 1986).  In addition, people are free to make many different types of association 

to the stimuli being matched, and it might be these that provide the basis on which mapping 

occurs, rather than the stimuli themselves.  For example, people might associate a white 

surface either with meringue, or with the ice of an iceberg, with dramatic consequences for 

how surface brightness maps onto size and heaviness.  It is perhaps because of this cognitive 

flexibility that studies of cross-modality matching have tended to reveal relative, rather than 

absolute mapping.  By the same token, however, where studies of cross-modality matching 

reveal absolute mapping this would provide a strong indication that the underlying 

correspondence itself relies primarily on absolute mapping.   

In view of the considerations outlined above, it can be argued that studies that do not 

require participants to make explicit judgements about how stimuli from different domains 

compare, but instead examine the nature of cross-sensory mappings occurring automatically 

(for example, through automatically induced congruity effects), are more likely to reveal the 

true nature of the mapping underlying a correspondence.  Such studies reveal how mappings 

can be both absolute and relative, sometimes in the same task situation (as in Marks et al., 

1986), sometimes in different task situations.  In the latter case, the pertinent studies were 

designed to provide evidence for one type of mapping, either absolute (Guzman-Martinez, et 

al., 2012; Lunghi et al., 2010; Lunghi & Alais, 2013) or relative (Chiou & Rich, 2012; 

Gallace & Spence, 2006; Marks, 1987; Orchard-Mills, Alais, & van der Burg, 2013; Orchard-

Mills, van der Burg, & Alais, 2013), and it therefore remains uncertain whether the 

alternative type of mapping might also have been influential, however modestly. 
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Evidence for an automatic contribution from relative cross-sensory mappings has 

come in different forms.  First, it has been reported that mappings can change according to 

the particular sample of feature values being examined (e.g., when more extreme feature 

values are added to those already being assessed, or when the range of values is shifted 

towards one extreme or the other) (Chiou & Rich, 2012; Marks, 1987, 1989; Marks et al., 

1986), or according to the direction in which the same ordered set of feature values is 

assessed (e.g., from highest to lowest, or lowest to highest; Orchard-Mills, Alais, & van der 

Burg, 2013).  Second, it has been reported that a prerequisite for observing a cross-sensory 

congruity effect is that more than a single feature value appears in a block of trials (i.e., there 

have to be other feature values being sampled that provide a context; see Gallace & Spence, 

2006).  Third, specifying the ordinal position of individual feature values being sampled from 

the two domains has been sufficient for their mapping (Orchard-Mills, van der Burg, & Alais, 

2013), even when these positions are conveyed verbally and, therefore, without any absolute 

feature values being specified.  In contrast, evidence for the absolute nature of cross-sensory 

mappings includes their insensitivity to these same manipulations (Guzman-Martinez et al, 

2012), their tight tuning along other feature dimensions (e.g., narrow orientation tuning when 

visual and haptic gratings are being cross-referenced on the basis of their spatial frequency; 

see Lunghi et al., 2010), and their alignment on the basis of objective feature values in the 

two domains, such as the true (distal) spatial frequency of a Gabor stimulus, rather than its 

proximal (retinal) spatial frequency (see, e.g., Guzman-Martinez et al., 2012; Lunghi & Alais, 

2013; Lunghi et al., 2010). 

Although evidence for both absolute and relative automatic cross-sensory mappings 

exists, there has as yet been little consideration of the factors determining which type of 

mapping will predominate in a particular situation.  A systematic inspection of the studies 

cited above, however, reveals two likely prerequisites for absolute mapping.  First, the 
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domains being cross-referenced should provide equivalent information about the same 

measurable feature of a stimulus and should be spatio-temporally coincident (or close to 

such), consistent with them originating from the same object (see, e.g., Guzman-Martinez et 

al., 2012; Lunghi & Alais, 2013; Lunghi et al., 2010).  Second, and alternatively, both 

domains should carry information about the intensity of stimulation (e.g., auditory amplitude 

and visual luminance), and this should provide the basis for their cross-referencing, 

irrespective of whether or not they are arranged to be spatio-temporally coincident (see, e.g., 

Marks, 1987).  Those studies providing evidence for absolute mapping appear to satisfy at 

least one of these two prerequisites, and the implication of this for the mapping of haptic size 

to perceived surface brightness is clear: Because these two domains do not provide equivalent 

information about the same measurable feature of an object, and because they are not both 

concerned with stimulus strength, neither prerequisite for absolute mapping is satisfied.  On 

this basis alone, therefore, their mapping is expected to be relative, which is, of course, 

consistent with the automatic congruity effect they induce reflecting interactions among 

conceptual, rather than sensory-perceptual, representations. 

Further to the factors identified above, in three of the five studies in which 

participants were not required to explicitly compare different stimuli, the relative mapping of 

cross-sensory features was still deemed to be under strategic control (Chiou & Rich, 2012; 

Orchard-Mills, van der Burg, & Alais, 2013; Orchard-Mills, van der Burg, & Alais, 2013).  

This strategic mapping of stimulus features does not appear to be a prerequisite for relative 

mapping, however, because in the remaining two studies there was little opportunity, or 

incentive, for participants to cross-reference the sensory features (they involved a speeded 

classification task in which the criterial feature was accompanied by an uninformative, task-

irrelevant feature) (Gallace & Spence, 2006; Marks, 1987).  This leaves the way open for the 

non-strategic (i.e., automatic) size-brightness congruity effect identified by P. Walker and L. 
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Walker (2012) to reflect the relative, rather than the absolute, mapping of feature values 

along these two dimensions, which would in turn provide additional support for their claim 

that this and other cross-sensory correspondences can reflect interactions among conceptual 

representations.   

Only two studies currently purport to demonstrate the involvement of relative 

mapping in the automatic induction of congruity effects based on cross-sensory 

correspondences.  In the first of these, Marks (1987) asked participants to classify black and 

white stimuli according to their perceived surface brightness while ignoring a task-irrelevant 

tone of either 220 or 360 Hz.  He observed a significant interaction between pitch and 

perceived surface brightness, such that responses were relatively fast to the black stimulus 

when it was accompanied by the 220 Hz tone, rather than the 360 Hz tone, but to the white 

stimulus when it was accompanied by the 360 Hz tone, rather than the 220 Hz tone.  Of 

particular interest, the magnitude of the interaction between these visual and auditory stimuli 

was reduced in another experiment where more extreme tones, of 100 Hz and 800 Hz, were 

added to the ensemble of incidental sounds.  Marks argued that this was likely due to the fact 

that the 220 and 360 Hz tones were now no longer the lowest and highest pitched sounds 

presented in the task, but instead had relatively intermediate values.  Nevertheless, he 

regarded this evidence as supporting only a “tentative” (Ibid., p. 390), albeit reasonable, 

conclusion for the involvement of relative mapping in the pitch-brightness correspondence.  

