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Abstract

In this thesis we bring together various techniques from functional analy-

sis and operator theory to develop the linear infinitesimal theory of crystal

frameworks in the Euclidean space Rd. In this mathematical theory we ob-

tain sufficient conditions for the boundedness of the rigidity matrix R(G),

viewed as a Hilbert space operator, for certain infinite tree frameworks.

Also, we provide an analysis of the vector subspace of strictly periodic

flexes implied by the translational symmetry of crystal frameworks and we

prove a relation in which the space of supercell n-fold periodic flexes can be

written as a direct sum of the relevant vector subspaces of phase periodic

flexes.

A main result in the thesis is the development of the almost periodic rigid-

ity theory for crystal frameworks in Rd. We prove that a crystal framework

is almost periodically infinitesimally rigid if and only if it is periodically in-

finitesimally rigid and the corresponding RUM spectrum is the minimal set

{(1, 1, . . . , 1)}.

Finally, we conclude the thesis by defining and identifying crystal flex bases

for the real vector space of all infinitesimal flexes of a crystal framework C.

In particular, we determine a crystal flex basis for the crystal framework COct
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formed by pairwise vertex connected regular octahedra. This bar-joint frame-

work (for the mineral perovskite) features in early papers on the investigation

of rigid unit modes in material crystals.

ii



Mum and Dad, this is to you.
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Chapter 1

Introduction

A bar-joint framework is a structure consisting of stiff bars connected by flex-

ible joints and the question of when such a structure is “rigid” has attracted

the interests of researchers from the early beginnings of the 19th century.

Early contributions towards rigidity theory date back to 1776, when Euler

conjectured that “A closed spatial figure allows no changes, as long as it is

not ripped apart” [31]. In other words, a closed figure is a model whose faces

are made of rigid plates and these plates are hinged together along the edges

where they meet such that adjacent faces are allowed to rotate about their

common hinge. For convex polyhedra, this conjecture was later answered by

Cauchy (1813) who proved that “If there is an isometry between the faces

of two strictly convex polyhedra which is an isometry on each of the faces,

then the two polyhedra are congruent”. A corollary of Cauchy’s Theorem is
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that all such convex polyhedra are in fact rigid.

Maxwell, 1864, proved Maxwell’s counting rule [51]: a necessary condition

for three dimensional rigidity is that the number of bars is at least 3 times

the number of points minus 6.

In 1958, Alexandrov [1] extended Cauchy’s Theorem to include all frame-

works given by convex polyhedra with faces triangulated by edges between

additional vertices on the original edges. The resulting structure in this case,

with triangles as faces and including the triangulating edges, is rigid. These

theorems determine the rigidity of a special class of frameworks, convex poly-

hedra, regardless of their geometric positions. Not only interesting on their

own, convex polyhedra can be connected to form three dimensional crystal

frameworks with special flexing properties.

The first major contribution to the rigidity of mathematical bar-joint

frameworks is due to Laman [45], 1970, who proved that generic planar rigid-

ity is in fact a property of the underlying graph, regardless of its geometry.

This can simply be determined by counting the vertices and edges of all sub-

graphs of the graph of the framework. But despite this celebrated result, it

still remains an open problem to find a combinatorial characterization for

three dimensional frameworks.
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Gluck, 1975, proved that “almost all” polyhedra are rigid, and this settled

Euler’s conjecture for polyhedra in generic position. Finally, Euler’s conjec-

ture was proved to be false when Connelly [14], [15], [16], constructed an

example of a polyhedron that is not rigid.

Although progress was slow in the early beginnings of rigidity theory, it

now provides an increasingly growing area of mathematical research with

contributions bringing together techniques from graph theory, linear algebra,

topology, representation theory, and in the case of infinite frameworks, var-

ious techniques from functional analysis, operator theory and limit algebras

are now being used.

Apart from being an exciting field of study as it stands alone, rigidity

theory has found its way to a wide range of applications, beyond engineering

and structural mechanics, but moving towards robotics [71], [72], formation

control [27], material sciences [25], [33], [24] and biochemistry [38], to say the

least.

In particular, the mathematical analysis of frameworks with translational

symmetry known as crystal frameworks makes use of functional analysis and

operator theory to precisely determine the spaces of “strictly periodic and

super cell periodic” flexes related to crystal frameworks. The determina-

tion of these periodic flexes depends on the analysis of a matrix function.

This matrix function leads to the identification of “RUM spectrum”, where

3



material scientists mostly rely on laboratory experiments [25] or computer

analysis [33] to identify.

Furthermore, a new area where the analysis of crystal frameworks is used

is in the study of biomolecules, the functional biological unit [28], [13].
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1.1 Thesis overview

In this thesis we aim to gradually develop an understanding of mathematical

bar-joint frameworks and various forms of infinitesimal flexibility. We start

with basic definitions and build up the theory for finite frameworks and in-

finite frameworks until we reach the main focus of the thesis which is the

infinitesimal flex properties of crystal frameworks. A main result is the char-

acterization of almost periodic rigidity for arbitrary crystal frameworks in Rd.

We make use of techniques from functional analysis and operator theory and

we study special classes of infinitesimal flexes implied by the translational

symmetry of crystal frameworks such as “phase periodic” flexes. Also we il-

lustrate various forms of flexibility through a range of contrasting examples.

We now offer a brief summary for the following chapters:

Chapter 2: Preliminaries. In this chapter we put together a range of

background material related to various topics throughout the thesis. Mainly,

this is related to rigidity matrices of infinite frameworks and specific classes

of infinitesimal flexes such as vanishing, square summable, etc. This is fol-

lowed by the introduction of basic graph theory terminology related to the

mathematical definitions for bar-joint frameworks.

Chapter 3: Finite Bar-joint Frameworks. This chapter aims to ease

the “upgrade” towards the class of infinite bar-joint frameworks by analysing

simple finite frameworks and their forms of flexibility. Moreover, some flex-
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ing properties of infinite framework can be determined from their finite sub-

frameworks as in the case of sequential rigidity. In the final section of this

chapter we calculate the flexibility dimensions for some examples by identi-

fying a base for the space of all infinitesimal flexes, an idea that will later be

generalized for crystal frameworks.

Chapter 4: Infinite Bar-joint Frameworks. In this chapter, a frame-

work is viewed as an infinite structure in Rd and we see how the infinitesimal

flex condition and the rigidity matrix can be generalized for such frame-

works. General countably infinite bar-joint frameworks were first considered

in Owen and Power [52]. In this case the rigidity matrix is viewed as a linear

transformation between infinite dimensional spaces and for certain infinite

frameworks this rigidity transformation is in fact bounded. We also intro-

duce an infinite “strip” framework that can be “tailored” to admit specific

infinitesimal flex spaces as the infinitesimal flexibility is completely deter-

mined by its geometry.

Chapter 5: Crystal Frameworks. The first section of this chapter can

be considered as a background for the mathematical identification of crys-

tal bar-joint frameworks. After the definitions and a range of planar, and

spatial examples we move on to more specific classes of infinitesimal flexes

that are exclusive to crystal frameworks due to their high symmetry. We

use the matrix function introduced by Power, [58], to identify the class of

strictly periodic infinitesimal flexes. Furthermore, this matrix function leads
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to the determination of the “RUM” spectrum and the class of phase peri-

odic infinitesimal flexes introduced by Owen and Power [54], [58]. Finally,

we prove a direct sum relation between the spaces of strictly periodic, and

phase periodic infinitesimal flexes.

Chapter 6: Almost Periodic Functions. This chapter develops the nec-

essary mathematical framework for multi-variable almost periodic functions.

We generalize the existing single variable theory and prove the property of

“Approximation by Trigonometric Polynomials” for almost periodic func-

tions in R2. We make close use of the convenient approach of Partington [55]

for the single variable theory.

Chapter 7: Almost Periodic Rigidity. Here we bring together our un-

derstanding of periodic rigidity and almost periodic sequences to develop

almost periodic rigidity theory. It is shown that a crystal framework is al-

most periodically infinitesimally rigid if and only if it is strictly periodically

rigid and the RUM spectrum is trivial. After that we give examples of crystal

frameworks with different almost periodic rigidity properties. This chapter

is joint work with S.C. Power and D. Kitson [5].

Chapter 8: Bases For The Flexes Of Crystal Frameworks. Here

we consider the infinite linear decomposition of infinitesimal flexes of general

infinite frameworks in terms of a countable basis. Also we define and identify

crystal flex basis in the case of crystal frameworks. We try to focus on

7



infinitesimal flexes with some form of periodicity and see how they can give

an idea for the crystal bases or spanning sets for the real vector space Hfl(C).

The results of this chapter are built on an understanding of Hfl(C) and are

independent of the chapters 6 and 7. This chapter is part of joint work with

S.C. Power and D. Kitson [4].

Chapter 9: Further Developments And Related Work. In this chap-

ter we suggest further developments related to some of the areas developed

in the thesis.

This thesis is very much about the linear infinitesimal theory of crystal

frameworks, although on occasion there are comments on continuous flexi-

bility and continuous rigidity. For example, in Chapter 3 we comment on

the continuous rigidity of the “double square” finite framework and this is

later used to determine the continuous rigidity of the “double square” crystal

framework and the infinite “cobweb” for example.

The application that is most relevant to this thesis is the identification

of the “rigid unit mode spectrum” which leads also to the determination of

strictly periodic and phase periodic flexes. In fact there is a good amount of

experimental data on rigid unit modes obtained by researchers in chemistry

and crystalline materials. Also, there are ongoing developments of computer

programs that provide quantified analysis of the flexibility of crystals. An

example of such programs is CRUSH, introduced by Giddy et al [29] and

8



Hammonds et al [35] (and has undergone many improvements). The mathe-

matical identification of the RUM spectrum is implied by the matrix function

introduced by Power [58]. Using this function one can deduce the strictly

periodic, phase periodic and almost periodic flexing properties of the crystal

framework as we shall see in the following chapters.
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Chapter 2

Preliminaries

In this chapter we gather some background material in functional analysis

related to sequence spaces, Hilbert spaces and linear operators together with

some basic graph theory. These definitions and results will be used through-

out the thesis and can be found in many text books, for example, [70], [17],

[34], [39], [44], [26], and [69]. For more about graph theory we refer the reader

to [23], [9], [31].

2.1 Hilbert Spaces

In this section we state some basic Hilbert space definitions and theorems.

We will refer to these later on as we develop the analysis of mathematical

frameworks and related flex spaces.

Definition 2.1.1. A non-empty set E is called a complex vector space if E
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is an additive abelian group and for every vector x ∈ E and scalar λ ∈ C

there is a vector λx ∈ E in such a way that for all vectors x, y and scalars

α, β we have:

1. α(βx) = (αβ)x

2. 1x = x

3. α(x+ y) = αx+ αy

4. (α + β)x = αx+ βy.

Definition 2.1.2. A norm on a complex vector space is a real valued func-

tion:

‖.‖ : E → R

which satisfies:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0

2. ‖λx‖ = |λ|‖x‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

If ‖.‖ is a norm on E then E is called a normed space.

Theorem 2.1.3. In any normed space E the function d : E×E → R defined

by:

d(x, y) = ‖x− y‖

11



is a translation-invariant metric.

To say that d is translation-invariant means that translation of a pair of

points by the same vector leaves their distance unchanged; i.e.

d(x+ z, y + z) = d(x, y) for all x, y, z ∈ E.

Definition 2.1.4. Let E be a normed space. A sequence (xn)
∞
n=1 in E is

convergent in E if:

there exists x ∈ E such that limn→∞‖xn − x‖ = 0

and we write xn → x.

Definition 2.1.5. Let E be a normed space. A sequence (xn)
∞
n=1 is called a

Cauchy sequence if:

for all ε > 0 there exists n0 ∈ N such that n,m ≥ n0 implies that

‖xn − xm‖ < ε.

Definition 2.1.6. Let E be a normed space and (xn)
∞
n=1 be a sequence in

E. We say that the series
∑∞

n=1 xn converges and has sum s in E, if the

sequence (sn)
∞
n=1 of partial sums converges to s where sn =

∑n
k=1 xk.

Definition 2.1.7. A normed space E is complete if it is complete in the

metric defined by the norm. That is, if every Cauchy sequence in E converges

to a limit in E.

Definition 2.1.8. A Banach space is a complete normed space.
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Example 2.1.9. The complex vector space ℓ∞ of all bounded sequences

(xn)
∞
n=0 of complex numbers with component-wise addition and scalar mul-

tiplication and with the norm defined by

‖x‖∞ = supn∈N|xn|

is a Banach space.

One can similarly define the Banach space ℓ∞(Z,Rd) of Rd-valued se-

quences which are two-way infinite. In Chapter 7, we shall consider the

multi-sequence version of this space, ℓ∞(Z2,R2) as well as the subspace of

almost periodic sequences.

Theorem 2.1.10 (Completion[44]). Let E be a normed space. Then there is

a Banach space Ê and an isometry A from E onto a subspace W of Ê which

is dense in Ê. The space Ê is unique, except for isometries.

Proving the completeness theorem, roughly speaking, requires the assign-

ment of suitable limits to Cauchy sequences in E that do not converge keeping

in mind that some sequences may want to converge to the same limit and

this idea can be expressed by defining a suitable equivalence relation. The

completion of E can be constructed as the space of equivalence classes of

Cauchy sequences of elements of E and therefore we need to make Ê into a

vector space by defining two algebraic operations from which it follows that

on W the vector space operations induced from Ê agree with those induced
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from E by means of A. Furthermore, A induces a norm on W which can be

extended to Ê.

Definition 2.1.11. If E is a vector space over C, an inner product on E is

a function

〈., .〉 : E × E → C

such that for all α, β ∈ C and x, y, z ∈ E, the following are satisfied:

1.〈y, x〉 = 〈x, y〉

2. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉

3.〈x, x〉 ≥ 0; 〈x, x〉 = 0 ⇔ x = 0.

Theorem 2.1.12. For any x, y, z in an inner product space E and λ in C,

1. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

2. 〈x, λy〉 = λ〈x, y〉

3. 〈x, 0〉 = 0 = 〈0, x〉

4. if 〈x, z〉 = 〈y, z〉 for all z ∈ E then x = y.

Definition 2.1.13. If x is a vector in an inner product space E, then the

norm of x associated with the inner product is defined by

‖x‖ = 〈x, x〉 1
2 .
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This norm makes E a normed space and the metric on E associated with the

inner product is defined by

d(x, y) = ‖x− y‖ = 〈x− y, x− y〉 1
2 .

Definition 2.1.14. If x, y are vectors in the inner product space E, then

x, y are orthogonal, denoted x ⊥ y, if 〈x, y〉 = 0. If A is a subset of E then

x ⊥ A if x ⊥ y for all y ∈ A and the orthogonal complement of A is defined

by:

A⊥ = {x ∈ E : 〈x, y〉 = 0 for all y ∈ A}.

Definition 2.1.15. A family (en)
∞
n=1 in E \ {0} is called an orthogonal se-

quence if en ⊥ em whenever n 6= m. If, further, ‖en‖ = 1 for each n ∈ N,

then the family (en)
∞
n=1 is called an orthonormal sequence.

Theorem 2.1.16 (The Cauchy-Schwarz Inequality). Let E be an inner prod-

uct space and x, y ∈ E, then

|〈x, y〉| ≤ ‖x‖‖y‖

with equality if and only if x and y are linearly dependant.

Lemma 2.1.17 (Continuity of The Inner Product). If in an inner product

space, xn → x and yn → y, then 〈xn, yn〉 → 〈x, y〉.

Theorem 2.1.18 (The Pythagorean Theorem). If x1, x2, ..., xn are pairwise

orthogonal vectors in an inner product space E, then

‖∑n
i=1 xi‖2 =

∑n
i=1‖xi‖2.
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Theorem 2.1.19 (The Parallelogram Law). If E is an inner product space

and x, y ∈ E, then

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Example 2.1.20. Consider the space ℓ∞; It is impossible to define an inner

product on ℓ∞ such that 〈x, x〉 = ‖x‖2∞ for all x ∈ ℓ∞. This follows from

the failure of the parallelogram law in ℓ∞, for if x = (1, 1, 0, 0, ...) and y =

(1,−1, 0, 0, ...), then ‖x‖ = 1 = ‖y‖ and ‖x+ y‖ = 2, ‖x− y‖ = 2.

Theorem 2.1.21 (The Polarization Identity). For any x, y in an inner prod-

uct space E,

〈x, y〉 = 1
2

∑4
n=1 i

n‖x+ iny‖2.

Definition 2.1.22. A Hilbert space is a complete inner product space. That

is, complete in the metric induced by the norm.

Proposition 2.1.23. If E is a vector space and 〈., .〉E is an inner product

on E and if H is the completion of E with respect to the metric induced

by the norm on E , then there is an inner product 〈., .〉H on H such that

〈x, y〉H = 〈x, y〉E for x and y in E and the metric on H is induced by this

inner product. That is, the completion of E is a Hilbert space.

Example 2.1.24. A concrete example of a Hilbert space is the space ℓ2 of

all complex sequences (xn)
∞
n=1 that are square summable, that is, satisfy

∑∞
n=1|xn|2 < ∞,
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with component-wise addition and scalar multiplication and with inner prod-

uct defined by

〈x, y〉 = ∑∞
n=1 ξnηn , x = (ξn)

∞
n=1, y = (ηn)

∞
n=1.

And the norm derived from this inner product

‖x‖ = [
∑∞

n=1|ξn|2 ]
1
2 .

Definition 2.1.25. If (en) is an orthonormal sequence in a Hilbert space H

then, for any x ∈ H, 〈x, en〉 is the nth Fourier coefficient of x with respect

to (en). The Fourier series with respect to (en) is the series
∑

n〈x, en〉en.

Definition 2.1.26. An orthonormal sequence (en) in a Hilbert space H is

complete if the only member of H which is orthogonal to every en is the zero

vector. (en) is then said to be an orthonormal basis.

Definition 2.1.27. A Hilbert space is separable if it has an orthonormal

basis.

Example 2.1.28. For the space ℓ2, (en)
∞
n=1 is the canonical orthonormal

basis where en is a sequence with 1 at the nth position and zero otherwise.

Example 2.1.29 ([26]). Let L be the space of continuous functions on R

such that

p(f) = (limT→∞
1
2T

∫ T

−T
|f(x)|2dx) 1

2

17



is defined for L. Consider the quotient space L/N where N = ker p. This

is a normed space and p is a norm on it. We denote by H the completion

of this space with respect to the norm p(x). Let H0 = clos{spanλ∈R{eiλt}}.

The corresponding inner product on H and H0 is

〈f, g〉 = limT→∞
1
2T

∫ T

−T
f(x)g(x)dx.

If λ1 6= λ2 then eiλ1t ⊥ eiλ2t. So H0 has an uncountable set of pairwise

orthonormal elements which implies the non-separability of H0.

The example above gives a Hilbert space with connections with almost

periodic functions. Such functions arise from the uniform norm closure (‖.‖∞-

norm) of this span of the exponentials. We consider this space in detail in

Chapter 6.

One of the aims of this thesis is to develop a good understanding of how

infinite frameworks can differ in terms of their infinitesimal flexibility. Using

familiar properties from Hilbert spaces and Banach sequence spaces, we can

define different classes of velocity sequences and infinitesimal flexes and ac-

cordingly analyse their infinite frameworks. This can be seen, for example, in

the construction of an infinite framework that admits a vanishing infinitesi-

mal flex but is “ℓ2-infinitesimally rigid” in Section 4.3 or in the development

of the theory of “almost periodic rigidity”.
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2.2 Linear Operators

For every mathematical framework G one can form the associated “rigidity

matrix R(G)” and ask whether R(G) gives a bounded linear operator with

respect to various norms. We shall consider this problem when obtaining a

sufficient graph condition (Section 4.4). In this section we collect together

some standard terminology and results about linear operators and their ma-

trices.

Definition 2.2.1. If X and Y are vector spaces over a field K, a linear

operator from X to Y is a mapping T : X → Y such that

T (λx+ µy) = λTx+ µTy

for all x, y in X and λ, µ in K. If X, Y are normed spaces, a linear operator

is said to be bounded if there exists M ≥ 0 such that

‖Tx‖ ≤ M‖x‖ for all x ∈ X.

The norm, or operator norm is the non-negative real number

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}

and for any x ∈ X,

‖Tx‖ ≤ ‖T‖‖x‖.

Let B(X, Y ) be the set of bounded linear operators from X to Y and for

X = Y , B(X,X) ≡ B(X).
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Theorem 2.2.2. A linear map from one normed space to another is contin-

uous if and only if it is bounded.

Theorem 2.2.3. If X, Y are normed spaces then the space B(X, Y ) is itself

a normed space with respect to point-wise operations and operator norm. If,

further, Y is a Banach space then so is B(X, Y ).

Theorem 2.2.4 (Extension by Continuity). Let X be a normed space, Y a

Banach space and T : X → Y a linear operator defined on a dense subspace

D(T ) of X. If T is bounded as an operator from D(T ) to Y , then it has a

unique extension to a bounded operator from all of X into Y . Moreover, this

extension has the same norm as T .

Definition 2.2.5. The rank of an operator T ∈ B(X) is the dimension of

its range. T ∈ B(X) has finite rank if dim(Image(T )) < ∞.

Definition 2.2.6. Let T ∈ B(X). T is invertible if there exist an S ∈ B(X)

such that

ST = TS = I.

Definition 2.2.7. A mapping U : H → K whereH and K are Hilbert spaces

is a unitary operator if it is linear and bijective and preserves inner products:

that is, satisfies

〈Ux, Uy〉 = 〈x, y〉 for all x, y ∈ H.

Hilbert spaces H and K are isomorphic if there is a unitary operator from

H to K.
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Theorem 2.2.8. Let H be a separable Hilbert space. Then H is isomorphic

either to Cn for some n ∈ N or to ℓ2.

Definition 2.2.9. Let X 6= {0} be a complex normed space and T ∈ B(X).

The spectrum of T is the set

σ(T ) = {λ ∈ C : T − λI fails to be invertible}.

Definition 2.2.10. We say a complex number λ is an eigenvalue of T if

there is a nonzero vector e such that Te = λe, the vector e is the eigenvector

of T associated with the eigenvalue λ.

Proposition 2.2.11. If T ∈ B(X) and dim(X) < ∞, then the set of eigen-

values of T is precisely the spectrum of T .

Theorem 2.2.12. σ(T ) is a compact set lying entirely in the closed disk

{λ : |λ| ≤ ‖T‖}.

Theorem 2.2.13. σ(T ) 6= φ.

Definition 2.2.14. Let H and K be Hilbert spaces. An operator T ∈

B(H,K) is said to be Hilbert-Schmidt if there exists a complete orthonormal

sequence (en)
∞
n=1 in H such that

∑∞
n=1 ‖Ten‖2 < ∞.

Definition 2.2.15. Let H and K be Hilbert spaces and T ∈ B(H,K). The

Hilbert-Schmidt norm of T

‖T‖HS = [
∑∞

n=1 ‖Ten‖2]
1
2 ,

where (en)
∞
n=1 is a complete orthonormal sequence in H.
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As we develop the analysis of infinite mathematical frameworks in the

following chapters, it will become clear how the associated rigidity matrix

commutes with transformation operators which are in fact unitary on Hilbert

spaces. Furthermore, in the case of crystal frameworks, the rigidity matrix

satisfies commutation relations with all isometric symmetries of the crystal

framework. These properties of the rigidity matrix will be later used to

prove theorems related to the almost periodic rigidity of crystal frameworks,

for example.

Definition 2.2.16. Let H be a Hilbert space and T a bounded operator on

H. The matrix of T with respect to the orthonormal basis (en)n∈N is the

array [αij ]
∞
i,j=1 given by

αij = 〈Tej, ei〉.

If, as usual, the first index indicates rows and the second one columns, then

the matrix is formed by writing the coefficients in the expansion of Aej as

the j column. Operator multiplication corresponds to the matrix product

defined by

γij =
∑

k αikβkj.

The following comments will be useful for the determination of the bound-

edness of the rigidity matrix for infinite frameworks ([34]).

The first significant way in which infinite matrix theory differs from the

finite version: every operator corresponds to a matrix, but not every matrix
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corresponds to an operator. Necessary conditions for this are that each row

and each column of the matrix is square summable, but these conditions are

not sufficient. For example the diagonal matrix whose nth diagonal term is

n. Also, even if there is an upper bound to the norm, of the row matrices

and the column matrices, this is still not sufficient.

A sufficient condition for an infinite matrix to represent an operator is that

the family of all entries has to be square summable but this condition is not

necessary as in the unit matrix.

Proposition 2.2.17. Let H and K be Hilbert spaces, the Hilbert-Schmidt

operator T ∈ B(H,K) has the matrix [αij]
∞
i,j=1 with respect to an orthonormal

basis (en)n∈N where

‖T‖HS = [
∑∞

i,j=1 |αij|2]
1
2 .

2.3 Basic Graph Theory

This section offers a brief summary of some basic definitions in finite graph

theory. The terminology is later used to define mathematical frameworks

and the matrices associated with a graph will be used for the factorization

of the rigidity matrix obtained in Proposition 4.5.4.

Definition 2.3.1. A graph G is a pair (V,E) where V is a finite set whose

elements are the vertices of the graph and E ⊆ V ×V is a collection of pairs

of vertices called the edges of the graph.
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For example, the graph in Figure 2.1 has vertex set V = {1, 2, 3, 4, 5, 6, 7}

and edge set E = {(1, 2), (3, 4), (4, 5), (3, 5), (4, 6)}.
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Figure 2.1: A graph (V,E)

If p, q ∈ V and e = (p, q) ∈ E then p and q are called the endpoints of

the edge e, and the vertices p and q are said to be adjacent. A vertex p is

incident with an edge e if p is an endpoint of e. The set of all edges in E

incident to a vertex p is denoted by E(p). A simple graph (V,E) is a graph

with no loop edges (v, v).

One of the first applications of graph theory was to the structure of molecules

in chemistry with vertices representing atoms and edges representing the

chemical bonds. Chemical properties differ according to how the atoms are

connected, which can be easily seen from the graph model. Graphs that al-

low multiple edges are called multi-graphs, where for example, double edges

indicate a double chemical bond. Since multi-graphs are not common in Eu-

clidean rigidity theory, all our graphs will be simple unless stated otherwise.

Two graphs are isomorphic if there is a correspondence between their

vertex sets that preserves adjacency. Thus G = (V,E) is isomorphic to
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G′ = (V ′, E ′) if there is a bijection φ : V → V ′ such that (p, q) ∈ E if and

only if (φ(p), φ(q)) ∈ E ′.

Definition 2.3.2. A subgraph G′ = (V ′, D′) of the graph G = (V,E) is a

graph consisting of some vertices and some edges of G (V ′ ⊆ V and E ′ ⊆ E).

If G′ ( G then G′ is a proper subgraph of G.

Definition 2.3.3. If G′ is a subgraph of G and G′ contains all the edges

(p, q) ∈ E with p, q ∈ V ′, then G′ is an induced subgraph of G; we say that

V ′ induces or spans G′ in G. G′ ( G is a spanning subgraph of G if V ′ = V .

Figure 2.2: A graph G and a subgraph G′

Definition 2.3.4. The complete graph Kn is the graph (V,E) with |V | = n

and E consisting of all n(n−1)
2

pairs of vertices.

Definition 2.3.5. The complement G of G is the graph on V with edge set

V × V \ E.

Definition 2.3.6. Let G = (V,E) be a graph and p ∈ V . The degree of

p, d(p), is the number |E(p)| of edges of the graph with the vertex p as an

endpoint. Vertices of degree zero are called isolated vertices and those of

degree one are called pendant vertices. The number δ(G) := min{d(p), p ∈
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Figure 2.3: A graph G and its complement G

V } is the minimum degree of G, and the number ∆(G) := max{d(p), p ∈ V }

is its maximum degree. If all the vertices have the same degree n, then

G = (V,E) is n-regular.

Definition 2.3.7. Let G = (V,E) be a graph, a path in G is a finite sequence

of distinct vertices {p0, p1, ..., pn} such that pi−1 and pi are adjacent for i =

1, . . . , k.

The edges joining successive vertices in the sequence are called the edges

of the path; the number of these edges is called the length of the path.

A cycle inG is a finite sequence of vertices {p0, p1, ..., pn} such that p0 = pk

and p1, . . . , pk are distinct and each pi−1 and pi are adjacent for i = 1, . . . , k.

The length of a cycle is the number of its edges (or vertices); the cycle of

length n is called an n-cycle. An edge which joins two vertices of a cycle but

is not itself an edge of the cycle is a chord of that cycle. Thus, an induced

cycle in G (a cycle in G forming an induced subgraph) is one that has no

chords.

The distance, dG(p, q), in G of two vertices p, q is the length of the shortest

p-q path in G; if no such path exists, we set dG(p, q) := ∞. The greatest

distance between any two vertices in G is the diameter of G, denoted by

26



1
2

3
4

5

1
2 3 4

5

67

8

p

q

Figure 2.4: A path of length 5, a cycle of length 8 that is not an induced
cycle and a chord p-q

diamG.

Definition 2.3.8. A graph G = (V,E) is said to be disconnected if the vertex

set can be partitioned into two non-empty sets A and B so that no edge has

an end point in A and the other endpoint in B . We say that the graph is

connected if no such partitioning exists. A maximal connected subgraph of

G is a component of G. A vertex which separates two other vertices of the

same component is a cutvertex, and an edge separating its ends is a bridge.

Thus, the bridges in a graph are those that do not lie on any cycle.

p

q s

Figure 2.5: A graph with cutvertices p, q, s and a bridge (p, q)

A forest is a graph that has no cycles. A connected forest is called a tree

and in this way a forest is a graph whose components are trees. The vertices
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of degree 1 in a tree are its leaves except that the root is not called a leaf,

even if it has degree 1.

Figure 2.6: A forest

Definition 2.3.9. A graph G = (V,E) is bipartite if it has a partition of its

vertex set into two cells A and B:

V = A ∪ B, A ∩ B = ∅,

so that every edge in E has one endpoint in each cell.

The following definition is particularly relevant to finite mathematical

frameworks in two dimensions.

Definition 2.3.10. A graph G = (V,E) is (2, 3)-sparse if for every subgraph

G′ = (V ′, E ′) with at least one edge, |E ′| ≤ 2|V ′| − 3. G is called (2, 3)-tight

if G is (2, 3)-sparse and |E| = 2|V | − 3.

The following matrices can be associated with a graph G. For some of

these matrices one needs to consider an orientation of the edges, that is, to

give each edge e = [p, q] a direction from p to q or from q to p. When this

is done, G becomes an oriented graph. Although an orientation of the graph
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is not needed to define a mathematical framework, and therefore its rigidity

matrix, these matrices will be used later when factorizing the rigidity matrix.

Definition 2.3.11. Let G = (V,E) be a graph. The adjacency matrix A(G)

is the |V |× |V | matrix such that the entry for row i, corresponding to vertex

vi, and column j, corresponding to vertex vj, is 1 if [vi, vj] is an edge in G

and zero otherwise.

Definition 2.3.12. Let G = (V,E) be an oriented graph. The incidence

matrix E(G) is the |E| × |V | matrix determined by an orientation of G such

that the entry for row ek and the column corresponding to vertex vi is 1 if v

is the source of the edge ek and −1 if it is the range of the edge ek and zero

otherwise. i.e. The row of E(G) corresponding to the edge e = [vi, vj ] is

(

vi vj

ek = [vi, vj ] 0 . . . 0 1 0 . . . 0 −1 0 . . . 0

)

.

