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Abstract—This paper presents an improved version and a mod-
ification of Robust Evolving Cloud-based Controller (RECCo).
The first modification is normalization of data space in RECCo.
As a consequence, some of the evolving and adaptation param-
eters become independent of the range of the process output
signal. Thus the controller tuning is simplified which makes the
approach more appealing for the use in practical applications.
The data space normalization is general and is used with
Euclidean norm, but other distance metrics could also be used.
Beside the normalization new adaptation scheme of the controller
gain is proposed which improves the control performance in the
case of a negative initial error in starting phase of the evolving
process. At the end, different simulation scenarios are tested
and analyzed for further practical implementation of the Cloud-
based controller into real environments. For that reason a detail
simulation study of a plate heat exchanger is performed and
different scenarios were analyzed.

I. INTRODUCTION

Variety of PID controllers are already proposed and tra-

ditionally widely used in industrial control systems. Because

of their simple structure and reliable operation they are com-

monly used for linear processes, therefore they work well in

certain conditions. In the case of nonlinear processes classical

PID controllers are commonly insufficient. Moreover, new

approaches and techniques attempt to improve the control in

case of nonlinear systems [1] [2]. Fuzzy controllers represent

an alternative approach for solving the nonlinearity process

control problem. New type of fuzzy rule-based (FRB) system

ANYA was introduced in [3]. The main difference between

this method and classical FRB systems such as Mamdani

[4], [5] and Takagi-Sugeno (TS) [6] is the way of how the

antecedent part is defined. While in TS fuzzy systems the

antecedent part is fuzzy and the consequent part is func-

tional, in the Mamdani FRB systems both parts are fuzzy.

Defuzzification in Mamdani and TS systems could be realized

using center-of-gravity or ”winers takes all” methods and

their variations. ANYA is a simplified FRB system and does

not require an explicit definition of fuzzy sets (and their

corresponding membership functions) for each input variable.

Simplified antecedent part in this case is non-parametric and

is formed using data clouds (sets of data samples in the data

space) that have no specific shape, parameters or boundaries.

In addition, the antecedents of ANYA FRB take into account

the density of all previous data samples and it is calculated

recursively.

On-line construction and evolving of the fuzzy rule-based

controller without prior knowledge of the process was pre-

sented in the previous work [7] [8]. The mentioned approaches

allow the controller structure (the membership function, fuzzy

rules, fuzzy set, etc.) to be created based on the data collected

on-line. New data samples are used for updating existing rules

(clouds) or for creating new ones if a significant change of the

operating point is detected. The proposed method starts with

empty structure of the controller and just a few parameters

which are needed for adaptation and evolving phases. The first

phase is adaptation of control parameters in the consequent

part of fuzzy rules. During the evolving phase controller

structure is modified if needed.

In this paper we introduce an improved approach of robust

evolving cloud-based controller (RECCo) for dealing with

nonlinear process control. One of the novelties is normaliza-

tion of the data space. This makes the performance of the

system less sensitive on some design parameters (parameters

required in the consequent of the fuzzy rules and parameters

of the evolving algorithm) making the system more robust.

Another improvement proposed here is the way how the PID

parameters are adapted in the starting phase. In order to show

the effective performance and advantages of the proposed

method, it is applied to a simulated problem of a heat-

exchanger pilot plant.

The rest of this article is organized as follows. Section

II describes the robust evolving cloud-based controller, its

structure and adaptation method in subsections II-A and II-B,

respectively. In section III new approach for cloud space

normalization is proposed. Finally in section IV different

simulation scenarios are analyzed and presented as a proof of

concept for the proposed methodology. The main conclusions

are summarized in section V.

II. ROBUST EVOLVING CLOUD-BASED CONTROLLER

(RECCO)

A special feature of the RECCo is that no a priori infor-

mation about the controlled process is needed. Theoretically,

the controller could be initialized from the first data sample

received. But of course, any existing information can be used



to suitably initialize the controller parameters. After this, for

every incoming sample the controller gains are adapted and if

the certain conditions are satisfied, a new cloud is created.