One reason for this uncertainty centred on unresolved concerns about the adequacy with 

which hand-decision assignments had been taken into account.  A further issue, however, is 

that a significant pitch-brightness congruity effect involving the 220 and 360 Hz tones 

remained in place, albeit at a reduced strength (from 12.5 ms to 4.0 ms), when the two more 

extreme tones were added to the stimulus ensemble (and there was no statistical evidence 

offered to confirm that the reduction in strength was itself significant). 
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In the second of these two studies, Gallace and Spence (2006) also demonstrated the 

involvement of relative mappings in a task designed to detect the automatic induction of a 

congruity effect deriving from the cross-sensory correspondence between auditory pitch and 

visual size.  They asked participants to classify the second of two successively presented 

circles according to whether it was bigger or smaller than the first (the size of which was 

fixed).  As a task-irrelevant stimulus, an auditory tone of either 300 or 4500 Hz accompanied 

the second circle.  In some blocks of trials the incidental sound was always either the 300 Hz 

tone or the 4500 Hz tone.  In other blocks of trials, however, the two tones were mixed, with 

one of the tones being selected for a trial independently of the relative size of the second 

circle.  In this way, the pitch of the tone was uninformative regarding the correct 

classification of the circle.  Because Gallace and Spence observed a congruity effect induced 

by the pitch-size correspondence only when both tones appeared within a block of trials, they 

reasoned that the mapping of feature values across these two dimensions is relative in nature.  

That is, for the mapping to induce a congruity effect a context needs to be present in which 

multiple feature values in both stimulus domains appear.  Gallace and Spence nevertheless 

attached some caution to this conclusion, pointing out that by presenting two tones rather 

than a single tone they introduced uncertainty regarding the pitch of the tone that would 

appear on any given trial.  They noted that this in itself could have been the critical difference 

between the two conditions, rather than the availability of a context for the relative coding of 

the stimulus feature values.  Interestingly, the same caution also applies to Marks’ (1987) 

study, although in that case the introduction of two additional, more extreme, values for pitch 

served to increase the stimulus uncertainty that was already present in the task.   

In contrast to the automatic induction of cross-sensory congruity effects reported by 

Marks (1987) and Gallace and Spence (2006), the mapping between auditory pitch and visuo-

spatial elevation examined by Chiou and Rich (2012) was deemed to be under strategic 
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control.  It could also have arisen because contrasting feature values in the two domains share 

the same verbal labels (high and low auditory pitch, high and low visuo-spatial elevation).  

These two aspects reduce the significance of the study in the present context.  However, the 

strategy adopted by Chiou and Rich to confirm the involvement of relative mapping in the 

pitch-elevation congruity effect very effectively avoids changes in stimulus uncertainty being 

confounded with changes in stimulus context.  Participants in their Experiment 3 performed a 

speeded detection task requiring them to press the same response key whenever a visual 

target was displayed in the upper or lower location on a computer screen.  Each visual target 

was preceded by a non-predictive tone of high or low auditory frequency.  The range of high 

and low frequency tones was manipulated across two experimental sections, such that the 

same (900 Hz) tone was the high pitched sound in one section, but the low pitch sound in the 

other.1 Measuring response detection times to visual targets in the congruent (high tone-upper 

position, low tone-lower position) and incongruent (high tone-lower position, low tone-upper 

position) conditions, Chiou and Rich found that the same 900 Hz tone elicited attentional 

shifts in opposite directions depending on the context provided by the frequency range within 

which it was presented (i.e., whether it was presented with a 100 Hz tone, so that it was 

relatively high in frequency, or a 1700 Hz tone, so that it was relatively low in frequency).  

As the absolute frequency of the tone was identical in both contexts, they concluded that the 

attentional cueing effect caused by the correspondence between pitch and visuo-spatial 

elevation reflected the relative, context-sensitive mapping of the features at a post-categorical 

level of processing.  Because the same number of alternative stimuli were sampled 

throughout, and because the same stimulus behaved in contrasting ways according to the 

context provided by the other stimuli with which it appeared, this is an especially persuasive 
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demonstration of the involvement of relative mapping in correspondence-induced congruity 

effects.  With this in mind, the same experimental strategy was adopted in the present study.  

The Present Study  

The aim of the present study was to provide more direct evidence that the 

automatically induced size-brightness congruity effect demonstrated by P. Walker and L. 

Walker (2012) can be driven by the relative mapping of feature values across these two 

stimulus domains and, by implication, that the size-brightness correspondence is rooted in 

interactions among conceptual representations.  Doing so would, of course, provide the most 

compelling evidence to date that an automatically induced congruity effect based on a cross-

sensory correspondence can reflect the relative mapping of features across sensory domains. 

In two experiments, a version of the speeded classification task used by P. Walker and 

L. Walker (2012) is adopted to determine whether the absolute feature values that behave as 

bright (Experiment 1) and small (Experiment 2) in one context (in terms of how they 

contribute to the congruity effect) can behave as dark and big in another context, where the 

context is provided by the other feature values appearing in the task. 

Experiment 1:  Size-Brightness Correspondence with Relative Values of Brightness 

In Experiment 1, participants performed a speeded brightness classification task.  On 

each trial they classified one of four possible visual stimuli (taken from the total sample of 

six) according to whether it was perceived to be brighter or darker than the background 

against which it was displayed (see Figure 1).  In some blocks of trials the background was 

relatively dark.  In other blocks of trials, however, the background was relatively bright.  The 

change in the brightness of the background was such that the two test stimuli of intermediate 

luminance were brighter than the relatively dark background but darker than the relatively 

bright background.  These two stimuli were always included as test stimuli, being 

accompanied by the two stimuli from the remaining four whose perceived brightness 
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contrasted in the opposite direction relative to the background.  In total, therefore, six test 

stimuli were used in this experiment, with the four darkest stimuli appearing in blocks of 

trials for which the background was relatively dark, and the four brightest stimuli appearing 

in blocks of trials for which the background was relatively bright.  In this way, the two 

stimuli of intermediate luminance appeared against both backgrounds, as the two brighter 

stimuli with the darker background, but as the two darker stimuli with the brighter 

background (see Figure 1).    

Participants indicated their classification decision by pressing the left or right of two 

response keys that, incidentally, differed in size.  If the cross-sensory mapping of size to 

brightness is contingent on the relative values of brightness of the four test stimuli as they 

appear against a particular background (i.e., in a block of trials), then an equivalent size-

brightness congruity effect should be observed whichever of the two backgrounds is used.  