Definition 2.3.13. Let G = (V,E) be an oriented graph. The Laplacian

matrix L(G) is the |E|×|E| matrix E(G)E(G)T where E(G) is the incidence

matrix determined by the same orientation.

Definition 2.3.14. Let G = (V,E) be a graph. The degree matrix D(G) is

the |V | × |V | diagonal matrix such that the vivi entry is the degree of vertex

vi in G.
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Theorem 2.3.15 ([9]). Let G = (V,E) be an oriented graph. Then

L(G) = E(G)E(G)T = D(G)− A(G).
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Chapter 3

Finite Bar-joint Frameworks

Suppose that we have a graph G = (V,E). Then a realization of this graph

in d-space is an assignment p = (p1, . . . , p|V |) of points pi ∈ Rd to the vertex

set V . A mathematical bar and joint framework is a graph with a realization

in d-space where the vertices of the graph represent the framework’s flexible

joints and the edges correspond to the framework’s stiff bars.

Formally, A framework G in Rd (or bar-joint framework) is a pair (G, p)

where G = (V,E) is a simple connected graph and p = (p1, p2, ...) is a

framework vector made up of framework points pi in Rd associated with the

vertices v1, v2, ... of V with pi 6= pj if (vi, vj) is an edge. The framework edges

are the closed line segments [pi, pj] associated with the edges of the graph

G = (V,E).
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3.1 Forms of Rigidity

Consider a finite framework in R2, a continuous time dependent transforma-

tion of the framework points is a flexing of the structure if the edge lengths

remain unchanged but the final configuration is not congruent to the original

configuration. If no flexing exists, the structure is said to be continuously

rigid.

A rigid body motion is the displacement of the framework while keeping

the distances between all pairs of framework vertices unchanged whether

those pairs form a framework edge or not. In R2 a rigid body motion results

from translations in either coordinate directions or rotations (for example,

about one of the framework’s vertices). A transformation of this nature that

changes the distance between at least one pair of vertices that are not con-

nected by an edge is a continuous flexing of the structure. For example, the

square is continuously flexible in R2 but if we connect one diagonal it be-

comes rigid (Figure 3.1). In R3, the same framework becomes flexible as one

triangle can rotate relative to the other among the common edge. Although

it might seem clear that the square admits a continuous flex in the plane,

the formal proof involves solving systems of quadratic equations and even

for “small” frameworks this is far from easy. This complication contributed

towards defining the more convenient term of infinitesimal flexibility.

Definition 3.1.1. Let G = (G, p) be a finite framework in Rd. A continuous

motion of G is a continuous path, P (t) : [0, 1] → Rdv such that:
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Figure 3.1: The square with one diagonal is rigid in 2D but flexible in 3D

(i) P (0) = p,

(ii) ‖Pi(t)−Pj(t)‖ = ‖pi−pj‖ for all t ∈ [0, 1] and all edges e = [pi, pj].

The motion P is a rigid body motion if condition (ii) is satisfied for all

t ∈ [0, 1] and all pairs of vertices pi, pj whether they form an edge or not. If

there exists at least one pair of vertices, pk and pl, such that ‖Pk(t)−Pl(t)‖ 6=

‖pk−pl‖ for all t ∈ [0, 1] and [pk, pl] is not an edge then P is a continuous flex,

or sometimes called a finite flex, mechanism or deformation. A framework G

is said to be continuously rigid if all of its motions are rigid body motions

and continuously flexible otherwise.

We will denote the vector space of all velocity vectors assigned to the

framework’s vertices byHv(G) (or simply,Hv when the framework in question

is understood).

Definition 3.1.2. Let G = (G, p) be a finite framework in Rd with |V | = n.

An infinitesimal flex is a vector u = (u1, . . . , un) in the vector space Hv(G) =

Rd ⊕ · · · ⊕ Rd such that the orthogonality relation

〈pi − pj, ui − uj〉 = 0,

holds for each edge e = [pi, pj].
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Regarding each ui as a velocity vector this means that for each edge the

components of the endpoints velocities in the edge direction are in agreement.

If the above condition is satisfied by all pairs of framework vertices, not

just those that form edges, then u is said to be a trivial infinitesimal flex, or

an infinitesimal rigid body motion.

A framework G is infinitesimally rigid if every infinitesimal flex of G is

trivial and infinitesimally flexible otherwise.

The space Hfl(G) of all infinitesimal flexes of G is a vector subspace of

Hv(G) that itself includes the subspace of all infinitesimal rigid motions

Hrig(G).

The following proposition shows that infinitesimal flexes correspond to the

velocity vectors that for small time t induce edge length changes of order

o(t).

Proposition 3.1.3 ([54]). Let G = (G, p) be a finite framework in Rd. The

following are equivalent:

(i) u = (u1, ..., un) is an infinitesimal flex of G

(ii) ‖(pi + tui) − (pj + tuj)‖22 − ‖pi − pj‖22 = O(t2) as t → 0, for all

(i, j) ∈ E.

Proof. (i) ⇒ (ii): Let u be an infinitesimal flex of G = (G, p) then, 〈pi −
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pj, ui − uj〉 = 0 and

‖(pi + tui)− (pj + tuj)‖22 − ‖pi − pj‖22

= 〈(pi − pj) + t(ui − uj), (pi − pj) + t(ui − uj)〉 − ‖pi − pj‖22

= ‖pi − pj‖22 + 〈t(ui − uj), (pi − pj)〉+ 〈(pi − pj), t(ui − uj)〉

+ ‖t(ui − uj)‖22 − ‖pi − pj‖22

= t2‖(ui − uj)‖22

Let M = max(i,j)∈E‖(ui − uj)‖22, then

‖(pi + tui)− (pj + tuj)‖22 − ‖pi − pj‖22 ≤ Mt2

and ‖(pi + tui)− (pj + tuj)‖22 − ‖pi − pj‖22 = O(t2) as required.

(ii) ⇒ (i): Let ‖(pi+ tui)− (pj + tuj)‖22−‖pi− pj‖22 = O(t2) i.e. there exists

c > 0 s.t.

| ‖(pi + tui)− (pj + tuj)‖22 − ‖pi − pj‖22 | ≤ ct2

for all t ∈ [−δ, δ], which implies that

−ct2 ≤ ‖(pi + tui)− (pj + tuj)‖22 − ‖pi − pj‖22 ≤ ct2

expanding the norms we have

−ct2 ≤ t〈(ui − uj), (pi − pj)〉+ t〈(pi − pj), (ui − uj)〉+ t2‖(ui − uj)‖22 ≤ ct2

and

−ct ≤ 〈(ui − uj), (pi − pj)〉+ 〈(pi − pj), (ui − uj)〉+ t‖(ui − uj)‖22 ≤ ct.
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Finally, taking limits as t → 0 we conclude that 〈(pi− pj), (ui−uj)〉 = 0 and

u is an infinitesimal flex of G = (G, p).

Suppose that u is an infinitesimal flex of the framework G = (G, p) in Rd,

then u must satisfy

〈pi − pj, ui − uj〉 = 0,

for each edge e = [pi, pj]. Thus, corresponding to each edge in E, there is

a linear equation that must be satisfied by u. It follows that the space of

infinitesimal flexes of the framework is the solution space to this homogeneous

system of |E| equations in d|V | variables.

The |E| × d|V | matrix of coefficients of this system is called the rigidity

matrix of the framework and it is denoted by R(G, p).

The rigidity matrix R(G, p) is 1
2
J(G, p) where J(G, p) is the generalized

Jacobian, evaluated at p.

Definition 3.1.4. The rigidity matrix of the finite framework G = (G, p)

in R2 is the |E| × 2|V | matrix R(G, p) with rows indexed by the framework

edges and columns labelled by the vertices but with multiplicity two, namely

the labels vx1 , v
y
1 , v

x
2 , v

y
2 , . . . and with entries xi − xj, xj − xi, yi − yj, yj − yi

occurring in the row with label e = (vi, vj) with the respective column labels

vxi , v
y
i , v

x
j , v

y
j and with zero entries elsewhere. Rigidity matrices in higher

dimension spaces are similarly defined.
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It is straightforward to check that the infinitesimal flexes are the velocity

vectors in the kernel of R(G, p). Indeed we have

(R(G, p)u)e = 〈pi − pj, ui〉+ 〈pj − pi, uj〉 = 〈pi − pj, ui − uj〉 = 0.

The rigidity matrix defines a linear transformation

R(G,P ) : Hv(G) =
∏

|V | R
d → He(G) =

∏

|E|R.

Example 3.1.5. Let G be the two dimensional triangle framework in Figure

3.2. The rigidity matrix R(G,P ) can be formed as follows

R(G, p) =













px1 py1 px2 py2 px3 py3

e1 x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0

e2 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2

e3 x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1













(x1, y1)

(x2, y2)

(x3, y3)

e1
e2

e3

Figure 3.2: A finite framework in R2

Definition 3.1.6. A framework is independent if the row vectors of the rigid-

ity matrix are linearly independent. A framework which is both independent
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and infinitesimally rigid is minimally infinitesimally rigid in the sense that

the removal of any edge results in an infinitesimally flexible framework.

3.2 Generic Rigidity in the Plane

A fundamental result in planar rigidity theory is due to Laman (1970, [45]).

This characterizes the rigidity of planar generic frameworks in purely com-

binatorial terms, that is, a property determined by the underlying graph

regardless of the geometry implied by its placement. For more on Laman’s

Theorem and combinatorial rigidity see [45], [37], [66], [43] and [32].

A framework is said to be in generic position if the coordinates of its

vertices are algebraically rationally independent. In more intuitive terms, a

generic configuration has no degeneracy, i.e. no three points on the same

line, no three lines going through the same point, etc. A Laman graph is

a graph G = (V,E) that satisfies |E(V ′)| ≤ 2|V ′| − 3 for all V ′ ⊆ V with

|V ′| ≥ 4. Such a graph is also called (2, 3)-sparse.

Theorem 3.2.1 ([37]). Let (G, p) be a planar framework with |V | ≥ 2 ver-

tices. Then rank R(G, p) ≤ 2|V | − 3. Furthermore, if equality holds, then

(G, p) is rigid.

Theorem 3.2.2 ([37]). Let (G, p) be a planar framework. Then (G, p) is

rigid if and only if (G, p) is infinitesimally rigid.
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Theorem 3.2.3. Let (G, p) be a planar framework. Suppose that the rows

of R(G, p) are linearly independent. Then |E(V ′)| ≤ 2|V ′|− 3 for all V ′ ⊆ V

with |V ′| ≥ 4.

Theorem 3.2.3 implies that all independent graphs are Laman. The proof

for the reverse implication one needs some generic rigidity preserving graph

operations (sometimes referred to as Henneberg rigidity preserving moves

[36]). These moves can be used to prove the generic rigidity of infinite graphs

if the graph can be obtained from a rigid framework by a series of rigidity

preserving moves or what is defined in [54] as “sequential rigidity”.

(i) Vertex addition, 0-extension. Let G = (V,E) be a graph such

that x, y ∈ V , v /∈ V . Then H = (V ∪ {v}, E ∪ {(v, x), (v, y)}) is a

vertex addition of G.

(ii) Edge split, 1-extension. Let G = (V,E) be a graph such that

v /∈ V and let e = (x, y) ∈ E. Then the graph H ′ = (V ′, E ′) where

V ′ = V ∪ {v} and E ′ = (E − e) ∪ {(v, x), (v, y), (v, z)} for some z ∈ V

is an edge split of G.

Theorem 3.2.4 (Laman [37]). A graph G = (V,E) is independent in R2 if

and only if |E(V ′)| ≤ 2|V ′| − 3 for all V ′ ⊆ V with |V ′| ≥ 4.

Corollary 3.2.5 ([37]). A planar graph G = (V,E) is minimally rigid if and

only if |E| ≤ 2|V | − 3 and |E(V ′)| ≤ 2|V ′| − 3 for all V ′ ⊆ V with |V ′| ≥ 4.
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Example 3.2.6. Note that it is necessary for each subgraph to satisfy the

count in addition to the whole structure, this is to guarantee that no edges

are wasted in over-bracing one of the subgraphs. Although the framework in

Figure 3.3 satisfies the overall count, it is flexible.

1

2

H

H

Figure 3.3: A flexible generic framework

From all the above, one can determine the rigidity of generic frameworks

that share the same underlying graph. Asimov and Roth [2] complemented

this result by proving that rigidity and infinitesimal rigidity are in fact equiv-

alent for generic frameworks.

Generic Rigidity In 3D. Although Laman’s theorem is considered one of

the very early contributions towards rigidity theory, for frameworks in three

dimensional space Laman’s conditions are necessary but not sufficient and

it still stands an open problem to find a combinatorial characterization for

rigidity in three dimensional space.

Example 3.2.7 (The double banana). A classic example is the well known

double banana (Figure 3.4),[68]. The graph satisfies the count as for each

subgraph V ′, |E ′| ≤ 3|V ′|−6, and satisfies the overall count |E(V )| = 3|V |−6
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Figure 3.4: The double banana

but it is obviously flexible since each banana can rotate about the implied

hinge (or the imaginary edge through the tips).

We see in the next section that this “Laman count” is in fact sufficient for

the rigidity of certain three dimensional graphs.

3.3 The Rigidity of Frameworks Given by Con-

vex Polyhedra

In 1776, Euler conjectured that “A closed spatial figure allows no changes, as

long as it is not ripped apart” [31]. For convex polyhedra, this conjecture was

later answered by Cauchy (1813) who proved that “If there is an isometry

between the faces of two strictly convex polyhedra which is an isometry on

each of the faces, then the two polyhedra are congruent”. A corollary of

Cauchy’s Theorem is that all such convex polyhedra are in fact rigid.

Maxwell, 1864, proved Maxwell’s counting rule [51]: a sufficient condition

for three dimensional rigidity is that the number of bars is greater than or
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equal to 3 times the number of points minus 6.

In 1958, Alexandrov [1] extended Cauchy’s Theorem to include all frame-

works given by convex polyhedra with faces triangulated by edges between

additional vertices on the original edges. The resulting structure in this case,

with triangles as faces and including the triangulating edges, is rigid. Gluck,

1975, proved that “almost all” polyhedra are rigid, and this settled Euler’s

conjecture for polyhedra in generic position.

Finally, in 1977 Euler’s conjecture was proved to be false when Con-

nelly [14], [15], [16] constructed a counterexample of a closed (but not con-

vex) polyhedron with triangular faces that forms a flexible three dimensional

framework. Further developments regarding convex polyhedra were carried

out by Asimov and Roth [2], [3], [62].

These theorems determine the rigidity of a special class of mathemati-

cal frameworks, regardless of their geometric placements. For the sake of

completion we will include proofs for the rigidity of convex polyhedra with

triangular faces.

This rigidity result is also of significance to us as we can understand the

rigidity of different three dimensional frameworks using the properties of their

finite subframeworks. These examples include frameworks formed by corner

connected convex polyhedra with triangular faces such as the “bipyramid”

and the “octahedron net” frameworks. Other examples include frameworks

formed by convex polyhedra with rigid faces such as the cube with a diagonal

42



for each face. For such examples, it is the rigidity of individual polyhedral

finite subframeworks that determines the analysis of the infinite structure.

The theorems and proofs in this subsection can be found in [62] and [1].

Definition 3.3.1. A region of the plane or 3-space is convex, if for every

pair of points of the region, the line segment joining them lies entirely in

that region.

Definition 3.3.2. A convex polyhedron C in R3 is the convex hull of a finite

set of non-coplanar points in R3.

Definition 3.3.3. A supporting hyperplane of a convex polyhedron C is a

hyperplane containing C in one of its closed half spaces and containing a

boundary point of C.

Definition 3.3.4. A net is an arbitrary finite collection of simple (non self-

intersecting) open polygonal lines lying on a polyhedron and having no com-

mon points except possibly end points. A region is the collection of all points

that can be joined one another by polygonal lines not intersecting the net.

The simplest example of a net is the net of all edges of the polyhedron and

the regions in this case are the faces of the polyhedron.

Theorem 3.3.5 (The Generalized Euler Theorem). Given a net on a close

convex polyhedron, assume that v is the number of vertices, e the number of

edges, c the number of connected components, and f the number of regions

into which the net divides the polyhedron. Then
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v − e+ f = c+ 1.

In particular, if the net is connected, then v − e+ f = 2.

Frameworks given by convex polyhedra Let C be a convex polyhedron

in R3, a vertex of C is a point which is the intersection of C with a support

plane, while an edge of C is a closed line segment which is the intersection of

C with a support plane of C. If C has v vertices with coordinates p1, . . . , pv ∈

R3, then G = (G, p) is the framework in R3 given by C where G = (V,E) is

the graph with

V = {1, . . . , v}, E = {{i, j} : [pi, pj] is an edge of C}

and p = (p1, . . . , pv).

A stress, or a self stress to be precise, of a framework G = (G, p) is a

collection of scalars ω{i,j}, one for each edge of G = (G, p), such that

∑

j∈a(i)
ω{i,j}(pi − pj) = 0, for 1 ≤ i ≤ v

where a(i) = {j : [pi, pj ] is an edge of G}. Stresses are vectors in the kernel

of the transpose of the rigidity matrix. Thus “stress theory” is in many ways

dual to infinitesimal flex theory.

Letting ω{i,j} = 0 for all edges gives the trivial stress, and a framework is

stress free if it admits only a trivial stress. From the definitions of a stress

and the rigidity matrix of a framework it follows that a framework in R3 is

stress free if and only if the rank of R(G, p) is equal to the number of edges
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of the framework. We say that the point p ∈ R3 is a regular point for the

framework G = (G, p) if the rank of R(G, p) is maximal.

The rigidity predictor. Let G = (G, p) be a framework in R3 where

(p1, . . . , pv) ∈
v
∏

i=1

R3 is a regular point of G = (G, p) and p1, . . . , pv do not

lie on a hyperplane in R3. Then G = (G, p) is rigid in R3 if and only if

rankR(G, p) = 3v− 6, where R(G, p) is the rigidity matrix of the framework

G = (G, p), and flexible in R3 of and only if rankR(G, p) < 3v − 6.

To determine which convex polyhedra in R3 give rigid frameworks in R3

and which give flexible frameworks we will start by using the signs of the

coefficients ω{i,j} of a stress to attach symbols + and − to some of the edges

of C. The edge {i, j} is marked + if ω{i,j} > 0, − if ω{i,j} < 0, and left

unmarked if ω{i,j} = 0. Let G′ be the graph on the surface ∂C of C such that

the edges of G′ are the marked edges of C and the vertices of G′ are those of

C incident with at least one marked edge.

Definition 3.3.6. The index of the vertex pi, I(pi), is the number of sign

changes encountered in the cycle of edges around pi, say, when circled in the

counter-clockwise direction. The index I of G, is the sum of indices of all

the vertices of G, i.e.

I =
∑

pi∈G
I(pi).

Lemma 3.3.7. The index satisfies
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I ≤ 4v′ − 8

where v′ is the number of vertices of G′.

Proof. Let e′ be the number of edges of G′ and f ′ the number of regions of

∂C − G′. Let f ′
n be the number of regions with exactly n boundary edges.

When we say a region has n edges, then each edge not separating that region

from another one is counted twice. Clearly f ′
1 = 0, and since there is no

region bounded by two edges then f ′
2 = 0. It follows that the total number

of regions f ′ is equal to

f ′ =
∑

n≥3

f ′
n

and since each edge either belongs to two regions or is counted twice for a

single region

2e′ =
∑

n≥3

nf ′
n.

Now, we compute the index by counting regions rather than vertices. Since

the number of sign changes in moving around a region cannot be greater

than n, the number of its edges, and this number is even since when we

complete this trip we return to the initial sign, it follows that the number of
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sign changes is an even number less than or equal to n, therefore

I ≤ 2f ′
3 + 4f ′

4 + 4f ′
5 + 6f ′

6 + 6f ′
7 + · · · ≤

∑

n≥3

(2n− 4)f ′
n

= 2
∑

n≥3

nf ′
n − 4

∑

n≥3

f ′
n

= 2(2e′)− 4f ′

= 4e′ − 4f ′.

By Euler’s formula 3.3.5, v′ − e′ + f ′ ≥ 2. Therefore

4v′ − 8 ≥ 4e′ − 4f ′

substituting e′ and f ′

4v′ − 8 ≥ 4e′ − 4f ′ ≥ I

as required.

Lemma 3.3.8. The index of every vertex of G′ is greater than or equal to

four.

Proof. Recall that the index of a vertex is an even number, so to prove it is

greater than or equal to four it suffices to show that it cannot be zero or two.

Fix an arbitrary vertex pi of G = (G, p), then

∑

j∈a(i)
ω{i,j}(pi − pj) = 0

and since if j is a vertex in G but not in G′ then ω{i,j} = 0 it follows that

∑

j∈a′(i)
ω{i,j}(pi − pj) = 0

47



where a′(i) = {j : [pi, pj ] is an edge of G′}. We will first prove that the index

of pi cannot be zero. For if we let I(pi) = 0, then the edges around pi are

either all marked + or all marked − for j ∈ a′(i) since zero index means no

change in the edge signs. By the convexity of C, there exists a hyperplane

that passes through pi and has no other points in common with C; say the

equation of the plane is n.(pi − pj) = 0 where n ∈ R3 is its normal vector.

Since all the vertices other than pi lie in one side of the plane, n.(pi − pj) is

either positive for all j ∈ a′(i) or negative for all j ∈ a′(i). Therefore,

∑

j∈a′(i)
ω{i,j}[n.(pi − pj)] 6= 0

from which it follows that

∑

j∈a′(i)
ω{i,j}[n.(pi − pj)] = n.[

∑

j∈a′(i)
ω{i,j}(pi − pj)]

this contradicts the earlier assertion that
∑

j∈a′(i)
ω{i,j}(pi − pj) = 0 and the

index of pi cannot be zero.

On the other hand, the index of pi cannot be two. For if I(pi) = 2, then

there is a set of edges marked + followed by a set of edges marked − in the

cycle of edges around pi. By the convexity of C, there exists a supporting

hyperplane that passes through pi with the edges marked + on one side of

the plane and those marked − on the other side. If the equation of the plane

is n.(pi − pj) = 0, then n.(pi − pj) has one sign for all the + edges and the

opposite sign for the edges marked −. Therefore,

0 = n.[
∑

j∈a′(i)
ω{i,j}(pi − pj)] =

∑

j∈a′(i)
ω{i,j}[n.(pi − pj)] 6= 0
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which is, again, a contradiction.

Theorem 3.3.9. Let G = (G, p) be the framework in R3 given by a convex

polyhedron C. Then

rankR(G, p) = e

where R(G, p) is the rigidity matrix of G = (G, p).

Proof. Assume that G = (G, p) admits a non trivial stress. We use the signs

of this stress to mark the edges of C and let G′ be the graph induced by the

marked edges as before. By Lemma 3.3.7, I ≤ 4v′−8 and by Theorem 3.3.8,

the index of each vertex is greater than or equal to 4, from which it follows

that the index I is greater than 4 times the number of vertices. Therefore,

I ≤ 4v′ − 8 < 4v′ ≤ I.

This is a contradiction that shows that G = (G, p) is stress free and thus

rankR(G, p) = e.

Lemma 3.3.10. Let C be a convex polyhedron in R3 with v vertices, e edges,

and f faces of which fn have exactly n edges. Then e ≤ 3v − 6 with equality

if and only if every face of C is a triangle.

Proof. By Euler’s formula, v = e− f + 2 and therefore

3v − 6 = 3(v − 2) = 3(e− f) = e+ (2e− 3f).

But
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3f = 3
∑

n≥3

fn ≤ ∑

n≥3

nfn = 2e

with equality if and only if f = f3, i.e. every face is a triangle. Therefore

3v − 6 ≤ e with equality if and only if every face is a triangle.

Corollary 3.3.11. The framework G = (G, p) given by a convex polyhedron

C is rigid in R3 if and only if every face of C is a triangle.

Proof. By Theorem 3.3.9, rankR(G, p) = e, therefore p = (p1, . . . , pv) is

a regular point and p1, . . . , pv are not coplanar. By the rigidity predictor,

G = (G, p) is rigid if and only if rankR(G, p) = 3v − 6. This implies that

e = 3v − 6 which happens if and only if every face of C is a triangle.

By Corollary 3.3.11, it is obvious that the bipyramid and the octahedron

(sometimes known as a square bipyramid) are both convex polyhedrons with

triangular faces and therefore rigid. These polyhedrons will later be used to

construct infinite three dimensional crystals with special flex properties.

3.4 Calculating Flexibility Dimension

When a planar framework is in generic position, one can often deduce the

dimension for the space of infinitesimal flexes using Laman’s count. For

example, a framework that satisfies the count would be rigid and would

have a three dimensional infinitesimal flex space corresponding to rigid body

motions. If the framework was one edge short of being Laman, then the

framework would admit a non trivial flex and the space of infinitesimal flexes
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would be of dimension four. In the case that the framework was not in generic

position, counting could give a clue but not an affirmative answer.

One way to thoroughly understand the infinitesimal flexibility of the frame-

work is to identify a vector space basis for the space Hfl(G) of all infinitesimal

flexes. The following examples are a prelude to more subtle infinite frame-

work considerations. The basic “linear algebra” technique used here for finite

frameworks will be later extended to identify infinitesimal flex bases for var-

ious crystal frameworks.

The double square. Let G = (G, p) be the finite framework of two corner

connected squares one inside the other (Figure 3.5). Here p4 = (0, 0) and

p5 = (1
4
, 1
4
).

1 2

34

5

6

7

8

Figure 3.5: The double square

Proposition 3.4.1. Let G = (G, p) be the double square framework in 2D.

Then dimHfl(G) = 5.

Proof. We start by identifying velocity vectors associated with G as follows:

Let
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u1 = ((1, 0), . . . , (1, 0))

be the non-zero velocity vector of infinitesimal translation of the whole frame-

work by 1 unit in the positive x direction. Also let

u2 = ((0, 1), . . . , (0, 1))

be the velocity vector of infinitesimal translation of G by 1 unit towards the

positive y direction, let

u3 = ((−1, 0), (−1, 1), (0, 1), (0, 0), (−1
4
, 1
4
), (−3

4
, 1
4
), (−3

4
, 3
4
), (−1

4
, 3
4
))

be the velocity vector of infinitesimal rotation about vertex p4 of the frame-

work. Now, Let u4 be the non-trivial infinitesimal flex implied by assigning

1 2

34
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6

7

8
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34
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6
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8

Figure 3.6: Infinitesimal flexes u4 and u5 of the double square

zero velocities to the vertices of the base edges for both squares and given by

the vector

u4 = ((1, 0), (1, 0), 0, 0, 0, (1, 0), (1, 0), 0)

as shown in Figure 3.6. Finally, let u5 be the infinitesimal flex resulting by

assigning zero velocities to vertices of the outer square and infinitesimally

rotating the inner square (Figure 3.6)

u5 = (0, 0, 0, 0, (1,−1), (−1,−1), (−1, 1), (1, 1)).
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We claim that

B = {u1, u2, u3, u4, u5}

is a spanning set for Hfl(G).

To prove this we will consider an arbitrary flex u of G,

u = (u1, u2, . . . , u8), ui = (ux
i , u

y
i ),

and we subtract appropriate multiples of elements of B so that we achieve a

zero flex of the framework. In this way, we obtain a linear representation of

u in terms of elements of B.

First, start by subtracting ux
4u

1 + uy
4u

2. This results in a new flex, say v,

such that v4 = (0, 0) and v3 = (0, vy3). With vertex p4 admitting a zero veloc-

ity, the only option for p3 would be to have a non-zero y velocity component

and any flex of the structure will take the form

v = (∗, ∗, (vx3 , 0), 0, ∗, ∗, ∗, ∗).

Subtracting vy3u
3 results in a new flex, w, with w3 = w4 = 0 and w1 =

w2 = (wx
1 , 0). Indeed, both vertices p3 and p4 having zero velocities, results

in the framework’s edge e = [p4, p3] being fixed which implies that vertices

p1 and p2 can only admit non-zero x velocity components. A possible flex

now would take the form

w = ((wx
1 , 0), (w

x
1 , 0), 0, 0, ∗, ∗, ∗, ∗).
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Proceeding in the same way, we subtract wx
1u

4 which results in a new flex

s such that all the vertices of the outer square are assigned zero velocities.

The remaining possible flex now would look like

s = (0, 0, 0, 0, (sx5 , s
y
5), ∗, ∗, ∗).

The flex s has zero velocities on the outer framework vertices and it follows

from the flex condition and the geometry that s is a multiple of u5. Indeed

subtracting sx5u
5 , the new flex r takes the form

r = (0, 0, 0, 0, (0, sy5+sx5), (s
x
6+sx5 , s

y
6+sx5), (s

x
7+sx5 , s

y
7−sx5), (s

x
8−sx5 , s

y
8−sx5)).

From the fact that r1 = r2 = r3 = r4 = 0 and rx5 = 0 we have ry5 = 0. Thus it

follows that r6 = r7 = r8 = 0 and r is the zero flex of G. From all the above,

any flex u can be written as a linear combination of elements of B. In fact

the coefficients in the argument above are uniquely determined and so B is

a basis and dimHfl(G) = 5 as required.

Continuous rigidity of the double square. In [62], Roth proved that

for a framework in generic position, continuous rigidity and infinitesimal

rigidity are equivalent. This fact, together with Laman’s conditions implies

that the double square is generically infinitesimally flexible, and equivalently,

generically continuously flexible. In this case, dimHfl(G) = 4.

From Proposition 3.4.1, the added symmetry adds to the infinitesimal flex-

ibility of this framework. But unlike the generic case, none of the non-trivial

infinitesimal flexes in the base B is derived from a continuous flex as the
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“symmetric” double square is in fact continuously rigid. This continuous

rigidity problem was suggested by Professor Stephen C. Power and solved by

Cruickshank, Kitson and Schulze (unpublished) as in the following proof.

Proposition 3.4.2. The symmetric double square is continuously rigid.

p1

p2

p3

p4

p5

p6

p7

p8

Figure 3.7: The double square is continuously rigid

Proof. Suppose that p1p2p3p4 is a square with diagonal of length 4 (so |p1p2| =

2
√
2), that p5p6p7p8 is a square with diagonal of length 2 (so |p5p6| =

√
2)

and that |p1p5| = |p2p6| = |p3p4| = |p4p8| = 1 (Figure 3.7).

Using the fact that the diagonals of any equilateral quadrilateral are mutu-

ally perpendicular, by Pythagoras, the sum of the squares of the diagonals is

four times the square of the side length. Now consider a flex of the framework

consisting only of the solid bars. Suppose that in this flex |p1p3| = 4− x for
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some small x > 0. Then by Pythagoras we compute that

|p2p4|2 = 4|p1p2|2 − |p1p3|2

= 4(2
√
2)2 − (4− x)2

= 16 + 8x− x2

and therefore,

|p2p4| = 2
√

4 + 2x− x2

4
.

Since, |p2p6| = |p4p8| = 1, the triangle inequality implies that

|p6p8| ≥ 2
√

4 + 2x− x2

4
− 2.

Now, by applying Pythagoras to the quadrilateral p5p6p7p8 we have

|p5p7|2 = 4|p5p6|2 − |p6p8|2

≤ 4(
√
2)2 − (2

√

4 + 2x− x2

4
− 2)2

≤ −12− 8x+ x2 + 8

√

4 + 2x− x2

4

Note that for 0 < x < 2,

−12− 8x+ x2 + 8
√

4 + 2x− x2

4
< (2− x)2

Therefore, |p5p7|2 < (2− x)2 and we conclude that

|p5p7| < 2− x.

