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Extended wavelength photoluminescence emission within the technologically important 2-5 

µm spectral range has been demonstrated from InAs1-xNx and In1-yGayAs1-xNx type I quantum 

wells grown onto InP. Samples containing N~1 % and 2 % exhibited 4 K photoluminescence 

emission at 2.0 and 2.7 μm, respectively. The emission wavelength was extended out to 2.9 

μm (3.3 μm at 300 K) using a metamorphic buffer layer to accommodate the lattice 

mismatch. The quantum wells were grown by molecular beam epitaxy and found to be of a 

high structural perfection as evidenced in the high resolution x-ray diffraction measurements.  

The photoluminescence was more intense from the quantum wells grown on the metamorphic 

buffer layer and persisted up to room temperature. The mid-infrared emission spectra were 

analysed and the observed transitions were found to be in good agreement with the calculated 

emission energies. 

 

There is increasing interest in compact semiconductor light sources operating within the 2–5 

μm wavelength range due to their potential for applications in chemical gas analysis, medical 

diagnostics and pollution monitoring. Lasers 
1,2

 and LEDs 
3-6

 have been developed using 

device architectures with different levels of complexity 
7-9

 on InAs or GaSb substrates for 

which the processing technology is relatively immature 
10-12

. By comparison, InP based 

technology is well developed for optical communication systems at 1.33–1.55 μm and 

consequently there has been much effort dedicated towards extending the wavelength of InP 

based light sources out beyond 2 μm using InGaAs/InAlAs type I and InGaAs/GaAsSb, 

GaInAs/GaAsSb type II quantum well (QW) structures 
4
. Access to longer wavelengths using 

type I QWs is often limited by Auger recombination or shallow band offsets and in type II 

systems by a reduced electron-hole wavefunction overlap. Quantum Cascade Lasers (QCLs) 
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on an InP substrate show high performance in the 4-5 µm wavelength region 
13

, but become 

quite challenging for wavelengths shorter than 3.5 µm due to high lattice-mismatch strain 
14-

16
. Therefore, it is important to explore alternative material systems, such as the dilute 

nitrides, to alleviate these problems and extend the available wavelength range. The 

incorporation of nitrogen into III-V semiconductors results in a reduction of the bandgap due 

to band anti-crossing effects associated with the interaction between the conduction band of 

the host and localized states introduced by the nitrogen 
17

. This approach has been the subject 

of a number of investigations resulting in reports of InP-based mid-infrared light emission 

using InAsN, InAsSbN, GaInAsN and InGaAsNSb quantum wells 
18-25,26

. It is highly 

desirable to maintain type I recombination because of the high oscillator strength. The 

maximum wavelength achieved to date in such InAsN and InGaAsN systems on InP is ~2.6 

μm at 260 K 
20,21,24,27,28

. This maximum wavelength is limited due to the critical layer 

thickness and material quality of such highly-strained structures. The defect density within 

dilute nitride materials increases with N concentration increasing beyond 2 %.  

In this study, we report on type I QW structures using In-rich InyGa1-yAs1-xNx / InyGa1-yAs 

MQW containing N~1 % and 2 % grown on InP substrates and demonstrate 4 K 

photoluminescence emission at 2.0 and 2.7 μm, respectively. We also show that the emission 

wavelength can be extended to 2.9 μm (3.3 μm at 300 K) using an InAs1-xNx / InyGa1-yAs 

MQW (with N~1 %) structure grown on a reduced-dislocation-density metamorphic buffer 

layer (MBL). The optical and structural properties were investigated using low temperature 

photoluminescence (PL) and high resolution x-ray diffraction (HRXRD). 

A VG-V80H solid-source molecular-beam-epitaxy (MBE) reactor equipped with a Veeco 

UNI-bulb radio-frequency (RF) plasma nitrogen-source was used to grow the N-containing 

quantum well structures on InP substrates as shown in Figure 1. The epitaxial growth was 

based on our previous work, where we reported on MBE-grown InAs1-xNx bulk layers with 

N-content from 0.2 % to 1 % on semi-insulating (100) GaAs 
29

. The InyGa1-yAs1-xNx growth 

was carried out at a substrate temperature of 420 ℃, using a growth rate of 0.5 μmh
−1

 and 

minimum As flux with a fixed nitrogen plasma setting (forward power of 160 W and a 

nitrogen flux of 5.0×10
−7

 mbar). Nitrogen incorporation was controlled by adjusting the 

growth rates and plasma settings under an optimized set of growth conditions. The growth of 

