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The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements
of electron neutrino charged current interactions at energies ∼1 GeV as a function of electron momentum,
electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged
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current cross section on carbon is measured to be hσiϕ¼1.11�0.10ðstatÞ�0.18ðsystÞ×10−38 cm2=nucleon.
The differential and total cross-section measurements agree with the predictions of two leading neutrino
interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 × 10−38 cm2=nucleon and the
GENIE prediction is 1.08 × 10−38 cm2=nucleon. The total νe charged current cross-section result is also in
agreement with data from the Gargamelle experiment.

DOI: 10.1103/PhysRevLett.113.241803 PACS numbers: 14.60.Pq, 14.60.Lm, 25.30.Pt, 29.40.Ka

Introduction.—T2K is a long baseline neutrino oscilla-
tion experiment measuring νe appearance and νμ disap-
pearance from a νμ beam. Neutrino oscillations are
described by a mixing matrix parametrized by three mixing
angles and a CP violating phase, δCP [1,2]. The three
mixing angles have been measured to better than 10%
precision [3], and measuring δCP is currently a major goal
in neutrino physics [4].
Future νe appearance measurements can be used to search

for CP violation in neutrino interactions, and these rely on
precise understanding of both νμ and νe charged-current (CC)
interaction cross sections at energies ∼1 GeV. Many νμ
cross-section measurements have been made at the GeV
scale, both of the total CC inclusive cross section and of
individual interaction modes (see Ref. [5] for a review of
cross-section data, and Refs. [6–8] for recent results). Only
theGargamelle experiment has measured the νe CC inclusive
cross section at the GeV scale [9], and there are currently
no νe differential cross-section results as a function of the
electron kinematics. Theoretical differences are expected
between the νe and νμ cross sections [10], and measuring
these with data is critical to understand the systematic
uncertainties related to the search for CP violation in the
lepton sector. Theuncertainty inνe cross sectionswill become
increasingly important in future oscillation experiments as
statistical and other systematic uncertainties are reduced.
In this Letter we present the first νe CC inclusive

differential cross-section measurements for neutrinos with
energy ∼1 GeV as a function of the electron momentum
(pe), electron scattering angle [cosðθeÞ], and the four-
momentum transfer of the interaction (Q2

QE). The total flux-
averaged CC inclusive cross section is also presented.
T2K experiment.—T2K [11] operates from the J-PARC

facility in Tokai, Japan. A muon neutrino beam is produced
from the decay of charged pions and kaons generated by
30 GeV proton collisions on a graphite target and focused
by three magnetic horns. Downstream of the horns is the
decay volume, 96 m in length, followed by the beam dump
and muon monitors (MUMON [12]). The neutrino beam
illuminates an on-axis near detector (INGRID [13]), an off-
axis near detector (ND280), and an off-axis far detector
(Super-Kamiokande [14]). The off-axis detectors are posi-
tioned at an angle of 2.5° relative to the beam axis direction.
The near detectors are located 280 m from the target and are
used to determine the neutrino beam direction, spectrum,
and composition before oscillations, and to measure neu-
trino cross sections. Super-Kamiokande, a 50 kt water

Cherenkov detector situated 295 km away, is used to detect
the neutrinos after oscillation.
ND280 is a magnetized multipurpose detector designed

to measure interactions of both νμ and νe from the T2K
beam before oscillations. It is composed of a number of
subdetectors installed inside the refurbished UA1/NOMAD
magnet, which provides a magnetic field of 0.2 T. The
central subdetectors form a tracking detector, composed of
two fine-grained scintillator detectors (FGDs [15]) and
three time projection chambers (TPCs [16]). The FGDs are
used as the target for the neutrino interactions, and while
the upstream FGD (FGD1) is composed solely of scintil-
lator bars, the downstream FGD (FGD2) also contains
water layers. Upstream of the tracker is a π0 detector (P0D
[17]), explicitly built to measure neutrino interactions with
a π0 in the final state. The tracker and P0D are surrounded
by a set of electromagnetic calorimeters (ECals [18]), and
the magnet yokes are instrumented with side muon range
detectors (SMRDs [19]) to track high angle muons.
The results presented here are based on data taken from