56



But recalling that |p1p3| < 4 − x, we conclude, by applying the triangle

inequality, that |p1p5| + |p3p7| > 2 in this flex of the framework consisting

only of the solid bars. Therefore this flex is not the restriction of any flex

of the entire framework including the dotted bars, since in that framework

|p1p5| = |p3p7| = 1 and the required continuous rigidity follows.

The double cube. The cube is an example of a flexible convex three

dimensional framework. Using the same method used for the double square,

one can directly show that dimHfl(Gcube) = 12 for the cubic framework. A

generalization of the double square example in three dimensions is the double

cube G2cube , i.e., two corner connected cubes one inside the other (Figure

3.8). In generic position, the space of all infinitesimal flexes dimension is

3|V | − |E| = 48− 32 = 16 (There is no “Laman theorem” that predicts this

but it can be verified by computer calculation). In the following proposition

we calculate the dimension for the space Hfl(G2cube) using a similar argument

to that for the double square. The following table gives a choice of placement

for the double cube:
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1

2
3

4
5

6 7

8
9

10 11

12

13

14 15

16
x

y

z

Figure 3.8: The double cube (with adjusted scaling)

inner cube inner cube outer cube outer cube

(rear face) (front face) (rear face) (front face)

p1 = (0, 0, 0) p5 = (2, 0, 0) p9 = (−1,−1,−1) p13 = (3,−1,−1)

p2 = (0, 0, 2) p6 = (2, 0, 2) p10 = (−1,−1, 3) p14 = (3,−1, 3)

p3 = (0, 2, 2) p7 = (2, 2, 2) p11 = (−1, 3, 3) p15 = (3, 3, 3)

p4 = (0, 2, 0) p8 = (2, 2, 0) p12 = (−1, 3,−1) p16 = (3, 3,−1)
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64 5

1 2 3

Figure 3.9: Base elements uk for G2cube = (G, p) (restricted to the interior
cube)

Proposition 3.4.3. Let G2cube = (G, p) be the double cube framework in 3D.

Then dimHfl(G2cube) = 17.

4 5

1 2 3

Figure 3.10: Base elements sk for G2cube = (G, p) (restricted to the exterior
cube)

Proof. We proceed by calculating dimHfl(Gcube) and then we use this to

calculate dimHfl(G2cube). Let z be a general flex of Gcube and let wk =

(wk
x, w

k
y , w

k
z ) be the velocity vector at vertex pk. Subtracting appropriate

multiples of the three rigid body translations, ~x, ~y and ~z, we can arrange for
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the new flex to have a zero velocity at vertex p1. This implies that p2 admits

a zero z velocity component. Subtracting an appropriate linear combination

of rx and ry (the rigid body rotations about the axes x and y respectively), p2

is now assigned a zero velocity vector. The zero velocity at p1 implies that p4

is only allowed non-zero x and z velocity components. Subtracting a multiple

of rz, the rigid body rotation about the z axis, p4’s velocity vector only has

a non-zero z component. To achieve a zero velocity at p4, we subtract a

multiple of the infinitesimal flex u1 (Figure 3.9) for which the restriction of

u1 to the vertices of the inner cube satisfies u1|p4 = u1|p3 = (0, 0, 1), with

the remaining vertices of the inner cube having zero velocities. This results

in vertices p1, p2 and p4 having zero velocities (so far, we have used 7 base

elements). The zero velocities at p2 and p4 imply that p3 can only have a non-

zero x velocity component. Subtracting an appropriate multiple of the flex

u2 (the flexes uk are defined in a similar manner as u1 and are illustrated in

Figure 3.9), we can arrange for the velocity at p3 to be zero. The zero velocity

at p4 implies that p8 is only allowed non-zero y and z velocity components

and they can be similarly illuminated by subtracting a linear combination

of u3 and u4. At this point, all the vertices p1, p2, p3, p4 and p8 admit

zero velocities leaving one “flex” option for p7 which is to have a non-zero

y velocity component. Subtracting a multiple of u5 we can arrange for the

velocity at p7 to be zero. The zero velocities at all the vertices p1, p2, p3,

p4, p7 and p8 leave the only option for the flex at p5 and p6 to be a constant

multiple of u6, by subtracting this we arrive at a zero flex of the inner cube. It
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follows from the argument above, that any flex of the cube can be written as

a linear combination of elements of the set B = {~x, ~y, ~z, rx, ry, rz, u1, . . . , u6}.

Since the required coefficients are uniquely determined, we can deduce that

the set B is a base and dimHfl(Gcube) = 12.

Now suppose that z′ is a flex of the framework G2cube such that z′ assigns

zero velocities to the vertices of the inner cube. Thus,

z′ = (0, . . . , 0, w9, w10, . . . , w16).

With our specific choice of geometry we can use the infinitesimal flex con-

dition to deduce the properties of the velocity vectors implied by z′. For

example, applying the flex condition to p1 and p9, we have

〈p1 − p9, w
1〉+ 〈p9 − p1, w

9〉 = 〈(1, 1, 1), (0, 0, 0)〉+ 〈(−1,−1,−1), (w9
x, w

9
y, w

9
z)〉

= −w9
x − w9

y − w9
z .

Therefore, a velocity vector w9 at p9 must satisfy w9
x = −w9

y − w9
z . In the

same way we can deduce the equations for the remaining velocity vectors:
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w9: w9
x = −w9

y − w9
z w10: w10

z = w10
x + w10

y

w11: w11
x = w11

y + w11
z w12: w12

y = w12
x + w10

z

w13: w13
x = w13

y + w13
z w14: w14

y = w14
x + w14

z

w15: w15
x = −w15

y − w15
z w16: w16

z = w16
x + w16

y

Let sk, k = 1, . . . , 5, be the flexes of infinitesimal rotation of a single face

for the outer cube and such that all the other vertices are assigned zero

velocities (these flexes are illustrated in Figure 3.10). For each vertex on the

outer cube, sk assigns one zero velocity component and the other two are

equal in magnitude with signs determined by the equations above. Starting

at p9, we may subtract an appropriate multiple of s1 so that p9 has a zero

velocity x component. By subtracting a multiple of s2, p9 now has zero x

and y velocity components and this implies that the z velocity component is

zero from the equation above. With a zero velocity vector at p9, p10 can only

admit non-zero x and y velocity components and this flex is in fact a multiple

of s3 which we may subtract to achieve a zero velocity at p10. Moving on to

p11, we note that the only possibility is for it to have non-zero x and z velocity

components. Subtracting a multiple of s4 the velocity at p11 is zero. Since

we have zero velocities for the vertices p4, p10 and p11, the equation for p12

implies that the velocity vector for p12 has to be zero. It follows from all the

above that the remaining flex of G2cube has to be a constant multiple of s5 and
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by subtracting that we arrive at a zero flex of G2cube. Finally, the coefficients

in the above argument are uniquely determined, from which we can deduce

that the set B′ = B ∪ {s1, . . . , s5} is a base and dimHfl(G2cube) = 17.
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Chapter 4

Infinite Bar-joint Frameworks

In this chapter, a framework is viewed as an infinite structure in Rd. Formally,

a countable infinite bar-joint framework in Rd is the pair G = (G, p) where

G = (V,E) has countable vertex set V and edge set E, and where p =

(p1, p2, ...) with pi ∈ Rd for all i, is the framework vector of G associated

with an enumeration V = {v1, v2, ...}. After the definitions we give a number

of original illustrating examples and we analyse a class of infinite “strip”

frameworks with special infinitesimal flex properties. Furthermore, we obtain

two sufficient conditions for the boundedness of the rigidity matrix R(G) as a

Hilbert space operator. The first of these, Theorem 4.4.2, applies to all crystal

frameworks. The second condition covers certain infinite tree frameworks

where the degrees of the vertices are unbounded.
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4.1 Forms of Rigidity

In this section we give a range of definitions related to infinite bar-joint

frameworks and different classes of infinitesimal flexes.

Definition 4.1.1. A framework G = (G, p) in Rd is locally finite if the degree

of each vertex of G is finite.

Definition 4.1.2. A countably infinite framework G = (G, p) is edge van-

ishing if the sequence (dei)
∞
i=1 formed by all bar lengths has no lower bound

m > 0. G = (G, p) is edge unbounded if (dei)
∞
i=1 has no upper bound M > 0.

G = (G, p) is distance-regular if (dei)
∞
i=1 has a lower bound m > 0 and an

upper bound M > 0. That is, if there exist 0 < m < M such that for all

edges (i, j),

m < |pi − pj| ≤ M .

Definition 4.1.3. A countably infinite framework G = (G, p) is bounded or

unbounded if the sequence p has this property.

Example 4.1.4. It is possible for a framework to be edge vanishing without

being bounded. For example, the framework in Figure 4.1, is an infinite

linear framework in R2 with vertices

p1 = (0, 0), p2 = (1, 0), p3 = (1 + 1
2
, 0), . . . , pn = (

∑n−1
k=1

1
k
, 0), . . .

But

(dei)
∞
i=1 = ( 1

n
)∞n=1
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(0,0) (1,0) (1+1/2,0) (1+1/2+1/3,0) ...

Figure 4.1: An edge vanishing framework that is not bounded

and G is edge vanishing. Moreover, pn → ∞ as n → ∞ and G is unbounded.

Definition 4.1.5. Let G = (G, p) be an infinite framework in R2 with con-

nected abstract graph G = (V,E), V = {v1, v2, ...} and p = (p1, p2, ...). A

base-fixed continuous flex, or, simply, a flex of G = (G, p), is a function

p(t) = (p1(t), p2(t), ...) from [0, 1] to
∏

V R2 with the following properties:

(i) p(0) = 0.

(ii) Each coordinate function pi : [0, 1] → R2 is continuous.

(iii) For some base edge (va, vb) with |pa − pb| 6= 0 , pa(t) = pa(0) and

pb(t) = pb(0) for all t.

(iv) Each edge distance is conserved: |pi(t)− pj(t)| = |pi(0)− pj(0)| for

all edges (vi, vj), and al t.

(v) p(t) 6= p for some t ∈ (0, 1].

The framework G is flexible, or more precisely, continuously flexible, if it pos-

sesses a base-fixed continuous flex. The framework G is rigid, or continuously

rigid, if it is not flexible.

In a similar way one can define a continuous flex of a framework in R3,

although for it to be a “base-fixed” or “non-trivial” continuous flex, requires
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a base of three framework vertices as a three dimensional framework could

infinitesimally rotate about a fixed edge as a rigid body.

Definition 4.1.6. Let G = (G, p) be a finite or infinite framework in R2.

The edge function of G is defined to be

fG :
∏

V R2 → ∏

E R, fG(q) = (|qi − qj|2)e=(vi,vj)

and depends only on the abstract graph G.

Definition 4.1.7. The solution set of a framework G = (G, p), denoted

V (G, p), is the set f−1
G (fG(p)). This is the set of all framework vectors q that

satisfy the distance constraint equations

|qi − qj|2 = |pi − pj|2, for all edges e = (vi, vj).

In Definition 4.1.12 we define some forms of infinitesimal flexes. For

completeness we also record some related forms of continuous flexes in the

sense of the following definition.

Definition 4.1.8. A continuous base-fixed two-sided flex p(t) : t ∈ [−1, 1]

of a framework G = (G, p) in Rd is a smooth flex if each coordinate function

pi(t) is infinitely differentiable.

Definition 4.1.9. A continuous flex p(t) = (pk(t))
∞
k=1, t ∈ [0, 1] of an infinite

framework G = (G, p) in Rd is said to be:

(i) a bounded flex if for some M > 0 and every k and t,
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|pk(t)− pk(0)| ≤ M ,

(ii) a colossal flex if it is not bounded,

(iii) a vanishing flex if p(t) is a bounded flex and if the maximal dis-

placement

‖pk − pk(0)‖∞ = supt∈[0,1]|pk(t)− pk(0)|

tends to zero as k → ∞,

(iv) a square-summable flex if

∑∞
k=1‖pk − pk(0)‖2∞ < ∞,

(v) a summable flex if

∑∞
k=1‖pk − pk(0)‖∞ < ∞,

(vi) an internal flex if for all but finitely many k the function pk(t) is

constant.

Definition 4.1.10. Let G = (G, p) be an infinite framework in Rd. An

infinitesimal flex of G is a vector in Hv(G) =
∏

V Rd for which, as in the

finite case, 〈pi − pj, ui − uj〉 = 0 holds for each edge e = [pi, pj].
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Using the same notation as in the finite case, let Hfl(G) denote the linear

space of all infinitesimal flexes. This contains the space of rigid body mo-

tions Hrig(G) which in two dimensions is spanned by two translations and a

rotation.

Example 4.1.11. Figure 4.2 is an example of a 5-regular infinite framework

that is both continuously and infinitesimally flexible. Later on we find that

it defines a “crystal framework” and we identify a “base” for the space of all

infinitesimal flexes Hfl(G).

.....

.....

...
..

...
..

Figure 4.2: A 5-regular infinitesimally flexible infinite framework

Now that we are familiar with the notion of an infinitesimal flex of a

framework, we can identify more specific classes of infinitesimal flexes (in

the sense of the following definition). This enables us to develop a good

understanding of various frameworks in terms of their flexibility as we later
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see how the existence of certain types of flexes determine the identification

of a base for the space Hfl(G).

Definition 4.1.12. An infinitesimal flex u = (ui) ∈ ∏

Rd of an infinite

framework G = (G, p) is said to be:

(i) a bounded infinitesimal flex if for some M > 0 and every i,

‖ui‖ ≤ M ,

(ii) a vanishing infinitesimal flex if

‖ui‖ tends to zero as i → ∞,

(iii) a square-summable infinitesimal flex if

∑∞
i=1‖ui‖2 < ∞,

(iv) a summable flex if

∑∞
i=1‖ui‖ < ∞.

4.2 The Generic Case

To complement the earlier brief discussion on generic rigidity for finite frame-

works, we mention here a recent contribution by Kitson and Power [41] to-

wards the rigidity of general countable simple graphs with respect to both
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Euclidean and non Euclidean ℓp norms [42]. We restrict our attention here

to their characterization of rigidity of countable graphs with generic place-

ments in the Euclidean plane as they obtained a Laman-type Theorem for

such graphs. Defining a graph to be generic whenever every finite subframe-

work is generic, they proved that any countably infinite graph in fact admits

a generic placement in R2.

Here we give two original examples of graphs that are generically infinites-

imally rigid, but as we move on to the analysis of “crystal frameworks”, the

added symmetry results in both examples being infinitesimally flexible.

Definition 4.2.1 ([52]). If P is a property for a class of finite, simple, con-

nected graphs then a graph G is sequentially P if G is the union of graphs in

some increasing sequence of vertex induced finite subgraphs G1 ⊆ G2 ⊆ . . . ,

and each graph Gk has property P .

Theorem 4.2.2 ([41]). Let G be a countable simple graph. The following

statements are equivalent:

(i) G is generically infinitesimally rigid in R2.

(ii) G is sequentially generically infinitesimally rigid in R2.

Example 4.2.3. Let G be the countably infinite graph of a 5-regular grid.

This graph is sequentially generically infinitesimally rigid in R2 (Figure 4.3)

and therefore is generically infinitesimally rigid. In Chapter 5 we consider
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a non-generic placement of this graph and we identify a non-trivial base for

the space of all infinitesimal flexes Hfl (Proposition 8.3.2).

|V | = 12, |E| = 21 |V | = 24, |E| = 45

|V | = 32

|E| = 64

Figure 4.3: The 5-regular grid infinite graph is sequentially infinitesimally
rigid

A tower of graphs is a sequence of finite graphs {Gk : k ∈ N} such that

Gk is a subgraph of Gk+1 for all k ∈ N. A countable graph G contains a

vertex-complete tower {Gk : k ∈ N} if each Gk is a subgraph of G and

V (G) = ∪k∈NV (Gk). Moreover, if each Gk is a (2, 3)-tight subgraph of G,

then G contains a (2, 3)-tight vertex-complete tower.

The following theorem can be viewed as a generalization of Laman’s The-

orem for finite frameworks:

Theorem 4.2.4 ([41]). Let G be a countable simple graph. The following

statements are equivalent:

(i) G is generically infinitesimally rigid in R2.

(ii) G contains a (2, 3)-tight vertex-complete tower.
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Example 4.2.5. Let G be the countably infinite graph of double corner

connected triangles (Figure 4.4). This graph can be viewed as a (2, 3)-tight

vertex-complete tower and therefore is generically infinitesimally rigid. In

Chapter 5 we consider a non-generic placement of this graph resulting in a

framework that admits infinitesimal flexes with finite support.

|V | = 6, |E| = 9 |V | = 10, |E| = 17 |V | = 14, |E| = 25

...

Figure 4.4: The double triangle infinite graph has a (2, 3)-tight vertex-
complete tower

Although there is a generalization of Laman’s Theorem for countably infi-

nite generic graphs, the infinitesimal rigidity and continuous rigidity of such

graphs are not equivalent as in the finite case.

4.3 Infinite Strip Frameworks

In this section we introduce an infinite “strip” framework that admits a

special infinitesimal flex with an “input-output” behaviour that could serve

as a building block for examples tailored to a specific choice of infinitesimal
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flexes. In Chapter 5 we introduce a crystal framework formed by joining

copies of the infinite strip to the basic square grid. Further infinitesimal flex

analysis for the “joined” crystal framework is obtained in Chapter 8.

Example 4.3.1. Let G be the infinite, “lever” bar-joint framework consisting

of connected upright rigid triangles, as in Figure 4.5. With the base fixed,

this framework admits a one dimensional space of non-trivial infinitesimal

flexes which is uniquely determined by the velocity vector assigned to vertex

p1.

....

u1 = (ux
1 , 0)

p1

p2

p3

p4

p5

p6

p7

p8
a1

b1

c1

a2

b2

c2

Figure 4.5: An infinite lever framework

Let ui be the flex acting on the point pi, then using the infinitesimal flex

condition together with the fact that u1 = (ux
1 , 0), u3 = u7 = (0, 0) we have:

u5 = (
1

1 + a1
b1

ux
1 , 0).

Example 4.3.2. Let G be the infinite, base fixed, pin-bar framework sug-

gested by Figure 4.6. In this case, the vertices p2, p5, etc. are pin joints

and the edges are rigid bars. This allows us to draw simple diagrams with
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equivalent rigidity properties. From Example 4.3.1 we can choose the lengths

of the bars to achieve specific types of infinitesimal flexes. For example

(u3n)
∞
n=1 =























(1, 0) if n = 1,

(
∏n−1

k=1 (
1

1 + ak
bk

), 0) if n ≥ 2

.

is an infinitesimal flex of G. With the choice

ak =

√
k + 1−

√
k√

k + 1
and bk = 1− ak,

we have

ux
3n =

n−1
∏

k=1

(
1

1 + ak
bk

)

=
n−1
∏

k=1

(
1

1 + ak
1−ak

)

=
n−1
∏

k=1

(1− ak)

=
n−1
∏

k=1

(

√
k√

k + 1
)

=
1√
2
.

√
2√
3
. . . .

√
n− 2√
n− 1

.

√
n− 1√
n

=
1√
n

and therefore (u3n)
∞
n=1 = ((

1√
n
, 0))∞n=1. In this way we obtain an infinitesimal

flex of G that is vanishing but not square summable.

In the same way, if we choose
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...

u1 = (1, 0)

p3

a1

b1
1

p2

p1 p4

b2

p5

a2

p6

Figure 4.6: An infinite pin-bar framework

ak =

√

(k + 1)
5
6 −

√

k
5
6

√

(k + 1)
5
6

and bk = 1− ak,

then:

(u3n)
∞
n=1 = ((

1
√

n
5
6

, 0))∞n=1.

It follows that we obtain in this way an infinitesimal flex of C that is in ℓ3

but not square summable.

4.4 Infinite Frameworks and R(G, p)

As with finite frameworks one can define the rigidity matrix of the infi-

nite framework G = (G,P ) in R2. This is the matrix R(G, p) with rows

indexed by the framework edges and columns labelled by the vertices but

with multiplicity two, namely the labels vx1 , v
y
1 , v

x
2 , v

y
2 , . . . and with entries

xi−xj, xj−xi, yi−yj, yj−yi occurring in the row with label e = (vi, vj) with

the respective column labels vxi , v
y
i , v

x
j , v

y
j and with zero entries elsewhere.
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Note that R(G, p) defines a linear transformation from Hv(G) =
∏

V R2 to

He(G) =
∏

E R and it follows that a vector u in Hv(G) is an infinitesimal

flex if and only if R(G, p)u = 0. The rigidity matrix for a framework in Rd

is similarly defined.

In the following definition we note the form of a self stress for an infi-

nite bar-joint framework. However, we do not need to develop this “dual

perspective” in this thesis.

Definition 4.4.1. A self-stress of a finite or infinite framework (G) = (G,P )

is a vector

w = (we) ∈ He(G) =
∏

E R

such that w lies in the nullspace of the transpose matrix R(G, p)T .

Theorem 4.4.2 ([54]). Let G = (G, p) be a distance regular framework in R2

such that the degrees of the vertices are uniformly bounded, Then its rigidity

matrix determines a bounded Hilbert space transformation R.

While the proof below is lengthy it is essentially elementary, being re-

peated use of the Cauchy-Schwarz inequality.
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Proof. Let f ∈ ∏

R2 then,

‖R(G, p)f‖22 = ‖
∑

(i,j)∈E
(xi − xj)f

x
i e

x
i + (yi − yj)f

y
i e

y
i + (xj − xi)f

x
j e

x
j + (yj − yi)f

y
j e

y
j‖2

=
∑

(i,j)∈E
|(xi − xj)f

x
i + (yi − yj)f

y
i + (xj − xi)f

x
j + (yj − yi)f

y
j |2

≤
∑

(i,j)∈E
( |xi − xj||fx

i |+ |yi − yj||f y
i |+ |xj − xi||fx

j |+ |yj − yi||f y
j | )2.

Since the framework is distance regular:

≤ a2
∑

(i,j)∈E
( |fx

i |+ |f y
i |+ |fx

j |+ |f y
j | )2

= a2
∑

(i,j)∈E
( |fx

i |2 + |f y
i |2 + |fx

j |2 + |f y
j |2

+ 2|fx
i ||f y

i |+ 2|fx
j ||f y

j |+ 2|fx
i ||fx

j |

+ 2|f y
i ||fx

j |+ 2|fx
i ||f y

j |+ 2|f y
i ||f y

j | )

and since the degrees of the framework vertices are uniformly bounded:

≤ a2[ 4b‖f‖22 + 2
∑

(i,j)∈E
|fx

i ||f y
i |+ 2

∑

(i,j)∈E
|fx

j ||f y
j |

+ 2
∑

(i,j)∈E
|fx

i ||fx
j |+ 2

∑

(i,j)∈E
|f y

i ||fx
j |

+ 2
∑

(i,j)∈E
|fx

i ||f y
j |+ 2

∑

(i,j)∈E
|f y

i ||f y
j | ]
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≤ 2a2[ 2b‖f‖22 +
∑

(i,j)∈E
|fx

i ||f y
i |+

∑

(i,j)∈E
|fx

j ||f y
j |

+
∑

i∈V
(

∑

j:(i,j)∈E
|fx

i ||fx
j | ) +

∑

i∈V
(

∑

j:(i,j)∈E
|f y

i ||fx
j | )

+
∑

i∈V
(

∑

j:(i,j)∈E
|fx

i ||f y
j | ) +

∑

i∈V
(

∑

j:(i,j)∈E
|f y

i ||f y
j | ) ]

= 2a2[ 2b‖f‖22 +
∑

(i,j)∈E
|fx

i ||f y
i |+

∑

(i,j)∈E
|fx

j ||f y
j |

+
∑

i∈V
|fx

i | (
∑

j:(i,j)∈E
|fx

j | ) +
∑

i∈V
|f y

i | (
∑

j:(i,j)∈E
|fx

j | )

+
∑

i∈V
|fx

i | (
∑

j:(i,j)∈E
|f y

j | ) +
∑

i∈V
|f y

i | (
∑

j:(i,j)∈E
|f y

j | ) ]

≤ 2a2[ 2b‖f‖22 +
∑

(i,j)∈E
|fx

i ||f y
i |+

∑

(i,j)∈E
|fx

j ||f y
j |

+
∑

i∈V
|fx

i ||(fx
i )

∗|+
∑

i∈V
|f y

i ||(fx
i )

∗|

+
∑

i∈V
|fx

i ||(f y
i )

∗|+
∑

i∈V
|f y

i ||(f y
i )

∗| ].
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Using the Cauchy-Schwarz inequality we have

≤ 2a2{ 2b‖f‖22

+ [
∑

(i,j)∈E
|fx

i |2 ]
1
2 [

∑

(i,j)∈E
|f y

i |2 ]
1
2

+ [
∑

(i,j)∈E
|fx

j |2 ]
1
2 [

∑

(i,j)∈E
|f y

j |2 ]
1
2

+ [
∑

i∈V
|fx

i |2 ]
1
2 [
∑

i∈V
|(fx

i )
∗|2 ] 12

+ [
∑

i∈V
|f y

i |2 ]
1
2 [
∑

i∈V
|(fx

i )
∗|2 ] 12

+ [
∑

i∈V
|fx

i |2 ]
1
2 [
∑

i∈V
|(f y

i )
∗|2 ] 12

+ [
∑

i∈V
|f y

i |2 ]
1
2 [
∑

i∈V
|(f y

i )
∗|2 ] 12 }

≤ 2a2(2b‖f‖22 + 6b‖f‖22)

= 16a2b‖f‖22.

Where a = max {|e| : e ∈ E} is the maximum of edge lengths, b = max {deg v : v ∈ V }

is the maximum degree of the vertices and f ∗
i = max(i,j)∈E {fi}.

The following examples illustrate how an infinite framework that does not

satisfy one of the conditions above results in an unbounded rigidity matrix.

Example 4.4.3. Let G = (G, p) be the infinite framework (Figure 4.7) with

edges:
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e1 = [p1, p2] = [(0, 0), (0, 1)], e2 = [p1, p3] = [(0, 0), (1, 0)],

e3 = [p3, p4] = [(1, 0), (1, 2)], e4 = [p4, p2] = [(1, 2), (0, 1)],

e5 = [p3, p5] = [(1, 0), (2, 0)], e6 = [p5, p6] = [(2, 0), (2, 3)], . . .

Here the degrees of the vertices are uniformly bounded but the framework is

not distance regular.

1

2

3

4

5

6

...

Figure 4.7: A framework that is not distance regular

The rigidity matrix for this framework is

R(G, p) =











































0 −1 0 1 0 0 0 0 . . .

−1 0 0 0 1 0 0 0 . . .

0 0 0 0 0 −2 0 2 . . .

0 0 −1 −1 0 0 1 1

...
...

. . . . . .











































Let f be the vector f = (0, 0, 0, 1, 0, 0, 0, 1
2
, 0, 0, 0, 1

3
, ...) in

∏

R2. Then

‖R(G, p)f‖22 = ‖(1, 0, 1,−1
2
, 0, 1,−1

6
, ...)‖22 >

∑∞
1 1
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which diverges.

Example 4.4.4. Let G = (G, p) be the infinite framework (Figure 4.8) such

that

p1 = (0, 0) and pn = (cos π
2n−1 , sin

π
2n−1 ), n ≥ 2,

together with framework edges en = [p1, pn+1], n ∈ N. This is a distance

regular framework but the degrees of the vertices are not uniformly bounded.

...

Figure 4.8: A distance regular framework where the degrees of the vertices
are not uniformly bounded

R(G, p) =

































− cos π
2

− sin π
2

cos π
2

sin π
2

0 0 0 0 . . .

− cos π
4

− sin π
4

0 0 cos π
4

sin π
4

0 0 . . .

− cos π
8

− sin π
8

0 0 0 0 cos π
8

sin π
8

. . .

...
...

...
. . . . . .

































Note that the first column in R(G, p) is not square summable and that is a

necessary condition for it to be bounded.

In the following theorem, we give a sufficient condition for the boundedness

of the rigidity matrix of a countably infinite tree framework in R2. Note that

the degrees of the framework vertices need not be uniformly bounded.
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Theorem 4.4.5. Let T = (V,E) be a tree graph in R2 with vertex set

V = {vφ, vn, n ∈ S}

where

S = {n : n = (n1, n2, ..., nd), ni ∈ [1, Ni], Ni ∈ N ∪ {∞}, d = 1, 2, ...}

and with edge set

E = {en,nd+1
, n ∈ S} , en,nd+1

= [pn, pn,nd+1
] = [pn, pN ].

Then R(T, p) defines a bounded operator if there exists M > 0 such that

(
∑

n∈S |en,nd+1
|2) 1

2 ≤ M for all pn.

...

...

...

...

...

a single fan

vφ

v1

v2

v1,1 v1,2

v2,2

v3

v3,1

v3,1,1

v3,1,2

v3,1,2,1

Figure 4.9: An infinite tree
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Proof. Each row in R(T, p) has four entries: the first two correspond to a

single “fan” ’s base point and the other two correspond to one of the fan’s

ends (Figure 4.9). We have

R(T, p)e = [ 0 ... 0 xn − xn,nd+1
yn − yn,nd+1

0 ... 0 xn,nd+1
− xn yn,nd+1

− yn 0 ... 0 ]

and therefore R(T, p) can be written as the sum of two block diagonal infinite

matrices:

R(T, p) = A+ B.

84



The matrix A is

A =



















































































A1 =























∗ ∗

∗ ∗

...
...























A2 =























∗ ∗

∗ ∗

...
...























. . .



















































































and A is the direct sum of the sub-matrices Ai where each Ai is a two column

matrix such that each row corresponds to the first two entries of R(T, p)e.
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We have A =
⊕

i∈N Ai and so the operator norm of A satisfies

‖A‖op = sup
i∈N

{ ‖Ai‖op }

≤ sup
i∈N

{ ‖Ai‖HS }

≤ sup
i∈N

{(
∑

n∈S
|exn,nd+1

|2 ) 1
2 + (

∑

n∈S
|eyn,nd+1

|2 ) 1
2}

≤ 2M.

On the other hand,

B =



















































































B1 =























0 0 ∗ ∗

0 0 ∗ ∗

...
...

. . .























B2 =























∗ ∗

∗ ∗

. . .























. . .
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can be written as the direct sum of the sub-matrices Bi where each Bi is itself

a block diagonal matrix such that the blocks Bi,j, j ∈ N are 1 × 2 matrices

and their entries are the last two non-zero entries from R(T, p)e. Therefore,

B =
⊕

i∈N Bi and Bi =
⊕

j∈N Bi,j.

Also,

‖B‖op = sup
i∈N

{ ‖Bi‖op }

≤ sup
i∈N

{ ‖Bi,j‖op, j ≥ 1 }

≤ sup
i∈N

{ ‖Bi,j‖HSj ≥ 1 }

≤ sup
i∈N

{(
∑

n∈S
|−exn,nd+1

|2 ) 1
2 + (

∑

n∈S
|−eyn,nd+1

|2 ) 1
2}

≤ 2M.

From the triangle inequality:

‖R(T, p)‖op = ‖A+ B‖op ≤ ‖A‖op + ‖B‖op ≤ 4M .

Thus R(T, p) is bounded as required.

