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Abstract. The order On(σ) of a permutation σ of n objects is the
smallest integer k ≥ 1 such that the k-th iterate of σ gives the identity.
A remarkable result about the order of a uniformly chosen permutation
is due to Erdös and Turán who proved in 1965 that logOn satisfies a
central limit theorem. We extend this result to the so-called generalized
Ewens measure in a previous paper. In this paper, we establish a local
limit theorem as well as, under some extra moment condition, a precise
large deviations estimate. These properties are new even for the uniform
measure. Furthermore, we provide precise large deviations estimates for
random permutations with polynomial cycle weights.
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1. Introduction

Denote by Sn the symmetric group, that is the group of permutations on
n objects. For a permutation σ ∈ Sn the order On = On(σ) is defined as
the smallest integer k such that the k-th iterate of σ is the identity. Landau
[14] proved in 1909 that the maximum of the order of all σ ∈ Sn satisfies,
for n→∞, the asymptotic

max
σ∈Sn

(logOn) ∼
√
n log(n).

On the other hand, On(σ) can be computed as the least common multiple of
the cycle length of σ. Thus, if σ is a permutation that consists of only one
cycle of length n, then On(σ) = log(n) and (n − 1)! of all n! permutations
share this property. Considering these two extremal types of behavior, the
famous result of Erdös and Turán [8] seems even more remarkable: they
showed in in 1965 that a uniformly chosen permutation satisfies, as n→∞,
the central limit theorem

logOn − 1
2 log2(n)√

1
3 log3(n)

d−→ N (0, 1). (1.1)

This result was extended to the Ewens measure and to A-permutations, see
for instance [2] and [24].

In this paper we study the random variable logOn with respect to a weighted
measure. We present large deviations estimates and a local limit theorem for
logOn which are, to our knowledge, new even for the uniform measure. We
also give precise expressions for the expected value of logOn, which extends
results from Zacharovas [25].

The literature on non-uniform permutations has grown quickly in recent
years, particularly due to its relevance in mathematical biology and theo-
retical physics. In this paper, we focus on random permutations with cycle
weights as introduced in the recent works of Betz et. al [3] and Ercolani and
Ueltschi [7]. In their model, each cycle of length m is assigned and individual
weight θm ≥ 0. We denote by Cm = Cm(σ) the number of cycles of length
m in the decomposition of the permutation σ as a product of disjoint cycles.
The functions C1, C2, . . . are random variables on Sn and we will call them
cycle counts. Then the weighted measure is defined as follows:

Definition 1.1. Let Θ = (θm)m≥1 be given, with θm ≥ 0 for every m ≥ 1.
We then define for σ ∈ Sn

PnΘ [σ] :=
1

hnn!

n∏
m=1

θCmm

with hn = hn(Θ) a normalization constant and h0 := 1. If n is clear from
the context, we will just write PΘ instead of PnΘ .



THE ORDER OF LARGE RANDOM PERMUTATIONS WITH CYCLE WEIGHTS 3

Notice that special cases of this measure are the uniform measure (θm =
1) and the Ewens measure (θm = θ). Many properties of permutations
considered with respect to this weighted measure have been examined for
different classes of parameters, see for instance [3, 7, 11, 15, 16, 17, 18, 19].
Recently, we studied the order of weighted permutations for polynomial
parameters θm = mγ , γ > 0, see [22]. We proved that the cycle counts of the
cycles of length smaller than a typical cycle in this model can be decoupled
into independent Poisson random variables. Using this approximation, we
extended the Erdös-Turán law (1.1) to this setting as well as a functional
version of it.

In this paper, several properties of logOn are considered for two classes
of parameters Θ = (θm)m≥1. Section 3 is devoted to generalized Ewens

parameters (see Definition 3.2 for precise assumptions) and in Section 4
polynomial parameters θm = mγ with γ > 0 are studied. See the respective
preliminary sections 3.1 and 4.1 for a short overview of the available result
for these parameters.

The challenging point when studying this measure is that due to a lack of
compatibility between the different dimensions the Feller coupling is not
available for the measure PΘ. Therefore, new approaches are needed. The
crucial feature of PΘ is that it is invariant on conjugacy classes. Using gen-
erating series and complex analysis methods, a variety of natural properties
of weighted random permutations were recently obtained by several authors.
The starting point of the study is the relation

∞∑
n=0

hnt
n = exp(gΘ(t)) with gΘ(t) :=

∞∑
m=1

θm
m
tm, (1.2)

where hn is defined in Definition 1.1 and (1.2) is considered as formal power
series in t. Depending on the structure of the θm, different methods are
required to investigate the asymptotic behavior of hn and other quantities
of interest. It will turn out that for the generalized Ewens parameters the
singularity analysis is the right method to choose (see Section 3.1) while for
polynomial parameters it is saddle point analysis (see Section 4.1).

2. Generalities

We require in this paper some basic facts about the symmetric group Sn,
partitions, and generating functions. Since we need precisely the same def-
initions, notations and tools as in our paper [22], we refer the reader to
Section 2.1 and Section 2.2 in [22] (and the references therein). Here, we
introduce an important approximation log Yn of the random variable logOn
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and we discuss some number theoretic sums which we will encounter fre-
quently throughout the paper.

2.1. The approximation random variable log Yn. Recall that the order
On(σ) of a permutation σ ∈ Sn is the smallest integer k such that the k-th
iterate of σ gives the identity. Assume that σ decomposes into disjoint cycles
σ = σ1 · · ·σ` and denote by λi the length of cycle σi. Then On(σ) can be
computed as the least common multiple of the cycle length:

On(σ) = lcm(λ1, λ2, · · ·λ`).

A common approach to investigate the asymptotic behavior of logOn is to
introduce the random variable

Yn :=

n∏
m=1

mCm , that is log Yn =

n∑
m=1

log(m)Cm, (2.1)

where the Cm denote the cycle counts. The basic strategy is to establish
results for log Yn and then to show that logOn and log Yn are relatively close
in a certain sense. To give explicit expressions for On and Yn involving the
Cm let us introduce

Dnk :=
n∑

m=1

Cm 1{k|m} and D∗nk := min{1, Dnk}. (2.2)

Now let p1, p2, . . . be the prime numbers and qm,i be the multiplicity of a
prime number pi in the number m. Then

Yn =
n∏

m=1

mCm =
n∏

m=1

(p
qm,1
1 p

qm,2
2 · · · pqm,nn )Cm

=

n∏
i=1

p
C1·q1,i+C2·q2,i+···+Cn·qn,i
i =

∏
p≤n

p
∑n
j=1Dnpj , (2.3)

where
∏
p≤n denotes the product over all prime numbers that are less or

equal n. The last equality can be understood as follows: First, notice that
Dnk = 0 for k > n. Next, let p be fixed and define m = p qm,i · a where a
and p are coprime (meaning that their least common divisor is 1). Then Cm
appears exactly once in the sum Dnpj if j ≤ qm,i but it does not appear if
j > qm,i. Thus, Cm appears qm,i times in the sum

∑n
j=1Dnpj .

Analogously, we have

On =
∏
p≤n

p
∑n
j=1D

∗
npj . (2.4)
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To simplify the logarithm of the expressions (2.3) and (2.4), we introduce
the von Mangoldt function Λ, which is defined as

Λ(n) =

{
log(p) if n = pk for some prime p and k ≥ 1,

0 otherwise.
(2.5)

Consequently,

log Yn =
∑
k≤n

Λ(k)Dnk and logOn =
∑
k≤n

Λ(k)D∗nk. (2.6)

Now define

∆n := log Yn − logOn =
∑
k≤n

Λ(k)
(
Dnk −D∗nk

)
. (2.7)

In order to prove properties of logOn they are first established for log Yn and
then one needs to show that ∆n is approximately small enough to transfer
the result to logOn, see for example Lemma 3.5 and Lemma 4.2.

An important tool to study log Yn is its moment generating function. By
using a randomized version of the measure PΘ, one can show

∞∑
n=0

hnEΘ[exp(s log Yn)]tn = exp

( ∞∑
m=1

θm
m1−s t

m

)
, (2.8)

see Lemma 2.7 and equation (2.6) in [22].

2.2. Number theoretic sums. We recall the asymptotic behavior of some
averages over multiplicative functions involving the von Mangoldt function
Λ, which will be particularly useful to study the difference of logOn and
log Yn, see (2.7). Let us begin with the Chebyshev function ψ, which is
defined as

ψ(x) :=
∑
k≤x

Λ(k) =
∑
pk≤x

log(p). (2.9)

By definition, the prime number theorem is equivalent to

ψ(x) = x
(
1 + o(1)

)
as x→∞. (2.10)

A more precise explicit formula which was proved by Mangoldt is given by

ψ(x) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log(1− x−2), (2.11)

where the sum is taken over the zeros of the Riemann zeta function (see [23,
Section II.4.3]). Then the Riemann hypothesis is equivalent to

ψ(x) = x+O(x1/2+ε) for all ε > 0, (2.12)
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see [23, Section II.4, Corollary 3.1]. The relation of ψ(n) and the least
common multiple of the numbers 1, 2, ..., n is given by

lcm(1, 2, ..., n) = exp(ψ(n)).

Furthermore, by [1, Theorem 4.9],∑
k≤x

Λ(k)

k
= log(x) +O(1) as x→∞ (2.13)

holds, and by (2.10) this can be generalized for 0 6= α 6= 1 to
y∑

k=x

Λ(k)k−α =

y∑
k=x

Λ(k)

∫ y

k
αt−α−1dt+ y−α

y∑
k=x

Λ(k)

= α

∫ y

x

t∑
k=x

Λ(k)t−α−1dt+ y−α(y − x+ o(y))

=
1 + α

1− α
(
y1−α − x1−α)(1 + o(1)). (2.14)

Finally, recall also the Euler-Maclaurin formula

b∑
m=1

f(m) =

∫ b

0
f(x)dx+

∫ b

0
(x− bxc)f ′(x)dx+ f(b)(b− bbc). (2.15)

3. The generalized Ewens measure

The first class of parameters Θ = (θm)m≥1 of interest are the so-called
generalized Ewens parameters. Roughly speaking, this class comprises all
types of parameters such that the generating series gΘ as defined in (1.2)
exhibits logarithmic singularities. To make this notion precise, we consider
Θ = (θm)m≥1 such that gΘ belongs to the set F(r, ϑ,K), see Definition 3.2
below. This class of parameters was recently studied by several authors. The
case θm → ϑ (which corresponds to F(1, ϑ,K)) was studied for example in
[3], where results on the length of a typical cycle and the expected value of
the total number of cycles are obtained. In [19] a central limit theorem and
Poisson approximation estimates for the total number of cycle are proved
for the general case F(r, ϑ,K). These results where complemented in [18],
where the behavior of large cycles was studied and a functional central limit
theorem for the cycle counts was obtained.