InyGa1-yAs1-xNx MQW dilute nitride layers was performed using similar conditions to those 

used for InAs1-xNx layers 
30,31

, where the lattice matched In0.53Ga0.47As was calibrated prior to 

growth of all three samples. A schematic diagram showing the design of each of the MQW 

structures is shown in Figure 1. Sample (a) has a 1μm undoped lattice matched In0.53Ga0.47As 

buffer layer grown at 480 ℃ before the substrate temperature was reduced to 420 ℃ to 

commence growth of ten-period MQWs with 25nm In0.53Ga0.47As barriers and 7nm 

In0.70Ga0.30As0.99N0.01 quantum wells, capped with 100nm In0.53Ga0.47As. The structure of 

sample (b) is similar to (a) with the exception of the quantum well composition which was 

In0.80Ga0.20As0.98N0.02. Sample (c) was grown at 480 ℃ on top of an MOVPE-grown 

metamorphic buffer layer (MBL), starting with a 10 nm undoped In0.77Ga0.23As layer 

followed by ten QWs with 20nm In0.77Ga0.23As barriers and 10 nm InAs0.99N0.01 wells capped 

with 20nm In0.77Ga0.23As. The MBL consists of 10-step compositionally-graded InP1-ySby (y 
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= 0.0 to 0.2) terminating with an InAs0.5P0.5 (500 nm) capping layer. The MOVPE growth, 

structural and optical properties as well as details of the design of the MBL on InP substrate 

have been reported previously elsewhere 
32

. The nitrogen composition, lattice mismatch and 

strain in the resulting MQWs were examined using high resolution x-ray diffraction 

(HRXRD). Photoluminescence (PL) spectroscopy measurements were made using an Ar
+
 ion 

laser at an excitation wavelength =514 nm and maximum power density P=20 W cm
-2

 at the 

sample surface. The PL emission was analysed using a 0.3 m Bentham M300 monochromator 

and detected by a cooled (77 K) InSb photodiode coupled with a Stanford Research (SR850) 

digital lock-in amplifier. Samples were cooled in a variable temperature (4 ─ 300 K) 

continuous flow He cryostat.  

The X-ray diffraction (ω ─ 2Ө scans) of samples (a) and (b) are shown in Figure 2. (The 

XRD spectrum from sample (c) was similar to that of sample (a) and is not shown here). Both 

patterns are referenced at 0 arc sec for the (004) reflection from the InP substrate. They 

exhibit an intense and equal number of satellite peaks, characteristic of abrupt interfaces and 

low defect density. The full width at half maximum (FWHM) of the distinct satellite peaks is 

55 arc sec. The nitrogen, gallium and indium composition in these samples was determined 

by fitting, using Bede RADS simulation software which is based on dynamical scattering 

theory of X-ray diffraction. The corresponding simulated spectra are shown in blue along 

with the experimentally acquired XRD pattern (black). The resulting N, In and Ga 

composition in each sample is as shown in Figure 1.  

Figure 3, shows the normalised 4 K PL spectra from each of the samples. The PL intensity of 

sample (c) grown on the MBL is 6 times higher than (a) and 21 times higher than (b) which 

were grown directly on the InP substrate. The PL linewidth of the MBL sample (c) is the 

narrowest amongst all three samples, which indicates that it has the lowest defect density and 

other forms of disorder attributable, in part, to both the growth process and the MBL design 

as reported by Kirch et al 
32,33

. The PL peak energy of sample (b) containing 2 % N is lower 

than that of sample (a) with 1 % N, consistent with the N-induced band anti-crossing models. 

The incorporation of N in In1-yGayAs also introduces local strain due to the large difference in 

atomic radius between N (65 pm) and As (133 pm), which results in a higher defect density 

within the grown layer. Consequently, the PL intensity is lower and the linewidth in (b) is 

larger than in sample (a) due to the higher compositional disorder from the increased N 

content.  

The PL transition energies were calculated using a Schrodinger solver within the effective 

mass approximation, starting with m*e=0.029 mo for bulk InAsN layers containing N=1 % 
34

 

and taking account of band anti-crossing effects and strain
12, 35-39

. The results are illustrated in 

Figure 4 and the corresponding transition energies are given in Table I. The observed PL 

peak energies are in approximate agreement with the e1-hh1 transitions in each case. The 

difference in calculated and experimental values can be accounted for by uncertainties in the 

N content and accurate knowledge of the effective masses within the QW and barriers.  
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Table I: Properties of the samples and parameters estimated from PL measurement. 

Sample 

 

N content 

 in QW 

± 0.1% 

Calculated PL 

transition 

energy (eV) 

 at 4 K 

4 K PL Peak 

Energy (eV) 

(expt.) 