January 2010 to May 2013. During this period the proton
beam power has steadily increased and reached 220 kW
continuous operation with a world record of 1.2 × 1014

protons per pulse. The physics-quality data for this analysis
correspond to a total of 5.90 × 1020 protons on target (p.o.t.).
Neutrino beam flux.—The neutrino beam flux [20] is

predicted by modeling interactions of the primary beam
protons with a graphite target using the FLUKA2008 pack-
age [21] and external hadron production data from the
CERN NA61/SHINE experiment [22,23]. GEANT3 [24]
with GCALOR [25] is used to simulate the propagation of
secondary and tertiary pions and kaons, and their decays
into neutrinos. Decays of kaons and muons, in the decay
volume, create the approximately 1% νe component of the
beam. Muon decays are the dominant source of νe with
energies below 1 GeV, with higher energy neutrinos
produced by kaon decays.
The neutrino flux uncertainties are dominated by hadron

production uncertainties, with contributions from the
neutrino beam direction and the proton beam uncertain-
ties. The neutrino beam direction—monitored indirectly
by MUMON on a spill-by-spill basis, and directly by
INGRID [26]—has been well within the required
�1 mrad during the full run period. The neutrino inter-
action rate per p.o.t. has also been measured by INGRID,
and is stable within 0.7%. The total systematic uncertainty
on the νe flux is 13% at the mean νe energy (1.3 GeV).
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Selection of electron neutrino interactions in ND280.—
Full details of the event selections can be found in
Ref. [27], where the only difference is that in this analysis
only interactions in FGD1 are selected, rather than FGD1
and FGD2. This is so that interactions on water in FGD2
are not included.
Electron neutrino interactions are selected using the

highest momentumnegative track starting inside the fiducial
volume of FGD1. To reduce the large background from νμ
charged-current interactions, electron particle identification
criteria are applied using TPC dE=dx and ECal shape and
energy measurements. These remove 99.9% of μ− tracks,
and although a clean sample of e− is selected, 62.4% of
events are fromphotonswhich produce eþe− pairs in FGD1.
This γ background is reduced by searching for a positron and
applying an invariant mass cut, and vetoing on activity in
TPC1, the P0D, and ECals upstream of FGD1. After this
procedure, 315 νe CC interaction candidates are selected,
with an expected purity of 65%. The reconstructed momen-
tum, scattering angle, and Q2

QE distributions are shown in
Fig. 1, and compared to the prediction from the NEUT
neutrino interaction generator [28].Q2

QE is the reconstructed
Q2 assuming CC quasielastic (CCQE) kinematics [29], with
a stationary target nucleon and 25 MeV binding energy.
The background from γ → eþe− conversions in the νe

sample is 23%, 70% of which are from neutrinos inter-
actions outside the FGD1 fiducial volume. A control
sample, referred to as the γ sample, is used to constrain
this, and is selected by finding electron-positron pairs that
enter the TPC and that have a low invariant mass. The data
show a deficit at low momentum in both the νe and γ
samples. This deficit is also visible in Ref. [27], which
selects events in FGD2 as well as FGD1.
Unfolding method.—The Bayesian technique by

d’Agostini [30] is used to unfold from the measured
reconstructed distributions to the underlying true distribu-
tions. For each observable, the true (reconstructed) bins are
denoted by tk (rj). There are nt (nr) true (reconstructed)
bins in total. Bayes’ theorem is used to generate the
unsmearing matrix