In all these works it turns out that the behavior of weighted random permu-
tations with parameters corresponding to F(r, ϑ,K) (almost) coincides with
that of permutations considered with respect to the Ewens measure with pa-
rameter ϑ. It it thus natural to expect that the Erdös-Turán law as stated
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in (1.1) should also be valid for parameters of the class F(r, ϑ,K). This is
indeed true, as we will show in Theorem 3.7. Furthermore, we will present
results about the order of weighted random permutations that are even new
for the Ewens measure, such as a local limit theorem (see Section 3.3) and
large deviations estimates (see Section 3.4).

3.1. Preliminaries. To determine the framework of this section the follow-
ing preliminary definition is needed.

Definition 3.1. Let 0 < r < R and 0 < φ < π
2 be given. We then define

∆0 = ∆0(r,R, φ) = {z ∈ C; |z| < R, z 6= r, | arg(z − r)| > φ} . (3.1)

0 r
φ

|z| = R

Figure 1. Illustration of ∆0

Let us now introduce the generalized Ewens measure. Rather than defining
conditions for the parameters Θ = (θm)m≥1 directly, we impose them on the
generating series gΘ. We require that gΘ is analytic in a ∆0-domain and
that it admits logarithmic growth at its dominant singularity.

Definition 3.2. Let r, ϑ > 0 and K ∈ R be given. We write F(r, ϑ,K) for
the set of all functions g satisfying

(1) g is holomorphic in ∆0(r,R, φ) for some R > r and 0 < φ < π
2 ,

(2)

g(t) = ϑ log

(
1

1− t/r

)
+K +O (t− r) as t→ r. (3.2)

Notice that θm = ϑ leads to gΘ(t) = −ϑ log(1 − t) ∈ F(1, ϑ, 0) and thus
the Ewens measure is covered by the family F(r, ϑ,K). More generally,
functions of the form gΘ(t) = −ϑ log(1 − t) + f(t) with f holomorphic for
|t| < 1 + ε are contained in F(1, ϑ, f(1)). In particular, the case θm 6= ϑ for
only finitely many k is included in F(1, ϑ, .).

Remark 3.3. The justification for the name generalized Ewens measure relies
on the following observation. Theorem VI.3 and VI.4 in [10] implies that if
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gΘ(t) is defined as in (1.2) and the parameters θm are such that gΘ belongs
to F(r, ϑ,K), then there exists some εm such that

θmr
m = ϑ+ εm with |εm| = O(1) and

∞∑
m=1

|εm|
m

<∞. (3.3)

Notice that there are examples in F(r, ϑ,K) with |εm| 6→ 0. We will occa-
sionally assume that |εm| → 0 to get nicer results.

With these assumptions on the generating series at hand, we can compute
the asymptotic behavior of hn.

Corollary 3.4 ([18], Corollary 3.4). Let gΘ(t) in F(r, ϑ,K) be given, then

hn =
nϑ−1eK

rnΓ(ϑ)

(
1 +O

(
1

n

))
.

The starting point of our study of the properties of logOn is the closeness
of logOn and log Yn. Recall ∆n defined in (2.7).

Lemma 3.5. Let (θm)m≥1 be such that gΘ ∈ F(r, ϑ,K). Then, as n→∞,
the following asymptotic holds for every constant κ:

PΘ [∆n ≥ log(n)(log log(n))κ] = O
(
(log log(n))1−κ).

The analogue result for the Ewens measure was proved in [4]. In Section 3.6
we will present a much more precise expression for EΘ [∆n]. For the proof
of Lemma 3.5 the following proposition is required.

Proposition 3.6. Suppose that gΘ belongs to F(r, ϑ,K). Then

(1) EΘ [Dnk] = O
(

log(n)
k + n−θ 1{k|n}

)
,

(2) EΘ [Dnk(Dnk − 1)] = O
(

log2(n)
k2

+ n−2θ 1{k|n}

)
.

Furthermore, the error terms are uniform in k for 1 ≤ k ≤ n.

Proof of Lemma 3.5. Notice that ∆n defined in (2.7) can be estimated as

∆n =

n∑
k=1

Λ(k)
(
Dnk −D∗nk

)
=:

n∑
k=1

Λ(k) ∆nk

with

∆nk ≤ Dnk and ∆nk ≤ Dnk(Dnk − 1).

Thus

EΘ [∆n] =

n∑
k=1

Λ(k)EΘ[∆nk]

≤
blog(n)c∑
k=1

Λ(k)EΘ[Dnk] +

n∑
k=dlog(n)e

Λ(k)EΘ[Dnk(Dnk − 1)].
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Then Proposition 3.6 together with (2.13) and (2.14) gives

EΘ [∆n] = O

(
log(n)

blog(n)c∑
k=1

Λ(k)

k
+ log2(n)

n∑
k=dlog(n)e

Λ(k)

k2

)
= O(log(n) log log(n)). (3.4)

Now Chebychev’s inequality implies for n→∞

PΘ [∆n ≥ log(n)(log log(n))κ] ≤ EΘ[∆n]

log(n)(log log(n))κ
= O

(
(log log(n))1−κ)

and this completes the proof of the lemma. �

Proof of Proposition 3.6 . We begin with (1). Lemma 2.5 in [22] and (2.2)
yield

EΘ [Dnk] =
n∑

m=1

EΘ [Cm]1{k|m} =
n∑

m=1

θm
m

1{k|m}
hn−m
hn

.

We have to distinguish the cases ϑ ≥ 1 and ϑ < 1, see (3.3). If ϑ ≥ 1, then
it follows with with Corollary 3.4 and (3.3) that θmhn−m/hn is bounded and
thus

EΘ [Dnk] = O

(
n∑

m=1

1

m
1{k|m}

)
= O

1

k

n/k∑
j=1

1

j

 = O

(
log(n)

k

)
.

If ϑ < 1, we have to be more careful. We get again with (3.3) and Corol-
lary 3.4

EΘ [Dnk] = O

(
n−1∑
m=1

1

m
1{k|m}

(
1− m

n

)θ−1
+ n−θ 1{k|n}

)
,

where

n−1∑
m=1

1

m
1{k|m}

(
1− m

n

)θ−1
= O

 n/2∑
m=1

1{k|m}

m
+

1

n

n−1∑
m>n/2

1{k|m}

(
1− m

n

)θ−1


= O

(
log(n)

k
+

1

n

∫ (n−1)/k

n/(2k)

(
1− kx

n

)θ−1

dx

)

= O

(
log(n)

k
+

1

k

)
= O

(
log(n)

k

)
.
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This completes the proof of (1). Furthermore,

EΘ [Dnk(Dnk − 1)] = EΘ

[( n∑
m=1

Cm 1{k|m}

)( n∑
m=1

Cm 1{k|m}−1

)]

= EΘ

 n∑
m,m′=1

CmCm′ 1{k|m ; k|m′}−
n∑

m=1

Cm 1{k|m}



= EΘ

 n∑
m,m′=1
m 6=m′

CmCm′ 1{k|m ; k|m′}+
n∑

m=1

Cm(Cm − 1)1{k|m}


=

n∑
m,m′=1
m6=m′

θm
m

θm′

m′
1{k|m ; k|m′}

hn−m−m′

hn
+

n∑
m=1

(
θm
m

)2

1{k|m}
hn−2m

hn
.

A similar argument as for EΘ [Dnk] gives the upper bound in (2). �

With Lemma 3.5 at hand, one can directly deduce the Erdös-Turán law as
it was stated in (1.1) for uniform random permutations.

Theorem 3.7. Suppose that gΘ(t) belongs to F(r, ϑ,K), then

logOn − ϑ
2 log2(n)√

ϑ
3 log3(n)

d−→ N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

Proof. Given Lemma 3.5, it suffices to show the required asymptotic holds
for log Yn. In a beautiful proof, DeLaurentis and Pittel [4] deduce this for
the uniform measure from a functional version of the central limit theorem
for the cycle counts. The analogue result for the generalized Ewens measure
was proved in [18, Theorem 5.5]. The rest of the proof is completely similar
to the proof in [4]. �

3.2. The truncated order. To establish further properties of the order of
weighted permutations, it turns out to be convenient to introduce truncated
versions of log Yn and logOn in order to simplify computations:

Õn = lcm{m ≤ bn; Cm 6= 0} with bn := n/ log2(n) (3.5)

and similarly

Ỹn :=

bn∏
m=1

mCm .
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The advantage of the truncated variables is that less analytic assumptions
on the sequence of parameters (θm)m≥1 are required and that many com-

putations are simpler; see also Remark 3.10. Nonetheless, Ỹn and Õn share
many important properties with Yn and On. Similarly to (2.6) we have

log Ỹn =
∑
k≤n

Λ(k)D̃nk with D̃nk :=

bn∑
m=1

Cm 1{k|m}, (3.6)

log Õn =
∑
k≤n

Λ(k)D̃∗nk with D̃∗nk := min{1, D̃nk}. (3.7)

Our basic strategy is as follows. We will establish properties of log Ỹn and

transfer them to log Õn and finally to logOn. For the first transfer, define

∆̃n := log Ỹn − log Õn

and notice that 0 ≤ ∆̃n ≤ ∆n. Thus, Lemma 3.5 yields

PΘ

[
∆̃n ≥ log(n)(log log(n))κ

]
= O

(
(log log(n))1−κ). (3.8)

For the second transfer, notice that

logOn − log Õn ≤ log Yn − log Ỹn =

n∑
m=bn+1

log(m)Cm = O(log(n) log log(n)).

In order to study log Ỹn, we need its moment generating function.

Lemma 3.8. Let gΘ(t) be as in (1.2) and s ∈ C, then

(1) EΘ

[
log Ỹn

]
=

1

hn
[tn]

[(
bn∑
m=1

log(m)
θm
m
tm

)
exp (gΘ(t))

]
,

(2) EΘ

[
es log Ỹn

]
=

1

hn
[tn]

[
exp

(
gΘ(t) +

(
bn∑
m=1

(es log(m) − 1)
θm
m
tm

))]
,

where the functions on the right-hand sides are considered as formal power
series in t.

Proof. Equation (1) follows from (2) by differentiating once with respect
to s and substituting s = 0. We thus only have to prove (2). For this,
let c ∈ N be fixed and consider Y c

n :=
∏c
m=1m

Cm . We now apply the so
called cycle index theorem with the formulation in Lemma 2.3 in [22] with

am = es log(m)θm for m ≤ c and am = θm for m > c.
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We then have as formal power series
∞∑
n=0

hnt
nEΘ

[
es log Y cn

]
=

∞∑
n=0

tn

n!