Specifically, whichever of the two backgrounds is used, the two test stimuli perceived to be 

darker than the background should behave as such and form a congruent relationship with the 

bigger of the two keys, whereas the two test stimuli perceived to be brighter than the 

background should behave as such and form a congruent relationship with the smaller of the 

two keys.  This means, of course, that the two stimuli of intermediate luminance in the total 

set of six should behave as brighter stimuli when appearing against the darker background 

(thereby forming a congruent relationship with the smaller key), but as darker stimuli when 

appearing against the brighter background (thereby forming a congruent relationship with the 

bigger key).  This will mean that the two stimuli of intermediate luminance should be 

classified relatively more quickly and accurately on the smaller key when they appear against 

the darker background, but relatively more quickly and accurately on the bigger key when 

they appear against the brighter background.  
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Method 

Participants 

 Thirty-two Lancaster University students (21 females and 11 males) aged between 18 

and 37 (mean age = 20.2 years) volunteered to participate in exchange for course credit.  All 

but four of the participants were right-handed by self report. 

Task, Materials, and Apparatus 

 Participants completed 192 trials, in each of which they were required to decide 

whether a visual stimulus was brighter or darker than the background against which it 

appeared.  The visual stimuli consisted of six, solid 4.5 cm diameter circles that varied in 

luminance from very light grey through to very dark grey (100, 96, 40, 16, 3, and 2.5 cd/m2).  

The circles were presented individually at the centre of a 20” computer screen (Apple 

PowerMac G5, Dual 2GHz), running version 2.1.1 of the PsyScript experiment generator 

programme.  In separate blocks of trials, either the four darkest circles from the six available 

were displayed against the darker of the two backgrounds, or the four brightest circles from 

the six available were displayed against the brighter of the two backgrounds.  In both cases, 

two of the four circles were perceived to be brighter than the background, and two were 

perceived to be darker than the background.  The two alternative levels for the luminance of 

the background (8 cd/m2 and 63 cd/m2) were chosen to ensure that the two circles of 

intermediate luminance (i.e., 16 and 40 cd/m2) were perceived to be brighter than the darker 

background, but darker than the brighter background (see Figure 1).   

 Participants indicated their classification decision by pressing one of two response 

keys that, incidentally, differed in size.  The response keys comprised two smoothed, wooden 

balls mounted onto micro-switches.  The small ball had a diameter of 2.5 cm and the big ball 

had a diameter of 7.5 cm.  The physical resistance of the two switches was adjusted until the 
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authors judged that equal force was needed to close them.  This required a higher level of 

resistance to be set for the big key (1000 gm) than for the small key (250 gm).  The small key 

was also raised 3.75 cm from the table by a wooden block to ensure that the two balls were 

perceived (haptically) to be equally high spatially.  A thick black cloth was used to cover the 

response keys at all times during the experiment, as a result of which participants never saw 

them. 

Experimental Design 

Along with Key Size, two aspects of perceived surface brightness were treated as 

separate factors in the design.  The first, Circle Brightness Relative to Background, refers to 

the brightness feature on which response selection was based, and relates to whether a circle 

was perceived to be brighter or darker than the background against which it appeared.  The 

second, Background Brightness, refers to the context provided by the brightness of the 

background (i.e., darker vs. brighter background), and links to whether the two circles of 

intermediate brightness should, at different times, be classified as “brighter” or “darker”.  The 

experiment therefore involved a 2 x 2 x 2 repeated-measures design, with Key Size (small vs. 

big), Circle Brightness Relative to Background (“brighter” vs. “darker”), and Background 

Brightness (brighter vs. darker), all as within-participant factors.  The dependent variables 

were the speed (in milliseconds) and accuracy (percent correct) of participants’ responses to 

each circle. 

Procedure 

 Participants were informed that they would complete 192 trials, in each of which a 

circle would be presented at the centre of the computer screen.  They were told that their task 

was to decide as quickly and accurately as possible whether the circle was brighter or darker 

than the background against which it appeared.  Half of the participants (12 right-handers and 

four left-handers) were asked to press the left-hand key when the circle was brighter than the 
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background and the right-hand key when the circle was darker than the background.  The 

remaining participants (16 right-handers) were assigned to the opposite hand-brightness 

mapping (i.e., left-hand key for “darker” and right-hand key for “brighter”). 

All participants completed four blocks of trials and were given a 1-minute break 

between blocks.  In a block of 48 trials, either the four brightest of the six available circles, or 

the four darkest of the six available circles appeared 12 times each, in a randomly determined 

order that was generated afresh for each block of trials for each participant.  In two blocks of 

trials (either Blocks 1 & 2 or Blocks 3 & 4), the two circles of intermediate luminance were 

accompanied by the darkest two circles and appeared against the darker of the two 

backgrounds.  In the other two blocks of trials (either Blocks 3 & 4 or Blocks 1 & 2), the two 

circles of intermediate luminance were accompanied by the two brightest circles and 

appeared against the brighter of the two backgrounds. 

Each circle remained visible until participants had made their classification decision 

and was followed by a blank interval of 3 seconds before the next circle was presented.  The 

order in which the brighter and darker backgrounds (and the related sets of visual stimuli) 

were used was counterbalanced across participants.  Participants did not receive feedback 

about the speed or accuracy of any of their responses. 

 At the end of each block of trials, the experimenter surreptitiously switched the left-

right positions of the two response keys so that participants performed the proceeding block 

using the opposite (key) size-brightness mapping.  Thus, across the four blocks of trials, 

participants alternately pressed the smaller key for “brighter” and the bigger key for “darker” 

(a congruent mapping) or the smaller key for “darker” and the bigger key for “brighter” (an 

incongruent mapping).  Which of these two mappings was used in the first block of trials was 

counterbalanced across participants. 
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Results 

The data were the speed and accuracy of participants’ responses to the circles.  Mean 

correct response times (RTs) and accuracy levels obtained for the brighter and darker circles 

were calculated separately for the smaller and bigger keys (see Table 1).  An alpha level of 

.05 was used in all statistical analyses reported here.   

Response Accuracy 

 The overall mean level of response accuracy was 98.7% (SD = 2.5%).  The level of 

correct responding was significantly higher for congruent trials than for incongruent trials for 

both levels of background brightness (i.e., whether the two circles of intermediate luminance 

were perceived to be relatively brighter or relatively darker than the background), Wilcoxon 

Signed Ranks Test z = -2.79, p = .005, and Wilcoxon Signed Ranks Test z = -2.32, p = .02, 

for the darker and brighter backgrounds, respectively, both two-tailed. 