± 0.01 

4 K PL 

Line 

width 

(meV) 

 

Activation 

energy 

(meV) 

 

QW 

strain 

(%) 

 

PL Peak 

Intensity 

(4 K) 

± 0.01 

a 1.0% 0.632 0.622 24.0 9.0 1.0 10.8 

b 2.0% 0.489 0.468 27.0 8.0 1.4 2.9 

c 1.0% on MBL 0.430 0.423 13.0 42.0 1.2 60.5 

   

The dependence of the PL emission intensity using different laser excitation power from 0.2 

W to 1.8 W was investigated. None of the samples exhibited a measurable change in peak 

position (2.05 μm, 2.68 μm and 2.93 μm for a, b and c, respectively).  This is unlike the case 

of bulk InAs1-xNx layers, where the activation of localised states is apparent in a peak shift 

attributed to an increased carrier concentration 
39

. Previous reports have however indicated 

that the PL peak energy can remain unchanged with variation in excitation power for InAs1-

xNx / In1-yGayAs MQWs on InP substrate 
27

. In power dependent PL measurements, the input 

pump power (I) and luminescence intensity (L) can be related by I ~ L
k
, where sub-linear k 

parameters (k < 1) are characteristic of free-to-bound or donor-to-acceptor recombination. 

Free exciton recombination exhibits a k ≥ 1 
40

. Analysis of Fig. 5 shows that k = 1 consistent 

with free exciton recombination at low temperature for all samples 
40

.  

The temperature dependence of the integrated PL intensity for each of the samples is shown 

in Figure 6. Room temperature PL was not observable for samples (a) and (b) and the 

emission became thermally quenched above 120 K. However, the PL of MBL sample (c) was 

more intense and PL emission was readily observed at room temperature. The quantitative 

estimate of the activation energies (Ea) was obtained from Arrhenius plots of the ln of the PL 

intensity versus the reciprocal absolute temperature. The activation energy values are given in 

Table I. The thermal quenching of samples (a) and (b) were similar and since all samples 

have approximately the same e-h confinement, as shown in Figure 4. We attribute the small 

activation energy of 8−9 meV in these cases to non-radiative SRH recombination within the 

barriers. For sample (c) grown on the MBL buffer, the thermal quenching was reduced and 

the PL easily persisted up to room temperature. In this case, the PL quenching was attributed 

to loss of hole confinement within the valence band potential well which is consistent with 

the calculated hole confinement and valence band offsets (see Table 1 and Figure 4).  

We have demonstrated the MBE growth of In(Ga)AsN MQWs on InP for N contents up to 2 

% using both direct growth on an InP substrate or on a MOVPE-grown metamorphic buffer 

layer. Although the high resolution X-ray diffraction patterns obtained from samples obtained 

using direct growth exhibit very good diffraction pattern and PL at 4 K, the emission from 

these samples did not persist to room temperature. The rather low activation energy of 8-9 
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meV for thermal quenching of the PL is not consistent with loss of electrons/holes from the 

QW and is attributed to non-radiative recombination in the barriers. By comparison, the 

sample grown on the MOVPE MBL buffer exhibited more intense PL at 4 K and with a 

substantially narrower linewidth consistent with reduced non-radiative recombination and 

higher structural perfection of the MQWs. The quenching of the PL in these samples is 

related to loss of hole confinement (~2 kB.T) near room temperature. The observed optical 

transitions were found to be in good agreement with the calculated emission energies and 

demonstrate that the accessible spectral range can be extended into the mid–infrared using 

InP substrates whose performance is enhanced when employing a metamorphic buffer layer. 
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Figures with captions 

 

 

Fig. 1. A schematic of the different structures, each containing ten In(Ga)AsN QWs. Samples (a) and 

(b) contained 1% and 2% N in the QW respectively and were grown directly onto InP by MBE. 

Sample (c) contained 1% N in the QW which was grown by MBE on top of an MOVPE-grown 

metamorphic buffer 33. 

 

Fig. 2 HRXRD patterns of the InGaAsN/InGaAs MQW structures (a) 1 % N and (b) 2 % N shown in 

black along with corresponding simulations (blue). 
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Fig. 3. The normalized 4K PL spectra from each of the samples (a) 1 % N (black), (b) 2 % N (red) and 

(c) 1 % N on MBL (blue). The peak energies and linewidths are given in Table 1 below. Spectrum (d) 

is the normalized 300 K PL spectrum of sample (c) and is shown pink. 

 

 

Fig. 4. A schematic diagram showing the calculated band structure and confinement energies for the 

lowest confined electron, (e1) and heavy hole, (hh1) states for each of the samples. 
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Fig. 5. The dependence of the 4 K PL peak emission intensity vs excitation power for each of the 

samples. In each case the slope, k=1.  (a) 1%N, (b) 2%N and (c) 1%N on MBL. The triangle indicates 

a slope of k=1. 

 

Fig. 6. The temperature dependence of the normalised integrated PL intensity for samples (a) 

1 % N, (b) 2 % N and (c) 1 % N on MBL. 
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