∑
σ∈Sn

c∏
m=1

(es log(m)θm)Cm
∞∏

m=c+1

θCmm

= exp

(
c∑

m=1

es log(m) θm
m
tm +

∞∑
m=c+1

θm
m
tm

)

= exp

(
gΘ(t) +

(
c∑

m=1

(es log(m) − 1)
θm
m
tm

))
.

Now identify the coefficients of tn on both sides and obtain

EΘ

[
es log Y cn

]
=

1

hn
[tn]

[
exp

(
gΘ(t) +

(
c∑

m=1

(es log(m) − 1)
θm
m
tm

))]
.

Equation (2) now follows by substituting c = bn. �

The previous lemma yields

Lemma 3.9. If gΘ belongs to F(r, ϑ,K), then

EΘ

[
log Ỹn

]
=

bn∑
m=1

log(m)

m
θmr

m +O
(
log−1(n)

)
.

Furthermore we get for s ∈ C

EΘ

[
e
s log Ỹn
log(n)

]
= exp

(
bn∑
m=1

(
e
s
log(m)
log(n) − 1

)
θm
m
rm

)(
1 +O

(
n−1

))
and the error term is uniform in s for s bounded.

Proof. We use Lemma 3.8 and get with Cauchy’s integral formula

hnEΘ

[
log Ỹn

]
=

1

2πi

∫
γ
q̃1(t) exp (gΘ(t))

dt

tn+1
,

hnEΘ

[
e
s log Ỹn
log(n)

]
=

1

2πi

∫
γ
ẽ(s, t) exp (gΘ(t))

dt

tn+1

where γ is a simple closed curve around 0 and

q̃1(t) :=

bn∑
m=1

log(m)
θm
m
tm, ẽ(s, t) :=

bn∑
m=1

(
e
s
log(m)
log(n) − 1

)θm
m
tm.

By assumption, gΘ is analytic in a domain ∆0 = ∆(r,R, φ); see Defini-
tion 3.1. We choose for both integrals the curve γ as in Figure 2(a), such
that γ is contained in the ∆0-domain. More precisely, we choose the radius
of the big circle γ4 as R′ := r(1 + b−1

n ) with bn as in (3.5), the radius of
the small circle as 1/n and the angle of the line segments independent of n.
Notice that q̃1(t) and ẽ(s, t) are for given n polynomials and we thus do not
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0

|z| = r

|z| = R′

γ2

γ3

γ1

γ4

(a) γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4

0

|w| = 1

γ′1

γ′2

γ′3

(b) γ′ = γ′1 ∪ γ′2 ∪ γ′3

0

γ′′1

γ′′2

γ′′3

(c) γ′′ = γ′′1 ∪ γ′′2 ∪ γ′′3

Figure 2. The curves used in the proof of Lemma 3.9.

require any further analytic assumptions to use this curve. First, consider
the integral over the big circle γ4 and show that its contribution is negligible.
We get with (3.3) and for ϕ ∈ [−π, π]∣∣q̃1(R′eiϕ)

∣∣ = O

(
bn∑
m=1

log(m)

m

(
1 + b−1

n

)m)

= O

(
bn∑
m=1

log(m)

m

(
1 +O

(
mb−1

n

)))

= O

(
bn∑
m=1

log(m)

m

)
= O(log2(bn)) = O(log2(n)).

We have used that m ≤ bn and thus m log(1 + b−1
n ) = m

bn
(1 + o(1)). Since

(e
s log(m)
log(n) − 1) is bounded for s bounded, we can apply for ẽ(s, t) the same

estimate as for q̃1 and get∣∣ẽ(s,R′eiϕ)
∣∣ = O(log2(bn)) = O(log2(n)).

Furthermore, we have on the ∆0-domain

|gΘ(t)| ≤ ϑ log

∣∣∣∣ 1

1− t/r

∣∣∣∣+O(1) =⇒ |gΘ(R′eiϕ)| ≤ ϑ log(bn) +O(1).

Finally,

(R′)−n = r−n
(
1 + n−1 log2(n)

)−n
= r−n exp

(
− log2(n) +O(log4(n)/n)

)
= O

(
r−n exp(− log2(n))

)
.

Combining these three estimates yields∣∣∣∣ 1

2πi

∫
γ4

q̃1(t) exp (gΘ(t))
dt

tn+1

∣∣∣∣ = O
(
r−nnϑ exp(− log2(n))

)
.

Since hn ∼ eKnϑ−1
(
Γ(ϑ)rn

)−1
(see Corollary 3.4), we can neglect the inte-

gral over γ4 with respect to the scale of the problem. Let us consider the
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remaining parts of the curve. The computations of the integrals over γ1, γ2

and γ3 are completely similar to the computations in the proof of Theo-
rem VI.3 in [10]. We thus give only a short overview. We start with q̃1 and
write t = r(1 + wn−1) with w = O(log2(n)) and obtain

q̃1

(
r +

rw

n

)
=

bn∑
m=1

log(m)

m
θmr

m
(

1 +
w

n

)m
=

bn∑
m=1

log(m)

m
θmr

m
(

1 +O
(mw
n

))
=

bn∑
m=1

log(m)

m
θmr

m +O

(
w

n

bn∑
m=1

log(m)

)

=

bn∑
m=1

log(m)

m
θmr

m +O

(
w

log(n)

)
. (3.9)

We now use the asymptotic behavior of gΘ(t) at r in (3.2) to get

1

2πi

∫
γ1∪γ2∪γ3

q̃1(t) exp (gΘ(t))
dt

tn+1

=
nϑ−1

2πirn
eK
∫
γ′
q̃1

(
r +

rw

n

)
(−w)−ϑe−w(1 +O(w/n)) dw

=
nϑ−1

2πirn
eK

(
bn∑
m=1

log(m)

m
θmr

m

∫
γ′

(−w)−ϑe−wdw +O
(
log−1(n)

))
, (3.10)

where γ′ is the bounded curve in Figure 2(b). We have used for the estimate
of the reminder that Re(e−w) is decreasing exponentially fast as Re(w)→∞.
Furthermore, we can replace with the same observation and a simple contour
argument the bounded curve γ′ with the infinite Hankel contour γ′′ as in
Figure 2(c). Notice that

1

2πi

∫
γ′′

(−w)−ϑe−w dw =
1

Γ(ϑ)
, (3.11)

where ϑ ∈ C is arbitrary (details can be found for instance in [10, Sec-
tion B.3]). Combining (3.11) with (3.10) and Corollary 3.4 completes the
proof of the first assertion. The argument for the second is very similar.
One only has to replace (3.9) by

ẽ
(
s, r +

rw

n

)
=

bn∑
m=1

(
e
s
log(m)
log(n) − 1

)θm
m
rm +O

(w
n

)
.

�
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Remark 3.10. Instead of the truncated sequence log Ỹn one may consider
the generating functions for log Yn which are given by

EΘ [log Yn] =
1

hn
[tn] [q1(t) exp (gΘ(t))] ,

EΘ

[
es log Yn

]
=

1

hn
[tn]

[
exp
(
e(s, t) + gΘ(t)

)]
with

q1(t) :=

( ∞∑
m=1

log(m)
θm
m
tm

)
and e(s, t) =

∞∑
m=1

(es log(m) − 1)
θm
m
tm.

To use the same contour as in the proof of Lemma 3.9, analytic extensions of
q1(t) and e(s, t) to some ∆0-domain plus the asymptotic behavior at r are
required. However, for all probabilistic question we consider here, except
the precise expected value of logOn in Section 3.6, it is enough to know

the behavior of the truncated variables log Ỹn since they are transferable to
log Yn.

Remark 3.11. To simplify computations, we will assume in some cases

θmr
m = ϑ+O(m−δ)

for some δ > 0. Then the Euler Summation formula (2.15) yields

bn∑
m=1

log(m)

m
θmr

m = ϑ

bn∑
m=1

log(m)

m
+O(1) =

ϑ

2
log2(bn) +O(1), (3.12)

bn∑
m=1

θm
m
rm 1{k|m} = ϑ

log(bn)

k
+O

(
log(k)

k

)
.

With this assumption, we get a nice expression for the moment generating

function of log Ỹn.

Corollary 3.12. If gΘ ∈ F(r, ϑ,K) and θmr
m = ϑ + O(m−δ) for some

δ > 0, then

EΘ

[
e
s log Ỹn
log(n)

]
= exp

(
log(bn)

(
es

s
− 1

s
− 1

)
+O

(
s

log(n)

))(
1 +O(n−1)

)
.

Proof. Corollary 3.12 follows immediately from Lemma 3.9 and a simple
application of the Euler summation formula (2.15). �

3.3. A local limit theorem for logOn. In this section we prove that,

given the characteristic function of log Ỹn in Lemma 3.9, the local behavior
of the rescaled order of a permutation is well-controlled. To this aim, define

Ỹn :=
log Ỹn − ϑ

2 log2(n)

log4/3(n)
.
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We will show that Ỹn satisfies the so-called mod-Gaussian convergence; this
notion was introduced in 2011 by Jacod et al. [12]. It has interesting appli-
cations when typically a sequence of random variables Xn does not converge
in distribution, meaning that the sequence of characteristic functions does
not converge pointwise to a limit characteristic function, but nevertheless,
the characteristic functions decay precisely like those of a suitable Gaussian
Gn. Specifically, the convergence

E[eitGn ]−1E[eitXn ]→ ψ(t)

holds locally uniformly for t ∈ R, where the limiting function ψ is continuous
on R with ψ(0) = 1. More generally, mod-φ convergence with respect to
other laws φ may be defined analogously. In a series of papers [5, 9, 13],
properties and implications of this convergence were studied. Here, we will
apply Theorem 5 in [5] to show that the mod-Gaussian convergence of the

sequence Ỹn implies a local limit theorem for

On :=
logOn − ϑ

2 log2(n)

log4/3(n)
. (3.13)

We will prove

Theorem 3.13. Suppose that gΘ ∈ F(r, ϑ,K) and θmr
m = ϑ+O(m−δ) for

some δ > 0. For any bounded Borel subset B ⊂ R with boundary of Lebesgue
measure zero

lim
n→∞

σn PΘ [On ∈ B] =
m(B)√

2π
,

where m(B) denotes the Lebesgue measure of B and σn =
√

ϑ
3 log1/6(n).

To prove this, let us first show that Ỹn is indeed mod-Gaussian convergent

in Lemma 3.14. Subsequently, we present in Lemma 3.15 that Ỹn satisfies
the required local behavior. Finally, the result has to be transferred to On.