4.5 Factorization of R(G, p)

Another area where rigidity theory is becoming more involved is in the study

of robots and formation control. The robots referred to here are “agents” and

a formation is a group of these agents moving in dimensions two or three. For
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more on this subject one can refer to [27]. In their papers [71],[73] Zelazo et

al obtained a factorization of the rigidity matrix for a finite framework. Here

we give a precise proof of this factorization of R(G, p) following an example

by Owen and Power [54] which also applies for infinite frameworks. We use

this factorization to give another proof for the rigidity matrix boundedness

(Theorem 4.4.2).

To develop the complete setting, let G = (V,E) be a simple, oriented, finite

or countably infinite, locally finite graph. For each vertex vj, define a local

incidence matrix E(vj) ∈ R|E|×|V | such that the row entry corresponding to

edge ek and vertex column vi is equal to 1 if i = j and vj is the source vertex

of ek and it is equal to −1 if i = j and vj is the range vertex of ek and zeros

otherwise. Note that zero rows correspond to edges not adjacent to vj. Let

p be any position vector of G in R2 viewed in the finite case as the |V | × 2

matrix

p =

































px1 py1

px2 py2

...
...

px|V | py|V |

































or as a 2-column infinite matrix when G is infinite.

Proposition 4.5.1. Let p be any position vector of G in R2. Then
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R(G, p) = E(v)D(p)

where E(v) ∈ R|E|×|V |2, E(v) =

[

E(v1) E(v2) . . .

]

and D(p) ∈ R|V |2×2|V |

is the block diagonal matrix diag(p, p, . . . ).

It is straightforward to check that the above product is indeed equal to

the rigidity matrix by understanding how the matrices E(v) and D(p) are

indexed. For example, in the finite case, the row of E(v) corresponding to

edge ek = [vi, vj] would look like

vi vj

. . . . . . vi . . . vj . . . . . . . . . vi . . . vj . . . . . .

[E(v)]ek = ( . . . 1 − 1 . . . −1 1 . . . )

Note that the entries corresponding to vi and vj have opposite signs every

time. Therefore, [E(v)D(p)]ek is

vi vj

. . . . . . vi . . . vj . . . . . . . . . vi . . . vj . . . . . .

( . . . pxi − pxj pyi − pyj . . . pxj − pxi pyj − pyi . . . )
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which is equal to the ek-th row in R(G, p).

Example 4.5.2. Let G be a simple, oriented graph of a triangle (Figure

4.10) and let

p =























−1 0

1 0

0 2























∈ R|V |×2

be a position vector of G.

e1

e2e3

p1 p2

p3

Figure 4.10: A simple oriented graph of a triangle

The local incidence matrices

E(v1) =























1 −1 0

0 0 0

1 0 −1























, E(v2) =























−1 1 0

0 1 −1

0 0 0























and E(v3) =























0 0 0

0 −1 1

−1 0 1























.

From the above discussion R(G, p) is equal to the product
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1 −1 0 −1 1 0 0 0 0

0 0 0 0 1 −1 0 −1 1

1 0 −1 0 0 0 −1 0 1































































































































−1 0

1 0

0 2























0 0

0























−1 0

1 0

0 2























0

0 0























−1 0

1 0

0 2









































































































.

And

R(G, p) =























−2 0 2 0 0 0

0 0 1 −2 0 0

−1 −2 0 0 1 2























.

Another simple factorization of R(G, p) was observed by Owen and Power

[54] in the following example.

Example 4.5.3. Let (N, p) denote a semi-infinite framework in R2 whose

abstract graph is a tree with a single branch and p = (pi), pi = (xi, yi),
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i = 1, 2, . . . . Writing xi − xj = xij and yi − yj = yij the rigidity matrix with

respect to the natural ordered basis takes the form

p1(x1, y1)

p2(x2, y2)

p3(x3, y3)

. . .

Figure 4.11: (N, p)

R(N, p) =

































x12 y12 x21 y21 0 . . .

0 0 x23 y23 x32 y32 0 . . .

0 0 0 0 x34 . . .

...
. . .

































.

With respect to the coordinate decomposition Hv = Hx ⊕ Hy the rigidity

matrix can be written as

R(G, p) =

[

Rx Ry

]

=

[

Dx Dy

]













T

T













such that Rx = DxT , Ry = DyT and Dx, Dy are the diagonal matrices
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Dx =

































x12 0 0 . . .

0 x23 0 . . .

0 0 x34 0 . . .

...
. . .

































, Dy =

































y12 0 0 . . .

0 y23 0 . . .

0 0 y34 0 . . .

...
. . .

































and

T =

































1 −1 0 0 . . .

0 1 −1 . . .

0 0 1 −1 . . .

...
. . .

































.

In the light of the example above, one can deduce a similar form for any

rigidity matrix R(G, p), for a finite or countably infinite graph, with respect

to Hv = Hx ⊕Hy.

Proposition 4.5.4. Let (G, p) be a finite or countably infinite framework in

R2. Then with respect to the coordinate decomposition Hv = Hx ⊕Hy,

R(G, p) =

[

Rx Ry

]

=

[

Dx Dy

]













E(G)

E(G)













.
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Where E(G) is the |E| × |V | incidence matrix determined by an orien-

tation of G, and Dx, Dy are the |E| × |E| matrices determined by the same

orientation. Note that, as before, the e, v-th entry in E(G) is 1 if v is a source

of e and −1 if it is the range of e.

Checking this fact, amounts to giving a short proof of Proposition 2 in Ze-

lazo et al [71]. Indeed with this factorization it follows that R(G, p)∗R(G, p)

has the form












E(G)T

E(G)T

























D2
x DyDx

DxDy D2
y

























E(G)

E(G)













.

Remark 4.5.5. One way of using R(G, p) in factorized form, is to give a

short proof of Theorem 4.4.2.

Proof of Theorem 4.4.2. We will prove the boundedness of R(G, p) by prov-

ing that both factors in the formula of Proposition 4.5.4 are bounded as

follows:

Both of Dx and Dy are |E| × |E| diagonal matrices, and

‖Dx‖ = sup
e=[vi,vj ]

|xe|

= sup
e=[vi,vj ]

|pxvi − pxvj |

≤ sup
e=[vi,vj ]

‖pvi − pvj‖2

≤ a.
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Similarly, ‖Dy‖ ≤ a.

To prove that













E(G)

E(G)













is bounded, note that

‖













E(G)

E(G)













‖22 ≤ ‖E(G)‖22

and

‖E(G)























f1

f2

...























‖22 = ‖
∑

i,j:(vi,vj)∈E
(fi − fj)‖2

≤
∑

i,j:(vi,vj)∈E
|fi − fj|2

≤
∑

i,j:(vi,vj)∈E
|fi|2 +

∑

i,j:(vi,vj)∈E
|fj|2 + 2

∑

i,j:(vi,vj)∈E
|fi||fj|

≤ 2b‖f‖22 + 2
∑

i,j:(vi,vj)∈V×V

|fi||fj|

≤ 4b‖f‖22.

Where a is the maximum of edge lengths and b = max {deg vi : vi ∈ V } is

the maximum degree of the vertices.
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From all the above, it follows that













E(G)

E(G)













is bounded, and there-

fore R(G, p) is bounded.
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Chapter 5

Crystal Frameworks

In this chapter we begin an analysis of infinite bar-joint frameworks with high

symmetry, particularly those with translational periodic symmetry known as

“crystal frameworks”. In the terminology of chemists, a crystal is built up

by arranging atoms and groups of atoms in regular patterns and the ba-

sic arrangement of atoms that describes the crystal is identified as the unit

cell. Formally, a periodic framework can be identified in terms of “quotient

graphs” [65], or “gain graphs” [60], for example. Here we follow the math-

ematical identification introduced by Owen and Power [54] and Power [58]

where a crystal framework is determined by a finite “motif” and discrete

“translation group”.

After formal definitions we build up the understanding of the infinitesimal

flexibility of crystal frameworks through a range of contrasting examples. In
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particular, we see that the high symmetry of crystal frameworks gives rise

to special classes of infinitesimal flexes. We start by identifying some of the

basic infinitesimal flexes of various examples such as “local, band limited”

before moving on to classes of infinitesimal flexes that are exclusive to crystal

frameworks, mainly, strictly periodic and super cell periodic flexes.

The determination of general periodic flexes depends on the analysis of a

matrix function for the framework. This can be used for the identification

and analysis of the “RUM spectrum”. Where material scientists mostly rely

on laboratory experiments ([25]) or computer analysis ([33]) to determine the

RUM spectrum, Power [58] introduced the matrix function associated with a

crystal framework and developed a purely mathematical method to determine

the RUM spectrum using techniques from functional analysis and operator

theory. Here we build up on the theory of periodic flexes introduced in [58]

and we prove some relations between the spaces of “supercell n-fold periodic”

and “phase periodic” flexes. For further considerations of periodic rigidity

and related results we refer the reader to Owen and Power [54],[52],[53], Power

[56],[58],[57], Borcea and Streinu [11],[10], Ross [59], [60], Ross, Schulze and

Whiteley [61] and Malestein and Theran [49].
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5.1 Definitions and Examples

This section can be considered as a mathematical background for crystal

frameworks. We state some of the definitions introduced in [54] and [58]

before giving a variety of examples. As we move on towards more specific

classes we see how these frameworks admit different flexing properties.

Definition 5.1.1. An isometry of R3 is a distance preserving map:

T : R3 → R3 such that ‖Tx− Ty‖ = ‖x− y‖, ∀x, y ∈ R3.

Definition 5.1.2. A full rank translation group is a set of translation isome-

tries {Tk : k ∈ Z3} with Tk+l = Tk + Tl for all k, l, Tk 6= I if k 6= 0, and such

that the three period vectors

a = Tγ10, b = Tγ20, c = Tγ30

associated with the generators γ1 = (1, 0, 0), γ2 = (0, 1, 0), γ3 = (0, 0, 1) of Z3

are not coplanar. Full rank translation groups in Rd are similarly defined.

Definition 5.1.3. A crystal framework C = (Fv, Fe,T) in Rd, with full rank

translation group T = {Tk : k ∈ Zd} and motif (Fv, Fe), is a countable bar-

joint framework with framework points pκ,k, for 1 ≤ κ ≤ t, k ∈ Zd, such

that

(i) Fv is a finite set of framework vertices, {pκ,0 : 1 ≤ κ ≤ t} in Rd, and

Fe is a finite set of framework edges,

(ii) for each κ and k the point pκ,k is the translate Tkpκ,0,
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(iii) the set Cv of framework points is the disjoint union of the sets

Tk(Fv) for k ∈ Zd,

(iv) the set Ce of framework edges is the disjoint union of the sets Tk(Fe)

for k ∈ Zd.

A unit cell for C is defined by the period vectors. Multiple cells of a given

unit cell associated with a translation group T give super cells associated

with a subgroup T′ ⊆ T.

Definition 5.1.4. A crystal framework C in Rd is said to be in Maxwell

counting equilibrium if d|Fv| = |Fe|. If d|Fv| < |Fe| then C is said to be edge

rich while if d|Fv| > |Fe| then C is said to be edge sparse.

If a choice of motif for a crystal framework is in Maxwell counting equilib-

rium, then every other motif choice within the same translation group will

be in Maxwell counting equilibrium. It follows that a crystal framework in

Maxwell counting equilibrium admits a square “matrix function” and we may

compute the determinant that is used to form the “crystal polynomial” as

we shall see in the following sections.

In the case of a crystal framework in Rd a velocity vector is a doubled-

indexed sequence v of vectors vκ,k in Rd regarded as instantaneous velocities

applied to the frameworks vertices pκ,k. Let Hv(C) be the vector space of all

velocity vectors:
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Hv(C) =
∏

κ,k R
d.

Definition 5.1.5. Let C be a crystal framework with framework vertices pκ,k

as defined before. A real infinitesimal flex of C is a set of velocity vectors

uκ,k ∈ Hv(C), for each vertex, such that for each edge e = [pκ,k, pτ,l],

〈pκ,k − pτ,l, uκ,k − uτ,l〉 = 0.

The set of all infinitesimal flexes form a vector subspace Hfl(C) of Hv(C).

Note that each isometry of Rd gives rise to a one-dimensional vector subspace

of Hfl(C).

The rigidity matrix R(C) of the crystal framework C is a real infinite

matrix defined as in the finite framework case. It has rows labelled by the

framework edges e = [pκ,k, pτ,l] and columns labelled by the framework point

coordinate indices (κ, x, k), (κ, y, k). The row for edge e takes the form

(

κ, x κ, y τ, x τ, y

. . . 0 pxκ,k − pxτ,l pyκ,k − pyτ,l 0 . . . 0 pxτ,l − pxκ,k pyτ,l − pyκ,k 0 . . .

)

The definition of R(C) for d = 3, 4, . . . and also for general countably

infinite bar-joint frameworks is essentially the same.

Let

He(C) =
∏

e∈Ce
R =

∏

e∈Fe,k∈Zd R
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be the space of real sequences w = (we,k)e∈Fe,k∈Zd labelled by the framework

edges. Then R(C) defines a linear transformation

R : Hv(C) → He(C).

Each row of R has at most 2d non-zero entries and the image R(u) is given

by the well-defined matrix multiplication R(C)(u).

The proof of the following Proposition is the same as in the case of finite

frameworks.

Proposition 5.1.6. The infinitesimal flexes of the crystal framework C are

the velocity vectors in Hv(C) that lie in the null space of the linear transfor-

mation R(C).

The determination of the following flexes of a crystal framework introduced

in [58] will be used later on for the identification of a bases for the spaceHfl(C)

of all infinitesimal flexes.

Definition 5.1.7. Let u be a flex of the crystal framework C, then u is said

to be

i. band limited if u is supported by a set of framework vertices within

a finite distance from a hyperplane,

ii. a local infinitesimal flex if uκ,k = 0 for all but finitely many values

of κ, k.
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From the definition above, a local flex sequence has finite support. A

band limited flex, for a planar framework, is supported by the framework

vertices between two parallel lines.

In the following examples, we suggest a choice of motif and translation

group for a variety of crystal frameworks. Although some frameworks can be

derived from familiar ones by the addition of edges or vertices, we find that

they have different infinitesimal flexing properties even with a small change

in some cases.

The triangulated grid Ctri. The framework Ctri presents the regular tiling

of the plane by triangles. It is sequentially infinitesimally rigid in the sense

that it can be viewed as an increasing sequence of infinitesimally rigid finite

subframeworks. This is an example of an infinitesimally rigid, and hence

rigid, crystal framework.

e2

e1

e3

Figure 5.1: The triangulated grid Ctri

The translation group for Ctri:
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T = {Tk : k ∈ Z2}, Tk(x, y) = (x, y) + k1a+ k2b, a = (1, 0), b = (1
2
,
√
3
2
).

A motif choice for the triangulated grid Ctri (Figure 5.1)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0) e1 = [p1, p1,(1,0) = (1, 0)]

e2 = [p1,(1,0), p1,(0,1) = (1
2
,
√
3
2
)]

e3 = [p1,(0,1), p1,(1,0)]

a = (1, 0)

b = (1
2
,
√
3
2
)

Infinitesimal flexibility: infinitesimally rigid

We note that 2|Fv| = 2 < |Fe| and the framework is edge rich.

The alternating double triangles framework C2tri. This framework

can be viewed as Ctri but with alternating corner connected double triangles.

Here, the presence of a local flex creates a framework with a rigid crystal

subframework which is infinitesimally flexible.

1

2 3

4

Figure 5.2: The alternating double triangles framework C2tri
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A motif choice for the framework C2tri (Figure 5.2)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0)

p2 = (1
3
,
√
3
6
)

p3 = (2
3
,
√
3
6
)

p4 = (1
2
,
√
3
3
)

e1 = [p1, p1,(1,0) = (1, 0)]

e2 = [p1,(1,0), p1,(0,1) = (1
2
,
√
3
2
)]

e3 = [p1,(0,1), p1]

e4 = [p2, p3]

e5 = [p3, p4]

e6 = [p4, p2]

e7 = [p1, p2]

e8 = [p1,(1,0), p3]

e9 = [p1,(0,1), p4]

a = (1, 0)

b = (1
2
,
√
3
2
)

Basic infinitesimal flexes: local

We note that 2|Fv| = 8 < |Fe| and the framework is edge rich.

The basic grid CZ2. This framework presents the regular square tiling of

the plane. There are no local infinitesimal flexes of the basic grid but this

framework admits horizontal and vertical band limited infinitesimal flexes

supported by the lines of vertices parallel to both axis.
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p1,(0,0) p1,(1,0)

p1,(0,1)

e1

e2

Figure 5.3: The basic grid CZ2

A motif choice for the basic grid CZ2 (Figure 5.3)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0) e1 = [p1,(0,0), p1,(1,0) = (1, 0)]

e2 = [p1,(0,0), p1,(0,1) = (0, 1)]

a = (1, 0)

b = (0, 1)

Infinitesimal flexibility: band limited

We note that 2|Fv| = 2 = |Fe| and the framework is in Maxwell counting

Equilibrium.

The squares framework Csq. This framework can be obtained from the

basic grid CZ2 by adding diagonals to alternative squares. It admits a one

dimensional space of non-trivial infinitesimal flexes where the rigid squares

alternately rotate with equal magnitude and opposite direction.
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p1,(0,0)

p2,(0,0)

p1,(0,1)

p2,(1,0)

Figure 5.4: The squares framework Csq

A motif choice for the squares framework Csq (Figure 5.4)

Motif vertices Fv Motif edges Fe period vectors

p1 = (1
2
, 0)

p2 = (0, 1
2
)

e1 = [p1,(0,0), p2,(0,0)]

e2 = [p1,(0,0), p2,(1,0)]

e3 = [p2,(0,0), p1,(0,1)]

e4 = [p1,(0,1), p2,(1,0)]

e5 = [p2,(0,0), p2,(1,0)]

a = (1, 0)

b = (0, 1)

Basic infinitesimal flexes: alternating rotation infinitesimal flex (full support)

Let Fv = {p1, p2} with translation group T = {Tk : k ∈ Z2}

such that pκ,k = Tkpκ,0, for κ ∈ {1, 2}, k ∈ Z2

Tk=(n,m)(x, y) = (x, y) + na+mb, a = (1, 0), b = (0, 1).

for example when k = (1, 0):
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p1,(1,0) = T(1,0)p1 = (3
2
, 0)

p2,(1,0) = T(1,0)p2 = (1, 1
2
)

and for k = (0, 1):

p1,(0,1) = T(0,1)p1 = (1
2
, 1)

p2,(0,1) = T(0,1)p2 = (0, 3
2
)

this defines the natural periodic labelling of framework edges:

ej,k = Tkej, j ∈ {1, 2, 3, 4, 5}, k ∈ Z2.

We note that 2|Fv| = 4 < 5 = |Fe| and the framework is edge rich.

The double-squares framework C2sq. This framework can be derived

from the basic grid by augmenting inner squares and connecting their corners

with those of the basic grid. C2sq admits local flexes where the inner squares

can infinitesimally rotate about their centres.

We remark that the earlier observation that the finite double square frame-

work is continuously rigid implies that C2sq is sequentially continuously rigid

and therefore continuously rigid. On the other hand, the frameworks CZ2

and Csq are not continuously rigid.
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p1,(0,0) p1,(1,0)

p2

p3
p4

p5

p1,(0,1) p1,(1,1)

Figure 5.5: The double-squares framework C2sq

A motif choice for the double squares framework C2sq (Figure 5.5)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0)

p2 = (1
4
, 1
4
)

p3 = (1
4
, 3
4
)

p4 = (3
4
, 3
4
)

p5 = (3
4
, 1
4
)

e1 = [p1,(0,0), p1,(0,1)]

e2 = [p1,(0,0), p1,(1,0)]

e3 = [p2,(0,0), p3,(0,0)]

e4 = [p3,(0,0), p4,(0,0)]

e5 = [p4,(0,0), p5,(0,0)]

e6 = [p2,(0,0), p5,(0,0)]

e7 = [p1,(0,0), p2,(0,0)]

e8 = [p3,(0,0), p1,(0,1)]

e9 = [p4,(0,0), p1,(1,1)]

e10 = [p5,(0,0), p1,(1,0)]

a = (1, 0)

b = (0, 1)

Infinitesimal flexibility: local, band limited
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We note that 2|Fv| = 10 = |Fe| and the framework is in Maxwell counting

Equilibrium.

The 5-regular grid framework C5grid. In this framework, the basic grid

CZ2 is augmented with diagonal lines creating “strip” subframeworks.

1

2

3

4

5

6

7

8

9

10

Figure 5.6: The 5-regular grid framework C5grid
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A motif choice for the 5-regular grid framework C5grid (Figure 5.6)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0)

p2 = (0, 1)

p3 = (0, 2)

p4 = (0, 3)

e1 = [p1,(0,0), p2,(0,0)]

e2 = [p2,(0,0), p3,(0,0)]

e3 = [p3,(0,0), p4,(0,0)]

e4 = [p4,(0,0), p1,(0,1)]

e5 = [p1,(0,0), p1,(1,0)]

e6 = [p2,(0,0), p2,(1,0)]

e7 = [p3,(0,0), p3,(1,0)]

e8 = [p4,(0,0), p4,(1,0)]

e9 = [p1,(0,0), p3,(1,0)]

e10 = [p2,(0,0), p4,(1,0)]

a = (1, 0)

b = (0, 4)

Infinitesimal flexibility: band limited

We note that 2|Fv| = 8 and |Fe| = 10 and the framework is edge rich.

The augmented grid+strip framework C+
Z2. In this example the basic

grid is augmented with countably many copies of the strip framework. This

creates an example with “geometric growth flexes” that we will explore in

more detail when we identify a “free basis” for the space of all infinitesimal

flexes.
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e5

e4

e3

e2

e1

e6

Figure 5.7: The augmented grid+strip framework C+
Z2

A motif choice for the augmented grid+strip framework C+
Z2(Figure 5.7)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0)

p2 = (−1
4
, 3
4
)

p3 = (1
8
, 1
2
)

e1 = [p1,(0,0), p2,(0,0)]

e2 = [p2,(0,0), p3,(0,0)]

e3 = [p1,(0,0), p3,(0,0)]

e4 = [p1,(0,0), p1,(0,1)]

e5 = [p1,(0,0), p1,(1,0)]

e6 = [p3,(0,0), p2,(1,0)]

a = (1, 0)

b = (0, 1)

Infinitesimal flexibility: band limited

The kagome framework Ckag. This framework presents the tiling of the

plane by regular triangles and hexagons. It can be formed by corner con-

nected equilateral triangles joined in a hexagonal manner.
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e1

e2e3

e4

e5

e6

Figure 5.8: The kagome framework Ckag

A motif choice for the kagome framework Ckag (Figure 5.8)

Motif vertices Fv Motif edges Fe period vectors

p1 = (0, 0)

p2 = (1
2
, 0)

p3 = (1
4
,
√
3
4
)

e1 = [p1,(0,0), p2,(0,0)]

e2 = [p2,(0,0), p3,(0,0)]

e3 = [p3,(0,0), p1,(0,0)]

e4 = [p1,(0,0), p2,(−1,0)]

e5 = [p2,(0,0), p3,(1,−1)]

e6 = [p3,(0,0), p1,(0,1)]

a = (1, 0)

b = (1
2
,
√
3
2
)

Infinitesimal flexibility: band limited

(we consider these flexes in more detail in Theorem 8.3.3)

We note that 2|Fv| = 6 = |Fe| and the framework is in Maxwell counting

Equilibrium.
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The basic 3 dimensional grid CZ3. This framework is the generalization

of the basic planar grid CZ2 .

p1

x

y

z

p1,(1,0,0)

p1,(0,1,0)

p1,(0,0,1)

Figure 5.9: The basic 3 dimensional grid CZ3

A motif choice for the basic 3 dimensional grid CZ3 (Figure 5.9)

Motif vertices Fv number of motif edges period vectors

p1 = (0, 0, 0) |Fe| = 3 a = (1, 0, 0)

b = (0, 1, 0)

c = (0, 0, 1)

Infinitesimal flexibility: band limited

Let Fv = {p1} with translation group T = {Tk : k ∈ Z3}

such that pκ,k = Tkpκ,0, for κ = 1, k ∈ Z3
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Tk=(n,m,l)(x, y, z) = (x, y, z) + na+mb+ lc, a = (1, 0, 0), b = (0, 1, 0),

c = (0, 0, 1)

and with motif edge set Fe = {e1, e2, e3}. We note that 3|Fv| = 3 = |Fe| and

the framework is in Maxwell counting Equilibrium.

The regular octahedron net framework COct. This square bypiramed

framework is formed by layers of corner connected regular octahedra. Be-

cause these octahedra are rigid, the squares framework Csq can be viewed as

a subframework of COct. This idea leads to the identification of a “crystal

basis” later on.

p1

p2

p3

x

y

z

p1,(0,1,0)

p2,(−1,0,0)

p3,(0,0,1)

Figure 5.10: The regular octahedron net framework COct
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The regular octahedron net framework COct (Figure 5.10)

Motif vertices Fv number of motif edges period vectors

p1 = (0,−1, 0)

p2 = (1, 0, 0)

p3 = (0, 0,−1)

|Fe| = 12 a = (2, 0, 0)

b = (0, 2, 0)

c = (0, 0, 2)

Infinitesimal flexibility: band limited

We note that 3|Fv| = 9 < |Fe| and the framework is edge rich.

The bipyramid framework CBipyr. This framework is formed by layers

of corner connected regular bipyramids. Because these bipyramids are rigid,

the triangulated grid framework Ctri can be viewed as a subframework of

CBipyr.

The bipyramid framework CBipyr (Figure 5.11)

Motif vertices Fv number of motif edges period vectors

p1 = (0, 0, 0)

p2 = (1
2
,
√
3
6
, −

√
3

2
)

|Fe| = 9 a = (1, 0, 0)

b = (1
2
,
√
3
2
, 0)

c = (0, 0,
√
3)

We note that 3|Fv| = 6 < |Fe| and the framework is edge rich.
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p1

p2

p1,(1,0,0)

p1,(0,1,0)

p2,(0,0,1)

z

y

x

Figure 5.11: The bipyramid framework CBipyr

The framework CBipyr is infinitesimally flexible, although it contains in-

finitely many copies of the infinitesimally rigid planar framework Ctri. A

detailed account of the flexibility of CBipyr is obtained in [4]. In fact this

framework admits unbounded flexes with “geometric growth”.

Remark 5.1.8. Although the examples above are viewed as mathematical

crystal frameworks, some do appear in regular and semi-regular tilings for

example. For chemistry related definitions and examples, one can refer to

[20], [21] and [22].
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5.2 The Matrix Function ΦC(z) and Crystal

Polynomials

Given a crystal framework C we now associate the matrix valued function

given in Owen and Power [54] and Power [58]. This is associated with a

choice of periodicity group T and a motif (Fv, Fe) and is also called the

symbol function of C (and T). We shall see that this object plays a key role

in the determination of strictly periodic and phase periodic flexes.

Denote the general points of the d-torus by z = (z1, . . . , zd) where zi ∈ C

and |zi| = 1. Write zk for the monomial function z → zk from Td to C.

We may think of general monomials zδ as products of zi or zi with just

non-negative powers since z−k
i = zi

k for points on the circle T.

For the directed edge e = [pκ,k, pτ,l] we define the edge vector ve by ve =

pκ,k − pτ,l and write ve,σ for the σ-coordinate of ve, 1 ≤ σ ≤ d.

Definition 5.2.1. Let C be a crystal framework in Rd with motif sets

Fv = {pκ,0 : 1 ≤ κ ≤ |Fv|}, Fe = {ei : 1 ≤ i ≤ |Fe|}.

Then ΦC(z) is the matrix valued function on Td with rows labelled by the

edges e = [pκ,k, pτ,l] ∈ Fe and with columns labelled by pairs κ, σ. As a

matrix of scalar functions the entries are given by

(ΦC(z))e,(κ,σ) = ve,σz
k,

(ΦC(z))e,(τ,σ) = −ve,σz
l
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if κ 6= τ , while for a reflexive edge, with κ = τ ,

(ΦC(z))e,(κ,σ) = ve,σ(z
k − zl),

with the remaining entries in each row equal to the zero function.

In the following examples we calculate the matrix functions for the motif

choices in the previous section. Here we simply write (z, w) for a general

point in T2.

The matrix function for Ctri is

ΦCtri
(z, w) =























z − 1 0

1
2
(z − w)

√
3
2
(w − z)

1
2
(w − 1)

√
3
2
(w − 1)























.

The matrix function for CZ2 is

ΦC
Z2
(z, w) =













1− z 0

0 1− w













.

Since this framework is in Maxwell counting equilibrium the matrix function

is square and we may compute

detΦC
Z2
(z, w) = (z − 1)(w − 1).
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For the squares framework Csq the matrix function is

ΦCsq(z, w) =
1

2











































1 −1 −1 1

−1 −1 z z

−w −w 1 1

−w w z −z

0 0 −1 + z 0











































.

The matrix function ΦC5grid
(z, w) for the 5-regular grid framework takes the

form
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0 −1 0 1 0 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 0 0 −1 0 1

0 w 0 0 0 0 0 −1

−1(1− z) 0 0 0 0 0 0 0

0 0 −1(1− z) 0 0 0 0 0

0 0 0 0 −1(1− z) 0 0 0

0 0 0 0 0 0 −1(1− z) 0

−1 −2 0 0 z 2z 0 0

0 0 −1 −2 0 0 z 2z





























































































.

The matrix function ΦC2sq(z, w) for the double square framework takes the

form
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1

2





























































































0 −2 + 2w 0 0 0 0 0 0 0 0

−2 + 2z 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 1 0 0 0 0

0 0 0 0 −1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 −1

0 0 −1 0 0 0 0 0 1 0

−1

2

−1

2

1

2

1

2
0 0 0 0 0 0

0
1

2
w 0 0 0

−1

2
0 0 0 0

1

2
zw

1

2
zw 0 0 0 0

−1

2

−1

2
0 0

1

2

−1

2
z 0 0 0 0 0 0

−1

2

1

2





























































































and in this case the determinant is zero.

The matrix function for the kagome framework Ckag takes the form
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ΦCkag
(z, w) =

1

4





















































−2 0 2 0 0 0

0 0 1 −
√
3 −1

√
3

−1 −
√
3 0 0 1

√
3

2 0 −2z 0 0 0

0 0 −1
√
3 zw −

√
3zw

w
√
3w 0 0 −1 −

√
3





















































and in this case the determinant is a constant multiple of

zw(z − 1)(w − 1)(z − w).

Polynomials for crystal frameworks. Let C be a crystal framework in

Rd with given isometry group T. If C is in Maxwell counting equilibrium

then we may form the polynomial det(ΦC(z)) of the matrix function associ-

ated with a particular motif. This is a polynomial in the coordinate functions

zi and their complex conjugates zi, and therefore is a multi-variable trigono-

metric polynomial on Td and is possibly identically zero. In the nonzero case

we remove dependence on the motif and formally define the crystal polyno-

mial pC(z).

Definition 5.2.2. The crystal polynomial pC(z) associated with the pair

C,T and a lexicographic ordering is the product αzγ det(ΦC(z)) where the

multi-power γ and the scalar α are chosen so that
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(i) pC(z) is a linear combination of non-negative power monomials,

αzγ
∑

α∈Zd
+

aαz
α,

(ii) pC(z) has minimum total degree,

(iii) pC(z) has leading monomial with coefficient 1.