A. The structure of the cloud-based controller

In this subsection we present the robust cloud-based con-

troller structure with non-parametric antecedents. As we al-

ready mentioned, this method applies the concept of fuzzy

data clouds and relative data density to define antecedents.

Each data element is associated on-line to one of the existing

clouds (if current data is close enough according to a chosen

similarity measure) or a new fuzzy rule (cloud) is created. The

concept does not employ membership functions in the classical

sense. Degree of fulfilment is based on the distances between

samples and the corresponding cloud relative density. At this

point we have to mention that already two different similarity

measures were used: Euclidean [3] [9] and Mahalanobis [10]

distances. In this paper a simpler Euclidean distance is used

according to the fact that both methods produced satisfying

results.

The structure of ANYA was initially introduced in [3].

The authors proposed simplified FRB system of the following

form:

Ri : IF (x ∼ Xi) THEN (ui) (1)

where the operator ∼ denotes the fuzzy membership expressed

linguistically as ’is associated with’. The number of the rules

is defined by the number of the data clouds c (i = 1, 2, . . . , c),
and usually changes with time. Xi denotes the i-th cloud in

the data space where x = [x1, x2, . . . , xn]
T

is the controller’s

input and ui denotes its output in the i-th fuzzy domain. The

contribution of a particular controller output in a certain fuzzy

domain to the actual control output is given by the normalized

relative density:

λi
k =

γi
k

c∑
j=1

γj
k

i = 1, . . . , c (2)

where γi
k is the local density of the i-th cloud for the current

data xk.

When a new data sample arrives, we compute c separate

densities γj
k that define how “close” a new sample is relative

to the existing clouds. According to the calculated densities,

the current data sample is finally associated with the cloud

with maximal density and all the parameters of this particular

cloud are updated.

In [9] and [8] the local density of the i-th cloud is defined

by Cauchy kernel as follows:

γi
k =

1

1 +
∑k−1

j=1 (d
i
kj)

2

k−1

(3)

where k is the current time stamp and
∑k−1

j=1 (d
i
kj)

2 is the

sum of the square of Euclidean distances (dikj = ‖xk − xj‖2)

between the new data xk and all the data points of the i-th
cloud. Furthermore, (3) can be recursively written as follows:

γi
k =

1

1 + ‖xk − μi
k‖2 + σi

k − ‖μi
k‖2

(4)

where μi
k is the mean value of the cloud’s data points and σi

k is

the variance. Both of them can be recursively calculated using

following equations for mean value and variance, respectively:

μi
k =

k − 1

k
μi
k−1 +

1

k
xk (5)

σi
k =

k − 1

k
σi
k−1 +

1

k
‖xk‖2 (6)

Initial condition for the mean value is μi
1 = x1 and for the

variance is σi
1 = ‖x1‖2.

Once we classified the current data sample to one of the

clouds and updated its properties we can do the defuzzification

of the FRB system. As we said above, the ANYA FRB system

can work with both Mamdani and TS consequents. Therefore,

if we consider the weighted average for the defuzzification,

the output of the controller becomes:

uk =

c∑
i=1

λi
ku

i =

c∑
i=1

γi
ku

i

c∑
i=1

γi
k

(7)

where ui denotes the i-th rule consequent and normalized

relative density (2) is used.
It is unreal to expect that any controller can immediately

bring the output process value to the reference. Depending on

the system dynamics we defined first order linear reference-

model with corresponding time constant τ . We have to note

here that larger time constant usually produce better results

especially in terms of robustness at the cost of a lower speed.

In our case our reference model is defined as:

yrk+1 = ary
r
k + (1− ar)rk 0 < ar < 1 (8)

where rk is the reference signal set by the operator. Parameter

ar is the pole of the first order discrete filter and defines the

transient dynamics. For systems with fast sampling, ar can

be approximated by (1 − Ts

τ ) where Ts defines the sampling

period. In all our experiments we used τ = 40 and ar = 0.95
which is an acceptable time constant for the dynamics of the

studied heat-exchanger plant.
In this approach, the PID-based rule consequents of the

following form are proposed:

ui
k = P i

kεk + IikΣ
ε
k +Di

kΔ
ε
k +Ri

k (9)

where εk = yrk − yk−1 is the tracking error (the differ-

ence between the reference model and the process output).