Lemma 3.14. Under the assumptions of Theorem 3.13, the sequence Ỹn is
mod-N (0, σ2

n) convergent with σ2
n = ϑ

3 log1/3(n) and limiting function given

by ψ(x) = ex
3ϑ/18.

Proof. Take the generating function in Lemma 3.9 and expand the exponen-
tial term to get

EΘ

[
e
s log Ỹn

logn

]
= exp

(
s
ϑ

2

(
log(n) +O(log log(n)

)
+
s2

2

ϑ

3

(
log(n) +O(log log(n)

)
+
s3

3!

ϑ

4

(
log(n) +O(log log(n)

)
+O(s4 log(n))

) (
1 +O(n−1)

)
;
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we used (3.12) and similar estimates for the higher order terms. Since s ∈ C
we may write s = it with t ∈ R and get

EΘ

[
e
it log Ỹn

log4/3 n

]
= exp

(
it
ϑ

2
log

2
3 (n)− t2

2

ϑ

3
log

1
3 (n) +

it3

3!

ϑ

4
+O

( log log(n)

log1/3(n)

))
and this gives the result. �

As a direct consequence, we get a local limit theorem for Ỹn.

Lemma 3.15. Under the assumptions of Theorem 3.13 the following holds
for any bounded Borel subset B ⊂ R with boundary of Lebesgue measure
zero:

lim
n→∞

σn PΘ

[
Ỹn ∈ B

]
=
m(B)√

2π
,

where m(B) denotes the Lebesgue measure of B and σn is defined as in
Lemma 3.14.

Proof. Apply Theorem 5 in [5] with ϕ(t) = e−t
2/2 and Ant = σnt. We

need to verify that condition H3 holds, that is we have to show the uniform
integrability of the sequence

fnk := EΘ

[
eit
Ỹn
σn

]
1|tσ−1

n |≤k

for all k ≥ 0. Set t := t/σn and recall that Lemma 3.14 implies

EΘ

[
eitỸn

]
= exp

(
− t2σ2

n +
ϑ

18
it

3
+O(t

4 log log(n)

log1/3(n)
)
)

= exp
(
− t2 +

ϑ

18

it3

σ3
n

+O(t4
log log(n)

σ4
n log1/3(n)

)
)
.

Thus ∣∣EΘ

[
eitỸn

]∣∣ = exp
(
− t2 + o(1)

)
which implies the uniform integrability. �

Proof of Theorem 3.13. It remains to transfer the result from Ỹn to

Õn :=
log Õn − ϑ

2 log2(n)

log4/3(n)

and subsequently to On defined as in Theorem 3.13. To this aim, notice
that for every ε > 0 there exist Jordan-measurable sets (meaning that they
are bounded with boundary of Lebesgue measure zero) Bε ⊂ B ⊂ Bε such
that

m(Bε \B) ≤ ε and m(B \Bε) ≤ ε.
To see this, notice that ∂B is bounded (since B is bounded) and that it is
also closed (complement of the interior and the exterior, both open sets),
thus ∂B is compact. Cover ∂B with open rectangles whose total volume
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does not exceed ε. Since ∂B is compact, U can be chosen to be a finite
union of open rectangles. Then define

Bε := B \ U and Bε := B ∪ U

to get the required sets (they are indeed Jordan-measurable since ∂(B\U) ⊂
∂B ∪ ∂U and ∂(B ∪ U) ⊂ ∂B ∪ ∂U). This gives

PΘ

[
Õn ∈ B

]
≤ PΘ

[
Ỹn ∈ Bε

]
+O

(
PΘ

[
log Ỹn − log Õn ≥ ε log4/3(n)

] )
and

PΘ

[
Õn ∈ B

]
≥ PΘ

[
Ỹn ∈ Bε

]
+O

(
PΘ

[
log Ỹn − log Õn ≥ ε log4/3(n)

] )
.

Thus, we have to show

σnPΘ

[
log Ỹn − log Õn ≥ ε log4/3(n)

]
→ 0. (3.14)

This is true since

PΘ

[
log Ỹn − log Õn ≥ ε log4/3(n)

]
≤ PΘ

[
log Yn − logOn ≥ ε log4/3(n)

]
and then (3.4) and Markov’s inequality yield the required asymptotic. Now
(3.14) implies

lim
n→∞

σnPΘ

[
Õn ∈ B

]
≤ lim

n→∞
σnPΘ

[
Ỹn ∈ Bε

]
=
m(Bε)√

2π
≤ m(B) + ε√

2π
.

With the same argument for the reversed inequality, we get that for all ε > 0,

m(B)− ε√
2π

≤ lim
n→∞

σnPΘ

[
Õn ∈ B

]
≤ m(B) + ε√

2π
.

Let ε tend to zero to obtain

lim
n→∞

σn PΘ

[
Õn ∈ B

]
=
m(B)√

2π
.

With the same argument, the result is transferred from Õn to On, assuming
that

σnPΘ

[
logOn − log Õn ≥ ε log4/3(n)

]
→ 0

is satisfied. To see this, notice that

PΘ

[
logOn − log Õn ≥ ε log4/3(n)

]
≤ PΘ

[
log Yn − log Ỹn ≥ ε log4/3(n)

]
holds as well as

EΘ

[
log Yn − log Ỹn

]
= O

(
log(n) log log(n)

)
.

�
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3.4. Large deviations estimates for logOn. This section is devoted to
two large deviations estimates for logOn. To our knowledge, these results
are new even for the uniform measure. The first estimate is established by
a classical large deviations approach. We will show in Theorem 3.17 that
for any Borel set B

lim sup
n→∞

1

log(n)
logPΘ

(
logOn

log2(n)
∈ B

)
= − inf

x∈B
F (x) (3.15)

where

F (x) := sup
t∈R

[tx− χ(t)]

is the so-called Fenchel-Legendre transform of χ(t) := et−1−t
t . This result

was stated by O’Connell [20] for the uniform measure. However, we believe
his proof of Lemma 2 is incorrect and we don’t see an easy way to fix it.
Here, we give a detailed proof based on an extra moment condition and
even present a refined result, namely a precise large deviations estimate; see
Theorem 3.19.

Moment condition Assume that gΘ belongs to F(ρ, ϑ,K) and assume
θmr

m = ϑ+O(m−δ) for some δ > 0. Define

∆n,β(n) :=
n∑

k=β(n)

Λ(k)(D̃nk − D̃∗nk),

where β(n) = exp(logx(n)) for some x < 1. Then the moment condition is
satisfied if there exists an n0 ∈ N and a sequence (km)m∈N such that for all
n ≥ n0 the following holds:∣∣EΘ

[
(∆n,β(n))

m
]∣∣ ≤ km(log(n) log log(n))m

)
(3.16)

with km = O(eαm) for some α > 0 with α independent of n and m.

Remark 3.16. We are strongly convinced that the moment condition is sat-
isfied under the above assumptions, however we are so far not able to prove
it. The condition is clearly satisfied for m = 1 and for m = 2 and the com-
putations for these cases can be found for instance in the Appendix in [21].
Furthermore, we have been able to show that

EΘ

[
(∆n,β(n))

m
]

= Om
(
(log(n) log log(n))m

)
,

but we couldn’t very the upper bound for km. However, this computations
are very technical and we thus don’t state them here.

With the moment generating function of log Ỹn/ log(n) stated in Corol-
lary 3.12 at hand, a simple application of the Gärtner-Ellis Theorem yields

an estimate as in (3.15) for log Ỹn. Then, using the moment condition (3.16),
we show by exponential equivalence that this estimate can be transferred to

log Õn and then to logOn. More precisely, we will prove the following
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Theorem 3.17. Let gΘ belong to F(r, ϑ,K), θmr
m = ϑ+O(m−δ) for some

δ > 0 and assume that the moment condition (3.16) holds. Then the se-
quence logOn/ log2(n) satisfies a large deviations principle with rate log(n)

and rate function given by the Fenchel-Legendre transform of χ(t) := et−1−t
t .

Proof. Let us first check that log Ỹn/ log2(n) satisfies the required large de-
viations principle. By the Gärtner-Ellis Theorem, it suffices to check

lim
n→∞

1

log(n)
logEΘ

[
exp

(
t
log Ỹn
log(n)

)]
= χ(t)

and this follows immediately from Corollary 3.12. Proving exponential

equivalence, Lemma 3.18 transfers this result from log Ỹn to log Õn and
then to logOn. �

Lemma 3.18. Under the assumptions of Theorem 3.17 the following holds
for any c > 0:

(1) lim supn→∞
1

log(n) logPΘ

[
log Ỹn − log Õn > c log2(n)

]
= −∞,

(2) lim supn→∞
1

log(n) logPΘ

[
logOn − log Õn > c log2(n)

]
= −∞.

Proof. We will prove stronger versions of (1) and (2) in Lemma 3.21 and
Lemma 3.20 below. �

The result of Theorem 3.17 can be even refined:

Theorem 3.19. Let On be as in (3.13) and σ2
n = ϑ

3 log1/3(n). Then, under
the assumptions of Theorem 3.17, for any x > 0 the following holds:

PΘ

[
On ≥ xσ2

n

]
=

exp(−σ2
n
x2

2 + x3ϑ
18 )√

2πσ2
nx

2
(1 + o(1)).

To prove this result, we proceed as follows: from the mod-Gaussian con-

vergence of Ỹn stated in Lemma 3.14 we deduce a precise large deviations

estimate for Ỹn. Then, using the moment condition (3.16) we prove expo-
nential equivalence similar to Lemma 3.18 to transfer the estimate to On.

Proof of Theorem 3.19. First, combine Lemma 3.14 with Theorem 3.2 in [9]

to get the same precise deviations estimate for Ỹn (take tn = σ2
n, F (x) =

x2/2 = η(x) and ϕ(x) as in Lemma 3.14). Lemma 3.21 below transfers the

result to Õn and subsequently Lemma 3.20 transfers the result to On. �

Lemma 3.20. Under the assumptions of Theorem 3.19 the following holds
for any c > 0:

lim
n→∞

1

σ2
n

logPΘ

[
logOn − log Õn > c log4/3(n)

]
= −∞.
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Proof. We have

logOn − log Õn ≤ log Yn − log Ỹn

and thus the assertion is proved if we can show

lim
n→∞

1

log1/3(n)
logPΘ

[
log Yn − log Ỹn > c log4/3(n)

]
= −∞.

Define

D(n, b) := log Yn − log Ỹn =

n∑
m=bn+1

log(m)Cm

and notice that

PΘ

[
log Yn − log Ỹn > c log4/3(n)

]
≤ PΘ

[
T (bn, n) > c log1/3(n)

]
where

T (bn, n) =
n∑

m=bn+1

Cm.