Response Times 

 Participants’ mean correct RTs to the two brighter and two darker circles in each trial 

block were calculated.  RTs from incorrect trials were excluded from the analysis, and any 

RTs greater than 2.5 SDs above a participant’s mean correct RT were replaced with the cut-

off value.  The resulting data were submitted to a 2 x 2 x 2 repeated-measures analysis of 

variance (ANOVA) with Key Size (small vs. big), Circle Brightness Relative to Background 

(“brighter” vs. “darker”), and Background Brightness (brighter vs. darker) as within-

participant factors.   

 The overall mean correct RT was 615 ms (SD = 149 ms).  There was a significant 

main effect of Key Size, F(1, 31) = 40.98, MSE = 0.003, p < .001, ηр² = 0.57, with 

participants responding more quickly on the big key (592 ms) than on the small key (638 ms).  

There was not a significant main effect of Background Brightness, F(1, 31) = 2.07, p = .16, 
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and no significant main effect of Circle Brightness Relative to Background, F(1, 31) = 1.34, p 

= .26.   

There was a significant interaction between Key Size and Circle Brightness Relative 

to Background, F(1, 31) = 7.94, MSE = 0.01, p = .008, ηр² = 0.20, the nature of which was 

consistent with the predicted congruity effect.  The overall mean correct RTs for congruent 

trials (e.g., smaller key with brighter circle) and incongruent trials (e.g., bigger key with 

brighter circle) were 603 and 628 ms, respectively.  Paired-samples t-tests confirmed that this 

difference in response times to congruent and incongruent trials remained significant whether 

the level of Within-Category Circle Brightness (i.e., whether the circle was the brighter or 

darker of a pair of circles sharing the same level of categorical brightness relative to the 

background, see Figure 1) was low or high, t(31) = -2.71, p = .01, and t(31) = -2.47, p = .02, 

respectively, both two-tailed (see Figure 2).  The size-brightness congruity effect therefore 

appears to be very robust.      

There was not a significant interaction between Key Size and Background Brightness, 

F(1, 31) = 0.13, p = .72, indicating that participants responded more quickly on the big key 

than on the small key irrespective of whether the background was relatively bright or 

relatively dark.  Most importantly, the lack of a significant three-way interaction between 

Key Size, Circle Brightness Relative to Background, and Background Brightness, F(1, 31) = 

1.80, p = .19, indicates that an equivalent Key Size x Circle Brightness Relative to 

Background interaction was observed whichever of the two backgrounds was used and, 

therefore, regardless of how the two circles of intermediate luminance are interpreted.  This 

confirms that the predicted size-brightness congruity effect is largely determined by the 

relative, rather than the absolute, mapping of perceived brightness onto key size. 
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Classifying the Two Circles of Intermediate Luminance When they Appeared against 

the Brighter and Darker Backgrounds 

Because the two circles of intermediate luminance appeared on both backgrounds, 

albeit in separate blocks of trials for each participant, their classification affords an 

opportunity to confirm directly that it was the perceived brightness of a circle relative to the 

brightness of the background that determined the size of the response key with which it 

became congruent.  The mean RTs for these two circles, at each level of background 

brightness, were submitted to a 2 x 2 repeated-measures ANOVA with Key Size (small vs. 

big) and Background Brightness (brighter vs. darker) as within-participant factors (see Figure 

1).   

The overall mean correct RT was 630 ms (SD = 151 ms).  The analysis revealed a 

significant main effect of Key Size, F(1, 31) = 36.35, MSE = 0.003, p < .001, ηр² = 0.54, with 

participants again responding more quickly on the big key (602 ms) than on the small key 

(659 ms).  The main effect of Background Brightness was not significant, F(1, 31) = 0.34, p 

= .57.  However, the interaction between Key Size and Background Brightness approached 

significance, F(1, 31) = 3.79, MSE = 0.004, p = .06, ηр² = 0.11, with the nature of the 

suggested interaction being consistent with the predicted congruity effect. 

The overall mean level of correct responding (98.4%) was too high to permit the 

equivalent analysis of response accuracy.  However, a simplified analysis revealed that the 

mean percentage of correct responses was significantly higher for congruent trials (99.0%) 

than for incongruent trials (97.8%), Wilcoxon Signed Ranks z = -2.41, p = .01, two-tailed. 

Brightness Contrast.  The two circles of intermediate luminance have a special place 

in the argument that the mapping between size and brightness observed here is largely 

relative.  This is because, despite their absolute values of luminance being held constant 

across the two backgrounds against which they appear, they switch their correspondence to 
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contrasting sizes of response key according to the brightness of the background.  However, it 

is only their luminance as measured physically (as cd/m2) that is held constant, and we know 

that simultaneous brightness contrast causes the same visual stimulus to be perceived as 

brighter when it appears against a darker background, and darker when it appears against a 

brighter background.  Though Figure 1 provides only an approximate reproduction of the 

levels of luminance involved in the present experiments, the reader will most likely 

experience this contrast-induced change in perceived brightness (i.e., the two intermediate 

circles will appear modestly brighter against the darker background than against the brighter 

background).  Acknowledging this difference between objective luminance (as measured 

physically) and perceived brightness, there is a sense in which the brightnesses of the 

intermediate circles are not being kept constant across the two backgrounds.  This introduces 

a confound between the absolute levels of perceived brightness of these circles and their 

categorical brightness, both of which change in the same way according to the background 

against which the circles appear (e.g., not only is a circle categorically brighter than a darker 

background, but its perceived brightness is raised through simultaneous brightness contrast).  

Does this confound provide an alternative explanation for our results?  Might it be an 

absolute mapping between perceived brightness and key size that is determining the pattern 

of results being interpreted here as evidence for relative mapping?  We believe not.   

The simultaneous contrast-induced change in perceived brightness of either of the two 

intermediate circles across the two levels of background brightness (i.e., the difference in the 

perceived brightness of the 16 d/m2 circle and the 40 cd/m2 circle when each of these was 

presented against the brighter background vs. the darker background; see Figure 1) is very 

modest compared to the difference in the level of perceived brightness between these two 

circles, and indeed, the difference in the level of perceived brightness between any of the 
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paired circles (i.e., between the 3 cd/m2 circle and the 2.5 cd/m2 circle, and between the 100 

cd/m2 circle and the 96 cd/m2 circle; see Figure 1).  And yet, an analysis of the results that 

includes Within-Category Circle Brightness as an additional within-participant factor, reveals 

no significant interaction between Within-Category Circle Brightness, Circle Brightness 

Relative to Background, and Key Size, F(1, 31) = 0.02, p = .90, or between Within-Category 

Circle Brightness, Circle Brightness Relative to Background, Key Size, and Background 

Brightness, F(1, 31) = 1.02, p = .32.  These outcomes confirm that, regardless of the 

brightness of the background, any differences in perceived brightness between two paired 

circles did not interact with key size.  That is, responses were no faster to the circle within a 

pair that was perceived to be the brighter (darker) of the two when it was linked to the small 

(big) key than the big (small) key.  Given that the differences in perceived brightness within 

the pairs of circles were much more pronounced than any changes in perceived brightness 

induced through simultaneous contrast, the latter does not undermine the interpretation of the 

results being offered here. 