PðtkjrjÞ ¼
PðrjjtkÞPðtkÞPnt
α¼1 PðrjjtαÞPðtαÞ

; ð1Þ

where PðrjjtkÞ is the smearing matrix and PðtkÞ is the
Monte Carlo (MC) prior probability of finding a signal
event in true bin tk. Given a data set Nmeas

rj , the estimated
number of events in each true bin is given by

Ntk ¼
1

ϵtk

Xnr
j¼1

PðtkjrjÞðNmeas
rj − BrjÞ; ð2Þ

where Brj is the number of background events that were
selected and ϵtk is the efficiency of detecting a signal event
in bin tk. The unfolding is performed separately for each
variable. For defining the true bin of each interaction, the

true final state momentum and angle of the electron and the
CCQE effective Q2 of the interaction (calculated using
the true final state electron kinematics), Q2

QE, are used. The
NEUT neutrino generator is used for the unfolding results
presented in this Letter.
The Bayesian unfolding technique was also used in

Ref. [6] for measuring the νμ CC inclusive cross section
with ND280. The main difference in the unfolding method
for this analysis is that the MC background prediction Brj is
estimated using the γ sample. Specifically, the background
from neutrino interactions occurring outside of the fiducial
volume (out-of-fiducial events) is reweighted based on the
γ sample data. This choice is made as the systematic
uncertainties relating to in-fiducial events have been well
studied, 30% of the out-of-fiducial events are on heavy
targets (iron and lead) and 66% are from interaction
channels on which there are large uncertainties in the
modeling (deep inelastic scattering and neutral current
interactions). The MC prediction of events in the fiducial
volume is subtracted from the γ sample data, and the
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FIG. 1 (color online). Reconstructed pe (top), cosðθeÞ (middle),
and Q2

QE (bottom) distributions of νe event candidates. The
NEUT MC prediction is separated into the νe CC interaction
signals from CCQE and CCnonQE interactions, background
from γ → eþe− conversions, background from μ− tracks and all
other backgrounds.
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data-MC ratio of the out-of-fiducial events is then com-
puted in ½pe; cosðθeÞ� bins. The out-of-fiducial component
of the νe sample is reweighted based on this data-MC ratio
distribution. The two-dimensional reweighting scheme is
chosen as the νe and γ samples preferentially select photons
from different origins: the γ sample requires both the eþ
and e− to be reconstructed, so preferentially selects higher-
energy and more forwards-going photons.
The effect of systematic uncertainties on the cross-section

measurements are computed using the same covariance
matrix method as in Ref. [6]. Separate covariance matrices
are computed for the data statistics, the MC statistics,
detector systematics, flux and cross-section systematics,
and out-of-fiducial systematics. One thousand toy experi-
ments are performed to generate each matrix, and each
experiment simultaneously affects both the νe and γ samples.
The data statistical uncertainty is evaluated by varying the

contents of each data bin according to Poisson statistics. The
MC statistical uncertainty is evaluated by separately varying
the νe, the in-fiducial background, and the out-of-fiducial
background components according to Poisson statistics.
Detector systematics are studied by varying parameters such
as the momentum resolution, and propagating the effect to
the selection. The TPC, FGD, ECal, and external interaction
uncertainties are described in detail in Ref. [27]. The
uncertainty on the FGD mass is 0.67% [6]. The flux and
cross-section uncertainties are also described in Ref. [27].
The flux uncertainties are based on beam line measurements
and hadron production data. The cross-section uncertainties,
including neutrino-nucleon, nuclear modeling, pion pro-
duction, and final state interaction uncertainties are con-
strained using external data and comparisons between
different nuclear models [29]; these uncertainties affect
signal efficiencies and background spectra.
Due to the discrepancy between data and simulation for

the γ sample, conservatively an extra systematic is applied
to the out-of-fiducial volume reweighting in addition to the
statistical uncertainty of the γ sample. If the reweighting
factor in a given bin is α, then the correction is modeled as a
Gaussian with mean α and width α=3. Values of α range
between 0.1 and 0.75 for bins with a total γ background of
more than 5%.
Cross-section results.—The signal for this analysis is all

νe CC interactions occurring in the FGD1 fiducial volume.
FGD1 is composed of carbon (86.1% by mass), hydrogen
(7.4%), oxygen (3.7%), titanium (1.7%), silicon (1.0%),
and nitrogen (0.1%). The analysis measures the flux-
averaged differential νe CC inclusive cross section, and
for bin tk of variable X, this is given by