Thus it suffices to show

lim
n→∞

1

log1/3(n)
logPΘ

[
T (bn, n) > c log1/3(n)

]
= −∞.

With Markov’s inequality we get

1

log1/3(n)
logPΘ

(
esT (bn,n) ≥ esc log1/3(n)

)
≤ −sc+

logEΘ

[
esT (bn,n)

]
log1/3(n)

.

(3.17)

The generating function of T (bn, n) is given by

logEΘ

[
esT (bn,n)

]
= ϑ(es − 1) log(n) + (K − Lbn(r))(es − 1) + o(1)

where

Lbn(r) =

bn∑
m=1

θm
m
rm = ϑ

bn∑
m=1

1

m
+O(1) = ϑ log(bn) +O(1),

see [18, Theorem 4.3] with An = {1, ..., bn}. Thus

(3.17) ≤ −sc+O
(es log log(n)

log1/3(n)

)
and choose s = log log log(n) to get the result. �

Lemma 3.21. Under the assumptions of Theorem 3.19 the following holds
for any c > 0:

lim
n→∞

1

σ2
n

logPΘ

[
log Ỹn − log Õn > c log4/3(n)

]
= −∞.
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Proof. We use (3.6) and (3.7) an get for β(n) ∈ N (determined later)

log Ỹn − log Õn =

β(n)∑
m=1

Λ(k)(D̃nk − D̃∗nk) +

bn∑
m=β(n)+1

Λ(k)(D̃nk − D̃∗nk)

≤
β(n)∑
m=1

Λ(k)D̃nk +

bn∑
m=β(n)+1

Λ(k)(D̃nk − D̃∗nk)

≤
β(n)∑
m=1

log(m)Cm +

bn∑
m=β(n)+1

Λ(k)(D̃nk − D̃∗nk)

We thus have

PΘ

[
log Ỹn − log Õn > c log4/3(n)

]
≤ PΘ

β(n)∑
m=1

log(m)Cm >
c

2
log4/3(n)


+ PΘ

 n∑
k=β(n)

Λ(k)(D̃nk − D̃∗nk) >
c

2
log4/3(n)

 .
Notice that for any sequences (an)n∈N and (bn)n∈N with an, bn ∈ (0,∞) and
any g(n)→∞

lim sup
n→∞

log(an + bn)

g(n)
= max

{
lim sup
n→∞

log(an)

g(n)
, lim sup
n→∞

log(bn)

g(n)

}
.

We want to find the biggest β(n) such that

1

log1/3(n)
logPΘ

β(n)∑
m=1

log(m)Cm >
c

2
log4/3(n)

→ −∞ (3.18)

is satisfied. Subsequently, by means of the moment condition (3.16) we show

1

log1/3(n)
logPΘ

 n∑
k=β(n)

Λ(k)(D̃nk − D̃∗nk) >
c

2
log4/3(n)

→ −∞. (3.19)

We start with (3.18). For any s > 0, Markov’s inequality yields

1

log1/3(n)
logPΘ

β(n)∑
m=1

log(m)Cm >
c

2
log4/3(n)


=

1

log1/3(n)
logPΘ

exp
(
s

β(n)∑
m=1

log(m)Cm

)
> exp

(sc
2

log4/3(n)
)

≤ − sc

2
log(n) +

1

log1/3(n)
logEΘ

exp
(
s

β(n)∑
m=1

log(m)Cm

) . (3.20)
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The asymptotic behaviour of the moment generating function in (3.20) can
be computed in exactly the same way as the moment generating function of

log Ỹn in Lemma 3.9. Indeed, only minor modifications are required and we
thus omit the computation. This then gives for s, β(n) with s log β(n) = o(1)

EΘ

exp
(
s

β(n)∑
m=1

log(m)Cm

) = exp

β(n)∑
m=1

(es logm − 1)
θm
m
rm

 (1 + o(1)).

Using the assumption θmr
m = ϑ+O(m−δ) then gives

1

log1/3(n)
logEΘ

[
es

∑β(n)
m=1 log(m)Cm

]
=

ϑ

log1/3(n)

β(n)∑
m=1

es log(m) − 1

m

+ o(1).

Now set s := log log(n)/ log(n), then for all β(n) = exp(o(log n/ log logn)),

ϑ

log1/3(n)

β(n)∑
m=1

es log(m) − 1

m
= O

(
log log(n)

log4/3(n)

β(n)∑
m=1

log(m)

m

)
= O

(
log log(n) log2(β(n))

log4/3(n)

)
.

Thus, set β(n) := exp(
√

log(n)) to obtain

(3.20) = −c log log(n)

2
+O

(
log log(n)

log1/3(n)

)
and therefore assertion (3.18) is proved. So let us consider (3.19). Again,
for s > 0, and with the notation from the moment condition (3.16),

1

log1/3(n)
logPΘ

[
∆n,β(n) >

c

2
log4/3(n)

]
=

1

log1/3(n)
logPΘ

[
es∆n,β(n) > e

sc
2

log4/3(n)
]

≤ − sc

2
log(n) +

1

log1/3(n)
logEΘ

[
es∆n,β(n)

]
.

Thus, we set again s := log log(n)/ log(n). Define the event

A :=
{

∆n,β(n) ≤
log4/3(n)

log log(n)

}
.

Then for s = log log(n)/ log(n)

EΘ

[
es∆n,β(n)

]
= EΘ

[
es∆n,β(n) 1{A}

]
+ EΘ

[
es∆n,β(n) 1{Ac}

]
≤ elog1/3(n) + EΘ

[
es∆n,β(n) 1{Ac}

]
.
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We will show that

1

log1/3(n)
logEΘ

[
es∆n,β(n) 1{Ac}

]
= O(1) (3.21)

holds. Cauchy’s inequality yields

EΘ

[
es∆n,β(n) 1{Ac}

]
≤ PΘ [Ac]2 EΘ

[
e2s∆n,β(n)

]
≤ PΘ [Ac]

g(n)∑
m=0

EΘ

[
(2s∆n,β(n))

m
]

m!

+
∞∑

m=g(n)+1

EΘ

[
(2s∆n,β(n))

m
]

m!
,

where g(n) is a function to be determined in a moment. By the moment
condition (3.16) and by Stirling’s formula we have for s = log log(n)/ log(n)

∞∑
m=g(n)+1

EΘ

[
(2s∆n,β(n))

m
]

m!
≤

∞∑
m=g(n)+1

km (2s)m
(
log(n) log log(n)

)m
m!

≤
∞∑

m=g(n)+1

km 2m
(
log log(n)

)2m
m!

= O

 ∞∑
m=g(n)+1

(
2eα (log log(n))2

)m
m!


= O

( ∞∑
m=g(n)+1

exp
(
m log

(
2eα (log log(n))2

)
−m log(m)

))
.

Consequently, for g(n) = (log log(n))3, this sum satisfies (3.21). On the
other hand, by Markov’s inequality

PΘ [Ac] = PΘ

[
∆n,β(n) >

log4/3(n)

log log(n)

]
≤ log log(n)

log4/3(n)
EΘ

[
∆n,β(n)

]
.

Notice that

D̃nk − D̃∗nk ≤ Dnk −D∗nk ≤ Dnk(Dnk − 1)

and recall that β(n) = exp(
√

log(n)). Furthermore, recall (2.14) and Propo-
sition 3.6. Then

EΘ

[
∆n,β(n)

]
=

n∑
k=β(n)

Λ(k)EΘ [Dnk(Dnk − 1)] = O

(
log2(n)

n∑
k=β(n)

Λ(k)

k2

)

= O

(
log2(n)

β(n)

)
= O

(
log2(n) e−

√
log(n)

)
.

This implies

PΘ [Ac] = O

(
log2/3(n) log log(n) e−

√
log(n)

)
.
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We thus get with the moment condition (3.16) and s = log log(n)/ log(n)

PΘ [Ac]

(log log(n))3∑
m=0

EΘ

[
(2s∆n,β(n))

m
]

m!
≤ PΘ [Ac]

(log log(n))3∑
m=0

km 2m
(
log log(n)

)2m
m!

= O

(
PΘ [Ac]

(log log(n))3∑
m=0

(2eα)m
(
log log(n)

)2m
m!

)
= O

(
PΘ [Ac] (log log(n))3 ·

[
(2eα)m

(
log log(n)

)2m] ∣∣∣
m=log log(n)

)
= O

(
PΘ [Ac] (log log(n))3 exp

(
2(log log(n))3 log log log(n)

))
= O

(
log2/3(n)(log log(n))4 exp

(
−
√

log(n) + 2(log log(n))3 log log log(n)
))

.

Altogether, we proved (3.21) and thus (3.19) holds. The proof is complete.
�

3.5. Expected value of the logarithm of a truncated order. Recall

the definition of the truncated order Õn in (3.5) . We will compute a precise

asymptotic expansion for EΘ[log Õn] .

Theorem 3.22. Suppose that gΘ ∈ F(r, ϑ,K). Then

EΘ

[
log Õn

]
=

bn∑
m=1

log(m)

m
θmr

m −
log2(n)∑
k=1

Λ(k) exp

(
−

bn∑
m=1

θm
m
rm 1{k|m}

)

−
log2(n)∑
k=1

Λ(k)

(
bn∑
m=1

θm
m
rm 1{k|m}−1

)
+O(1). (3.22)

Before we prove this theorem, we point out the following direct consequence.

Corollary 3.23. Suppose that gΘ ∈ F(r, ϑ,K) and θmr
m = ϑ + O(m−δ)

for some δ > 0. Then

EΘ

[
log Õn

]
=
ϑ

2
log2(bn) + ϑ log(bn)

(
log(ϑ log(bn))− 1

)
+
∑
ρ

Γ(−ρ)(ϑ log(bn)
)ρ

+O
(
(log log(n))3

)
,

where
∑

ρ indicates the sum over the non-trivial zeros ρ of Riemann zeta
function.

Assuming the Riemann hypothesis to be true, that is all the non-trivial zeros
of the zeta function have the form % = 1/2 + it, any sum

∑
% x

% with x ≥ 0

can be estimated as O(
√
x). This leads to the implication (1)⇒ (2) in the
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following Corollary. Moreover, similar as for the Chebychev function (2.12),
we notice that the reverse implication is also true: if there would exist a
zero of the zeta function of the form % = 1/2+δ+ it with δ > 0, then we can
deduce a contradiction for ε = δ/2. For more details we refer to the proof
of (2.12) in [23, Section II.4, Corollary 3.1].