Discussion 

 The results of Experiment 1 replicate those of P. Walker and L. Walker (2012) by 

providing evidence for a cross-sensory correspondence between (haptic) size and (visual) 

brightness.  When participants in a speeded classification task were asked to classify circles 

according to their perceived brightness they did so more quickly and accurately when 

pressing a small key to confirm that a circle was bright, and a big key to confirm that a circle 

was dark, than vice versa.  Of particular importance here, an equivalent size-brightness 

congruity effect was observed when the relative perceived brightness of the circles was 

switched across blocks of trials by varying the context provided by the brightness of the 

background on which they appeared.  This meant that, in separate blocks of trials, the two 
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circles of intermediate luminance behaved as brighter circles when appearing against the 

darker background (thereby forming a congruent relationship with the small key), but as 

darker circles when appearing against the brighter background (thereby forming a congruent 

relationship with the big key).  In the context of the speeded brightness classification task, 

and the automatically induced congruity effect this reveals, the correspondence-based 

mapping of size and brightness appears to be largely contingent on context-sensitive, relative 

levels of perceived brightness, rather than on context-insensitive, absolute levels of perceived 

brightness. 

Experiment 2: Size-Brightness Correspondence with Relative Values of Size 

Experiment 1 provides evidence indicating that the correspondence-based cross-

sensory mapping of size to brightness can be largely based on context-sensitive, relative 

levels of perceived brightness, rather than on context-insensitive, absolute levels.  In 

Experiment 2, an analogous procedure is used to assess whether the same is also true of size, 

that is, is it the relative values for size across the two response keys that interacts with 

brightness, rather than the absolute values?  Participants again classified circles according to 

whether they were perceived to be brighter or darker than the background on which they 

appeared (which in Experiment 2 did not vary) by pressing the left or right of two response 

keys that, incidentally, differed in size.  In contrast to Experiment 1, three different sizes of 

response key were available, though it was only the two smaller keys, or the two bigger keys, 

that were used in any given block of trials.  The relative size of the medium response key was 

manipulated across separate blocks of trials by pairing it with either the smallest key or the 

biggest key from the three keys available, thereby ensuring that it was variously either the 

bigger key, or the smaller key, being used by participants, respectively (see Figure 3).  If the 

cross-sensory mapping of size to brightness depends on the relative size of the two keys 

being used in a block of trials, then an equivalent size-brightness congruity effect should be 
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observed regardless of whether the two smaller keys are being used, or the two bigger keys.  

Specifically, regardless of their absolute size, the smaller key being used should form a 

congruent relationship with circles that are perceived to be brighter than the background, and 

the bigger key being used should form a congruent relationship with circles that are perceived 

to be darker than the background.  This means of course that the medium key should behave 

as a smaller key when it is paired with the biggest of the three keys (in which case it will be 

congruent with brighter circles), but as a bigger key when, in separate blocks of trials, it is 

paired with the smallest of the three keys (in which case it will be congruent with darker 

circles).  The change in the relative size of the medium key across trial blocks will mean that 

responses on this key will be relatively quick and accurate to brighter circles, than to darker 

circles, when it is paired with the biggest key, but relatively quick and accurate to darker 

circles, than to brighter circles, when it is paired with the smallest key. 

Method 

Participants 

 Thirty-two Lancaster University students (20 females and 12 males) aged between 18 

and 28 (mean age = 21.3 years) volunteered to participate in exchange for course credit.  All 

but four of the participants were right-handed by self report.  None of the participants had 

been involved in Experiment 1. 

Task, Materials, and Apparatus 

 The task, materials, and apparatus were similar to those used in Experiment 1, with 

the exception that the six circles now varied in luminance from white through to black (340, 

230, 150, 42, 17, and 2 cd/m2) and were always presented against the same mid-grey 

background (90 cd/m2).  Participants again classified each circle according to whether it was 

perceived to be either brighter or darker than the background by pressing either the left or 
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right of two response keys that, incidentally, differed in size.  Three smoothed, wooden balls 

mounted onto micro-switches were available for use as response keys.  The smallest and 

biggest of these keys were those used in Experiment 1.  The medium sized key created for 

this experiment was 5 cm in diameter and was raised 2 cm from the table by a wooden block 

to ensure that all three keys were perceived (haptically) to be equally high spatially.  The 

physical resistance of the medium key was set between that of the smallest and biggest keys 

at 625 gm.  

Experimental Design 

 The experimental design was based on that used in Experiment 1.  However, the 

varying context now related to whether it was the two smaller keys from the set of three that 

were used as response keys, or the two bigger keys.  That is, it related to whether the medium 

size key was paired with the smallest key, or the biggest key.  The experiment therefore 

involved a 2 x 2 x 2 repeated-measures design with Size of Correct Key (smaller key vs. 

bigger key needing to be pressed), Key Pairing (medium key paired with smallest vs. biggest 

key), and Circle Brightness Relative to Background (“brighter” vs. “darker”), all as within-

participant factors.  The dependent variables were the speed (in milliseconds) and accuracy 

(percent correct) of participants’ responses to each circle. 

Procedure 

 The procedure was equivalent to that described in Experiment 1, except that in each 

of four blocks of trials the medium key was paired with either the smallest key or the biggest 

key from the three available.  Whether the medium key was paired with the smallest key in 

the first half of the experiment (i.e., Blocks 1 & 2) and the biggest key in the second (i.e., 

Blocks 3 & 4), or vice versa, was counterbalanced across participants.  Half of the 

participants (13 right-handers and three left-handers) were asked to press the left-hand key 

when the circle was perceived to be brighter than the background and the right-hand key 
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when the circle was perceived to be darker than the background.  The remaining participants 

(15 right-handers and one left-hander) were assigned to the opposite hand-brightness 

mapping (i.e., left-hand key for “darker” and right-hand key for “brighter”).   