Here the monomials are ordered lexicographically, so that, for example,

the monomial function z21z2 has higher multi-degree than z1z
3
2 . Generally,

the monomial zi1 . . . zin has higher multi-degree than zj1 . . . zjn if either

i. i1 > j1 or

ii. there exists 1 < k < n such that ik > jk and il = jl for all 1 < l < k.

In this way one defines the leading term of a multi-variable polynomial.

Remark 5.2.3. Different motifs for (C,T) give matrix functions that are

equivalent in a natural way. A different motif for the same translation group

can be obtained by translation or by choosing different motif edges. Either

way, this results in the multiplication of the appropriate rows (respectively

columns) by a monomial. The crystal polynomial is multiplied by a monomial

and this leaves its zero set unchanged.

From all the above, it follows that the crystal polynomial for the grid

framework CZ2 is

pZ2(z, w) = (z − 1)(w − 1).
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For the kagome framework and the translation group, as above, the crystal

polynomial is

pkag(z, w) = (z − 1)(w − 1)(z − w).

Finally, for the double square framework the determinant is zero and the

crystal polynomial is the zero polynomial.

5.3 ΦC(z) and the RUM Spectrum

Let Kv(C), Ke(C) (or simply Kv and Ke when the framework in question is

understood) be the complex scalar versions of Hv(C), He(C). Also, let K
ω
v (C)

be the complex vector subspace of complex velocity vectors ṽ = (ṽκ,k) such

that ṽκ,k = ωkvκ,0, ω
k = (ωk1

1 , . . . , ωkd
d ) for κ ∈ Fv, k ∈ Zd where vκ,0 ∈ Rd

and v = (vκ,0) ∈ Rd|Fv |. Note that Kω
v (C) is a finite dimensional subspace of

Kv(C) with dimKω
v (C) = d|Fv|.

Similarly let Kω
e (C) ⊂ Ke(C) be the subspace of complex sequences w =

(we)e∈Fe
labelled by the framework edges which are phase periodic in this

way for the phase ω. Note that the rigidity matrix R(C) provides a linear

transformation R(C) : Kω
v (C) → Kω

e (C) by restriction (see also Theorem

5.3.1).

Let {ξκ,σ : κ ∈ Fv, σ ∈ {x, y, z}} be the standard basis for the vector space

C3|Fv |. Write ξωκ,σ for the velocity vectors in Kω
v (C) which extend the basis
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elements ξκ,σ. Formally

(ξωκ,σ)κ′,k = δκ,κ′ωkξκ,σ

where

δκ,κ′ =























0 if κ 6= κ′,

1 if κ = κ′

.

Similarly let ηe, e ∈ Fe be the standard basis for C|Fe| and write ηωe , e ∈ Fe

for the natural associated basis for Kω
e (C), with

(ηωe )e′,k = ωkδe,e′ .

The next theorem gives the connection between ΦC(z) and the infinitesimal

flex properties of C. Here the rigidity matrix R(C) is viewed as the linear

transformation

R(C) : Kv(C) → Ke(C).

Theorem 5.3.1 ([56]). The restriction of the rigidity matrix R(C) to the

finite-dimensional vector space Kω
v (C) has representing matrix ΦC(ω) with

respect to natural vector space basis.

Proof. Let ũ be a velocity vector in Kω
v (C) determined by u ∈ Cd|Fv | as

defined before. Thus we can write ũκ,k = ωkuκ,0. Let e ∈ Fe be an edge of

the form [pκ,k, pτ,l] and let 〈., .〉 denote the bilinear form on Cd. Note that

the (e, 0)th entry of R(C)(ũ) can be written as
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(R(C)(ũ))(e,0) = 〈ve, ũκ,k〉+ 〈−ve, ũτ,l〉.

Therefore, the (e, k′)th entry of R(C)(ũ) is

(R(C)(ũ))(e,k′) = 〈ve, ũκ,k′+k〉+ 〈−ve, ũτ,k′+l〉

= 〈ve, ωk′+kuκ〉+ 〈−ve, ω
k′+luτ 〉

= ωk′(〈ωkve, uκ〉+ 〈−ωlve, uτ 〉)

= ωk′(ΦC(ω)u)e

if κ 6= τ . While for a reflexive edge (κ = τ)

(R(C)(ũ))(e,k′) = ωk′(〈ωkve, uκ〉+ 〈−ωlve, uτ 〉)

= ωk′〈(ωk − ωl)ve, uκ〉

= ωk′(ΦC(ω)u)e.

Definition 5.3.2. The rigid unit mode spectrum (RUM spectrum) of the

crystal framework C in Rd, with translation group T, is the set Ω(C) of points

ω = (ω1, . . . , ωd) in Td for which there is a non-zero vector u inKω
v (C) which is

an infinitesimal flex for C. The rigid unit modes are the nonzero infinitesimal

flexes that give rise to points in the spectrum. The mode multiplicity function

is an integer valued function on Ω(C) defined by

µ(ω) =
∑

dimkerΦ(ω).
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From the theorem we have

Ω(C) = {ω ∈ Td : ker Φ(ω) 6= 0}.

The rigid unit modes themselves are the non-zero infinitesimal flexes giving

rise to points in the RUM spectrum and for a framework in Maxwell counting

equilibrium Ω(C) is the zero set of pC(z).

Remark 5.3.3. Topologically, the d-torus Td is homeomorphic to the d-

hypercube, this allows us to view the RUM spectrum as subset of [0, 1)d.

These wave vectors in [0, 1)d can be obtained by simply taking logarithms

coordinatewise.

For the basic grid framework CZ2 the polynomial is (z − 1)(w− 1) and for

Ω(CZ2) we obtain the set which is the union of the two curves in T2 defined

by z = 1 and w = 1. In terms of wave vectors this translates to the subset

of [0, 1)2 shown in Figure 5.12.

For the kagome framework the polynomial is (z− 1)(w− 1)(z−w) and we

obtain the set which is the union of the three curves in T2 defined by z = 1,

w = 1 and z = w or the subset of the unit square shown in Figure 5.12.

The crystal polynomial for the double squares framework is the zero poly-

nomial and in this case the RUM spectrum is the entire Torus T2.
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For the edge rich triangulated grid Ctri, the squares framework Csq and the

5-regular grid framework C5grid, the matrix function ΦC(z, w) is not square.

For non-square ΦC(z, w) one can instead form the finite set of polynomials

for the d|Fv| × |Fv| square submatrices and in this case the RUM spectrum

will be a subset of intersections of the zero sets of these polynomials on the

torus Td.

The Rum spectrum for Ctri is trivial, Ω(Ctri) = {(1, 1)}. For Csq the RUM

spectrum is Ω(Csq) = {(1, 1), (−1,−1)}. Finally, For C5grid the RUM spec-

trum is the subset of T2 defined by z = 1.

1 2

Figure 5.12: The RUM spectrum for the basic grid (1), and for the kagome
framework (2).

For the augmented grid+strip framework, the matrix ΦC(z,w) is square and

calculation shows that the RUM spectrum is the set which is the union of

the two curves in T2 defined by z = 1 and w = 1.

The framework obtained from the augmented grid+strip by connecting the

horizontal strips as in Figure 5.13 has the same matrix for the augmented

grid+strip in addition to one row corresponding to the additional edge. In
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this case the intersection of the zero sets of the polynomials for the square

submatrices is the singleton set {(1, 1)} and the RUM spectrum is trivial.

Figure 5.13: The rigid grid+strip framework

5.4 Periodic Rigidity

This section is dedicated to a special class of infinitesimal flexes associated

with crystal structures, namely, periodic infinitesimal flexes. Such flexes can

be strictly periodic, supercell n-fold periodic or phase periodic. Depending

on the choice of translation group, we will see how these flexes relate to each

other.

Definition 5.4.1. Let C be a crystal framework with translation group T.

A complex valued infinitesimal flex u ∈ Kfl(C) of C in Rd is said to be

(i) strictly periodic (or simply periodic) if it satisfies the periodicity

condition

uκ,k = uκ,0 for all k ∈ Zd,
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(ii) supercell n-fold periodic, for n = (n1, . . . , nd) ∈ Zd, if it satisfies the

periodicity condition

uκ,k = uκ,k+n for all k ∈ Zd,

(iii) ω-phase periodic, ω ∈ Td if it satisfies

uκ,k = ωkuκ,0 for all κ ∈ Fv, k ∈ Zd.

If a crystal framework admits any of the above flexes in a non-trivial way,

then it is said to be flexible in that sense, otherwise it is considered rigid.

For example, we say “strictly periodically infinitesimally flexible” and so on.

Remark 5.4.2. Let C be a crystal framework in Rd. If C has a nonzero local

infinitesimal flex and ω was a multi-phase in Td then the new flex

ũ =
∑

k∈Zd

ωkTku

is well defined. Also, it is a phase periodic infinitesimal flex that is nonzero

for almost every ω. This implies that the RUM spectrum for C is Td.

The periodic rigidity matrix. It follows from Theorem 5.3.1 that we

can identify real or complex strictly periodic flexes using the kernel of the

periodic rigidity matrix, Φ(1, . . . , 1). This matrix is defined by

R1 = ΦC(1, . . . , 1).

We can define the spaces of strictly periodic flexes and ω-phase periodic flexes

in terms of the matrix function as follows
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Kω
fl(C) = {((ωka)k)k∈Zd , a ∈ kerΦ(ω)}

with ω = (1, . . . , 1) in case of strictly periodic flexes.

We will denote the subspace of Kv(C) (Kfl(C)) of all complex valued super-

cell n-fold periodic velocities (flexes) by Kn
v (C) (K

n
fl(C)), or simply Kn

fl when

the relevant crystal framework is understood, and the subspace of ω-phase

periodic velocities (flexes) by Kω
v (C) (K

ω
fl(C)).

In the next theorem we prove that the space of supercell n-fold periodic

velocities can be written as the direct sum of spaces of various ω-phase pe-

riodic velocities. This observation has also been indicated recently in Power

[58]. In the proof we make use of similar formulae to that of the discrete

Fourier transform ([50], [40]).

Theorem 5.4.3. For a crystal framework C in Rd,

K
(n1,...,nd)
v =

⊕

0≤mi≤ni−1

K
(ω

m1
n1

,...,ω
md
nd

)
v

where ωni
= e2πi/ni and K

(ω
m1
n1

,...,ω
md
nd

)
v is the subspace of Kv of all (ω

m1
n1

, . . . , ωmd
nd

)-

phase periodic velocity sequences, i.e. the velocities satisfying

vκ,k = ωm1k1
n1

. . . ωmdkd
nd

vκ,0.

Proof. For simplicity, we will prove the theorem for d = 2, i.e. we will prove

that

K
(n1,n2)
v =

⊕

0≤mi≤ni−1

K
(ω

m1
n1

,ω
m2
n2

)
v .
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For higher dimensions the proof is an immediate generalization. On one

hand, it is clear that (ωm1
n1

, ωm2
n2

)-phase periodic velocity sequences and their

combinations are supercell (n1, n2)-fold periodic and so

⊕

0≤mi≤ni−1

K
(ω

m1
n1

,ω
m2
n2

)
v ⊆ K

(n1,n2)
v .

On the other hand, let v = (vκ,(k1,k2)) be a supercell (n1, n2)-fold peri-

odic sequence in K
(n1,n2)
v . Let v[r1,r2] = (v

[r1,r2]
κ,(k1,k2)

) be the translation of

v = (vκ,(k1,k2)) by r1 steps to the right and r2 steps upwards, i.e. v
[r1,r2]
κ,(k1,k2)

=

vκ,(k1+r1,k2+r2). Then the sequence v = (vκ,(k1,k2)) can be written as a combi-

nation of (ωm1
n1

, ωm2
n2

)-phase periodic velocity sequences as follows:

vκ,(k1,k2) =
∑

0≤mi≤ni−1

(ωm1
n1

)k1(ωm2
n2

)k2z
[m1,m2]
κ,(k1,k2)

for all (k1, k2) ∈ Z2

where ωni
= e2πi/ni and z[m1,m2] = (z

[m1,m2]
κ,(k1,k2)

) ∈ K
(ω

m1
n1

,ω
m2
n2

)
v is defined by

z
[m1,m2]
κ,(k1,k2)

=
1

n1n2

∑

0≤ri≤ni−1

(ωm1
n1

)−r1(ωm2
n2

)−r2v
[r1,r2]
κ,(k1,k2)

.

First, we will prove that the sequences z[m1,m2] = (z
[m1,m2]
κ,(k1,k2)

) are in fact
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(ωm1
n1

, ωm2
n2

)-phase periodic.

z
[m1,m2]
κ,(k1,k2)

=
1

n1n2

∑

0≤ri≤ni−1

(ωm1
n1

)−r1(ωm2
n2

)−r2v
[r1,r2]
κ,(k1,k2)

=
1

n1n2

∑

0≤ri≤ni−1

(ωm1
n1

)−r1(ωm2
n2

)−r2vκ,(k1+r1,k2+r2)

=
1

n1n2

∑

0≤ri≤ni−1

(ωm1
n1

)−r1(ωm2
n2

)−r2vk1+r1,k2+r2
κ,(0,0)

=
1

n1n2

(ωm1
n1

)k1(ωm2
n2

)k2
∑

0≤ri≤ni−1

(ωm1
n1

)−(k1+r1)(ωm2
n2

)−(k2+r2)v
[k1+r1,k2+r2]
κ,(0,0)

= (ωm1
n1

)k1(ωm2
n2

)k2z
[m1,m2]
κ,(0,0)

and therefore we have z[m1,m2] = (z
[m1,m2]
κ,(k1,k2)

) ∈ K
(ω

m1
n1

,ω
m2
n2

)
v . Using the definition

of z[m1,m2] = (z
[m1,m2]
κ,(k1,k2)

) we have for all (k1, k2),

∑

0≤mi≤ni−1

(ωm1
n1

)k1(ωm2
n2

)k2z
[m1,m2]
κ,(k1,k2)

=
1

n1n2

∑

0≤mi≤ni−1

(ωm1
n1

)k1(ωm2
n2

)k2(
∑

0≤ri≤ni−1

(ωm1
n1

)−r1(ωm2
n2

)−r2v
[r1,r2]
κ,(k1,k2)

)

=
1

n1n2

∑

0≤ri≤ni−1

v
[r1,r2]
κ,(k1,k2)

(
∑

0≤mi≤ni−1

(ωm1
n1

)k1−r1(ωm2
n2

)k2−r2).

Since the sum of the nth roots of unity is zero, we have

∑

0≤mi≤ni−1

(ωm1
n1

)k1−r1(ωm2
n2

)k2−r2 =























0 if k1 6= r1 or k2 6= r2,

n1n2 if k1 = r1 and k2 = r2

.
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Therefore,

1

n1n2

∑

0≤ri≤ni−1

v
[r1,r2]
κ,(k1,k2)

(
∑

0≤mi≤ni−1

(ωm1
n1

)k1−r1(ωm2
n2

)k2−r2)

= v
[0,0]
κ,(k1,k2)

= vκ,(k1,k2).

From all the above,

vκ,(k1,k2) =
∑

0≤mi≤ni−1

(ωm1
n1

)k1(ωm2
n2

)k2z
[m1,m2]
κ,(k1,k2)

.

Finally, note that any (ωm1
n1

, ωm2
n2

)-phase periodic velocity that is (ω
m′

1
n1 , ω

m′
2

n2 )-

phase periodic has to be zero, and we have a direct sum.

It follows from Theorem 5.4.3 above that a similar direct sum relation

holds between space of supercell n-fold periodic flexes and spaces of various

ω-phase periodic flexes. This can be immediately deduced from the proof

of Theorem 5.4.3 by observing that translates and sums of flexes give flexes.

The same concept will be later used for proofs regarding almost periodic

rigidity theory.

Corollary 5.4.4. For a crystal framework C in Rd,

K
(n1,...,nd)
fl =

⊕

0≤mi≤ni−1

K
(ω

m1
n1

,...,ω
md
nd

)

fl

where ωni
= e2πi/ni and K

(ω
m1
n1

,...,ω
md
nd

)

fl is the subspace of K
(ω

m1
n1

,...,ω
md
nd

)
v of all

(ωm1
n1

, . . . , ωmd
nd

)-phase periodic flexes.
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Definition 5.4.5. Let M1 = (F
(1)
v , F

(1)
e ) be a motif for C in R2 with trans-

lation group T(1), We say that the motif M2 = (F
(2)
v , F

(2)
e ) with translation

group T(2) is a supercell (n1, n2)-fold inflation of M1 if

F
(2)
v = {p[r1,r2]κ,0 : p

[r1,r2]
κ,0 = pκ,(r1,r2), pκ,0 ∈ F

(1)
v , 0 ≤ ri ≤ ni − 1}

and

F (2)
e = {e[r1,r2]j,0 : e

[r1,r2]
j,0 = [p

[r1,r2]
κ,0 , p

[r1,r2]
τ,l ],

ej,0 = [pκ,0, pτ,l] ∈ F (1)
e , 0 ≤ ri ≤ ni − 1}.

It is clear from the definition above that M1 ⊆ M2 and T(1) ⊇ T(2).

Example 5.4.6. Consider the basic grid, CZ2 . Let M1 be the minimal motif

consisting of a single point, M2 be a supercell (1, 2)-fold inflation of M1 and

M3 a supercell (2, 2)-fold inflation of M1 (Figure 5.14). Note that M3 can be

considered as a supercell (2, 1)-fold inflation of M2 too.

1 1

2

1

2
3

4

M1 M2 M3

Figure 5.14: Different motifs for the basic grid CZ2

CZ2 withM1 is infinitesimally strictly periodically rigid, as the only strictly

periodic flexes are translations. This is because kerΦ(1)(1, 1) = R2, but M1

has a single point, and therefore any motion applied to that point applies to

the rest of the vertices. If we consider the motif choice M2, then
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kerΦ(2)(1, 1) = span{((0, 1), (0, 1)), ((1, 0), (0, 0)), ((0, 0), (1, 0))}.

With motif choice M3 we find that

kerΦ(3)(1, 1) = span{((1, 0), (1, 0), (0, 0), (0, 0)), ((0, 1), (0, 0), (0, 1)(0, 0)),

((0, 0), (0, 1), (0, 0), (0, 1)), ((0, 0), (0, 0), (1, 0), (1, 0))}.

Therefore, with both motif choices M2 and M3, CZ2 is infinitesimally strictly

periodically flexible.

Example 5.4.7. With any choice of motif, the brick framework Cbrick (Figure

5.15) is infinitesimally strictly periodically flexible.

Figure 5.15: The brick framework Cbrick

The direct sum relation in Corollary 5.4.4 implies that the corresponding

kernels of the matrix functions can also be expressed in a similar way and

we have the following result.

Corollary 5.4.8. Let M1 and M2 be two motifs of C in R2 as above ( or

M2 be a supercell (n1, n2)-fold inflation of M1 ). If Φ(1), Φ(2) are the symbol

functions for C = (F
(1)
v , F

(1)
e ,T(1)), C = (F

(2)
v , F

(2)
e ,T(2)) respectively, then

kerΦ(2)(1, 1) =
⊕

0≤mi≤ni−1

kerΦ(1)(ωm1
n1

, ωm2
n2

)
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where ωni
= e2πi/ni.

Example 5.4.9. It follows from the previous corollary, that one can deduce

the strictly periodic flexes of the basic grid CZ2 with respect to different motif

choices using the matrix function associated with the minimal motif.

Corollary 5.4.8 implies that the dimension of the space of supercell n-

fold periodic flexes is in fact the sum of dimensions of the relevant ω-phase

periodic flexes in the sense of the following corollary.

Corollary 5.4.10. Let M1 and M2 be two motifs of C in R2 as above ( or

M2 be a supercell (n1, n2)-fold inflation of M1 ). If Φ(1), Φ(2) are the symbol

functions for C = (F
(1)
v , F

(1)
e ,T(1)), C = (F

(2)
v , F

(2)
e ,T(2)) respectively, then

dimkerΦ(2)(1, 1) =
∑

0≤mi≤ni−1

dimkerΦ(1)(ωm1
n1

, ωm2
n2

)

where ωni
= e2πi/ni.

Remark 5.4.11. For the basic grid, CZ2 , with M1, the framework is strictly

periodically rigid and the subspace of such flexes is of two dimensions cor-

responding to translations in each coordinate direction. With the motif M2,

the basic grid admits a strictly periodic infinitesimal flex and therefore the

subspace of these flexes is three dimensional. A higher dimension for the

strictly periodic flex subspace results when M3 is the chosen motif. In Figure

5.16, each number corresponds to the dimension of dim kerΦ(ω) with respect

to the phase ω and the dimension of the subspace of strictly periodic flexes
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is equal to the sum of the dimensions of the relevant subspaces of phase

periodic flexes.

1

1

1

1

1 1 1

1

1

2 3 4

(a) (b) (c)

Figure 5.16: (a) The RUM spectrum for CZ2 with motif choice M1, (b) with
motif M2 and (c) with M3

Example 5.4.12. Consider the double triangles framework C2tri. This frame-

work is rich in local infinitesimal flexes and therefore the RUM spectrum in

this case is T2. C2tri admits a 1-dimensional subspace of non-trivial strictly

periodic infinitesimal flexes. Precisely we have

kerΦ(1, 1) = span{((1, 0), (1, 0), (1, 0), (1, 0)), ((0, 1), (0, 1), (0, 1), (0, 1)),

((0, 0), (−
√
3

2
, 1), (−

√
3

2
,−1), (

2−
√
3

2
, 0))}

And dimkerΦ(1, 1) = 3. Now, we fill up the whole framework with triangles

as in Figure 5.17.

In this case, the framework admits a 4-dimensional subspace of strictly

periodic flexes, 2 corresponding to translations and the other 2 come from

the infinitesimal rotation of the inner triangles either both in one direction

or in different directions. These double triangles frameworks, being “rigid

but infinitesimally flexible”, result in the multiplicity being dependent on
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Figure 5.17: A 2-double triangle framework

the number of triangles in the motif that we fill in. We will have 2 trans-

lations and then for n triangles, the multiplicity becomes 2 + n. That is

because we will get n linearly independent flexes each with one non zero flex

corresponding to one triangle and zero otherwise.
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Chapter 6

Almost Periodic Functions

The notion of an almost periodic function was introduced by H. Bohr in

1924 [8] as a generalization of the notion of a purely periodic function. Re-

call that a function f : R → C is τ -periodic if f(x) = f(x+ τ) for all x ∈ R.

Bohr’s work was preceded by the investigations of P. Bohl and E. Esclangon.

Subsequently, during the 1920s and 1930s, Bohr’s theory was substantially

developed by S. Bochner, H. Weyl, A. Besicovitch and others [6]. In particu-

lar, the compactness property of an almost periodic function was discovered

by Bochner in 1927.

In this chapter we aim to develop an understanding of multi-variable al-

most periodic functions and the approximation by trigonometric polynomials

theorem. With this understanding we will be able to adapt this theory in the

next chapter to obtain the counterpart theory of almost periodic sequences
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(an)n∈Z, and for almost periodic multivariate sequences (ak)k∈Zd . In particu-

lar, we will obtain there an explicit approximation by trigonometric sequences

theorem, with explicit kernels providing the approximating sequences. We

remark that we found the explicit formalism of Partington [55] to be more

useful for our purposes than the general theory of almost periodic functions

on locally compact abelian groups ([7], [67]).

6.1 Single Variable Almost Periodic Functions

In this section, we state the definitions and basic properties of almost periodic

functions of one variable to familiarize the reader with the theorems we aim

to understand in higher dimensions. For more details see [19], [55], [6], [18],

[46], [48], [64], [30] and [40]. In fact, as we note after Theorem 6.2.20, this one

variable theory is contained within the multi-variable theory of the following

section.

An example of an almost periodic function is f(x) = 2−(cos x+cos(
√
2x)),

noticing that f(x) has the value 0 only at x = 0 we see that f is not periodic.

Definition 6.1.1. The class AP (R) of uniformly almost periodic functions

is the closed linear span in L∞(R) of the set of functions (eλ)λ∈R where

eλ(x) = eiλx.

An equivalent definition is the following:
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Definition 6.1.2 (Approximation by trigonometric polynomials). Let f :

R → C we say that f is uniformly almost periodic if for all ǫ > 0 there exists

a trigonometric polynomial P : R → C such that:

|f(x)− P (x)| < ǫ for all x ∈ R.

Since the uniform limit of continuous functions is continuous, then it

follows that AP (R) ⊂ Cb(R), the class of all continuous bounded functions

on R.

Definition 6.1.3. Let f : R → C be any function on R, the right shift Rλ

of f is defined by

(Rλf)(x) = f(x− λ).

Definition 6.1.4. Let f : R → C be a continuous function. Then a number

λ ∈ R is called an ǫ-translation number of f if

‖Rλf − f‖∞ ≤ ǫ.

Definition 6.1.5. A set S ⊆ R is said to be relatively dense if there exists

an L > 0 such that every interval of length L contains an element of S.

Example 6.1.6. The set of numbers S = {±n, n ∈ Z+} is relatively dense

in R. On the other hand, the set of numbers S = {±n2, n ∈ Z+} is not

relatively dense since (n+ 1)2 − n2 → ∞ as n → ∞.

Definition 6.1.7. Let f be a function f : R → C. Then
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i. f is said to be a Bohr function if f is continuous and for every ǫ > 0

the set of ǫ-translation numbers of f is relatively dense.

ii. f satisfies Bochner’s condition if it is continuous and bounded and

the set of translates {Rλf, λ ∈ R} is relatively compact in Cb(R). That

is, f satisfies Bochner’s condition if every sequence in {Rλf, λ ∈ R}

has a uniformly convergent subsequence.

Theorem 6.1.8. The Bohr functions form a closed linear subspace of Cb(R)

and hence every function in AP (R) is a Bohr function.

Corollary 6.1.9. The Bohr functions form a closed subalgebra of Cb(R).

It follows from the corollary above that the sum of two Bohr functions is

a Bohr function. For example, the function

f(x) = a+ beix + ce
√
2ix

is almost periodic [47]. To prove this directly we will make use of the defini-

tions and the following theorems

• Kronecker’s Density Theorem [12]: If the real number θ is distinct from

each rational multiple of π, then the set {einθ : n ∈ Z} is dense in the

unit circle.

• The Sharpened Dirichlet-Kronecker Theorem [30]: If t, a1, . . . , ak are

nonzero real numbers and if ǫ is a positive number, then there exists a
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relatively dense set N of integers such that n ∈ N implies the existence

of integers m1, . . . ,mk for which

|nt−miai| < ǫ for i = 1, . . . , k.

Let θ =
2π√
2
, then by Kronecker’s Density Theorem eimθ is dense in T, so we

need to find m such that |eimθ − 1| < ǫ.

By the periodicity of eix,

|f(x− τ)− f(x)| = |bei(x−τ+2nπ) + ce
i
√
2(x−τ+ 2mπ√

2
) − beix − cei

√
2x|

≤ |b||eix||e−τ+2nπ − 1|+ |c||ei
√
x||e

√
2i(−τ+ 2mπ√

2
) − 1|.

Now for the non-zero numbers θ and 2π, and for ǫ > 0 the Sharpened

Dirichlet-Kronecker Theorem implies that there exists integer numbersm0, n0

such that

|m0
2π√
2
− n02π| < ǫ.

Thus, for m = m0, n = n0 we see that τ = n02π is a ǫ-period of f . It follows

that

|f(x− τ)− f(x)| ≤ |b||eix||e−τ+2nπ − 1|+ |c||ei
√
x||e

√
2i(−τ+ 2mπ√

2
) − 1|

≤ |b|ǫ1 + |c|ǫ2.

Choosing ǫ > max{2|b|ǫ1, 2|c|ǫ2}, the difference f(x − τ) − f(x) is smaller

than ǫ for all x ∈ R as required.

Proposition 6.1.10. Let f ∈ Cb(R) be a Bohr function. Then
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[f, 1] = lim
T→∞

[f, 1]T = lim
T→∞

1

2T

T
∫

−T

f(x) dx

exists. Hence

[f, g] = lim
T→∞

[f, g]T = lim
T→∞

1

2T

T
∫

−T

f(x)g(x) dx

is well defined for all Bohr functions f and g.

The Bohr transform of f is the function

fB(λ) = [f, eλ].

The mean value of f (sometimes referred to as M(f)) is given by

M(f) = fB(0) = [f, 1].

For example, if f(x) = a+ beix + ce
√
2ix, then

M(f) = [f, 1] = lim
T→∞

1

2T

T
∫

−T

(a+ beix + ce
√
2ix) dx

= lim
T→∞

1

2T
[ax]T−T +

b

i
[eix]T−T +

c

i
√
2
[ei

√
2x]T−T

= lim
T→∞

(a+
b

T

eiT − e−iT

2i
+

c√
2T

ei
√
2T − e−i

√
2T

2i
)

= lim
T→∞

(a+ b
sinT

T
+

c√
2

sin
√
2T

T
)

= a.

Definition 6.1.11. Let f ∈ Cb(R) be a Bohr function. The Bohr spectrum

of f is the set
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Λf = {λ ∈ R : [f, eλ] 6= 0}.

Theorem 6.1.12. Let f be a Bohr function. Then Bessel’s inequality holds,

in the following form:

[f, f ] ≥
n
∑

k=1

|[f, eλk
]|2

for all distinct λ1, . . . , λn ∈ R. Hence [f, eλ] 6= 0 for at most a countable set

of λ ∈ R.

Theorem 6.1.13 (Uniqueness theorem). Let f be a Bohr function such that

[f, eλ] = 0 for all λ ∈ R. Then f is identically zero.

Theorem 6.1.14 (Parseval’s identity). Let f be a Bohr function. Then

[f, f ] =
∑

λ∈R
|f, eλ|2.

The main theorem in the theory of almost periodic functions states that

every almost periodic function in the sense of Bohr is the uniform limit

of trigonometric polynomials. The approach to finding the approximating

polynomials, is analogous to Fejér’s theorem for periodic functions.

Theorem 6.1.15. Let f be a Bohr function. Then f can be approximated

uniformly by trigonometric polynomials.

6.2 Multi-Variable Almost Periodic Functions

In this section we develop the theory of almost periodic functions of two

variables in complete detail, following the approach of Partington [55] and
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using similar terminology. Once the two variables theory is complete, the

extension to higher dimensions is a routine generalization.

Definition 6.2.1. The class AP (R2) of uniformly almost periodic functions

is the closed linear span in L∞(R2) of the set of functions (e(λ,γ))(λ,γ)∈R2 ,

e(λ,γ)(x, y) = ei(λx+γy).

An evidently equivalent definition is the following:

Definition 6.2.2 (Approximation by trigonometric polynomials). Let f :

R2 → C we say that f is uniformly almost periodic if for all ǫ > 0 there

exists a trigonometric polynomial P : R2 → C such that:

|f(x, y)− P (x, y)| < ǫ for all x, y ∈ R.

Since the uniform limit of a continuous function is continuous, it follows

that the set of almost periodic functions AP (R2) is a subset of the class

Cb(R
2) of all continuous bounded functions on R2.

Definition 6.2.3. Let f : R2 → C be any function on R2 and λ, γ ∈ R. The

right shift R(λ,γ) of f is defined by

(R(λ,γ)f)(x, y) = f(x− λ, y − γ).

Definition 6.2.4. Let f : R2 → C be a continuous function. A vector

(λ, γ) ∈ R2 is called an ǫ-translation vector of f if

‖R(λ,γ)f − f‖∞ ≤ ǫ.
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Definition 6.2.5. A set S ⊆ R2 is said to be relatively dense if there exists

an L > 0 such that every square of side length L contains an element of S.