Corollary 3.24. Suppose that gΘ ∈ F(r, ϑ,K) and θm
m rm = ϑ + O(m−δ)

for some δ > 0. Then the following statements are equivalent

(1) The Riemann hypothesis is true.
(2) We have for all ε > 0

EΘ

[
log Õn

]
=
ϑ

2
log2(bn) + ϑ log(bn)

(
log(ϑ log(bn))− 1

)
+O

(
(log(bn))1/2+ε

)
.

Let us now deduce Corollary 3.23 from Theorem 3.22.

Proof of Corollary 3.23. Recall the estimates in Remark 3.11. Then

EΘ

[
log Õn

]
=
ϑ

2
log2(bn)−

log2(n)∑
k=1

Λ(k)

(
e−ϑ

log(bn)
k − 1 + ϑ

log(bn)

k

)

+O

log2(n)∑
k=1

Λ(k)
log(k)

k

 .

Since Λ(k) ≤ log(k), the sum over the error term is of order

log2(n)∑
k=1

Λ(k)O

(
log(k)

k

)
= O

log2(n)∑
k=1

log2(k)

k

 = O
(
(log log(n))3

)
and thus can be neglected with respect to the scale of the problem. Now
consider the sum

log2(n)∑
k=1

Λ(k)(e−xk − 1 + xk) with xk :=
ϑ

k
log(bn).

Since e−x − 1 + x = O(x2) as x→ 0, (2.14) yields

log2(n)∑
k=1

Λ(k)(e−xk − 1 + xk) =

∞∑
k=1

Λ(k)(e−xk − 1 + xk) +O(1).

Recall that the Mellin transform of the function e−x is Γ(s) for Re(s) > 0.
Then the inverse Mellin transform gives

e−x − 1 + x =
1

2πi

∫ c+i∞

c−i∞
Γ(s)x−s ds (3.23)
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for −2 < c < −1. Details about the Mellin transform can be found for
instance in [6], but here we will only need (3.23). Then

∞∑
k=1

Λ(k)(e−xk − 1 + xk) =
1

2πi

∫ c+i∞

c−i∞
Γ(s)

(
ϑ log(bn)

)−s ∞∑
k=1

Λ(k)ks ds.

We need to justify the change of the order of summation and integration.
Notice that on the line of integration∣∣∣∣∣(ϑ log(bn)

)−s ∞∑
k=1

Λ(k)ks

∣∣∣∣∣ ≤ (ϑ log(bn)
)−c ∞∑

k=1

Λ(k)kc <∞

holds and thus the change of order is valid by dominated convergence. De-
note by

∑
p the sum over all prime numbers. It then follows by the definition

of the von Mangoldt function Λ, see (2.5), that we have for Re(s) < −1

∞∑
k=1

Λ(k)ks =
∑
p

log(p)
∞∑
j=1

pjs =
∑
p

log(p)
ps

1− ps
= −ζ

′(−s)
ζ(−s)

,

where ζ(s) denotes the Riemann zeta function. The last equality can easily
be deduced form the Euler product formula of ζ(s). Therefore,

∞∑
k=1

Λ(k)(e−xk − 1 + xk) = − 1

2πi

∫ c+i∞

c−i∞
Γ(s)

(
ϑ log(bn)

)−s ζ ′(−s)
ζ(−s)

ds.

Apply now the residue theorem to shift the line of integration to 1/2 + iy
with y ∈ R, which gives a double pole at s = −1 and simple pole at s = 0
and at the zeros of the zeta function. This yields

∞∑
k=1

Λ(k)(e−xk − 1 + xk) = ϑ log(bn)
(
1− log(ϑ log(bn))

)
−
∑
ρ

Γ(−ρ)(ϑ log(bn)
)ρ

− log(2π) +O
(

(log(bn))−
1
2

)
.

This completes the proof. �

It remains to prove Theorem 3.22. Recall that log Õn = log Ỹn − ∆̃n and

that EΘ[log Ỹn] was computed in Lemma 3.9. Unfortunately, the estimate
given in (3.8) is not strong enough to deduce Theorem 3.22, so that we need

to compute EΘ[∆̃n] more precisely. We need to study the behavior of D̃nk

and D̃∗nk, which are defined in (3.6) and (3.7).

Lemma 3.25. For k ∈ N and u ∈ C the following holds:

(1) EΘ

[
uD̃nk

]
=

1

hn
[tn] [exp (gΘ(t) + (u− 1)g̃Θ,k(t))] ,

(2) EΘ

[
D̃nk

]
=

1

hn
[tn] [g̃Θ,k(t) exp (gΘ(t))] ,
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(3) PΘ

[
D̃∗nk = 0

]
=

1

hn
[tn] [exp (gΘ(t)− g̃Θ,k(t))] ,

where

g̃Θ,k(t) =

bn∑
m=1

θm
m

1{k|m} t
m. (3.24)

Proof. Equation (1) follows with a similar computation as in the proof of
Lemma 3.8 and we thus omit it. Assertion (2) then follows from (1) by dif-
ferentiation with respect to u and substituting u = 0 and (3) by substituting
u = 0 in (1). �

The previous lemma implies

Lemma 3.26. Let gΘ(t) ∈ F(r, ϑ,K). We then have for 2 ≤ k ≤ n

(1) EΘ

[
D̃nk

]
=

bn∑
m=1

θm
m
rm 1{k|m}+O

( bn
nk

)
,

(2) PΘ

[
D̃∗nk = 0

]
= exp

(
−

bn∑
m=1

θm
m
rm 1{k|m}

)
+O

( bn
nk

)
.

Proof. For bn < k ≤ n we have D̃nk ≡ D̃∗nk ≡ 0 and thus equation (1) and
(2) are valid. We thus only have to consider 2 ≤ k ≤ bn. The proof is very
similar to the proof of Lemma 3.9, including the contour of integration. One
only has to replace q̃1(t) by g̃Θ,k(t) and to use

g̃Θ,k

(
1 +

w

n

)
=

bn∑
m=1

θm
m
rm 1{k|m}+O

(wbn
nk

)
for w = O(log2(n)). All other computations are identical and we thus omit
them. �

Proof of Theorem 3.22. Lemma 3.9 gives us the behavior of EΘ[log Ỹn]. It

is thus enough to compute the expected value of ∆̃n = log Ỹn − log Õn.
Equations (3.6) and (3.7) yield

EΘ

[
∆̃n

]
=

n∑
k=1

Λ(k)EΘ

[
D̃nk − D̃∗nk

]
. (3.25)

Denote α := blog2(n)c and consider the two sets S1 := {1 ≤ k ≤ α} and
S2 := {α < k ≤ n}. We split the sum according to the two sets and show
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first that the second sum is negligible. Indeed, by Proposition 3.6 and (2.14),∑
k∈S2

Λ(k)EΘ

[
D̃nk − D̃∗nk

]
= O

∑
k∈S2

Λ(k)EΘ

[
D̃nk(D̃nk − 1)

]
= O

∑
k∈S2

Λ(k)EΘ [Dnk(Dnk − 1)]


= O

(
log2(n)

∑
k∈S2

Λ(k)

k2

)
= O(1).

It is thus sufficient to consider the sum over the set S1. Lemma 3.26 then
yields for k ≤ log2(n)

EΘ

[
D̃nk − D̃∗nk

]
= EΘ

[
D̃nk

]
− 1 + PΘ

[
D̃∗nk = 0

]
= exp

(
−

bn∑
m=1

θm
m
rm 1{k|m}

)
− 1 +

bn∑
m=1

θm
m
rm 1{k|m}+O

( b

nk

)
.

Since Λ(k) ≤ log(k), the sum over the error term is of order

bn
n

∑
k∈S1

O

(
Λ(k)

k

)
= O

(
(log log(n))2

log2(n)

)
= O

(
1

log(n)

)
.

Altogether, we proved that

EΘ

[
∆̃n

]
=

log2(n)∑
k=1

Λ(k)

(
e−

∑bn
m=1

θm
m
rm 1{k|m} − 1 +

bn∑
m=1

θm
m
rm 1{k|m}

)
+O(1).

Using the definition of ∆n and Lemma 3.9 completes the proof. �

3.6. Expected value of logOn. We provide in this section a precise expan-
sion of the expected value of logOn which has in particular an interpretation
in terms of the Riemann hypothesis. In this section we require additional
assumptions on the function gΘ, namely that gΘ ∈ LF(r, ϑ), which will
be defined in Definition 3.30. For this class of functions we will prove the
following

Theorem 3.27. Suppose that gΘ ∈ LF(r, ϑ). Then

EΘ [logOn] = EΘ [log Yn]− ϑ log(n)
(
1− log(ϑ log(n))

)
+
∑
ρ

Γ(−ρ)(ϑ log(n)
)ρ

+O
(
(log log(n))3

)
. (3.26)

This statement yields as an immediate consequence

Corollary 3.28. Suppose that gΘ ∈ LF(r, ϑ). Then following statements
are equivalent
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(1) The Riemann hypothesis is true.
(2) We have for all ε > 0

EΘ [logOn] = EΘ [log Yn]− ϑ log(n)
(
1− log(ϑ log(n))

)
+O (log(n))

1
2

+ε .

Equation (3.26) was proven by Zacharovas in [25] for the uniform measure on

Sn and in [26] on the subgroup S
(k)
n := {σ = τk|τ ∈ Sn}. Zacharovas also

noted the implication (1) ⇒ (2) of Corollary 3.28, but not the important
opposite implication.

Recall that the crucial point in the proof of Theorem 3.22 was the expansion

of EΘ[∆̃n] as in (3.25) and the expected values of D̃nk and D̃∗nk for k ≤
log2(n). We thus start by studying EΘ [Dnk] and EΘ [D∗nk].

Lemma 3.29. For k ∈ N and u ∈ C the following holds:

(1) EΘ

[
uDnk

]
=

1

hn
tn[exp (gΘ(t) + (u− 1)gΘ,k(t))],

(2) EΘ [Dnk] =
1

hn
tn[gΘ,k(t) exp (gΘ(t))],

(3) PΘ [D∗nk = 0] =
1

hn
tn[exp (gΘ(t)− gΘ,k(t))],

where

gΘ,k(t) =

∞∑
m=1

θm
m

1{k|m} t
m. (3.27)

Proof. The proof is very similar to the proof of Lemma 3.25. �

Equation (3.3) implies that that there exists constants c, C > 0 such that
c θmr

m ≤ ϑ ≤ C θmr
m for m large if gΘ ∈ F(r, ϑ,K). Thus gΘ,k has radius

of convergence r for all k. If we would like to use a similar argument as
in Lemma 3.26, we require further assumptions on the function gΘ. To get
a vague intuition, let us have a look at the Ewens measure, meaning that
θm = ϑ for all m ∈ N. For this model,

gΘ(t) = ϑ log

(
1

1− t/r

)
and gΘ,k(t) =

ϑ

k
log

(
1

1− (t/r)k

)
.