Results 

 The data were the speed and accuracy of participants’ responses to the circles.  Mean 

correct RTs and accuracy levels obtained for the bright and dark circles were calculated 

separately for the smaller and bigger of the two keys used in each block of trials (see Table 

2). 

Response Accuracy 

 The overall mean level of response accuracy was 98.5% (SD = 3.1%).  The level of 

correct responding was not significantly higher for congruent trials than for incongruent trials 

for either key pairing (i.e., whether the medium key was the smaller of the two keys, or the 

bigger), Wilcoxon Signed Ranks Test z = -0.43, p = .67, and Wilcoxon Signed Ranks Test z = 

-0.58, p = .56, for the medium key paired with the biggest and smallest key, respectively, 

both two-tailed. 

Response Times 

 Participants’ mean correct RTs to the three brighter and three darker circles in each 

trial block were calculated.  RTs from incorrect trials were excluded from the analysis, and 

any RTs greater than 2.5 SDs above a participant’s mean correct RT were replaced with the 

cut-off value.  The resulting data were submitted to a 2 x 2 x 2 repeated-measures ANOVA, 

with Size of Correct Key (smaller key vs. bigger key needing to be pressed), Key Pairing 

(medium key paired with smallest vs. biggest key), and Circle Brightness Relative to 

Background (“brighter” vs. “darker”) as within-participant factors.2 
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The overall mean correct RT was 667 ms (SD = 197 ms).  There was a significant 

main effect of Size of Correct Key, F(1, 31) = 7.96, MSE = 0.004, p = .008, ηр² = 0.20, with 

participants responding more quickly on the smaller key (656 ms) than on the bigger key 

(678 ms).  There was not a significant main effect of Key Pairing, F(1, 31) = 3.12, p = .09.  

However, there was a significant Size of Correct Key x Key Pairing interaction, F(1, 31) = 

54.25, MSE = 0.004, p < .001, ηр² = 0.64.  This indicated that participants’ responses were 

slower on the medium key (696 ms) than on either the smallest key (638 ms) or the biggest 

key (638 ms).   

The main effect of Circle Brightness Relative to Background was significant, F(1, 31) 

= 12.99, MSE = 0.01, p = .001, ηр² = 0.30, with participants classifying the darker circles (647 

ms) more rapidly than the brighter circles (686 ms).  There was also a significant interaction 

between Size of Correct Key and Circle Brightness Relative to Background, F(1, 31) = 13.13, 

MSE = 0.01, p = .001, ηр² = 0.30, the nature of which was consistent with the predicted 

congruity effect.  The mean correct RTs for congruent and incongruent trials were 646 and 

686 ms, respectively.  Paired-samples t-tests confirmed that the difference in response times 

to congruent and incongruent trials remained significant across low, medium, and high levels 

of within-category circle brightness, t(31) = -2.51, p = .02, t(31) = -3.70, p = .001, and t(31) = 

-2.37, p = .02, respectively, all two-tailed (see Figure 4).  

There was not a significant interaction between Key Pairing and Circle Brightness 

Relative to Background, F(1, 31) = 2.41, p = .13, indicating that participants classified the 

darker circles more rapidly than the brighter circles irrespective of whether the medium key 

was paired with the biggest key (so that it was relatively small) or the smallest key (so that it 

was relatively big).  Most importantly, the lack of a significant three-way interaction between 

Size of Correct Key, Key Pairing, and Circle Brightness Relative to Background, F(1, 31) = 

1.78, p = .19, indicates that an equivalent Size of Correct Key x Circle Brightness Relative to 
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Background interaction was observed both when the two smaller keys were used and when 

the two bigger keys were used (i.e., regardless of how the medium size key was interpreted).  

This confirms that the predicted size-brightness congruity effect is largely determined by the 

relative size of the key needing to be pressed, rather than by its absolute size.  

Responding with the Medium Key when it was Paired with either the Smallest Key or 

the Biggest Key 

Because the medium key was one of the two response keys on all trials for each 

participant, there was the opportunity to confirm directly that it was the size of the medium 

key relative to the size of the key with which it was paired that determined whether it was 

congruent with the brighter or darker circles being classified.  The mean RTs of the medium 

key alone, for each of the key pairings, were submitted to a 2 x 2 repeated-measures ANOVA 

with Key Pairing (medium key paired with smallest vs. biggest key) and Circle Brightness 

Relative to Background  (“brighter” vs. “darker”) as within-participant factors (see Figure 3). 

The overall mean correct RT was 696 ms (SD = 185 ms).  The analysis revealed a 

significant main effect of Key Pairing, F(1, 31) = 8.66, MSE = 0.01, p = .006, ηр² = 0.22, in 

which participants responded on the medium key more quickly when it was paired with the 

biggest key (673 ms) than when it was paired with the smallest key (718 ms).  There was also 

a significant main effect of Circle Brightness Relative to Background, F(1, 31) = 19.31, MSE 

= 0.01, p < .001, ηр² = 0.38, with participants classifying darker circles (667 ms) more rapidly 

than brighter circles (724 ms).  Finally, there was a significant interaction between Key 

Pairing and Circle Brightness Relative to Background, F(1, 31) = 15.07, MSE = 0.01, p = 

.001, ηр² = 0.33, the nature of which was consistent with the predicted size-brightness 

congruity effect (with mean RTs of 669 ms and 723 ms for congruent and incongruent 

pairings, respectively).  That is, participants responded relatively quickly on the medium key 
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when its size relative to the other key being used was congruent with the perceived brightness 

of the circle relative to the background against which it appeared. 

 The overall mean level of correct responding (98.6%) was too high to permit the 

equivalent analysis of response accuracy.  However, a simplified analysis failed to reveal a 

significant difference in the percentage of correct responses across congruent (98.6%) and 

incongruent (98.5%) trials, Wilcoxon Signed Ranks z = -0.06, p = .95, two-tailed. 