P i
k, I

i
k, D

i
k are controller gains and Ri

k is compensation of

the operating point for each cloud i = 1, . . . , c. Discrete-time

integral (Σε
k) and discrete derivative (Δε

k) of the tracking error

εk are recursively computed as:

Σε
k =

k−1∑
κ=0

εκ = Σε
k−1 + εk−1 (10)
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Fig. 1. The reference, model reference and the output signal for heat-
exchanger pilot plant in the starting phase without calculating absolute value
(upper plot) and with absolute value (lower plot) in adaptation of the controller
gains (yo = 20 ◦C).

Δε
k = εk − εk−1 (11)

B. Adaptation of the controller

An improved adaptation of the controller gains is pro-

posed in this section, where the absolute value of error is

used during starting phase of the simulation. New adaptation

method proposed in (12) is used only in the starting phase

(first 500 samples is enough) of the RECCo evolving system.

Afterwards, the adaptation continues as originally proposed in

[8] and [9], i.e., all the absolute values are omitted from (12).

These absolute values prevent undesirable transient response

of the system in the initial phase of the adaptation process. We

can see the difference between calculating the adaptation with

and without the absolute values in Fig. 1. It is obvious that in

case of negative error in the initial phase (the current value is

higher than the reference signal) the adaptation (12) produced

far better results than the adaptation without absolute values.

This is a real life scenario where the process has non-zero

initial value. Even in the case of zero initial process value, the

proposed adaptation of PID parameters preserves good results.

In the starting phase the controller gains are adapted as

follows:

ΔP i
k = αP Gsignλ

i
k

∣∣∣∣
ekεk
1 + r2k

∣∣∣∣

ΔIik = αI Gsignλ
i
k

∣∣∣∣
ekΔ

ε
k

1 + r2k

∣∣∣∣

ΔDi
k = αD Gsignλ

i
k

∣∣∣∣
ekΔ

ε
k

1 + r2k

∣∣∣∣

ΔRi
k = αR Gsignλ

i
k

εk
1 + r2k

i = 1, . . . , c

(12)

where ek = rk − yk−1 is the difference between the refer-

ence and the process output and λi
k is a normalized relative

density. The constants αP , αI , αD, αR are the adaptation

gains. Furthermore, the controller gains vector is defined as

θik =
[
P i
k, I

i
k, D

i
k, R

i
k

]T
and the adaptation of parameters is

defined as follows:

θik = θik−1 +Δθik (13)

The adaptation of the controller gains (13) is done only for

the current active cloud while the others are kept constant.

When dealing with adaptive control algorithms one needs

to have in mind the potential instability of the system can

occur [11]. There exist many known approaches that make

adaptive laws more robust [12], [13]. In [8] and [9] several

supervisory mechanisms were included in the adaptive law to

prevent parameter drift and instability. In this article we will

employ the same ones (dead zone ddead in the adaptive law,

parameter projection
[
θ, θ

]
, leakage σL in the adaptive law

and interruption of adaptation [umin, umax]). The general idea

behind the dead zone in the adaptive law is that the adaptation

is simply switched off if the absolute value of the error is

small [9]. In this article the output of the system is normalized

and therefore we propose a fixed setting for the dead zone

parameter (ddead is related to the process range, in our case

1% of Δr). Other supervisory mechanisms of the adaptive law

are the same as were proposed in [8] and [9].

III. CLOUD SPACE NORMALIZATION

In the previous papers [9] [10] [8], the input data were

chosen as x =
[
εk, yrk

]T
. Consequently, the calculated

densities depend on the magnitude of the input data. This

heavily affects the evolving part of the algorithm, e.g., the

density where a new cloud is born (denoted by γmax) has to

be evaluated for different process ranges separately.