Clearly, each gΘ,k(t) can be extended beyond its disk of convergence and
its singularities are k-th roots of unity. These observations motivate the
following definition.

Definition 3.30. Let r, ϑ > 0 be given. We write LF(r, ϑ) for the set of all

functions gΘ(t) =
∑∞

m=1
θm
m tm such that there exists R > r and 0 < φ < π

2
so that the following conditions are satisfied for all k ∈ N:

(1) gΘ,k is holomorphic in ∆0,k(r,R, φ) :=
⋂k−1
m=0 e

2πmi
k ∆0(r,R, φ) (see

Figure 3) with gΘ,k as in (3.27).
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(2) We have

gΘ,k(t) =
ϑ

k
log

(
1

1− (t/r)k

)
+Kk +O (t− r) as t→ r (3.28)

with O(·) uniform in k and Kk = O(1/k).

We require for the the proof of Theorem 3.27 the asymptotic behavior of
EΘ [Dnk] and EΘ [D∗nk] for gΘ ∈ LF(r, ϑ). We have

Lemma 3.31. Suppose that gΘ ∈ LF(r, ϑ), then the following holds uni-

formly in k for 2 ≤ k ≤ n
ϑ

1+ϑ :

(1) EΘ [Dnk] =
ϑ

k
log
(n
k

)
+O

(1

k
+
kϑ+1

nϑ

)
,

(2) PΘ [D∗nk = 0] =
(n
k

)−ϑ
k Γ(ϑ)

Γ
(
ϑ(1− 1

k )
)(1 +O

( 1

n
+

1

k
+
kϑ+1

nϑ

))
.

Proof. The proof is very similar to the proof of Lemma 3.9. We combine
Theorem 3.29 and Cauchy’s integral formula to obtain

hnEΘ [Dnk] =
1

2πi

∫
γ
gΘ,k(t) exp (gΘ(t))

dt

tn+1
,

hnEΘ [D∗nk] =
1

2πi

∫
γ

exp (gΘ(t)− gΘ,k(t))
dt

tn+1
.

By assumption, gΘ,k is holomorphic in some domain ∆0,k(r,R, φ) (see Defi-
nition 3.30). Following the idea in [10, Section VI.3], we choose the curve γ
as in Figure 3, such that γ is contained in ∆0,k(r,R, φ).

0

|z| = r

|z| = R

|z| = R′

γ

Figure 3. Illustration of the curve γ in proof of Lemma 3.31
with k = 3.

More precisely, we choose the radius of the big circle γ4 := γ4,0 ∪ · · · ∪ γ4,k−1

as R′ := r(1 + b−1
n ) with bn as in (3.5), the radii of the small circles as 1/n

and the angles of the lines segments all equal and independent of n.
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Let us first show that the integral over the big circle γ4 can be neglected.
Since kbn = o(n), we get

|gΘ,k(t)| ≤ ϑ log

∣∣∣∣ 1

1− (t/r)k

∣∣∣∣+O(1) =⇒ |gΘ(R′eiϕ)| ≤ ϑ log(kbn) +O(1).

The estimates on t−n−1 and gΘ(t) are the same as in the proof of Lemma 3.9.
Combining all three, one immediately realizes that the integral over γ4 is
negligible.

It remains to compute the behavior along the curves around the points

r · ej
2πi
k for 0 ≤ j < k. We have to distinguish the cases 1 ≤ j < k

and j = 0. For j = 0 use the variable substitution t = r(1 + w/n) with
w = O(log2(n)). This maps the curve around r to the bounded curve γ′ in
Figure 2(b). Furthermore, on this curve the following expansions hold:

gΘ(t) = ϑ log(n)− ϑ log(−w) +K +O(w/n),

gΘ,k(t) =
ϑ

k

(
log(n/k)− log(−w)

)
+Kk +O(w/n),

t−n−1 = r−n−1e−w(1 +O(w/n)).

This implies

1

2πi

∫
γ1,0∪γ2,0∪γ3,0

exp (gΘ(t)− gΘ,k(t))
dt

tn+1

=
nϑ(1− 1

k
)−1eK−Kk

rnkϑ
−1
k 2πi

∫
γ′

(−w)−ϑ(1− 1
k

)e−w(1 +O(w/n)) dw.

As in the proof of Lemma 3.9, one can replace the bounded curve γ′ by
the Hankel contour γ′′ in Figure 2(c). Using again (3.11) and Corollary 3.4
shows that the integral over this part gives the main term in Equation (2)
of Lemma 3.31. The argument for (1) is similar.

We now proceed to 1 ≤ j ≤ k − 1. We use here the variable substitution

t = r · ej
2πi
k (1 +w/n). The curve γj := γ1,j ∪ γ2,j ∪ γ3,j is also mapped to γ′,

but here the expansions along γ′ are given by

gΘ(t) = ϑ log
(

1− e
2πij
k

)
+O

(wk
n

)
+O(1),

gΘ,k(t) =
ϑ

k

(
log(n/k)− log(−w)

)
+Kk +O(w/n),

t−n−1 = r−n−1e
2πij
k e−w(1 +O(w/n)).

Insert this into the Cauchy integral and summing over j from 1 to k − 1
gives the error terms in (1) and (2). �

We are now prepared to prove the main result of this section.
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Proof of Theorem 3.27 . The argument is very similar to the one of proof
of the Theorem 3.22 and Corollary 3.23 . We thus give here only a short
overview. Recall that

EΘ [log Yn]− EΘ [logOn] = EΘ [∆n] =
n∑
k=1

Λ(k)EΘ [Dnk −D∗nk] .

Denote α := blog2(n)c and consider the two sets S1 := {1 ≤ k ≤ α} and
S2 := {α < k ≤ n}. As in the proof of Theorem 3.22, we can show that the
sum over the second set is negligible. It is thus sufficient to consider only
the sum over S1. Lemma 3.31 yields for k ≤ log2(n)

EΘ [Dnk −D∗nk] = EΘ [Dnk]− 1 + PΘ [D∗nk = 0]

=
ϑ

k
log(n)− 1 +

(n
k

)−ϑ
k

(
1 +O

(
1

k
+
kϑ+1

nϑ

))
+O

(
log(k)

k

)
=
ϑ

k
log(n)− 1 + e−

ϑ
k

log(n) +O

(
log(k)

k

)
.

This is now (almost) the same expression as in the proof of Corollary 3.23.
The remaining computations are the same and thus we omit them. �

4. Parameters with polynomial growth: θm = mγ , γ > 0

Now we turn our attention to a different class of parameters, namely poly-
nomial parameters θm = mγ with γ > 0. Only few results are known for
these parameters. Ercolani and Ueltschi [7] show that for this model, a

typical cycle has length of order n
1

1+γ and that the total number of cycles

has order n
γ

1+γ . Recently, we proved in [22] that the cycle counts of the

small cycles of length of order o(n
1

1+γ ) can be approximated by independent
Poisson random variables. Using this result, we proved the Erdös-Turán law
for this setting, see [22, Theorem 4.3].

In this section we will prove large deviations estimates for logOn. The
method we are applying to get our results is the saddle-point method. We
will not repeat all details about this method here and refer the reader to
Section 2.3 and Section 4.1 in [22].

4.1. Preliminaries. As in Section 3, our basic strategy is to establish re-
sults for the approximating random variable log Yn =

∑n
m=1 log(m)Cm and

then to show that ∆n := log Yn − logOn is small enough to transfer the
result to logOn. Recall (2.8), then for parameters θm = mγ the generating
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series of log Yn can the be written as
∞∑
n=0

hnEΘ[exp(s log Yn)]tn = exp

( ∞∑
m=1

1

m1−s−γ t
m

)
=: exp(ĝΘ(t, s)). (4.1)

As we consider s fixed for the moment, we may write ĝΘ(t) instead of ĝΘ(t, s).
The function ĝΘ is known to be the polylogarithm Liα with parameter α =
1−s−γ. Its radius of convergence is 1 and as t→ 1 it satisfies the following
asymptotics for α /∈ {1, 2, ...}

Liα(t) ∼ Γ(1− α)(− log(t))α−1 +
∑
j≥0

(−1)j

j!
ξ(α− j)(− log(t))j . (4.2)

For γ > 0, that is α < 1, this implies

ĝΘ(t) = Γ(1− α)(− log(t))α−1 + ζ(α) +O(t− 1)

and an appropriate method to investigate the behavior of ĝΘ is the saddle-
point method. In [22, Lemma 4.1] we show that ĝΘ is log-admissible (see
Definition 2.8 in [22]). This gives us the asymptotic behavior of hn:

hn =
(
2πΓ(2 + γ)

)− 1
2

(Γ(1 + γ)

n

) 2+γ
2(1+γ)×

exp

(
n

γ
1+γ

(
Γ(1 + γ)

1
1+γ +

Γ(γ)

Γ(1 + γ)
γ

1+γ

))(
1 + o(1)

)
(4.3)

and an expression for the generating function of log Yn:

Theorem 4.1 ([22], Theorem 4.5). Let ĝΘ be as in (4.1) with γ > 0. Then
we have

EΘ[exp(s log Yn)]

=
(√

γ̃2,s n
1
2

( 1
1+γ
− 1

1+γ+s
)
)

exp

(
γ̃1,s n

1− 1
1+γ+s − γ̃1,0 n

1− 1
1+γ

)(
1 + o(1)

)
with

γ̃1,s =
(1 + γ + s)Γ(γ + s)

Γ(1 + γ + s)
1− 1

1+γ+s

, γ̃2,s =
(1 + γ)Γ(1 + γ + s)

1
1+γ+s

(1 + γ + s)Γ(1 + γ)
1

1+γ

,

where the error bounds are uniform in s for bounded s.

Similarly to Lemma 3.5, we need an estimate for the closeness of logOn and
log Yn. This is given by the following

Lemma 4.2 ([22], Lemma 4.6). For θm = mγ with 0 < γ < 1 the following
holds as n→∞:

PΘ

(
∆n ≥ log(n) log log(n)

)
→ 0.