Definition 6.2.6. Let f be a function f : R2 → C. Then

i. f is a Bohr function if f is continuous and for every ǫ > 0 the set of

ǫ-translation vectors of f is relatively dense.

ii. f satisfies Bochner’s condition if it is continuous and bounded and

the set of translates {R(λ,γ)f, (λ, γ) ∈ R2} is relatively compact in

Cb(R
2).

In the development below translation vectors in R2 replace translation

lengths in the one-variable theory, and squares in R2 replace intervals. At

certain points in the development we have to do extra work to obtain the

desired estimates, such as in the integral estimates for Proposition 6.2.10.

However, we are able to generalize the entire single variable theory indicated

above with natural adaptations of the one variable theory.

Theorem 6.2.7. The class of Bohr functions coincides with the class of

functions satisfying the Bochner condition.

Proof. 1. To prove that Bohr functions satisfy Bochner’s condition we need

to prove:

a. Every Bohr function is bounded;

b. Every Bohr function is uniformly continuous.
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Proof of a: Let f : R2 → C be a Bohr function, and let L be such that every

square of side length L contains a 1-translation vector of f . If (x, y) ∈ R2 is

arbitrary, then there exists a 1-translation vector (λ, γ) of f for which (λ, γ)

lies in the square [x − L, x] × [y − L, y]. Since f is continuous, there exists

M > 0 such that |f(x, y)| ≤ M for all x, y ∈ [0, L]. Now we have

|f(x, y)| ≤ |f(x− λ, y − γ)|+ |f(x− λ, y − γ)− f(x, y)| ≤ M + 1,

and f is bounded.

Proof of b: Let f be a Bohr function and ǫ > 0, and let L be such

that every square of edge length L contains an ǫ/3-translation vector of f .

Since f is uniformly continuous on the closed square [0, L+ 1]2, there exists

δ = δ(ǫ/3), 0 < δ < 1 such that:

|f(x1, y1)− f(x2, y2)| < ǫ

whenever

(x1, y1), (x2, y2) ∈ [0, L+ 1]2 and ‖(x1, y1)− (x2, y2)‖ < δ.

Given any (x′
1, y

′
1), (x

′
2, y

′
2) ∈ R2 with ‖(x′

1, y
′
1)− (x′

2, y
′
2)‖2 < δ,

we can find an ǫ/3-translation vector (λ, γ) ∈ R2 such that the points

(x1, y1) = (x′
1, y

′
1)−(λ, γ), (x2, y2) = (x′

2, y
′
2)−(λ, γ) lie in the square [0, L+1]2.

Since ‖(x′
1 − λ, y′1 − γ)− (x′

2 − λ, y′2 − γ)‖ = ‖(x′
1, y

′
1)− (x′

2, y
′
2)‖ < δ
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we can deduce that:

|f(x′
1, y

′
1)− f(x′

2, y
′
2)| ≤ |f(x′

1, y
′
1)− f(x′

1 − λ, y′1 − γ)|

+ |f(x′
1 − λ, y′1 − γ)− f(x′

2 − λ, y′2 − γ)|

+ |f(x′
2, y

′
2)− f(x′

2 − λ, y′2 − γ)|

< ǫ.

Now to prove 1, suppose, if possible, that f is a Bohr function that

is not a Bochner function. It follows that there exists a sequence with a

subsequence that is not uniformly convergent. Therefore, for some ǫ > 0 we

have a sequence ((λk, γk))
∞
k=1 such that

‖R(λj ,γj)f −R(λk,γk)f‖∞ > ǫ for all j 6= k.

But f is a Bohr function which implies that there exists an L > 0 such that

every L-square contains an ǫ/4-translation vector of f .

Write (λk, γk) = (τk+δk, τ
′
k+δ′k) where (τk, τ

′
k) is an ǫ/4-translation vector

of f and (δk, δ
′
k) lies in the square [0, L]2. Thus ‖R(λk,γk)f−R(δk,δ

′
k
)f‖∞ ≤ ǫ/4

for all k. By passing to a subsequence and relabelling, we may suppose that

((δk, δ
′
k)) converges with limit (δ, δ′), say. Therefore ‖(δk, δ′k) − (δ, δ′)‖ → 0

and by uniform continuity, there exists a k0 ∈ N such that ‖R(δk,δ
′
k
)f −

R(δ,δ′)f‖∞ ≤ ǫ/4 for all k ≥ k0.
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Thus for j, k ≥ k0 we have:

‖R(λj ,γj)f −R(λk,γk)f‖∞ ≤ ‖R(λj ,γj)f −R(δj ,δ′j)
f‖

+ ‖R(δj ,δ′j)
f −R(δ,δ′)f‖

+ ‖R(δ,δ′)f −R(δk,δ
′
k
)f‖

+ ‖R(δk,δ
′
k
)f −R(λk,γk)f‖

≤ ǫ

which is a contradiction and shows that “Bohr implies Bochner”.

2. Now we will prove that “Bochner implies Bohr”:

Assume that f is not a Bohr function, then there exists an ǫ > 0 for which the

set Sǫ of ǫ-translation vectors of f is not relatively dense. Take (c1, c
′
1) = (1, 1)

and let (a2, b2)× (a′2, b
′
2) be a square such that

|b2 − a2| > 2|c1| and |b′2 − a′2| > 2|c′1|

and contains no ǫ-translation vector of f . Let (c2, c
′
2) = (

a2 + b2
2

,
a′2 + b′2

2
) be

the central point of the square, then,

(c2, c
′
2)− (c1, c

′
1) = (

a2 + b2
2

− c1,
a′2 + b′2

2
− c′1)

lies in the square (a2, b2) × (a′2, b
′
2) and therefore cannot be an ǫ-translation

vector of f . Then there exists a square (a3, b3) × (a′3, b
′
3) which does not

contain an ǫ-translation vector of f such that

|b3 − a3| > 2(|c1|+ |c2|) and |b′3 − a′3| > 2(|c′1|+ |c′2|).

152



Proceeding in this way we may define the squares (an, bn)×(a′n, b
′
n) such that

|bn − an| > 2(|c1|+ · · ·+ |cn−1|) and |b′n − a′n| > 2(|c′1|+ · · ·+ |c′n−1|).

and containing no element of Sǫ where

(ck, c
′
k) = (

ak + bk
2

,
a′k + b′k

2
), 1 ≤ k < n.

If 1 ≤ k < n, then (cn, c
′
n)− (ck, c

′
k) /∈ Sǫ. Now

‖R(cn,c′n)f −R(ck,c
′
k
)f‖∞ = ‖R(cn,c′n)−(ck,c

′
k
)f − f‖ > ǫ

and so f does not satisfy the Bochner condition.

Corollary 6.2.8. The Bohr functions form a closed linear subspace of Cb(R
2)

and hence every function in AP (R2) is a Bohr function.

Proof. If f1, f2 are Bohr functions, and c1, c2 are complex constants, and

((λk, γk)) is a sequence in R2, then, by passing to a subsequence and re-

labelling, we may suppose without loss of generality that (R(λk,γk)f1) and

(R(λk,γk)f2) are convergent sequences in Cb(R
2). It now follows easily that

(R(λk,γk)(c1f1+c2f2)) is a convergent sequence in R2, and therefore c1f1+c2f2

is a Bohr function.

Moreover, the class of Bohr functions is closed, in other words, if (fn) is a

sequence of Bohr functions converging to f , then f is a Bohr function too.

To prove this let fn → f then

∀ ǫ > 0, ∃n0 ∈ N such that ‖fn − f‖∞ < ǫ whenever n ≥ n0.
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In particular, the above statement is true for ǫ/3 in place of ǫ and some

n = n0:

‖fn0 − f‖ < ǫ/3.

Let (λ, γ) be an ǫ-translation vector of fn0 , then

‖R(λ,γ)f − f‖∞ < ‖R(λ,γ)f −R(λ,γ)fn0‖

+ ‖R(λ,γ)fn0 − fn0‖

+ ‖fn0 − f‖

< ǫ

and so (λ, γ) is an ǫ-translation vector of f . Thus, if g is in the closure of

the set of Bohr functions, we can find a relatively dense set of ǫ-translation

vectors for g by taking a relatively dense set of ǫ/3-translation vectors for any

Bohr function f with ‖f − g‖∞ < ǫ/3. Thus g is also a Bohr function.

Corollary 6.2.9. The Bohr functions form a closed subalgebra of Cb(R
2).

Proof. To prove this all it remains to show is that the point-wise product

of two Bohr functions f1.f2 is a Bohr function. If f1, f2 are Bohr functions,

and ((λk, γk)) is a sequence in R2, then, by passing to a subsequence and

relabelling, we may suppose without loss of generality that (R(λk,γk)f1) and

(R(λk,γk)f2) are convergent sequences in Cb(R
2). It now follows easily that

(R(λk,γk)(f1.f2)) is a convergent sequence in R2, and therefore f1.f2 is a Bohr

function.
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We will now prove that every Bohr function f is a limit of trigonometric

polynomials, that is, finite linear combinations of the functions e(λ,γ). To do

this, we need to determine a countable set of frequencies that are present in

f .

Proposition 6.2.10. Let f ∈ Cb(R
2) be a Bohr function. Then

[f, 1] = lim
T→∞

[f, 1]T = lim
T→∞

1

4T 2

∫

[−T,T ]2
f(x, y) dx dy

exists. Hence

[f, g] = lim
T→∞

[f, g]T = lim
T→∞

1

4T 2

∫

[−T,T ]2
f(x, y)g(x, y) dx dy

is well defined for all Bohr functions f and g.

Proof. Suppose that T > 0 and M = ‖f‖∞. Given ǫ > 0 let L be such that

every square of edge length L contains an ǫ-translation vector of f . Write

1

4n2T 2

∫

[−nT,nT ]2

f(x, y) dx dy

=
1

4n2T 2

n−1
∑

k=−n

n−1
∑

k′=−n

∫

[kT,(k+1)T ]

∫

[k′T,(k′+1)T ]

f(x, y) dx dy

and suppose that T > max{L,ML/ǫ} then if (λ, γ) is an ǫ-translation vector
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kT

k′T

λ

γ

(k + 1)T T + λ

(k′ + 1)T

γ + T

Figure 6.1: The area of integration (proof of Proposition 6.2.10)

of f in [kT, kT + L]× [k′T, k′T + L] we have

∫

[kT,(k+1)T ]

∫

[k′T,(k′+1)T ]

f(x, y) dx dy =

∫

[0,T ]2

f(x, y) dx dy

+

∫

[0,T ]2

(f(x+ λ, y + γ)− f(x, y)) dx dy

−
∫

[(k+1)T,T+λ]×[γ,(k′+1)T ]

f(x, y) dx dy

−
∫

[(k+1)T,T+λ]×[(k′+1)T,T+γ]

f(x, y) dx dy

−
∫

[λ,(k+1)T ]×[(k′+1)T,T+γ]

f(x, y) dx dy
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+

∫

[kT,λ]×[γ,(k′+1)T ]

f(x, y) dx dy

+

∫

[kT,λ]×[k′T,γ]

f(x, y) dx dy

+

∫

[λ,(k+1)T ]×[k′T,γ]

f(x, y) dx dy.

Starting from the second integral, we may bound the terms in the last equality

using the “size of the function” times the “length of the interval” rule. Hence

adding up the 4n2 terms in the sum we obtain

|[f, 1]nT − [f, 1]T | ≤ ǫ+ 6
ML2

T 2
< 7ǫ.

In particular, [f, 1]nT remains bounded. For U > 0 sufficiently large, choose

n such that n2T 2 < U2 < (n2 + 1)T 2. Then

|[f, 1]U − [f, 1]nT | ≤ |[f, 1]U − n2T 2

U2
[f, 1]nT |+ |n

2T 2

U2
− 1||[f, 1]nT |

≤ 1

4U2
4MT 2 +

1

n2
|[f, 1]nT |

≤ M

n2
+

1

n2
|[f, 1]nT |

< ǫ

if U is sufficiently large. Thus

|[f, 1]U − [f, 1]T | < 8ǫ

if U is sufficiently large. This gives |[f, 1]U − [f, 1]V | < 16ǫ when U and V

are sufficiently large, implying the existence of the limit [f, 1].
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Note also that [f, g] = [fg, 1] is defined for all Bohr functions f and g,

since the product f.g is also a Bohr function.

Definition 6.2.11. Let f1 and f2 be Bohr functions then the correlation or

covariance function of f1 and f2 is defined for (x, y) ∈ R2 by

φf1,f2(x, y) = [R(−x,−y)f1, f2] = lim
T→∞

1

4T 2

∫

[−T,T ]2
f1(x+ s, y + t)f2(s, t) ds dt.

Proposition 6.2.12. If f1 and f2 are Bohr functions, then so is the covari-

ance function φ = φf1,f2. Moreover, [R(−x,−y)f1, f2]T → φf1,f2(x, y) uniformly

in (x, y) as T → ∞. Also, [R(−x,−y)f1, f2] = [f1, R(x,y)f2].

Proof. Since φ(x− λ, y − γ)− φ(x, y) is equal to

lim
T→∞

1

4T 2

∫

[−T,T ]2
(f1(x+ s− λ, y + t− γ)− f1(x+ s, y + t)) f2(s, t) ds dt

we have

‖R(λ,γ)φ− φ‖∞ ≤ ‖R(λ,γ)f1 − f1‖∞‖f2‖∞

from which we conclude that φ is also a Bohr function, since a δ-translation

vector of f1 is an ǫ-translation vector of φ as soon as δ‖f2‖∞ ≤ ǫ.

For any fixed (x, y), the convergence of [R(−x,−y)f1, f2]T is clear from Propo-

sition 6.2.10. Now, given ǫ > 0 we may use the Bochner property of f1 to

find (x1, y1), . . . , (xn, yn) ∈ R2 such that for each (x, y) ∈ R2 there is a k with

‖R(−x,−y)f1 −R(−xk,−yk)f1‖∞ < ǫ.
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Thus

|[R(−x,−y)f1, f2]T − [R(−xk,−yk)f1, f2]T | < ǫ‖f2‖∞

for all T > 0. Moreover, there is a number T0 such that

|[R(−xk,−yk)f1, f2]T − [R(−xk,−yk)f1, f2]| < ǫ

for all T ≥ T0, for all the finite collection k = 1, . . . , n.

By the triangle inequality, if T ≥ T0, then

|[R(−x,−y)f1, f2]T − [R(−x,−y)f1, f2]| ≤ |[R(−x,−y)f1, f2]T − [R(−xk,−yk)f1, f2]T |

+ |[R(−xk,−yk)f1, f2]T − [R(−xk,−yk)f1, f2]|

+ |[R(−xk,−yk)f1, f2]− [R(−x,−y)f1, f2]|

< ǫ‖f2‖∞ + ǫ+ ǫ‖f2‖∞

= ǫ(1 + 2‖f2‖∞)

for all (x, y). Note that

[

R(−x,−y)f1, f2
]

T
=

1

4T 2

∫

[−T,T ]2

f1(x+ s, y + t)f2(s, t) ds dt

=
1

4T 2

∫

[−T+y,T+y]

∫

[−T+x,T+x]

f1(u, v)f2(u− x, v − y) du dv

= [f1, R(x,y)f2]T + δ(T )
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where |δ(T )| ≤ ‖(x, y)‖‖f1‖∞‖f2‖∞/T 2, and so

[R(−x,−y)f1, f2] = [f1, R(x,y)f2].

Note that the mapping (f, g) 7→ [f, g] satisfies all the axioms for an inner

product on the class of Bohr functions except possibly the positive definite-

ness condition. In fact, it satisfies that too, we will prove this in Theorem

6.2.14. This enables us to develop an inner product space theory of almost

periodic functions in a simple manner. Recall that, in any inner product

space, if u1, . . . , un is an orthonormal sequence and x any vector, then set-

ting

u =
n
∑

k=1

〈x, uk〉uk

we have that x− u is orthogonal to every uk and hence it is orthogonal to u

itself. By Pythagoras’s theorem

‖x‖2 = ‖x− u‖2 + ‖u‖2 ≥ ‖u‖2 =
n

∑

k=1

|〈x, uk〉|2 (6.1)

which is Bessel’s inequality.

Theorem 6.2.13. Let f be a Bohr function. Then Bessel’s inequality holds,

in the following form

[f, f ] ≥
n
∑

k=1

|[f, e(λk,γk)]|2
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for all distinct (λ1, γ1), . . . , (λn, γn) ∈ R2. Hence [f, e(λ,γ)] 6= 0 for at most a

countable set of (λ, γ) ∈ R2.

Proof. Bessel’s inequality can be obtained directly from 6.1, writing f for x

and e(λk,γk) for uk. This implies that, for anyN > 1, we have [f, e(λ,γ)] > 1/N2

for at most finitely many (λ, γ). Hence the total number of non-zero Fourier

coefficients [f, e(λ,γ)] is at most countable.

We can now prove that (f, g) 7→ [f, g] is a genuine inner product on the

Bohr functions, that is positive definite.

Theorem 6.2.14. Let f be a Bohr function that is not identically zero. Then

[f, f ] > 0.

Proof. If f is not identically zero, then there is an ǫ > 0 and an (a, b) ∈ R2

such that |f(a, b)| > ǫ. By continuity, we may find δ > 0 such that |f | > ǫ/2

on the square (a− δ, a+ δ)× (b− δ, b+ δ). Let L be such that every square

of side length L contains an ǫ/4-translation vector of f . Then for n ≥ 1 we

have

1

4n2L2

∫

[−nL,nL]2
|f(x, y)|2 dx dy ≥ δ2ǫ2

16L2
.

To see this note that each square [kL−a, (k′+1)L−a]× [kL−b, (k′+1)L−b]

contains an ǫ/4-translation vector (µ, τ) of f , implying that |f | > ǫ/4 on

(a+ µ− δ, a+ µ− δ)× (b+ τ − δ, b+ τ − δ) ∩ [kL, (k′ + 1)L]2;
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this has area at least δ2 since (a + µk, b + τk) ∈ [kL, (k + 1)L]2. Hence

[f, f ] ≥ δ2ǫ2

16L2
as required.

Remark 6.2.15. Suppose that (fk) is a sequence of Bohr functions for which

[fk−f, fk−f ] → 0 for some Bohr function f . If an additional property holds,

namely, that for each ǫ > 0 every ǫ-translation vector of f is an ǫ-translation

vector of all the functions fk, then it follows by the same argument as above

that fk tends to f uniformly.

Lemma 6.2.16. Suppose that f is a Bohr function such that [f, e(λ,γ)] = 0

for all (λ, γ) ∈ R2. Then [f, e(λ,γ)]T → 0 uniformly as T → ∞ uniformly in

(λ, γ).

Proof. Suppose the contrary, so that
∣

∣[f, e(λn,γn)]Tn

∣

∣ ≥ ǫ > 0 for sequences

(λn, γn) ⊂ R2 and Tn tending to ∞. Observe that, for all (λ, γ) 6= (0, 0),

[

f, e(λ,γ)
]

T
=

1

4T 2

∫

[−T,T ]2
f(x, y)e−i(λx+γy) dx dy

which is equal to

1

4T 2

∫

[−T+π
γ
,T+π

γ
]

∫

[−T+π
λ
,T+π

λ
]

f(x− π
λ
, y − π

γ
).e−i(λ(x−π

λ
)+γ(y−π

γ
)) dx dy.

It follows that [f, e(λ,γ)]T is equal to

1

8T 2

∫

[−T,T ]2
(f(x, y)− f(x− π

λ
, y − π

γ
))e−i(λx+γy) dx dy + δ(λ, γ),

where the first term tends to zero uniformly (in T ) as ‖(λ, γ)‖ → ∞, by the
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uniform continuity of f , and

δ(λ, γ) =
−1

8T
(

−T
∫

−T+π
γ

−T
∫

−T+π
λ

+

T+π
γ

∫

T

T+π
λ

∫

T

)(f(x− π

λ
, y − π

γ
))e−i(λx+γy) dx dy

= O(
1

T
(
1

λ
,
1

γ
)).

It follows that the given sequence (λn, γn) must remain bounded and has

a convergent subsequence. By relabelling we may suppose without loss of

generality that (λn, γn) → (λ, γ). Write (λn, γn) = (λn + δn, γn + µn) where

(δn, µn) → (0, 0). By Theorem 6.2.12,

[R(−s,−t)f, e(λ,γ)]U → [R(−s,−t)f, e(λ,γ)] = [f,R(s,t)e(λ,γ)] = 0

uniformly in (s, t) as U → ∞, so we can find a number U0 > 0 such that
∣

∣[R(−s,−t)f, e(λ,γ)]U
∣

∣ < ǫ/2 for all U ≥ U0 and all (s, t) ∈ R2. Now, given

Tn > U0, we may write Tn = NU for some U with U0 < U < 2U0 and N ∈ N,

both depending on n. Therefore

[

f, e(λn,γn)

]

Tn
=

1

N2

N−1
∑

j=0

N−1
∑

k=0

e−i(λn(2j+1−N)U+γn(2k+1−N)U)

.
1

4U2

∫

[−U,U ]2

f(x+ (2j + 1−N)U, y + (2k + 1−N)U)

.e−i(λnx+γny)e−i(δnx+µny) dx dy.

But e−i(δnx+µny) → 1 as n → ∞ uniformly for (x, y) ∈ [−2U0, 2U0]
2 so that

∣

∣[f, e(λn,γn)]Tn

∣

∣ < ǫ for sufficiently large n. This is a contradiction, and the
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result follows.

Theorem 6.2.17 (Uniqueness theorem). Let f be a Bohr function such that

[f, e(λ,γ)] = 0 for all (λ, γ) ∈ R2. Then f is identically zero.

Proof. We begin by defining for each T > 0 an auxiliary function fT that

equals f on the square (−T, T )2 and is (2T, 2T )-periodic. Thus f has a

Fourier series

fT (x, y) ∼
∞
∑

j,k=−∞
aj,ke

i(πjx/T+πky/T ),

and Parseval’s identity gives us

1

4T 2

∫

[−T,T ]2
|f(x, y)| dx dy =

∞
∑

j,k=−∞
|aj,k|2.

The proof now proceeds by working with the quantity
∞
∑

j,k=−∞
|aj,k|4, which

depends on T ; we note that, given ǫ > 0, we have for sufficiently large T that

|aj,k| =
∣

∣

∣
[f, e(πj

T
,πk
T

)]T

∣

∣

∣
< ǫ for all j, k by Lemma 6.2.16 Thus

∞
∑

j,k=−∞
|aj,k|4 < ǫ2

∞
∑

j,k=−∞
|aj,k|2 ≤ ǫ2 ‖f‖2∞ . (6.2)

We now construct a new (2T, 2T )-periodic function gT (an autocorrelation

function) defined by

gT (x, y) =
1

4T 2

∫

[−T,T ]2

fT (x+ s, y + t)fT (s, t) ds dt. (6.3)
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We can verify that the Fourier coefficients of gT are equal to |aj,k|2 by a simple

change of order of integration or by an approximation argument based on the

relation for finite sums:

1

4T 2

∫

[−T,T ]2

(
N
∑

j,k=−N

aj,ke
i(πj(x+s)/T+πk(y+t)/T ))

.(
N
∑

l,m=−N

al,me
−i(πls/T+πmt/T )) ds dt

=
N
∑

j,k=−N

|aj,k|2 ei(πjx/T+πky/T ).

To obtain a function with coefficients |aj,k|4, it is enough to repeat the con-

struction and define

hT (x, y) =
1

4T 2

∫

[−T,T ]2

gT (x+ s, y + t)gT (s, t) ds dt. (6.4)

Now hT (0, 0) =
∞
∑

j,k=−∞
|aj,k|4, because the Fourier series of hT converges

absolutely and hence pointwise. This tends to zero as T → ∞ by 6.2, and

so [gT , gT ]T → 0 as T → ∞ by 6.4. Now take Tn → ∞ such that (Tn, Tn) is
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an 1/n-translation vector of f and note that, for (x, y) ∈ [0, Tn]
2, we have

gT (x, y) =
1

4T 2

∫

[−Tn,Tn−y]

∫

[−Tn,Tn−x]

f(x+ s, y + t)f(s, t) ds dt

+
1

4T 2

∫

[−Tn−y,Tn]

∫

[−Tn−x,Tn]

f(x+ s− Tn, y + t− Tn)f(s, t) ds dt

=
1

4T 2

∫

[−Tn,Tn]2

f(x+ s, y + t)f(s, t) ds dt+ δn

where |δn| ≤ ‖f‖2∞ /n2 and the same estimate holds for (x, y) ∈ [−Tn, 0]
2.

Recall from Proposition 6.2.12 that the function g : R2 → C defined by

g(x, y) = [R(−x,−y)f, f ] = lim
U→∞

1

4U2

∫

[−U,U ]2
f(x+ s, y + t)f(s, t) ds dt

is also a Bohr function and the convergence of the right hand side to g(x, y)

as U → ∞ is uniform in (x, y). We see therefore that

ηn = sup{|gTn
(x, y)− g(x, y)| : (x, y) ∈ [−Tn, Tn]

2} → 0 as n → ∞.

Moreover,

|[gTn
, gTn

]Tn
− [g, g]Tn

| ≤ 1

4T 2

∫

[−Tn,Tn]2

(|gTn
(x, y)|+ |g(x, y)|)

.(|gTn
(x, y)− g(x, y)|) dx dy

≤ 4 ‖f‖4∞ η2n

which tends to zero as n tends to infinity, Thus [g, g] = 0, and so g is

identically zero by Theorem 6.2.14. But g(0, 0) = [f, f ], and we conclude
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that f is identically zero.

Theorem 6.2.18 (Parseval’s identity). Let f be a Bohr function. Then

[f, f ] =
∑

(λ,γ)∈R2

∣

∣[f, e(λ,γ)
∣

∣

2
.

Proof. Working again with the almost periodic covariance function g = φf,f

note that

[g, e(λ,γ)] = lim
T→∞

lim
X→∞

1

4X2

∫

[−X,X]2
e−i(λx+γy)[R(−x,−y)f, f ]T dx dy

since [R(−x,−y)f, f ]T → g(x, y) uniformly on R2, by Proposition 6.2.12. Using

Fubini’s theorem, this gives

[

g, e(λ,γ)
]

= lim
T→∞

lim
X→∞

1

4X2

∫

[−X,X]2

1

4T 2

∫

[−T,T ]2

e−i(λ(x+s)+γ(y+t))ei(λs+γt)

f(x+ s, y + t)f(s, t) ds dt

=
1

4T 2

∫

[−T,T ]2

[f, e(λ,γ)]e
i(λs+γt)f(s, t) ds dt

=
∣

∣[f, e(λ,γ)]
∣

∣

2
.

Now
∑

(λ,γ)∈R2

∣

∣[f, e(λ,γ)]
∣

∣

2
< ∞, by Theorem 6.2.13, and so the series

∑

(λ,γ)∈R2

∣

∣[f, e(λ,γ)]
∣

∣

2
e(λ,γ)

converges to a Bohr function h whose Fourier coefficients satisfy [h, e(λ,γ)] =
∣

∣[f, e(λ,γ)]
∣

∣

2
for all (λ, γ) because of the uniform convergence, and hence g =

h by the uniqueness theorem. Evaluating at (x, y) = (0, 0), we find that
∑

(λ,γ)∈R2

∣

∣[f, e(λ,γ)]
∣

∣

2
= g(0, 0) = [f, f ] as required.
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It remains to show that every Bohr function is in AP (R2), the closed linear

span of the functions e(λ,γ). To do this, we take an arbitrary Bohr function

f and consider the set Λ = {(λ, γ) ∈ R2 : [f, e(λ,γ)] 6= 0}. If this set is finite,

then there is no problem, since we form the trigonometric polynomial

h =
∑

(λ,γ)∈Λ
[f, e(λ,γ)]e(λ,γ). Now h has the same Fourier coefficients as f , and

so, by the uniqueness theorem, f = h. We may therefore suppose without

loss of generality that Λ is countably infinite, say

Λ = {(λ1, γ1), (λ2, γ2), . . . }.

The first step in the approximation procedure is to reduce Λ to a maximal

subset B = {(α1, β1), (α2, β2), . . . } (possibly finite) that is linearly indepen-

dent over Q. This can be done recursively, by successively deleting (λk, γk) if

it is a linear combination with rational coefficients of (λj, γj) for j < k. We

shall assume without loss of generality that B is countably infinite (if not, we

extend it to a countably independent set by adding in new members). For a

fixed positive integer n, let En be the finite set consisting of members of the

form

(λ, γ) = (
n
∑

k=1

mk

n!
αk,

n
∑

k=1

m′
k

n!
βk)

where mk,m
′
k ∈ Z and |mk| ≤ n.n!, |m′

k| ≤ n.n! for each k. Since any

rational coefficient p/q can be written as m/n! and m′/n! with |m| ≤ n.n!,

|m′| ≤ n.n! for a sufficiently large n, then Λ ⊆ E = ∪∞
n=1En.

Definition 6.2.19. Given a countable set B = {(α1, β1), (α2, β2), . . . }, lin-

early independent over Q, and a positive integer n, the Fejér-Bochner kernel
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K ′
n corresponding to B is given by

K ′
n(s, t) =

n
∏

k=1

Kn.n!−1(
αks

n!
,
βkt

n!
),

where K denotes the “standard” Fejér kernel, defined for p ∈ Z+ and (ρ, ω) ∈

R2 by the formula

Kp(ρ, ω) = Kp(ρ)Kp(ω) =
p+1
∑

m=−p−1

p+1
∑

m′=−p−1

(1− |m|
p+ 1

)(1− |m′|
p+ 1

)ei(mρ+m′ω).

We may write K ′
n(s, t) =

∑

(λ,γ)∈En

kn(λ, γ)e
i(λs+γt), in which case the following

holds

1. K ′
n ≥ 0 for all (s, t) ∈ R2,since K ′

n is a product of “standard” Fejér

kernels;

2. kn(λ, γ) = kn(−λ,−γ) for each (λ, γ), and henceK ′
n(s, t) = K ′

n(−s,−t)

for all (s, t) ∈ R2; also kn(0, 0) = 1;

3. for each (λ, γ) ∈ E, we have 0 ≤ kn(λ, γ) ≤ 1 for all n, and kn(λ, γ) → 1

as n → ∞.

Part 3 holds because, if

(λ, γ) = (
r
∑

k=1

mk

r!
αk,

r
∑

k=1

m′
k

r!
βk) ∈ Er,

then

kn(λ, γ) =
r
∏

k=1

(1− |mk|
n.n!

)
r
∏

k=1

(1− |m′
k|

n.n!
)

if n ≥ r, and this tends to 1 as n → ∞.
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Using this kernel, we are now able to prove following fundamental approxi-

mation theorem. It is the explicit formula aspect, for the approximants, that

we shall find particularly useful for almost periodic flexes in Chapter 7.

Theorem 6.2.20. Given a Bohr function f , let (fn)
∞
n=1 denote the sequence

of trigonometric polynomials defined by

fn(x, y) = [R(−x,−y)f,K
′
n]

= [f,R(x,y)K
′
n]

= lim
T→∞

1

4T 2

∫

[−T,T ]2

f(s, t)K ′
n(s− x, t− y) ds dt, (x, y) ∈ R2.

Then ‖f − fn‖ → 0 as n → ∞ and thus f is almost periodic.