In this section a normalization of the cloud space is pro-

posed:

x =
[

εk
Δε ,

yr
k−rmin

Δr

]T
(14)

where Δr = rmax − rmin and Δr depends on the operating

system area and Δε = Δr
2 . In this case we are mostly

interested in the region where we expect the majority of the

data samples. Operator needs to choose, according to the

process requirements, only two parameters rmin and rmax.

The normalization transforms the cloud-space into the space

of the constant size, and this allows us to fix some parameters,

e.g., γmax. In all our simulation studies and examples this

value was constant and it is independent of the operating

process range. Some other parameters such as the PID (initial)

gains are also much easier to tune with normalized process

values.

In Table I three different scenarios are presented and in

each case the same value of parameter γmax = 0.93 is used.

Generated clouds are presented in Figs. 2, 3 and 9 for each of

the scenarios (rows in Table I), respectively.



TABLE I
SIMULATION SCENARIOS WITH DIFFERENT PROCESS RANGE

Reference range yo γmax

1.
rmin = 5 ◦C
rmax = 35 ◦C 12 ◦C 0.93

2.
rmin = 20 ◦C
rmax = 45 ◦C 22 ◦C 0.93

3.
rmin = 10 ◦C
rmax = 50 ◦C 15 ◦C 0.93

Fig. 2. The clouds in the input space x =
[

εk
Δε

,
yr
k−rmin

Δr

]T
and

(rmin = 5 ◦C, rmax = 35 ◦C, yo = 12 ◦C).

Fig. 3. The clouds in the input space x =
[

εk
Δε

,
yr
k−rmin

Δr

]T
and

(rmin = 20 ◦C, rmax = 45 ◦C, yo = 22 ◦C).
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Fig. 4. Static characteristic of the heat-exchanger plant over whole process
range.

IV. SIMULATION STUDY OF A HEAT-EXCHANGER PILOT

PLANT

As we already mention above, in our experiment a model

of heat exchanger (HE) process is used; it is explained in

more detail in [14]. The heat-exchanger process consists of two

separate water circuits (heating and cooling water). First circuit

has a constant inlet temperature Tec(k) and motor driven valve

to control the primary circuit flow Fc(k) and represents the

control process variable. The outlet water is returned to the

reservoir which is electrically heated. The second circuit has

inlet temperature Tep(k) and the water flow of cold water

Fp(k) on one side and controlled variable outlet temperature

Tsp(k) on the other side. This process is described by the

following differential equation [14] :

τ2(Tsp)Ṫsp + Tsp = δTep + (1− δ)Tec (15)

where the generalized formula of δ can be written as

δ =
1 + kc(

1
Fc

)m

1 + kc((
1
Fc

)m + ( 1
Fp

)m)
(16)

where kc and m are unknown constants and τ2 is an unknown

function of operating point. In [14] a fuzzy model of the first-

order dynamics is given where small delay of the process is

neglected. This model of heat-exchanger has nonlinear static

characteristic (Fig. 4) and the reference signal is chosen to

cover the whole range and to show the ability of learning.

Advantage of the RECCo is that we do not need a priori

knowledge of the process; furthermore, the controller structure

and membership functions are adapted and evolved during the

simulation process which started without any fuzzy rules. All

the simulations in this paper are started using the same initial

conditions and the same values for all the parameters. These

are divided into three groups (process, adaptive and evolving

parameters). First group contains very intuitive parameters

which are set according to the user requirements. The process

range in this simulations was chosen as rmin = 10 ◦C and

rmax = 50 ◦C. We mentioned above that in the case of a

different process range, no additional tuning of adaptive and

evolving parameters is required. The time constant and the

sampling time of the reference-model were chosen as τ = 40
and Ts = 2, respectively. The process input or the actuator’s

range was given as umin = 0 and umax = 20. In the second

group, the parameters of the adaptive laws are found. The dead



zone ddead was chosen as 1% of process range Δr and the

leakage parameter is set to σL = 10−6. All adaptive gains

αP , αI , αD and αR are set to 0.1. The evolving parameters

from the third group define the rules when, why and “how

many” clouds will be crated. Simulations were started with

zero fuzzy rules (clouds) and maximal number of clouds was

cmax = 100, which was not the case in any of the simulations.