Remark 4.3. Notice that that Lemma 4.2 is wrong for γ > 1, see [22, Re-
mark 4.5].
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4.2. Large deviations estimates for logOn. From the moment generat-
ing function of log Yn given in Theorem 4.1 we can deduce a classical large
deviations result for logOn. We will show that for any Borel set B

lim
n→∞

n
− γ

1+γ logPΘ

(
logOn

n
γ

1+γ log(n)
∈ B

)
= − inf

x∈B
χ∗(x)

holds, where

χ∗(x) = sup
t∈R

[tx− χ(t)]

is the so-called Fenchel-Legendre transform of χ(t) given by

χ(t) :=
(1 + γ)Γ(γ)

Γ(1 + γ)
γ

1+γ

(
e

t
(1+γ)2 − 1

)
. (4.4)

In other words, we will show the following

Theorem 4.4. Let ĝΘ be defined as in (4.1) with 0 < γ < 1. The sequence

logOn/n
γ

1+γ log(n) satisfies a large deviations principle with rate n
γ

1+γ and
rate function given by the convex dual of χ(t) defined in (4.4).

Proof. Let us first check that log Yn/n
γ

1+γ log(n) satisfies this large devia-
tions estimate. By the Gärtner-Ellis theorem it suffices to prove

lim
n→∞

n
− γ

1+γ logEΘ

[
exp

(
t

log Yn
log(n)

)]
= χ(t). (4.5)

In view of Theorem 4.1 we have to show that for t∗ = t/ log(n)

lim
n→∞

n
− γ

1+γ

(
γ̃1,t∗ n

1− 1
1+γ+t∗ − γ̃1,0 n

1− 1
1+γ

)
= χ(t)

holds with

γ̃1,t =
(1 + γ + t)Γ(γ + t)

Γ(1 + γ + t)
1− 1

1+γ+t

.

This is true since Γ(γ + x) = Γ(γ) +O(x) as x→ 0 and therefore

γ̃1,t∗ = γ̃1,0 +O
(

log−1(n)
)
, (4.6)

n
1− 1

1+γ+t∗ = n
1− 1

1+γ

(
1 +

∞∑
k=1

tk

(1 + γ)2kk!
+O

(
log−1(n)

))
= n

γ
1+γ

(
e

t
(1+γ)2 +O

(
log−1(n)

))
. (4.7)

Similar the proof of Theorem 3.17, it remains to show that log Yn/n
γ

1+γ log(n)

and logOn/n
γ

1+γ log(n) are exponentially equivalent with rate n
γ

1+γ . This is
subject of the following lemma. �
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Lemma 4.5. Let ĝΘ be as in (4.1) with 0 < γ < 1, then for any c > 0 the
following holds:

lim sup
n→∞

n
− γ

1+γ logPΘ

[
log Yn − logOn > cn

γ
1+γ log(n)

]
= −∞.

Proof. We will prove a stronger version of this asymptotic in Lemma 4.8. �

The statement of Theorem 4.4 can be refined. Recall the notion of mod-φ
convergence which was briefly explained in Section 3.3. Here, we prove mod-
Poisson convergence for log Yn, appropriately rescaled, in terms of moment
generating functions. We deduce the following precise deviations estimate
for logOn:

Theorem 4.6. Let ĝΘ be as in (4.1) with 0 < γ < 1. Define

On :=
(1 + γ)2 logOn − λn log(n)

λ
1/3
n log(n)

and

λn := γ̃1,0 n
γ

1+γ (1 +O(log−1(n))),

where γ̃1,0 is as in Theorem 4.1. Then for any x > 0 the following asymptotic
holds:

PΘ

[
On ≥ xλ1/3

n

]
=

exp(−λ1/3
n

x2

2 + x3

6 )

xλ
1/6
n

√
2π

(1 + o(1)).

Proof. Let us first check that

Yn :=
(1 + γ)2 log Yn

log(n)

satisfies the required precise deviations estimate. Indeed, Yn is mod-Poisson
convergent with parameter λn and limiting function ψ(t) = et/2, that is

lim
n→∞

e−λn(et−1)EΘ

[
etYn

]
= et/2.

This follows directly from the moment generating function of log Yn together
with (4.6) and (4.7). Notice that this convergence is surprising since the
rescaling by log(n) in Yn is relatively insignificant compared to the order of

log Yn which is n
γ

1+γ log(n). This statement suggests that log Yn is indeed
close to a Poisson random variable. However, the rescaling is too small to
deduce a Poisson behavior of logOn.

Remark 4.7. We have computed the moment generating function of log Yn
in Theorem 4.1 only for s reel. However, we require for the mod-Poisson
convergence of Yn above and the mod-Gaussian convergence below that The-
orem 4.1 is also valid for complex values of s for s in a small neighbourhood
of 0. This is indeed true and can be proven complete similarly to Theo-
rem 4.1. One only has to verify that the asymptotic behaviour of Liα in
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(4.2) is also valid for complex α. This can be proven with precisely the
same argumentation as for reel α, see for instance [10, Section VI.8.].

Now, similarly to the proof of Theorem 3.19, we want to apply Theorem
3.2 in [9] in order to deduce the large deviations result. This theorem re-
quires mod-φ convergence where the reference law is lattice distributed.
Hence, we cannot work directly with the mod-Poisson convergence. How-
ever, notice that mod-Poisson convergence with growing parameters implies
mod-Gaussian convergence:

Ỹn :=
Yn − λn
λ

1/3
n

is mod-N (0, λ
1/3
n ) convergent with limiting function Φ(t) = et

3/6. Now apply

Theorem 3.2 in [9] with βn = λ
1/3
n , F (x) = x2/2 = η(x) and h(x) = x to

obtain that Ỹn satisfies the required estimate.

It remains to transfer the estimate to On as defined in Theorem 4.6. Clearly,

PΘ

[
On ≥ xλ1/3

n

]
≤ PΘ

[
Ỹn ≥ xλ1/3

n

]
.

For the reverse direction, let g be a positive function such that g(n) =

o(λ
1/3
n ). Then

PΘ

[
Ỹn ≥ xλ1/3

n + g(n)
]
≤ PΘ

[
On ≥ xλ1/3

n

]
+ PΘ

[
∆n ≥ g(n)λ1/3

n log(n)
]

holds and we also have

PΘ

[
Ỹn ≥ xλ1/3

n + g(n)
]

= PΘ

[
Ỹn ≥ xλ1/3

n

] (
1 + o(1)

)
.

Finally, to complete the proof we need to find an appropriate g(n) = o(λ
1/3
n )

such that

lim
n→∞

λ−1/3
n logPΘ

[
∆n ≥ g(n)λ1/3

n log(n)
]

= −∞.

The following lemma proves that this holds for g(n) = n
γ

3(1+γ) /
√

log(n). �

Lemma 4.8. Let ĝΘ be as in (4.1) with 0 < γ < 1, then for any c > 0 the
following holds:

lim
n→∞

n
− γ

3(1+γ) logPΘ

[
log Yn − logOn > cn

2γ
3(1+γ)

√
log(n)

]
= −∞.

Proof. The proof is very similar to the proof of Lemma 4.2. Recall (2.6) and
notice that

logOn = ψ(n)−R(n)

where

ψ(n) =

n∑
k=1

Λ(k) and R(n) =

n∑
k=1

Λ(k)1{Dnk=0} .
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Recall that ψ is the so-called Chebyshev function as defined in 2.9 which
satisfies the asymptotic 2.10. First, we want to find the smallest b such that

n
− γ

3(1+γ) logPΘ

[
log Yn − ψ(b) >

c

2
n

2γ
3(1+γ)

√
log(n)

]
→ −∞ (4.8)

and afterwards we show

n
− γ

3(1+γ) logPΘ

[
R(n)−

n∑
k=b+1

Λ(k) >
c

2
n

2γ
3(1+γ)

√
log(n)

]
→ −∞. (4.9)

Theorem 4.1 implies a central limit theorem for log Yn with mean G(n) =

O(n
γ

1+γ log(n)) and variance F (n) = O(n
γ

1+γ log2(n)), see Lemma 4.4 in [22].
This tells us that that for

x =
c
2n

2γ
3(1+γ)

√
log(n) + ψ(b)−G(n)√

F (n)

we get as n→∞

PΘ

[
log Yn − ψ(b) ≥ c

2
n

2γ
3(1+γ)

√
log(n)

]
=
(

1− 1

2

(
1 + erf

( x√
2

)))
(1 + o(1)).

Here, erf denotes the error function which satisfies the asymptotic

erf(x) = 1 +O(x−1e−x
2
) as x→∞.

Thus set b = n
γ

1+γ log(n)α(n) for some function α→∞ so that

x = O
(
n

γ
2(1+γ)α(n)

)
where the error term has a positive sign. This implies

n
− γ

3(1+γ) logPΘ

[
log Yn − ψ(b) >

c

2
n

2γ
3(1+γ)

√
log(n)

]
= O

(
n
− γ

1+γ log
(
x−1e−x

2))
.

which converges indeed to −∞ and hence (4.8) holds. So let us now prove
(4.9). Notice that

R(n)−
n∑

k=b+1

Λ(k) ≤ R(b) ≤
b∑

k=1

Λ(k)1{Ck=0} =: S(b)

and therefore

n
− γ

3(1+γ) logPΘ

[
S(b) >

c

2
n

2γ
3(1+γ)

√
log(n)

]
→ −∞

implies (4.9). Via saddle point analysis we get

EΘ

[
esS(b)

]
= exp

( b∑
k=1

log
(
1 + (esΛ(k) − 1)e−k

γ−1rk
))(

1 + o(1)
)
.
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We proceed as in the proof of Lemma 4.6 in [22]. For any s ≥ 0 Markov’s
inequality yields

n
− γ

3(1+γ) logPΘ

[
S(b) >

c

2
n

2γ
3(1+γ)

√
log(n)

]
≤ − sc

2
n

γ
3(1+γ)

√
log(n) + n

− γ
3(1+γ)

b∑
k=1

(esΛ(k) − 1)e−k
γ−1rk

= − sc

2
n

γ
3(1+γ)

√
log(n) +O

(
n
− γ

3(1+γ) (es log(n) − 1)
)
.

For the last equality notice that for b = o
(
n

1
1+γ
)

(here we need the assump-
tion γ < 1), there is a constant c > 0 such that

b∑
k=1

exp
(
− tkkγ−1

)
≤

b∑
k=1

exp
(
− kγ−1 exp(−bn−

1
1+γ )

)
≤
∫ b

1
exp

(
− cxγ−1)dx

= O
(

Γ
( 1

1− γ
, bγ−1

)
− Γ

( 1

1− γ
, 1
))

= O(1).

Now set s = log−1/2(n) to get

n
− γ

3(1+γ) logPΘ

[
S(b) >

c

2
n

2γ
3(1+γ) log(n)

]
= − c

2
n

2γ
3(1+γ) +O

(
n
− γ

1+γ elog1/2(n)
)
.

The proof is complete. �
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