�∂hσiϕ
∂X

�
tk

¼ Ntk

ΔXtkTϕ
; ð3Þ

where X is either pe, cosðθeÞ orQ2, ΔXtk is the width of the
bin, Ntk is the total number of signal events in the bin, T is

the number of target nucleons (5.5 × 1029 [6]), ϕ is the total
integrated flux (1.35 × 1011 cm−2), and h� � �iϕ indicates
that the quantity is averaged over the flux.
The total flux averaged cross section per nucleon is

computed by summing over all X bins, as

hσiϕ ¼
Pnt

k¼1Ntk

Tϕ
: ð4Þ

For comparison, differential and total flux-averaged cross-
section predictions are computed using the NEUT (version
5.1.4.2) and GENIE (version 2.6.4 [31]) generators.
Figure 2 shows the unfolded differential cross-section

results as a function of pe, cosðθeÞ, and Q2
QE. The data
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FIG. 2 (color online). Unfolded νe CC inclusive differential
cross sections as a function of pe (top), cosðθeÞ (middle), and
Q2

QE (bottom). The inner (outer) error bars show the statistical
(total) uncertainty on the data. The dashed (solid) line shows the
NEUT (GENIE) prediction. Overflow (underflow) bins are
indicated by> (<) labels, and are normalized to the width shown.
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agree with both NEUT and GENIE, although a deficit is
seen at low Q2

QE compared to NEUT. The biggest
differences between NEUT and GENIE at low Q2

QE are
caused by the different values of MQE

A chosen for CCQE
interactions, and different CC coherent interaction models.
The total flux-averaged cross section when unfolding

through Q2
QE is hσiϕ ¼ 1.11� 0.10ðstatÞ � 0.18ðsystÞ×

10−38 cm2=nucleon, which agrees with both the NEUT
prediction of 1.23 × 10−38 cm2=nucleon and the GENIE
prediction of 1.08 × 10−38 cm2=nucleon. The result is
shown in Fig. 3, along with the Gargamelle data from
1978 [9] and T2K νμ inclusive cross-section results from
Ref. [6]. Both T2K νμ and νe total flux-averaged cross
sections agree well with the predictions but are not directly
comparable due to the differences between the νμ and νe
spectra in T2K. The results when unfolding through the
other variables agree at the percent level. The dominant
systematic uncertainties on this result are the flux (12.9%)
and detector systematics (8.4%), with all other systematics
giving a 6.1% uncertainty when added in quadrature. The
uncertainty from reweighting the out-of-fiducial back-
ground is 2.1%.
An important aspect of theBayesian unfolding approach is

that it allows a reconstructed distribution to be unfolded into
regions that it is not sensitive to. This analysis has poor
reconstruction efficiency for low momentum, backwards
going, or high angle electrons. This adds model dependency
since the NEUT generator must predict these poorly deter-
mined regions. For this reason, a second result is presented in
which only events with pe > 550 MeV and cosðθeÞ > 0.72
are considered. In this “reduced phase-space” result, no
attempt is made to unfold into regions of low detector

efficiency. The unfolded Q2 differential cross-section result
for this reduced phase space is shown in Fig. 4.
Conclusion.—Understanding differences between νe and

νμ cross sections is vital as long baseline oscillation
experiments search for CP violation in the lepton sector.
The T2K off-axis near detector ND280 has been used to
extract νe CC inclusive flux-averaged differential cross
sections as a function of pe, cosðθeÞ, andQ2

QE, and they are
found to agree with both the NEUT and GENIE neutrino
interaction generator predictions. These are the first ever νe
differential cross-section measurements at the GeV scale.
The total νe CC inclusive flux-averaged cross section is
found to be 1.11� 0.21 × 10−38 cm2=nucleon, which is
also in agreement with the NEUT and GENIE predictions.
The data related to the measurement can be found in [32].
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