Proof. Observe that for (x, y) ∈ R2 we have

fn(x, y) =
∑

(λ,γ)∈En

[f, kn(λ, γ)R(x,y)e(λ,γ)]

=
∑

(λ,γ)∈En

kn(λ, γ)[f, e(λ,γ)]e(λ,γ)(x, y).

Using Parseval’s identity, it is clear by the dominated convergence theorem

that [f − fn, f − fn] → 0, since [f − fn, e(λ,γ)] → 0 for all (λ, γ) and
∣

∣[f − fn, e(λ,γ)]
∣

∣ ≤
∣

∣[f, e(λ,γ)]
∣

∣ for each (λ, γ).

We observe that any ǫ-translation vector (κ, τ) pertaining to f is also an
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ǫ-translation vector of fn, since

|fn(x− κ, y − τ)− fn(x, y)| = [R(κ,τ)f − f,R(x,y)K
′
n]

≤ ǫ lim
T→∞

1

4T 2

∫

[−T,T ]2

K ′
n(s− x, t− y) ds dt = ǫ,

using the positivity of K ′
n and the fact that kn(0, 0) = 1. The proof is now

completed by using Remark 6.2.15.

We have now completed the circle of ideas that identifies the bi-variable

Bohr functions with the almost periodic functions, that is, the uniform limits

of trigonometric polynomials. In fact the theory of a single variable almost

periodic function can be deduced from that of a two variable function when

fixing one of the variables, as such an almost periodic function will be almost

periodic with respect to each one of those variables. Although one has to be

careful, since the converse is not true. For example f(x, y) = cos xy is almost

periodic in each variable separately when the other variable is fixed but f is

not an almost periodic function.

As mentioned previously, the next step of taking the theory of almost

periodic functions to higher dimensions is very much similar to the two di-

mensional case, we state some of the main definitions and statements:

Definition 6.2.21 (Approximation by trigonometric polynomials). Let f :

Rd → C we say that f is (uniformly) almost periodic u.a.p. if for all ǫ > 0
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there exists a trigonometric polynomial P : Rd → C such that:

|f(x)− P (x)| < ǫ for all vectors x ∈ Rd

we denote the set of all functions f satisfying the above condition by AP (Rd).

Definition 6.2.22. Let f : Rd → C be any function on Rd, the right shift

Rλ of f is defined by

(Rλf)(x) = f((xk − λk)
d
k=1).

Definition 6.2.23. Let f : Rd → C be a continuous function, a vector

λ ∈ Rd is called an ǫ-translation vector of f if

‖Rλf − f‖∞ ≤ ǫ.

Definition 6.2.24. A set S ⊆ Rd is said to be relatively dense if there exists

an L > 0 such that every d-dimensional box of side length L contains an

element of S.

Definition 6.2.25. Let f be a function f : Rd → C.

i. We say that f is a Bohr function if f is continuous and for every

ǫ > 0 the set of ǫ-translation vectors of f is relatively dense.

ii. We say that f satisfies Bochner’s condition if it is continuous and

bounded and the set of translates {Rλf, λ ∈ Rd} is relatively compact

in Cb(R
d).

As for an almost periodic function of two variables, the above definitions

of almost periodicity of functions on Rd are equivalent.
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Chapter 7

Almost Periodic Rigidity

We now consider infinitesimal flexes of a crystal framework which are almost

periodic in the sense of Bohr. We prove that a crystal framework is almost

periodically infinitesimally rigid if and only if for some choice of translation

group, and hence for every choice of translation group, it is periodically

infinitesimally rigid, and the corresponding RUM spectrum is the minimal set

{(1, 1, . . . , 1)}. More generally, we show how the almost periodic infinitesimal

flexes of C are determined in terms of the matrix function ΦC(z).

7.1 Almost Periodic Sequences

In this section we state some of the basic definitions regarding almost periodic

sequences in Zd. In the following section these definitions will be used to

introduce the notions of almost periodic velocities and flexes.
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Definition 7.1.1. The class AP (Z) of uniformly almost periodic sequences

is the closed linear span in ℓ∞(Z) of finite linear combinations of {eλ(n) : n ∈

Z}.

Definition 7.1.2. Let f : Z → C be any function on Z, the right shift Rk

of f is defined by

(Rkf)(n) = f(n− k).

Definition 7.1.3. Let f : Z → C be a function on Z. An integer k ∈ Z is

called an ǫ-translation number of f if

‖Rkf − f‖∞ ≤ ǫ.

Definition 7.1.4. A set S ⊆ Z is said to be relatively dense if there exists

an integer L > 0 such that among the integers in any interval of length L

there is an element of S.

Definition 7.1.5. Let f be a function f : Z → C. Then

i. f is a Bohr function if for every ǫ > 0 the set of ǫ-translation numbers

of f is relatively dense.

ii. f satisfies Bochner’s condition if any sequence of translates Rmk
f

has a subsequence that is uniformly convergent.

Theorem 7.1.6. Every Bohr sequence is bounded.
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Definition 7.1.7. A sequence f = (fm)
∞
m=1 of almost periodic sequences

fm = (fm(n))n∈Z converges to a sequence g = (g(n)) if limm→∞‖fm−g‖∞ = 0,

where ‖f‖∞ = supn∈Z‖f(n)‖2.

Theorem 7.1.8. A necessary and sufficient condition for f ∈ AP (Z) is the

existence of a function F ∈ AP (R) such that f(n) = F (n), n ∈ Z.

Theorem 7.1.9. Let f = (f(n)) be an almost periodic sequence. Then the

mean value

[f, 1] = lim
N→∞

1

2N + 1

N
∑

k=−N

f(k)

exists.

Definition 7.1.10. Let f be a function f : Z → C. The Bohr spectrum of

f is the set

Λf = {eiλ : lim
N→∞

1

2N + 1

N
∑

k=−N

f(k)e−iλk 6= 0}.

In the theory of almost periodic functions, the approximating polynomials,

are given by the covariance function of f and the corresponding Fejér-Bochner

kernelK ′
n. In the discrete case, following the same discussion as in continuous

functions, for the Bohr sequence f , the Fejér-Bochner kernel K ′
n can be

written

K ′
n(m) =

∑

λ∈En

kn(λ)e
iλm, m ∈ Z.

Using this kernel, we can state the approximation theorem.
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Theorem 7.1.11. Given a Bohr sequence f , let (gn) denote the sequence of

trigonometric polynomials defined by

gn(l) = [f,RlK
′
n] = lim

N→∞

1

2N + 1

N
∑

k=−N

f(k)K ′
n(k − l), l ∈ Z.

Then ‖f − gn‖∞ → 0 as n → ∞ and thus f is almost periodic.

The following Theorems are the “single variable version” of the corre-

sponding Theorems for velocity sequences and flexes of a crystal framework.

Understanding these cases will make it clear how the generalization in the

next section is obtained.

Theorem 7.1.12. Let f be a Bohr sequence and R : ℓ∞(Z) → ℓ∞(Z) a

continuous linear operator that commutes with shifts. If f ∈ kerR, then

g ∈ kerR where g is an approximating trigonometric sequence of f .

Proof. From the approximation theorem, f can be approximated by a se-

quence of linear combinations of “pure frequencies” eλ, λ ∈ R. Explicitly,
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the sequence f is the uniform limit of the sequence g = (gn), where for l ∈ Z:

gn(l) = [f,RlK
′
n]

= lim
N→∞

1

2N + 1

N
∑

k=−N

f(k)K ′
n(k − l)

=
∑

λ∈En

kn(λ) lim
N→∞

1

2N + 1

N
∑

k=−N

f(k)e−iλ(k−l)

=
∑

λ∈En

kn(λ) lim
N→∞

1

2N + 1

N
∑

k=−N

f(k)eiλ(l−k)

=
∑

λ∈En

kn(λ) lim
N→∞

1

2N + 1

l−N
∑

k′=l+N

f(l − k′)eiλk
′
.

Now we obtain

(R(gn))l = R(
∑

λ∈En

kn(λ) lim
N→∞

1

2N + 1

l−N
∑

k′=l+N

f(l − k′)eiλk
′
)

=
∑

λ∈En

kn(λ) lim
N→∞

1

2N + 1

l−N
∑

k′=l+N

R(f(l − k′))eiλk
′

=
∑

λ∈En

kn(λ) lim
N→∞

1

2N + 1

l−N
∑

k′=l+N

RRk′(f(l)e
iλk′).

But f ∈ kerR and R commutes with the shift from which it follows that

RRk′(f(l)) = Rk′R(f(l)) = 0 for all l ∈ Z.

Thus R(gn) is equal to the zero sequence and it follows from Theorem 7.1.11

that g lies in the kernel of R.
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Theorem 7.1.13. Let f = (f(k)) be a trigonometric polynomial sequence

where

f(k) =
r
∑

j=0

ajeλj
(k), eλj

(k) = eikλj ,

and let R be a linear operator R : ℓ∞(Z) → ℓ∞(Z) that commutes with the

shift operator. If f ∈ kerR, then for all j the pure frequency sequences lie in

kerR too, i.e.

(eλj
(k))k∈Z ∈ kerR for all j.

Proof. Note that for each j

(eλj
(k))k∈Z = (eikλj)k∈Z = (. . . , e−i2λj , e−iλj , 1, eiλj , ei2λj , . . . ).

Define

TN : ℓ∞(Z) → ℓ∞(Z)

such that

TN(f) =
1

N + 1

N
∑

r=1

W rf

where W r is the backward shift of the sequence by r steps. Since R is a linear

transformation and f is in the kernel of R and R commutes with shifts, it

follows that TN(f) lies in the kernel of R.

Suppose λ0 = 0, then eλ0 = (. . . , 1, 1, . . . ). It follows that TN(eλ0) = eλ0

for all N and the sequence (TN(a0eλ0)) = (a0eλ0) which converges to a0eλ0

as N → ∞ . When j = 1 note that
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(eλ1(k))k∈Z = (. . . , e−i2λ1 , e−iλ1, 1, eiλ1 , ei2λ1 , . . . )

and

TN(eλ1) =(. . . ,
e−iλ1 + · · ·+ e−i(N+1)λ1

N + 1
,

1 + e−iλ1 + · · ·+ e−iNλ1

N + 1
,

eiλ1 + 1 + e−iλ1 + · · ·+ e−i(N−1)λ1

N + 1
, . . . )

=(. . . , e−iλ1(
1 + e−iλ1 + · · ·+ e−iNλ1

N + 1
),

1 + e−iλ1 + · · ·+ e−iNλ1

N + 1
,

eiλ1(
1 + e−iλ1 + · · ·+ e−iNλ1

N + 1
), . . . ).

This is equal to the sequence (einλ1(
1

N + 1

N
∑

k=0

e−ikλ1))n∈Z which for λj 6= 0,

converges to the zero sequence as N → ∞. From all the above, we conclude

that

TN(f) =
r
∑

i=0

aλj
TN(eλj

) → a0eλ0 + 0 + · · ·+ 0.

Therefore TN(f) converges to the sequence (a0eλ0) and (a0eλ0) is in the kernel

of R.

Furthermore, if we write TN(f, eiλ1) =
1

N + 1

N
∑

r=1

e−irλ1W rf then this se-

quence converges to (a1eλ1), but TN(f, eiλ1) is in the kernel of R too, which

makes (a1eλ1) in the kernel as required.
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Proceeding in the same way, we find that in general, for each j, the se-

quences (ajeλj
) can be obtained as limits of the corresponding sequences (TN)

where TN(f, eiλj
) =

1

N + 1

N
∑

r=1

e−irλjW rf , and since (TN) is in the kernel of

R, it follows that the limit sequences (ajeλj
) are in the kernel of R.

7.2 Almost Periodic Velocities and Flexes

This section is dedicated to the development of the theory of almost periodic

infinitesimal velocities and flexes. Furthermore, we show that almost periodic

infinitesimal flexes can be determined in terms of the matrix function ΦC(z).

Note that the sequence eλ = (eλ(k))k∈Z = (eiλk)k∈Z in AP (Z), for λ ∈ R,

has a natural analogue for λ = (λ1, λ2, . . . , λd) in Rd. Also, for v = (vκ)

in Cd|Fv | we have phase-periodic (multi phase-periodic) velocity sequences in

AP (Zd,Cd|Fv |) given by k → ei〈λ,k〉vκ. We denote this sequence as veλ or

(veλ(k)).

Definition 7.2.1. Let C = (Fv, Fe,T) be a crystal framework in Rd. The

class AP (Zd,Cd|Fv |) of uniformly almost periodic velocity sequences is the

closed linear span (with respect to the ∞-norm: ‖vκ,k‖∞ = sup‖vκ,k‖2) of

the set of phase periodic velocity sequences.

Definition 7.2.2. The right shift for any velocity sequence v = (vκ,k) of the

crystal framework C in Rd is defined by

Rl(vκ,k) = vκ,k−l, l ∈ Zd.
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The right shift operators on the domain and co-domain of the rigidity

matrix R(C) for l ∈ Zd are denoted by RV
l and RE

l respectively. We note

that

R(C) ◦RV
l = RE

l ◦R(C).

Definition 7.2.3. Let ǫ > 0 and a velocity sequence v = (vκ,k) of the crystal

framework C be given. A vector l ∈ Zd is called an ǫ-translation vector of v

if

‖RV
l (v)− v‖∞ < ǫ.

A set S ⊆ Zd is said to be relatively dense if there exists an integer L > 0

such that every d-dimensional box with side length L in Z2 intersects S.

Definition 7.2.4. Let v = (vκ,k) be a velocity sequence of the crystal frame-

work C. Then

i. v is said to be Bohr almost periodic if for every ǫ > 0 the set of

ǫ-translation vectors of v = (vκ,k) is relatively dense.

ii. v satisfies Bochner’s condition if it is bounded and the set of trans-

lates {RV
l (v) : l ∈ Zd} is relatively compact.

Definition 7.2.5. Let v = (vκ,k) be a Bohr velocity sequence of C, the mean

value of v is defined to be

[v, 1] = lim
N1→∞

. . . lim
Nd→∞

d
∏

i=1

1

2Ni + 1

N1
∑

k1=−N1

· · ·
Nd
∑

kd=−Nd

vκ,k.
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The Bohr transform of v is a function of λ defined by λ → [v, eλ] where

[v, eλ] = lim
N1→∞

. . . lim
Nd→∞

d
∏

i=1

1

2Ni + 1

N1
∑

k1=−N1

· · ·
Nd
∑

kd=−Nd

vκ,ke
−i〈λ,k〉.

The Bohr spectrum of v is the set Λ(v,C) ⊆ Td of points (eiλ1 , . . . , eiλd) such

that [v, eλ] 6= 0.

Note that Λ(v,C) is a non-empty, at most countable set, and that this is

the uni-modular form of the spectrum.

In the case of Bohr almost periodic velocity sequences, the approximating

polynomials, as before, are given by the covariance function of v and the

corresponding Fejér-Bochner kernel K ′
n is given by

K ′
n(k) =

∑

λ∈En

kn(λ)e
i〈λ,k〉, k ∈ Zd.

Using this kernel, we can state the approximation theorem.

Theorem 7.2.6. Given a Bohr velocity sequence v = (vκ,k) of a crystal

framework C in Rd, let g = (g(n)) denote the sequence of trigonometric poly-

nomials defined for l ∈ Zd by

g
(n)
κ,l = [g,RlK

′
n]

= lim
N1→∞

. . . lim
Nd→∞

d
∏

i=1

1

2Ni + 1

N1
∑

k1=−N1

· · ·
Nd
∑

kd=−Nd

vκ,kK
′
n(k − l).

Then ‖v − g(n)‖∞ → 0 as n → ∞ and in particular v is an almost periodic

velocity sequence of C.
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The following theorem is key in understanding the relation between Bohr

flexes and phase periodic flexes. For notational simplicity we assume that

d = 2. However, the theorems below hold for d ≥ 3 with the same proof.

Theorem 7.2.7. Let v = (vκ,k) be a Bohr velocity sequence for the crystal

framework C in R2 and g = (g(n)) the approximating almost periodic velocity

sequence of v. If v is a flex of C, then each g(n) is also a flex of C.

Proof. Let v = (vκ,k) be a Bohr velocity sequence of C . Then it follows

from the approximation theorem that v is the norm limit of the sequence

g = (g(n)) of finite “vector” combinations of the pure frequencies {eλ}, λ ∈

R2. Moreover, v is the uniform limit of the explicit sequence (g(n)) where

g
(n)
κ,l = [g,RlK

′
n]

= lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

N1
∑

k1=−N1

N2
∑

k2=−N2

vκ,kK
′
n(k − l)

=
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

N1
∑

k1=−N1

N2
∑

k2=−N2

vκ,ke
−i〈λ,k−l〉

=
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

N1
∑

k1=−N1

N2
∑

k2=−N2

vκ,ke
i〈λ,l−k〉

=
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

l1−N1
∑

k′1=l1+N1

l2−N2
∑

k′2=l2+N2

vκ,l−k′e
i〈λ,k′〉.

Now for k = (k1, k2) ∈ Z2, let Sk be the shift Sk : vκ,l 7→ vκ,l−k and as before,

let SV
k and SE

k be the shift operators defined on the domain and codomain of

the rigidity matrix R(C) respectively. Using the fact that the rigidity matrix
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is a continuous linear transformation that commutes with these shifts, the

lth entry of R(g(n)) can be written as

R(g(n))l

= R(
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

l1−N1
∑

k′1=l1+N1

l2−N2
∑

k′2=l2+N2

vκ,l−k′e
i〈λ,k′〉)

=
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

l1−N1
∑

k′1=l1+N1

l2−N2
∑

k′2=l2+N2

R(vκ,l−k′)e
i〈λ,k′〉

=
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

l1−N1
∑

k′1=l1+N1

l2−N2
∑

k′2=l2+N2

RSV
k′(vκ,l)e

i〈λ,k′〉

=
∑

λ∈En

kn(λ) lim
N1→∞

lim
N2→∞

1

2N1 + 1

1

2N2 + 1

l1−N1
∑

k′1=l1+N1

l2−N2
∑

k′2=l2+N2

SE
k′R(vκ,l)e

i〈λ,k′〉.

But v is a flex, from which it follows that

R(g(n))l = 0.

Thus the approximating trigonometric sequence g = (g(n)) is a sequence of

flexes of C .

To conclude our effort in understanding the relation between Bohr flexes

and phase periodic flexes we will prove that the pure frequencies in an al-

most periodic flex are precisely those in the RUM spectrum of the crystal

framework. The proof of the following theorem follows the style of the proof

of Theorem 7.1.13.
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Theorem 7.2.8. Let u = (uκ,k) be a Bohr flex of the crystal framework C in

R2. Then the pure components of an approximating trigonometric flex of u

are flexes of C.

Proof. From the previous theorem it follows that the approximating trigono-

metric sequences are in fact flexes of C. And to prove that the pure compo-

nent sequences are flexes assume that u is approximated by the trigonometric

flex

wk =
r
∑

j=0

ajeλj
(k)

where aj ∈ C2, k ∈ Z2 and λ ∈ R2. Note that for each j

eλj
= (ei〈λj ,k〉)k∈Z2 .

Define

TN1,N2 : ℓ
∞(Z2,C2|Fv |) → ℓ∞(Z2,C2|Fv |)

such that

TN1,N2(u) =
1

N1 + 1

1

N2 + 1

N1
∑

r1=1

N2
∑

r2=1

W r1
1 W r2

2 u

where W r1
1 is the backward shift of the x coordinates by r1 steps and W r2

2

is the backward shift of the y coordinates by r2 steps. Since u is a flex and

the rigidity matrix commutes with shifts, it follows that TN1,N2(u) lies in the

kernel of the rigidity matrix R. But (TN1,N2(u)) → (a0eλ0) as N1, N2 → ∞

which implies that the sequence (a0eλ0) is a flex. In general, for each j, the

sequences (ajeλj
) can be obtained as limits of corresponding sequences
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TN1,N2(u, eλj
) = (

1

N1 + 1

1

N2 + 1

N1
∑

r1=1

N2
∑

r2=1

e−ir1λx
jW r1

1 e−ir2λ
y
jW r2

2 )u,

these sequences are in the kernel of R, from which it follows that the limit

sequences (ajeλj
) are flexes and the pure components are flexes.

Lemma 7.2.9. Let v = (vκ,k) ∈ Kv be an almost periodic velocity sequence

of the crystal framework C in R2. If v is a flex of C and ω = (eiλ1 , eiλ2) ∈

Λ(v,C), then ω ∈ Ω(C), the RUM spectrum of C.

Proof. The lemma follows immediately from Theorems 7.2.7 and 7.2.8.

Remark 7.2.10. As noted before, a framework that admits a special kind of

flex is said to be flexible in that sense, and rigid otherwise. Here, a framework

that admits no almost periodic flex, is said to be almost periodically rigid and

almost periodically flexible otherwise.

Theorem 7.2.11. The following are equivalent for a crystal framework C ∈

R2 in Maxwell counting equilibrium.

i. C is almost periodically rigid,

ii. C is strictly periodically rigid and Ω(C) = {(1, 1)}.

Proof. To prove that i implies ii: Let C be almost periodically rigid, then C

is periodically rigid since every periodic flex is almost periodic. Also, since

phase periodic flexes are almost periodic, the RUM spectrum will be the

singleton set {(1, 1)} corresponding to translations.

To prove that ii implies i: Assume that ii holds, and that u is a nonzero
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almost periodic flex for C. From almost periodicity theory, there exists ω =

(eiλ1 , eiλ2) in Λ(u,C). It follows from ii and Lemma 7.2.9 that ω = (1, 1) and

so u is periodic. By ii u is not of translation type, so i holds.

It follows from the proof of the theorem that any almost periodic infinites-

imal flex can be approximated by a sequence of finite linear combinations of

phase periodic flexes. Using Theorem 7.2.8 we have the following theorem.

Theorem 7.2.12. Let C be a crystal framework in Rd. Then, the space of su-

percell periodic infinitesimal flexes for n-fold periodicity with n = (n1, . . . , nd) ∈

Zd is equal to the linear span of

{ωkuκ,0 : Φ(ω)uκ,0 = 0, ω ∈ Ωn(C)}

where Ωn(C) is the finite subset of the RUM spectrum given by the multi-

phase ω, whose k-th component is an nk−th root of unity. In particular, every

supercell periodic infinitesimal flexes for C is an almost periodic infinitesimal

flex for C.

It follows from Theorems 5.3.1, 7.2.8 and Lemma 7.2.9, that the Bohr

spectrum of an almost periodic infinitesimal flex u is contained in the RUM

spectrum of C. Furthermore, since phase periodic flexes are almost periodic,

it follows that the RUM spectrum is the union of the Bohr spectra of all

almost periodic infinitesimal flexes.
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7.3 Examples

In this section we look back at some of the basic examples of crystal frame-

works. The first two show the extreme cases: firstly, where the RUM spec-

trum is a singleton, and secondly, where the RUM spectrum is Td.

The triangulated grid Ctri (Figure 7.1). We noted earlier (Section 5.3)

that the RUM spectrum for Ctri is the singleton (1, 1) ∈ T2. Furthermore,

there are no non-trivial strictly periodic infinitesimal flexes of Ctri, and so,

by Theorem 7.2.11, Ctri is almost periodically infinitesimally rigid.

e2

e1

e3

Figure 7.1: The triangulated grid Ctri

The double squares framework C2sq (Figure 7.2). The determinant

of ΦC2sq(z, w) vanishes identically, and so, the RUM spectrum is Td. A local

flex infinitesimally rotating the inner square can be defined by

u2,0 = (−1, 1), u3,0 = (1, 1), u4,0 = (1,−1), u5,0 = (−1,−1) and u1,0 = (0, 0).

and with zero velocities elsewhere. A phase periodic infinitesimal flex of C2sq

for ω = (ω1, ω2) is obtained by taking
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p1,(0,0) p1,(1,0)

p2

p3
p4

p5

p1,(0,1) p1,(1,1)

Figure 7.2: The double-squares framework C2sq

u2,k = ωk1
1 ωk2

2 (−1, 1), u3,k = ωk1
1 ωk2

2 (1, 1), u4,k = ωk1
1 ωk2

2 (1,−1),

u5,k = ωk1
1 ωk2

2 (−1,−1)

and u1,k = ωk1
1 ωk2

2 (0, 0).

In particular, any finite linear combination of such phase periodic flexes is

an almost periodic flex for C2sq.

p1,(0,0)

p2,(0,0)

p1,(0,1)

p2,(1,0)

Figure 7.3: The squares framework Csq

The squares framework Csq (Figure 7.3). Recall that the RUM spec-

trum for Csq is the finite set {(1, 1), (−1,−1)}. With respect to the minimal

motif, Csq does not admit any non-trivial strictly periodic infinitesimal flexes.
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However, Csq does admit (2, 2)-fold periodic infinitesimal flexes, which may be

constructed from the motif and RUM spectrum. Assign velocity vectors u1,0

and u2,0 to the motif vertices p1 and p2 respectively and consider the multi-

phase ω = (ω1, ω2) = (−1,−1) ∈ Ω(Csq). Define for each k = (k1, k2) ∈ Z2,

u1,k = ωku1,0 = (−1)k1(−1)k2u1,0

u2,k = ωku2,0 = (−1)k1(−1)k2u2,0.

Then, u is supercell (2, 2)-fold periodic. If for example we set u1,0 = (1, 0)

and u2,0 = (0,−1) then u is an infinitesimal alternating rotational flex. In

the notation of Theorem 7.2.12, u has (2, 2)-fold periodicity; the multi-phase

ω = (−1,−1) is contained in

Ωn(Csq) = {ω ∈ Ω(Csq) : ω
2
1 = 1, ω2

2 = 1}

and u is the ω-phase periodic velocity vector, (ωku1,0, ω
ku2,0), where (u1,0, u2,0) ∈

kerΦCsq(ω).

e1

e2e3

e4

e5

e6

Figure 7.4: The kagome framework Ckag
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The kagome framework Ckag (Figure 7.4). Recall that the RUM spec-

trum Ckag for the kagome framework is the union of the three curves in T2

defined by z = 1, w = 1 and z = w or the points (s, t) of the unit square in

the line segments given by

s = 0, t = 0 and s = t

In particular, Ckag is almost periodically infinitesimally flexible, but has no

local infinitesimal flexes. In this case, every almost periodic infinitesimal flex

decomposes as a sum u1+u2+u3 corresponding to this ordered decomposition.

Furthermore, u1, with the Bohr spectrum in th line s = 0 is periodic in the

direction of the period vector a = (1, 0), while u2, with the Bohr spectrum

in the line t = 0, is periodic in the direction of the period vector b = (1
2
,
√
3
2
),

and u3, with the Bohr spectrum in the line s = t is periodic in the direction

a− b.
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Chapter 8

Bases For The Flexes Of

Crystal Frameworks

Here we consider the infinite linear decomposition of infinitesimal flexes of

general infinite bar-joint frameworks in terms of a countable basis. Also, we

define and identify crystal flex bases in the case of crystal frameworks. In

previous chapters we have limited attention to infinitesimal flexes with some

form of periodicity. Our main concern in this chapter is with the structure

of the real vector space Hfl(C) which is often infinite dimensional.

We say that the vector space Hfl(G) of infinitesimal flexes of an infinite

bar-joint framework G has a generalized basis if there is a finite or infinite

sequence u1, u2, . . . in Hfl(G) such that each flex u in Hfl(G) admits a unique

representation
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u =
∞
∑

k=1

αkuk, αk ∈ R,

where the series converges coordinatewise.

We shall see that such generalized bases always exist. Furthermore, we

define crystal flex bases which require that the set of basis elements has a

certain symmetry property. A main result is Theorem 8.3.6 which obtains

such a basis for the regular octahedron net framework. We also construct

crystal flex bases (or spanning sets) for nine other diverse examples.

8.1 Free Bases For Infinitesimal Flexes

In this section we consider some properties of infinite bar-joint frameworks

related to decomposition possibilities for infinitesimal flexes.

Let (G, p) be a locally finite countable bar-joint framework in Rd and let

Hv(C) be the vector space of all velocity vectors of C. Any velocity vector

w ∈ Hv(C) has the form

w =
∞
∑

k=1

d
∑

σ=1

αk,σe
k,σ

where the coefficients αk,σ are real numbers, each ek,σ indicates a basic veloc-

ity sequence in Hv(C), and where convergence of the series is coordinatewise

convergence. The basic sequence ek,σ is zero except for the kth velocity which

is the unit velocity in the direction of the σ-axis.
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Note that any choice of coefficients defines a velocity vector since for each

vertex pj there are only finitely many basic velocity vectors for which the

j-th component velocity, ek,σj is nonzero. The following notion of a free basis

extends this idea. Such a basis has also been referred to as a product type

basis in Sait [63] and Power [58].

Definition 8.1.1. Let G = (G, p) be a countably infinite bar-joint framework

in Rd and M be a subspace of the velocity vector space Hv(G).

(a) A free spanning set forM is a finite or countable set S = {w1, w2, . . . }

of vectors in M such that every vector u in M has a representation:

u =
∞
∑

n=1

αnw
n where αn ∈ R

and for each index k the component wn
k is non-zero for only finitely

many of the vectors wn.

(b) A free basis for M is a free spanning set for M such that the infinite

sum representations are unique.

Let PN be the canonical vector space projection

PN : Hv(G) →
N
∏

k=1

Rd.

We say that a sequence w1, w2, . . . of velocity sequences tends to zero weakly

if for each j and N ∈ N the sequence (PNw
k)j is zero for all large enough k.

Lemma 8.1.2. Let S = {w1, w2, . . . } be a countable set of vectors in Hv(G).

Then the following are equivalent
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(i)
∞
∑

n=1

αnw
n converges coordinatewise for every sequence (αn).

(ii) The velocity vectors w1, w2, . . . tend to zero weakly.

Proposition 8.1.3. Let G be a locally finite countable bar-joint framework

and let b1, b2, . . . be a generalized basis for Hfl(G) in the sense that every

velocity vector u in Hfl(G) admits a unique representation

u =
∞
∑

k=1

αkw
k where αk ∈ R

where the series converges coordinatewise. Then G has a free basis.

Proof. For notational simplicity view Hfl(G) as a vector subspace of
∞
∏

i=1

R.

Let bk1 be the first vector in the basis in the basis with nonzero coordinate

bk(i1) where bk(i) = 0 for all i ≤ i1 for all k and i1 is the first such index. Let

B = {b1, b2, . . . }. Construct a new basis B2 where the first vector is bk1 and

the subsequent vectors are bi − αibk1 , for i 6= k1, in order, where αi is chosen

so that the i1 coordinate is 0. Evidently B2 is also a generalized basis which

we write as {b21, b22, . . . }. We may repeat this process with the tail sequence

b22, b
2
3, . . . to obtain a basis B3, and then, with the subsequent tails, similarly

obtain generalized bases B3,B4, . . . . Finally, select the velocity vectors for

the “main diagonal” to obtain the set

S = {b21, b32, b43, . . . }.

In the case there is no coordinate indices with bk(i) = 0 for all k this sequence

has the triangular form
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(a1, ∗, ∗, . . . ), (0, a2, ∗, ∗, . . . ), (0, 0, a3, ∗, ∗, . . . ), . . .

where each ai is non-zero. Since the sequence tends to zero weakly the set

S is a free spanning set for the associated space M(S) of arbitrary countable

linear combinations. Since S has a triangular form it is a free basis for

the space M(S). It remains to show that M(S) ⊆ Hfl(G) and that every

infinitesimal flex u ∈ Hfl(G) has a free representation in terms of S. This

inclusion is an elementary consequence of the definition of an infinitesimal

flex and the fact that S is a weakly null set of infinitesimal flexes. That

every flex u ∈ Hfl(G) has a free representation follows from the usual back

substitution algorithm.