Discussion 

 The results of Experiment 2 support those of Experiment 1 by demonstrating that the 

congruity effect automatically induced by the size-brightness correspondence also can be 

largely dependent on context-sensitive, relative values of size, rather than on context-

insensitive, absolute values of size.  Performance on a speeded classification task was once 

again faster (though not more accurate) when participants pressed the smaller of two keys to 

confirm that a circle was perceived to be brighter than the background against which it 

appeared, and the bigger of two keys to confirm that a circle was perceived to be darker than 

the background, than vice versa.  Crucially, an equivalent size-brightness congruity effect 

was observed regardless of whether the two keys being used were the two smaller keys or the 

two bigger keys of the three keys available.  This meant that, in separate blocks of trials, the 

same medium key behaved as a smaller key when it was paired with the biggest of the three 

keys (thereby forming a congruent relationship with the brighter circles), but as a bigger key 

when it was paired with the smallest of the three keys (thereby forming a congruent 

relationship with the darker circles).  Thus, for the cross-sensory congruity effect under 

investigation, the absolute size of the smaller and bigger keys being used by participants is 

clearly less important than is their size relative to each other. 
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General Discussion 

The results of the two experiments in the present study provide direct evidence that 

the cross-sensory mapping of (haptic) size to (visual) brightness in the size-brightness 

correspondence is largely contingent on the relative values of these two features on their 

respective dimensions, as compared to their absolute values.  Consistent with previous 

research by P. Walker and L. Walker (2012), participants in two speeded brightness 

classification tasks were faster and more accurate at classifying circles as bright when this 

required them to press the smaller of two keys, and as dark when this required them to press 

the bigger of two keys, than vice versa.  More importantly, the same values of luminance 

(Experiment 1) and key size (Experiment 2) were at different times found to correspond to 

contrasting values on the other feature dimension depending on the context provided by the 

alternative stimuli with which they were being presented.  That is, in separate blocks of trials, 

the two circles of intermediate luminance were classified relatively more quickly and 

accurately on the smaller key when they appeared against a darker background, but relatively 

more quickly and accurately on a bigger key when they appeared against a brighter 

background.  Similarly, the same medium sized key was variously found to elicit relatively 

faster responses to either darker or brighter circles depending on whether it was paired with 

the smallest or the biggest of the three keys available for use in the experiment, respectively.   

Given the consensus view reflected in the studies of cross-sensory mapping reviewed 

in the Introduction, wherein relative mappings are taken to indicate interactions at conceptual 

levels of representation, the present results provide valuable converging evidence for P. 

Walker and L. Walker’s (2012) claim that the size-brightness congruity effect can originate at 

levels of processing at or beyond the level at which stimuli are categorised for the purpose of 

response selection (i.e., the congruity effect is post-categorical), and, in turn, for their 

suggestion that all cross-sensory correspondences can have a basis in the conceptual 



SIZE–BRIGHTNESS MAPPING   31 

	
  

representation of basic stimulus features (see also L. Walker, P. Walker, & Francis, 2012; P. 

Walker, L. Walker, & Francis, 2015).  Were the size-brightness congruity effect to arise at 

pre-categorical levels of processing, then particular feature values on these two dimensions 

would have corresponded with each other irrespective of their relationship to other task-

relevant stimuli (cf. Marks, 1987).  This was not the case in the present study. 

By avoiding confounding changes in stimulus context with changes in stimulus 

uncertainty (i.e., by ensuring that the same number of alternative stimuli were sampled 

regardless of context), and by fully accounting for any effects of hand-decision assignment, 

the present study provides the most persuasive evidence to date that an automatically induced 

congruity effect based on a cross-sensory correspondence can be driven by the relative 

mapping of feature values across the two stimulus domains.  This is especially compelling 

because the same stimuli behaved in contrasting ways according to the context provided by 

the other stimuli with which they appeared.  That is, the size-brightness congruity effect 

reversed, rather than just diminished in strength, when the context in which the same stimuli 

appeared was changed. 

The suggestion that a correspondence induced congruity effect can have a basis in the 

post-categorical coding of basic stimulus features complements other accounts which posit 

that cross-sensory correspondences can take effect at early (i.e., pre-categorical) levels of 

processing, allowing them to impact directly on multisensory perceptual integration.  Using 

Bayesian integration theory as a framework within which to model cross-sensory 

correspondences, Spence (2011) (see also Parise & Spence, 2009) suggested that 

correspondences arising from the internalisation of the statistics of the natural environment 

(statistical correspondences) can form part of the sensory system’s prior knowledge that 

certain stimuli “go together”.  This prior knowledge (the coupling prior) strengthens the 
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coupling between the stimuli, which in turn enhances the perceptual fusion of the sensory 

signals. 

Evidence in support of such an early processing account comes from a study 

exploiting the temporal ventriloquism effect (Morein-Zamir, Soto-Faraco, & Kingstone, 

2003) to show that the cross-sensory mapping of smallness to high pitch (which is readily 

observed in the natural environment; see, e.g., Grassi, 2005) can enhance the auditory capture 

of vision in time.  Parise and Spence (2008) asked participants to make temporal order 

judgements (TOJs) regarding the sequence in which two circles (one small, one big) were 

displayed to the left and right sides of a computer screen, whilst ignoring two auditory tones 

(300 and 4500 Hz), one presented 150 ms before the first visual stimulus, and the other 150 

ms after the second visual stimulus.  In accordance with their belief that cross-sensory 

correspondence will strengthen the sensory attraction between temporally proximate 

auditory-visual stimuli, they found that TOJs were more sensitive (i.e., the temporal 

separation of the two visual stimuli became more apparent) when the relative size of each 

circle was congruent with the pitch of the most adjacent tone.  It was as if the congruity 

caused the visual and auditory stimuli to be perceived to occupy closer moments in time.  In 

Bayesian terms, this suggests that repeated exposure to co-occurrences between these two 

feature dimensions strengthened the coupling between congruent auditory-visual pairs, thus 

leading to an illusory blending of the temporal location of the adjacent visual and auditory 

stimuli (in this case creating an expansion of the perceived temporal interval between the two 

visual stimuli) (but see Keetels & Vroomen, 2011).  All of this said, of course, it is possible 

that low level (statistical) correspondences will come to be reflected at a higher, conceptual 

level, thereby allowing such congruity effects also to emanate from the context-sensitive, 

post-categorical coding of contrasting feature values.  Indeed, as Marks (1989, p. 587) 

commented in relation to the correspondence between loudness and brightness, “(…) even if 
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loudness and brightness find their basic resemblance in common physiological processes, 

they may subsequently come to owe their communality to a common semantic code (…)”.  

That the representation of natural co-occurrences need not be restricted to the absolute 

feature values captured by lower levels of stimulus encoding is apparent from other 

observations.  For example, when researchers have selected stimulus values to demonstrate 

and explore correspondences, they have not normally taken steps to match corresponding 

stimuli on the basis of their absolute feature values, but have relied instead on their relative 

contrast.  Thus, the highest pitched sounds and pointiest shapes in one study might be lower 

in pitch and less pointy than the highest pitched sounds and pointiest shapes in another 

study.3 The relevance of relative stimulus contrast can also be seen in the language used to 

talk about statistical correspondences.  For instance, when discussing the co-occurrence 

between size and pitch, Spence (2011, p. 985), like Marks (1989, p. 587), employed the 

comparative form for adjectives to remark that “in nature (...) the larger the object, the lower 

the frequency it makes when struck, dropped, sounded, etc. [emphasis added]”. 