A new cloud was added when the maximal value of the local

densities γi
k, i = 1, . . . , c is lower than the predefined value

γmax = 0.93. The parameter that defines the minimum time

between two new clouds is defined as nadd = 20.

The simulation study presented in this section is divided

into three groups of experiments:

1) The experiments where the effect of cloud space nor-

malization is analyzed.

2) The effects of input disturbances and noise on the

process output are examined.

3) A detailed study of the evolving learning method for the

heat-exchanger plant is done.

In Table II the advantage of the normalization of the cloud

space is presented. Our goal is to generate rational number of

clouds for each case/scenario. Four different reference ranges

were chosen and without normalization we need to estimate

the value of parameter γmax for each scenario separately (third

column in Table II). With the normalization the value of the

evolving parameter γmax is constant (fourth column in Table

II).

TABLE II
COMPARASION BETWEEN ORIGINAL AND NORMALIZED CLOUD SPACE

Reference range γmax γmax,norm
Number of
generated clouds

1.
rmin = 10 ◦C
rmax = 50 ◦C 0.019 0.93 5

2.
rmin = 5 ◦C
rmax = 25 ◦C 0.032 0.93 4

3.
rmin = 4 ◦C
rmax = 20 ◦C 0.046 0.93 4

4.
rmin = 2 ◦C
rmax = 10 ◦C 0.221 0.93 4

Next, we studied the effect of input disturbance added to the

control signal and output noise with characteristics N (0, 0.1).
The results are shown in Figs. 5 (in the starting phase of the

adaptation) and 6 (after the transient of the adaptation). In both

figures the disturbance was added to the control signal in the

middle of the visible time window (the size of the disturbance:

2.5 units in magnitude and 50 time stamps in duration). We

can see that evolving algorithm adapts quickly to the new

circumstances and is not sensitive to input disturbance and

output noise.

In the case of the third scenario (the third row in Table

I) more aspects will be shown in the paper where some

new improvements (normalization and adaptation) of robust

evolving cloud-based controller were tested in this section.

Efficient learning and evolving of the RECCo is presented

during next several figures. A close look to the starting phase
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Fig. 5. The effect of the input disturbance and output process noise in the
starting phase of the adaptation.
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Fig. 6. The effect of the input disturbance and output process noise after the
transient of the adaptation.

of simulation is shown in Fig. 7 where the reference, the model

reference, the output, and the control signal are given. At this

point we want to notice that in this simulation a new adaptation

method is used (mentioned in subsection II-B). In Fig. 8 the

phase after the transient of the adaption is shown. An important

aspect of adapting and learning method proposed in this article

is the convergence of the adaptive gains shown in Fig. 10 for

all the generated clouds during simulations. We have to note

here that a new cloud is created and initialized with the mean

value of previous cloud’s parameters. In Fig. 9 all the created

clouds during the simulation are shown. In this case we created

five clouds. The tracking error is shown in Fig. 11 where its

decreasing with time can clearly be noticed.

V. CONCLUSION

In this paper a new approach of RECCo with normalized

data space and improved adaptation of controller parameters

is proposed. The normalization of the data space is used for

determination of the evolving and the adaptation parameters.
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Fig. 7. The reference, model reference and output signal tracking and the
control signal for plate heat exchanger in the starting phase (yo = 15 ◦C).
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Fig. 8. The reference, model reference and output signal tracking and the
control signal for plate heat exchanger in the finishing phase (yo = 15 ◦C).

In case of the negative initial process error a new adaptation of

the controller is proposed for the starting phase of the evolving

process. Both modifications, normalization and adaptation, are

thoroughly tested and analyzed during different simulation

scenarios for heat-exchanger pilot plant. Irrespective of the

process range, the same initial values of the parameters are

used in all the simulations which is one of the most valuable

benefits of the proposed modifications. The effect of output

noise and input disturbances was also analyzed to test the

robustness of the controller. The main advantages of the

RECCo controller are the self-evolving procedure which starts

with no a priori knowledge and effectively deals with nonlinear

processes.
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