Let us say that a countable set S is a generalized spanning set for Hfl(C)

if every u ∈ Hfl(C) can be written as an infinite linear combination

u =
∞
∑

k=1

αkuk, αk ∈ R,

where the series converges coordinatewise.

Proposition 8.1.4. Let G be a locally finite countable bar-joint framework

such that Hfl(G) has a countable generalized spanning set. Then Hfl(G) has

a free basis.

Proof. The algorithm in the previous proof applies.

In fact we have the following general result.
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Proposition 8.1.5. The infinitesimal flex space of a locally finite countable

bar-joint framework has a free basis.

Proof. Let G1 ⊆ G2 ⊆ . . . be a complete tower of finite subframeworks for

G. Let H0
fl(Gk) be the subspace of restrictions of flexes in Hfl(G). We may

sequentially choose velocity vectors b1, b2, . . . in Hfl(G) so that

(i) for each k = 1, 2, . . . the restrictions of the velocity vectors

b1, b2, . . . , bdk ,

to Gk, where dk = dimH0
fl(Gk), give a basis for H0

fl(Gk)

(ii) for j > dk the restriction of bj to Gk is the zero infinitesimal flex.

It follows that the set B = {b1, b2, . . . } is a free basis for Hfl(G). Since B has

triangular form it follows, as we noted before, that B is a free basis for the

vector space M(B) of arbitrary infinite linear combinations of vectors in B.

It remains to show that M(B) = Hfl(G). This follows, as before, by the back

substitution algorithm.

We simply say that G has a free basis B when B is a free basis for Hfl(G).

Definition 8.1.6. Let B be a free basis for G. Then B is a bounded free

basis if there is a uniform bound for the joint velocities b(i) for all i and all

vectors b ∈ B.
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Definition 8.1.7. A countably infinite bar-joint framework has a local free

flex basis if there exists a free flex basis for which every basis vector is finitely

non-zero.

8.2 Crystal Flex Bases And Spanning Sets

In this section we define crystallographic flex bases, crystallographic spanning

sets and some associated properties.

Recall that the crystallographic group or space group is the group C(C) of

isometries T of Rd such that the map pi → T (pi) give a bijection on the set

of framework vertices and a bijection [pi, pj] → [T (pi), T (pj)] of the set of

framework edges.

The space group acts on the vector space of infinitesimal flexes Hfl(C) in a

natural way; if u = (u1, u2, . . . ) is in Hfl(C) and X ∈ C(C) then the velocity

vector Xu = (Xu1, Xu2, . . . ) lies in Hfl(C).

LetHv(C) be the vector space of velocity vectors and let S = {b1, b2, . . . } be

a countable subset of Hv(C). Then C(C) is said to act on S if for every vector

bk and space group isometry X there is a vector bj such that 1-dimensional

spaces RXbk and Rbj are equal. Also we say that S is finitely generated

if there is a finite subset such that the 1-dimensional flex spaces for S are

generated by this finite subset and the action of C(C).
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Definition 8.2.1. Let C be a crystal framework in Rd.

(i) A crystal flex basis for C is a free basis B for Hfl(C) such that C(C)

acts on B.

(ii) C has property CB if there exists a crystal flex basis and has prop-

erty BCB (respectively LCB) if there exists a crystal flex basis consist-

ing of bounded flexes (respectively local flexes).

(iii) A crystal flex spanning set if for C is a free spanning set S for

Hfl(C) such that C(C) acts on S and S is finitely generated.

(iv) C has property CS if there exists a crystal flex spanning set and has

property BCS (respectively LCS) if there exists a crystal flex spanning

set consisting of bounded flexes (respectively local flexes).

8.3 Bases And Spanning Sets

In this section we identify crystal flex bases and spanning sets for a selection

of examples.

The triangulated grid Ctri. As we have seen before, this framework is

infinitesimally rigid and in fact is sequentially infinitesimally rigid. A ba-

sis for the finite dimensional flex space can be given by any finite set of 3

linearly independent rigid motion infinitesimal flexes. For example we can

choose two infinitesimal translations in the direction of the main axes and
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one infinitesimal rotation about the origin. This is not a crystal basis or a

crystal spanning set. However, we can choose instead three translational in-

finitesimal flexes in the three directions of the edges of an equilateral triangle.

The resulting set of four vectors is a crystal flex spanning set.

The basic grid CZ2. Let L0
u be the linear subframework of CZ2 determined

by the x-axis and let Lk
u, k ∈ Z, be the parallel linear subframeworks upwards

and downwards. Let uk be the velocity of infinitesimal translation of CZ2 to

the right restricted to the corresponding linear subframework Lk
u (Figure

8.1). Strictly speaking, uk = (uj=(j1,j2))j∈Z2 where

uj =























(0, 0) if j1 6= k,

(1, 0) if j1 = k

.

Similarly, let L0
v be the linear subframework determined by the y-axis and

let Lk
v , k ∈ Z, be the parallel linear subframeworks to the right and left. Let

vk = (vj=(j1,j2))j∈Z2 be the velocity of infinitesimal translation of CZ2 towards

the positive y-direction which is restricted to the corresponding Lk
v , such that

vj =























(0, 0) if j2 6= k,

(0, 1) if j2 = k

.

Proposition 8.3.1. The set B = {uk, vk : k ∈ Z} is a bounded crystal basis

for the space of all infinitesimal flexes Hfl(CZ2).
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uk

vk

Figure 8.1: The basic grid: crystal basis elements uk and vk

Proof. It is clear that the crystal group acts on B and it remains to prove

that B is a free basis. To prove this, let z be an arbitrary flex of CZ2 , z =

(zj)j∈Z2 where zj is the flex at the corresponding vertex j of CZ2 . Subtracting

zx(0,0)u
0 + zy(0,0)v

0 results in a new flex, say z1, with

z1(0,0) = (0, 0), z1(0,1) = (z1,x(0,1), 0) and z1(1,0) = (0, z1,y(1,0)).

Again, subtracting z1,x(0,1)u
1 + z1,y(1,0)v

1, results in the flex z2, such that

z2(0,0) = z2(1,0) = z2(0,1) = (0, 0).

Also, by the flex condition it follows that z2(1,1) = (0, 0). Proceeding in the

same manner, and downwards and to the left, it follows that

z − ∑

k∈Z
(zk,x(0,k)u

k + zk,y(k,0)v
k)

is the zero flex of CZ2 and the required representation for z follows. Note also

that the coefficients are uniquely determined by z.

The squares framework Csq. This framework admits a non-trivial “alter-

nating rotation” infinitesimal flex, asq (Figure 8.2), where the rigid squares
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undergo infinitesimal rotations that are equal in magnitude and differ in sign.

Let ~x, ~y be the infinitesimal translation flexes for the x, y directions and let

~r be an infinitesimal rotation. Then the set B = {~x, ~y, ~r, asq}is a crystal flex

basis for Csq.

Figure 8.2: The alternating rotation infinitesimal flex of Csq

The 5-regular grid C5grid. Let u0 be an infinitesimal flex restricted to the

subframework G0
u consisting of the lines L0, L1 and L2 together with the

vertical edges and diagonal in between. We define u0 to be the velocity of

infinitesimal translation restricted to the vertices of both L0, L2 by 1 to the

right, which is zero for the vertices of L1. Also, let v0 be the infinitesimal

flex restricted to the subframework G0
v consisting of the lines L1, L2 and L3

together with the vertical edges and diagonal in between. This time, it is the

velocity of infinitesimal translation restricted to the vertices of both L1, L3

by 1 towards the right, and keeping the vertices of L2 fixed. Figure 8.3 shows

the flexes u0 and v0. Following the same setting upwards and downwards we

obtain infinitesimal flexes uk and wk, for k ∈ Z. Also, consider the two rigid

202



body motions, ~y, a rigid body translation by 1 in the positive y direction and

~r, the rigid body rotation about the origin.

u0

L0

L2

w0

L3

L1

(0, 0) (0, 0)

Figure 8.3: The 5-regular grid: crystal basis elements u0 and v0

Proposition 8.3.2. The set B = {uk, vk , ~y, ~r : k ∈ Z} is a crystal flex basis

for the space of all infinitesimal flexes Hfl(C5grid) of C5grid.

Proof. It is clear that the crystal group acts on B and it remains to prove

that B is a free basis. Let z be an arbitrary flex of C5grid, z = (zj)j∈Z2 with

zj being the flex at the corresponding vertex j. Subtracting zx(0,0)u
0 + zy(0,0)~y

results in a new flex, say z1, with z1(0,0) = (0, 0). Now, the origin being

fixed, the only option for the lines L0 and L2 is a rigid body infinitesimal

rotation and for L1, the rotation and the x-translation. Indeed, note that

the velocities on L1 must be horizontal and they play no role in affecting

the velocities on L0 and L2 and so L0 and L2 are effectively connected by a

sequence of triangles. Subtracting an appropriate multiple of ~r cancels the

rotation. Also, subtracting z1(0,1)v
0 cancels the possibility of L1 translation.

With the latter lines fixed, the next level of triangles (although they admit
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an infinitesimal flex on their own) are now rigid and the resulting flex, say z2,

imparts the zero flex of the strip-subframework G0
u ∪ G0

v. Proceeding in the

same manner, upwards and downwards, the infinite linear representation of

z follows. It follows that the original flex, z, is an infinite linear combination

of the basis vectors and it also follows that such representation is unique and

the proof is complete.

The local-flex grid. Let C be the framework in Figure 8.4. A crystal

basis for this framework consists of two translations (for the x and y axes), a

rigid body rotation and the set of all local flexes for individual squares. The

proof for this is straightforward. One might think that the crystal basis of

the basic grid is a subset of this one, but in fact adding the diagonal edges,

although flexible, cancels the band limited flexes of the basic grid.

Figure 8.4: The local flex grid: crystal basis elements

The double-squares framework C2sq. Let uk, for k ∈ Z be the hori-

zontal band limited flex of the basic grid “extended” to the double-squares

framework and let vk be the analogous vertical band limited flex. Together
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with rj, the local infinitesimal rotation of the inner squares, the set B =

{uk, vk : k ∈ Z} ∪ {rj : j ∈ Z2} is a crystal basis for C2sq (Figure 8.5). The

proof follows the usual pattern.

Figure 8.5: Crystal basis elements for C2sq

The kagome framework Ckag. Identify a “central triangle subframework”

with horizontal base edge [a, b], and let L0
u be the linear subframework of

Ckag containing this edge. There is an evident one dimensional subspace of

infinitesimal flexes of Ckag each of which vanishes off this linear subframework.

It is spanned by the velocity vector u0 such that

u0
a = (1,−1/

√
3), u0

b = (1, 1/
√
3)

with repetition of these vectors at the triangles’ bases to the left and right

of abc. Let uk, k ∈ Z, be the parallel translates of u0, with u1 supported by

the first linear subframework L1
u above L0

u and so on (Figure 8.6). Also, let

{vk : k ∈ Z} and {wk : k ∈ Z} be obtained from {uk : k ∈ Z} by a 2π/3

and 4π/3 rotation. Write Lk
u, L

k
v and Lk

w, k ∈ Z, for the supporting linear

subframeworks of uk, vk and wk respectively. Note that
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a b

d

e

u−1

u0

u1

c

Figure 8.6: The kagome framework: crystal basis elements uk

v0a = (0, 1), v0c = (
√
3/2, 1/2)

and

w0
b = (0, 1), w0

c = (−
√
3/2, 1/2).

The following theorem is due to A. Sait [63].

Theorem 8.3.3. The set B = {uk, vk, wk : k ∈ Z} is a crystal basis for the

space of all infinitesimal flexes Hfl(Ckag).

Proof. Since the space group acts on B it will be sufficient to show that

B is a free basis. Let z be an infinitesimal flex of Ckag. Subtracting zxau
0
a

results in a flex z1, such that z1,xa = 0. Subtracting z1,ya v0a results in z2,

with z2a = (0, 0) and z2,xb = 0. Subtracting z2,yb w0
a results in a new flex,

z3, z3a = z3b = z3c = (0, 0). The triangle subframework abc being fixed,

implies that z3,xd = 0 where d is the next vertex in the direction from a to

b. Subtracting z3,yd v1 results in z4 with z4d = (0, 0) and z4,xe = 0 for the
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next vertex. Subtracting z4,ye w−1 results in e, the next vertex, being fixed.

Continuing in this way, subtracting appropriate multiples of vk and wk, we

obtain an infinite linear combination

z′ =
∑

k∈Z
(αkv

k + βkw
k)

such that the infinitesimal flex z′′ = z − z′ is the zero flex at L0
u. This fact

together with the rigidity of triangles implies that the flex velocities are also

zero on the apex vertices for the upward triangle subframeworks based on L0
u.

Also, z′ on L1
u must be a constant multiple of u1. Subtracting this results in

both of L0
u and L1

u being fixed. Following the same argument, upwards and

downwards, we obtain an infinite linear representation for z′′ in terms of the

infinitesimal flexes uk, it follows that the original flex z is an infinite linear

combination of the basis vectors and it also follows that such representation

is unique and the proof is complete.

The augmented grid+strip framework C+
Z2. This framework is derived

by joining countably many copies of the strip framework Cstrip to the basic

square grid CZ2 as shown in Figure 8.7. The strip framework admits a one

dimensional space of “base fixed” infinitesimal flexes with interesting input-

output (or geometric) behaviour. We start by identifying a free basis for

Hfl(Cstrip) and this will lead to the identification of a free basis for Hfl(C
+
Z2).

Let u0 be the infinitesimal flex of Cstrip such that the origin has downwards

velocity 1, u0|(0,0) = (0,−1), and all the other x-axis vertices together with
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Figure 8.7: The strip framework Cstrip and the augmented grid framework
C+
Z2

all the vertices to the left of the origin having zero velocities. Similarly, let v0

be the infinitesimal flex of Cstrip such that the origin has downwards velocity

1, v0|(0,0) = (0,−1), and all the other x-axis vertices together with all the

vertices to the right of the origin having zero velocities, these flexes are shown

in Figure 8.8.

o

o

u
0

v
0

Figure 8.8: Infinitesimal flexes u0 and v0 for the strip framework Cstrip

Let un for n ≥ 0 be the right translates (by 1) of u0 and let vn for n < 0

be the left translates (by 1) of v0.
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wn

n ≥ 0

n < 0

n n+ 1

n− 1 n

Figure 8.9: Basis elements wn for the strip framework Cstrip

From the flexes un and vn specified above, we can identify local flexes wn

(Figure 8.9) of Cstrip as follows:

wn =























un − αun+1 if n ≥ 0,

vn − βvn−1 if n < 0

.

with constants α and β depending on the geometry.

For simplicity, label the triangles according to their x-axis joints, that is,

triangle n is the triangle with x-axis joint (n, 0) and so on. Due to the

“geometric growth” of the flexes un and vn, we find that the restriction of

the velocity vectors of un to the triangle n+2 is equal to a constant multiple

of the restriction of un+1 to the same triangle (n+2). Together with the fact

that both un and un+1 assign zero velocities to joints of all the triangles to

the left of triangle n, for n ≥ 0, wn is in fact a local flex of Cstrip such that

• wn has zero velocity vectors at all joints of the triangles k, k < n,

• wn has zero velocity vectors at all joints of the triangles j, j ≥ n+ 2.
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In other words, wn only has non zero velocity vectors for joints of the triangles

n and n+ 1.

Similarly, for n < 0, wn is a local flex of Cstrip such that wn only has non

zero velocity vectors for joints of the triangles n and n− 1.

The flexes wn together with the basic flexes ~x, the rigid body translation

by 1 unit to the right, and ust, a base fixed infinitesimal flex of Cstrip, we have

Proposition 8.3.4. {~x}∪{ust}∪{wn : n ∈ Z} is a free basis for Hfl(Cstrip).

Proof. Let z be an arbitrary flex of Cstrip. We will proceed by subtracting

appropriate multiples of the flexes above until we achieve a zero flexing of

Cstrip.

1. Subtracting (zx|(0,0)~x− zy|(0,0)w0) results in a new flex, z1, such that

z1 has zero velocity at the origin. This implies that z1 is only allowed

to have a non-zero y velocity component at the next joint to the right,

(1,0).

2. By subtracting (−z1,y|(1,0)w1) (this is allowed since w1 has zero

velocity at the origin) we can arrange that the new flex, z2, has zero

velocities at both joints (0, 0) and (1, 0) (similarly, joint (2, 0) is only

allowed a non-zero y velocity component).

3. Continuing in the same way, we can subtract appropriate multiples

of wn, n ≥ 2, until we arrive at a flex, z3, such that z3 has zero velocities
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at the origin and all the x-axis joints to the right of the origin.

4. Now, we move on to the first vertex to the left of the origin. Sub-

tracting (−z3,y|(−1,0)w
−1), we can arrange for the new flex z4 to have

zero velocity at joint (−1, 0) and all the x-axis joints to the right of

(−1, 0).

5. Similarly, we can subtract multiples of wn, n ≤ −2, to achieve a flex

z5 with all vertices of the x-axis having zero velocities.

With the base fixed, z5 must be a constant multiple of the flex ust and by

subtracting that we achieve a zero flex of Cstrip. From all the above it follows

that the set {~x} ∪ {wn : n ∈ Z} ∪ {ust} is a free basis for Hfl(Cstrip).

Moving on to the augmented grid, we can make use of the above argument

to identify a free basis for Hfl(C
+
Z2) as follows:

• Let un, n ∈ Z, be the flex of infinitesimal translation of individual

horizontal strips by one unit to the right labelled in a natural way such

that u0 acts on the x-axis and its augmented strip and so on (Figure

8.10).

• Let wn be the band limited infinitesimal flex obtained by the extension

of the local flexes of Cstrip such that wn only has non zero velocity

vectors for the framework triangles k such that triangles k have a “base

joint” (k, y), n ≤ k ≤ n+ 1.
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• Let sn be the infinitesimal flex of individual “base fixed” horizontal

strips (Figure 8.10).

sn
un

Figure 8.10: Basis elements un and sn for the the augmented grid+strip
framework C+

Z2

Proposition 8.3.5. The set {un, wn, sn : n ∈ Z} is a free basis for Hfl(C
+
Z2).

Proof. Follow the same steps as in the case of Cstrip, except substitute u
0 for

~x. We first achieve a flex with zero velocities at all the vertices on the x-axis.

This implies that when we go up to the next strip supported by the line y = 1,

any flex of the vertices on y = 1 has to be a multiple of u1. Subtracting this,

we have a flex with zero velocities on the vertices of both lines, y = 0 and

y = 1. Proceeding in the same manner, subtracting appropriate multiples of

the un flexes upwards and downwards we can fix all the vertices lying on the

basic grid.

With every “base” fixed for all the strips, each strip can only admit a flex

which is a multiple of the flexes sn. Subtracting these we arrive at a zero flex

of C+
Z2 .
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The regular octahedron net framework COct. Viewing COct as count-

ably many copies of the planar framework Csq one can identify a crystal flex

basis for COct as follows: Let Cz be the grid framework in the xy-plane which

1

2 3

4

5

6

x

y

z

Figure 8.11: The framework COct

contains the vertices p1, p2, p3, p4 (Figure 8.11). Similarly, let Cx denote the

grid framework in the yz-plane which contain the vertices p1, p5, p3, p6 and

let Cy denote the grid framework parallel to the zx-plane which contain the

vertices p2, p5, p4, p6. Let C
n
x be the translated frameworks Cx +(2n, 0, 0), for

n ∈ Z, and similarly define Cn
y and Cn

z . Then COct is the union of all these

frameworks, that is, COct is the framework whose vertex set is is the union

of all the vertices (without multiplicity) and whose set of edges is the union

of all the edges. Also, define C+
Oct as the augmented framework in which

each regular octagon is augmented by 3 edges parallel to the coordinate axis.

Since the convex octagon is infinitesimally rigid, it follows that the vector

spaces Hfl(COct) and Hfl(C
+
Oct) are isomorphic. Let C+

sq be the framework ob-

tained from Csq by augmenting an edge to each rigid square, in this way the
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alternating rigid squares will have both cross diagonals. We may thus view

C+
Oct as the union of copies of C+

sq where these copies are the augmentations of

the frameworks C̃n
x, C̃

n
y and C̃n

z of Cn
x, C

n
y and Cn

z respectively. It follows that

the alternation flex a of C̃n
x extends to a flex axn of C+

Oct with zero velocities

at all the other vertices. We similarly define the alternating flexes ayn and

azn for n ∈ Z. Let rx, ry and rz be the infinitesimal rotations about the

rotational axis of the central octahedron. We assume that, up to signs, these

flexes are permuted by the action of the spatial symmetry group of COct We

also assume the normalization such that for σ = x, y, z the restrictions of aσn

agree with the restriction of rσ. Finally, let ~x, ~y and ~z be the velocities of

infinitesimal translation by 1 unit in the axis directions.

In the next proof we make use of the following flex projection principle.

If the edge [pa, pb] lies in a plane P of R3 and if the vertex velocity vectors

va, vb in R3 give an infinitesimal flex of [pa, pb] then the P components v′a, v
′
b

of va, vb also give an infinitesimal flex of that edge. We say such a flex is

in-plane when the plane in question is understood.

Theorem 8.3.6. The set

B = {~x, ~y, ~z, rx, ry, rz} ∪ {axn, ayn, azn : n ∈ Z}

is a crystal basis for Hfl(COct).

Proof. The set B satisfies the crystal property and so it will suffice to show

that it is a free basis for C+
Oct. Let z be a vector in Hfl(C

+
Oct). There is a
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linear combination zrig of ~x, ~y, ~z, r
x, ry, rz which agrees with z on the vertices

p1, . . . , p6. Replacing z by z − zrig we may assume that these velocities for

z are zero. Now we make use of the flex projection principle. Note that the

velocity vector zxy given by the xy-plane projection of the velocities z(p), for

vertices in C̃0
z . This in-plane flex is equal to the restriction of a scalar multiple

az0 − rz. In this way we obtain scalar multiples α0(a
z
0 − rz), β0(a

x
0 − rx) and

γ0(a
y
0 − ry) which provide the in-plane flexes of z for the planes z = 0, x = 0

and y = 0. Consider now the tower subframework given by the tower of

octahedra whose connecting vertices lie on the z-axis. Since z is zero on the

central octahedron supported by p1, . . . , p6 denoted O(0,0,0), it follows that

the z component of the of the velocity vector for a vertex on this line is zero.

It also follows that there is a flex

β0(a
x
0 − rx) + γ0(a

y
0 − ry)

with velocity vectors agreeing with those of z for the vertices on the axial

line. It follows similarly that there is a flex

w = α0(a
z
0 − rz) + β0(a

x
0 − rx) + γ0(a

y
0 − ry)

with this agreement property for the three axial lines through O(0,0,0). Re-

placing z by z−w we may assume that z is zero on O(0,0,0) and all the vertices

on the three axial lines of O(0,0,0). Note that the restriction of such a flex

z to any other octahedron O with an axis on the coordinate axis must be

an infinitesimal rotation flex of the octahedron about this axis. Also each

such flex of an individual octahedron O, on the σ-axis say, agrees with the
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restriction of a scalar multiple of the local alternation flex aσn, for some n 6= 0.

Evidently these flexes act on distinct octahedra on the axial lines. It follows

that there is an infinite linear combination of these flexes, w2 say, whose

restriction to any octahedron on a coordinate axis is equal to the restriction

of z. Replacing z by z − w2 we may assume that z is zero on this triple

tower T. The entire framework can built from the triple tower subframework

by successively identifying the joints of attachment. It follows that z must

be identically zero. Thus it follows that every velocity vector z in Hfl(COct)

is an infinite linear combination of the vectors in the set B. Note that B

is a weakly null sequence of velocity vectors and a free spanning set for the

vector space of infinitesimal flexes. Moreover, the scalar coefficients in the

identification above are determined uniquely by the vertex velocity vectors

of the flex z. Thus B is a free infinitesimal flex basis as required.
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Chapter 9

Further Developments And

Related Work

In this chapter we suggest further developments related to some of the areas

developed in the thesis. In Section 9.1 we define the class of dilation peri-

odic bar-joint frameworks. In Section 9.2 we suggest new convex polyhedron

crystal frameworks that can be obtained from familiar planar frameworks.

Finally, in Section 9.3 we define almost periodic bar-joint frameworks.

9.1 Dilation Periodic Frameworks

In this section we define a class of infinite frameworks with special periodicity.

Similar to crystal frameworks, dilation periodic frameworks can be identified

by a finite motif and dilation group D such that D = {Dk : k ∈ Z} and
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Dk : (x, y) → αk(x, y), where 1 < α.

Definition 9.1.1. A dilation periodic framework G = (Fv, Fe,T) in Rd, with

motif (Fv, Fe) and dilation group D = {Dk : k ∈ Z} is a countable bar-joint

framework with framework points pκ,k, for 1 ≤ κ ≤ t, k ∈ Z, such that

(i) Fv is a finite set of framework vertices, {pκ,0 : 1 ≤ κ ≤ t} in Rd, and

Fe is a finite set of framework edges,

(ii) for each κ and k the point pκ,k is Dkpκ,0,

(iii) the set Gv of framework points is the disjoint union of the sets

Dk(Fv) for k ∈ Z,

(iv) the set Ge of framework edges is the disjoint union of the sets

Dk(Fe) for k ∈ Z.

A model example for a dilation periodic framework is the “two way” infinite

cobweb Gcob (Figure 9.1). Let D be the dilation group D = {Dk : k ∈ Z}

...... ...

Figure 9.1: The infinite cobweb
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such that

Dk(x, y) = 2k(x, y).

Then Gcob is dilation periodic with motif vertex set Fv = {p1, p2, p3, p4},

p1 = p1,0 = (−1,−1), p2 = p2,0 = (−1, 1), p3 = p3,0 = (1, 1)

p4 = p4,0 = (1,−1).

The motif edges are:

e1 = [p1,0, p2,0], e2 = [p2,0, p3,0], e3 = [p3,0, p4,0], e4 = [p4,0, p1,0],

e5 = [p1,0, p1,1], e6 = [p2,0, p2,1], e7 = [p3,0, p3,1], e8 = [p4,0, p4,1].

View the infinite cobweb as an increasing sequence of the “continuously

infinitesimally rigid” double square finite frameworks. Then it follows that

the infinite cobweb is continuously infinitesimally rigid.

Free basis for the infinite cobweb. A property not “exclusive” to crystal

frameworks, it is possible to completely understand the flexibility and identify

a free basis for the space of all infinitesimal flexes for the infinite cobweb. To

do this let

1. u: the infinitesimal flex such that all the vertices of the base edges

receive a velocity of magnitude 1 in the x-direction and with zero ve-

locities elsewhere (Figure 9.2).
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u sk

Figure 9.2: Basis elements u and sk for the infinite cobweb Gcob

2. v: the infinitesimal flex such that all the vertices of the edges to the

left receive a velocity of magnitude 1 in the y-direction and with zero

velocities elsewhere.

3. w: the infinitesimal flex such that all the vertices of the edges to the

right receive a velocity of magnitude 1 in the y-direction and with zero

velocities elsewhere.

4. r: the infinitesimal flex such that all the vertices of the top edges

receive a velocity of magnitude 1 in the x-direction and with zero ve-

locities elsewhere.

5. sk, k ∈ Z∗: the infinitesimal rotation of the individual corresponding

squares with zero velocities elsewhere (Figure 9.2).

Note that infinitesimal flexes v, w and r can be obtained from u by a π/2, π

and 3π/2 rotations respectively.

Proposition 9.1.2. The set {u, v, w, r, sk : k ∈ Z} is a free basis for
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the space Hfl(Gcob) of all infinitesimal flexes of the infinite cobweb framework

Gcob.

Proof. Let z be an arbitrary flex of Gcob. Subtracting zx(−1,−1)u + zy(−1,−1)v,

the resulting flex, z1, satisfies z1(−1,−1) = (0, 0). To achieve a zero velocity at

vertex (1,−1), subtract z1,yw and the resulting flex z2 cannot be a rigid body

infinitesimal flex. Subtracting z2,x(−1,1)r implies that the new flex ,z3, satisfies

z3(−1,−1) = z3(1,−1) = z3(1,1) = z3(−1,1) = (0, 0).

With all the vertices of one square now having zero velocities, subtracting

appropriate multiples of sk’s inwards and outwards results in the zero flex of

the cobweb.

We expect that one could define a matrix function as in the case for crystal

frameworks and use it to identify the space of dilation phase periodic velocities

and flexes, for example.

9.2 Convex Polyhedra Spatial Crystals

Using the same layer construction of spatial crystal frameworks such as

the bipyramid and the regular octahedron net, one can identify new crys-

tal frameworks derived from familiar planar frameworks by placing differ-

ent “bipyramids”. The rigidity of convex polyhedra implies that these new

frameworks can be analysed by viewing them as infinitely many copies of the

planar frameworks depending on their geometry.
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For example, one can form a corner connected square bipyramid frame-

work similar to the octahedron net but with non-equal pyramids joined at

their square faces. In this way, the resulting framework can be viewed as

the union of countably many infinite copies of the planar frameworks Csq

and Ckite, where Ckite is identified in [4] by the period vectors (1, 0), (0, 1)

together with the motif given by Figure 9.3 and with motif vertices (0, 0)

and (−1
2
, α), for some choice 0 < α < 1

2
. Similar to the framework Csq, Ckite

Figure 9.3: The kite framework Ckite

admits a non-trivial infinitesimal flex, akite, where the individual kites un-

dergo an infinitesimal rotation about the midpoints of the cross-bar edges.

The rotation speeds are constant in the y direction and form a geometrically

increasing sequence in any positive x direction. In [4], the set {~x, ~y, ~r, akite}

has been identified as a crystal flex basis for Ckite. These facts can lead to the

identification of a crystal flex basis for the new bipyramid framework (Figure

9.4).
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Figure 9.4: The kite-bipyramid framework

9.3 Almost Periodic Bar-Joint Frameworks

From the almost periodicity definitions, we can introduce the class of al-

most periodic bar-joint frameworks. Such frameworks can be obtained from

existing crystal frameworks and it would be natural to investigate whether

they can admit almost periodic infinitesimal flexes. Formally, let a crystal

framework C be given, C = (G, p), p = (pκ,k) and with translation group

T = {Tk : k ∈ Z}. Let C′ be a perturbation of C, C′ = (G, p′), p′ = (p′κ,k)

where

p′κ,k = pκ,k + δκ,k.

A vector k′ is said to be an ǫ-translation vector for C′ if

‖Tk′p
′
κ,k−k′ − p′κ,k‖ ≤ ǫ for all k and all κ.

The framework C′ is almost periodic if for every ǫ > 0, the set of ǫ-translation

vectors is relatively dense.
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To develop an understanding of almost periodic frameworks one can start

by investigating basic “strip” frameworks which are periodic in one direction

as in the following example. Here we add an almost periodic sequence to the

coordinates of the vertices.

Example. Let C be the framework in Figure 9.5. Let δ1,k = (0, 0) and

δ2,k = (0, α sin
√
2πk) (with α small). Then the framework C′ is almost

periodic.

...

p1,0

p2,0

1

1

p1,1

p2,1

p1,2

p2,2

Figure 9.5: A periodic strip framework
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