The functional significance of the context-sensitive coding of stimulus feature values 

becomes especially apparent when the contribution of cross-sensory correspondences to 

sound symbolism in language is considered.  Thus, a case can be made for cross-sensory 

correspondences underpinning some forms of sound symbolism.  For example, because 

higher pitched sounds are perceived to be smaller, sharper, brighter, thinner, faster, and 

lighter in weight than are lower pitched sounds (Tarte, 1982; P. Walker, & Smith, 1984; L. 

Walker, P. Walker, & Francis, 2012), reflecting the correspondences among these feature 

dimensions, words with vowel sounds containing relatively high acoustic frequencies (i.e., 

front/close vowels rather than back/open vowels) seem appropriately sound symbolic as 

names for concepts with corresponding attributes (e.g., gleam, tweet, mini) (Berlin, 1994; 
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Klink, 2000; Klink & Wu, 2014; Lowry & Shrum, 2007; Newman, 1933; Sapir, 1929).  

Indeed, Monaghan, Mattock, and Walker (2012) show how people are able to learn names for 

novel shapes contrasting in their pointiness/curvedness more easily when the front/close vs. 

back/open status of the vowel in the word is congruent with the pointiness of the shape it 

names.  That is, they find it easier to learn the name for a pointy (curved) shape when it 

contains a vowel sound with relatively high (low) acoustic frequencies.  Crucially, in this and 

other instances of sound symbolism involving the front/close vs. back/open nature of vowel 

sounds, it is the acoustic frequencies of the vowel sounds relative to the word as a whole and, 

more importantly perhaps, relative to the overall acoustic profile of the speaker’s voice that 

are salient.  It is assumed, for example, that particular instances of sound symbolism in 

language will occur whatever the fundamental frequency of a speaker’s voice (e.g., whether 

the speaker is male or female), confirming that cross-sensory correspondences can support 

sound symbolism only to the extent that the coding of the acoustic frequencies embedded in a 

spoken word is context (voice) sensitive. 
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Footnotes 

 1 This is a similar strategy to the one adopted by Lawrence Marks and his colleagues 

to study context effects in cross-modality matching (see Marks, 1989; Marks, Szczesiul, & 

Ohlott, 1986). 

2 An initial analysis of the data, which included Within-Category Circle Brightness as 

an additional within-participant factor, showed that there were no significant interactions 

between Within-Category Circle Brightness, Circle Brightness Relative to Background, and 

Size of Correct Key, F(1.62, 50.26) = 0.86, p = .41, or between Within-Category Circle 

Brightness, Circle Brightness Relative to Background, Size of Correct Key, and Key Pairing, 

F(2, 62) = 0.56, p = .57.  These outcomes confirm that neither when the medium key was 

paired with the smallest key, nor when it was paired with the biggest key, did variations in 

circle brightness within each task-defined category of brightness (i.e., within those levels of 

brightness that were brighter than the mid-grey background, and within those levels of 

brightness that were darker than the mid-grey background) interact with key size to yield a 

congruity effect.  In other words, irrespective of whether the medium key was the smaller or 

the bigger of the two keys available, participants did not respond more quickly when higher 

(lower) levels of brightness within a task-defined category of brightness were paired with the 

smaller (bigger) key.  In line with P. Walker and L. Walker’s (2012) findings, this provides 

additional evidence that the size-brightness congruity effect reflects context-sensitive 

interactions among representations at or beyond the level at which visual stimuli are 

categorised for the purpose of response selection.   

3 While there are no known co-occurrences in the natural environment through which 

the pitch-sharpness correspondence could be acquired directly, it is plausible that this 

correspondence is mediated by a broader understanding of the physical properties of objects 
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(see Spence & Deroy, 2012).  For example, Walker et al. (2010) noted that sensitivity to the 

mapping of high pitch to pointiness might be driven in part by the realisation that because 

pointier objects tend to be formed from harder materials they are more likely than are curved 

objects to make a higher pitched sound when struck.     
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Table 1 

Mean Correct RTs (SEMs in parentheses) and Accuracy Levels (percent correct) According 

to Key Size, Circle Brightness Relative to Background, and Background Brightness 

  Circle Brightness Relative to 
Background 

Background Brightness Key Size “brighter” “darker” 

Brighter Small 619 675 
  (29) (29) 
  99.3 97.3 
    
 Big 612 595 
  (30) (25) 
  98.6 99.0 
    

Darker Small 643 614 
  (27) (21) 
  99.0 98.3 
    
 Big 609 554 
  (24) (22) 
  98.3 100 
    

 Note. Normal font entries relate to congruent conditions, bold entries relate to incongruent 

conditions.  Also, italicised entries relate to the two circles of intermediate brightness that 

appeared as stimuli in every block of trials.  
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Table 2 

Mean Correct Response Times (SEMs in parentheses) and Accuracy Levels (percent correct) 

According to Circle Brightness Relative to Background, Key Pairing, and Size of Correct Key  

  Circle Brightness Relative to 
Background 

Key Pairing 
Size of 
Correct 

Key 
“brighter” “darker” 

Medium & Smallest Smaller 633 634 
  (29) (31) 
  98.3 98.4 
    
 Bigger 774 663 
  (42) (27) 
  98.6 99.0 
    

Medium & Biggest Smaller 674 672 
  (24) (32) 
  98.3 98.4 
    
 Bigger 664 612 
  (32) (27) 
  98.3 98.8 

    
Note. Normal font entries relate to congruent conditions, bold entries relate to incongruent 

conditions.  Also, italicised entries relate to the medium key, which was one of the two keys 

available on all trials. 
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Figure 1.  The circles varying in luminance used in Experiment 1 according to the context 

provided by the brightness of the background against which they appeared.  Note that though 

the perceived brightness of each circle might not appear here exactly as it did in the 

experiment, the direction of its contrast with the background is preserved. 
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Figure 2.  Mean correct response times for congruent and incongruent combinations of Circle 

Brightness Relative to Background and Key Size at each level of Within-Category Circle 

Brightness.  Error bars show standard error of the mean.
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Figure 3. Schematic illustration of the two key pairings used in Experiment 2.  In separate 

blocks of trials, the medium key was paired with either the smallest key, so that it was the 

bigger of the two keys being used by participants (top panel), or the biggest key, so that it 

was the smaller of the two keys being used by participants (bottom panel).   
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Figure 4.  Mean correct response times for congruent and incongruent combinations of Circle 

Brightness Relative to Background and Size of Correct Key at each level of Within-Category 

Circle Brightness.  Error bars show standard error of the mean. 
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