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A GPU-Accelerated Finite-Difference Time-Domain
Scheme for Electromagnetic Wave Interaction

With Plasma
Patrick D. Cannon and Farideh Honary

Abstract—A graphical processing unit (GPU)-accelerated finite-
difference time-domain (FDTD) scheme for the simulation of
radio-frequency (RF) wave propagation in a dynamic, magnetized
plasma is presented. This work builds on well-established FDTD
techniques with the inclusion of new time advancement equa-
tions for the plasma fluid density and temperature. The resulting
FDTD formulation is suitable for the simulation of the time-
dependent behavior of an ionospheric plasma due to interaction
with an RF wave and the excitation of plasma waves and insta-
bilities. The stability criteria and the dependence of accuracy on
the choice of simulation parameters are analyzed and found to
depend on the choice of simulation grid parameters. It is demon-
strated that accelerating the FDTD code using GPU technology
yields significantly higher performance, with a dual-GPU imple-
mentation achieving a rate of node update almost two orders of
magnitude faster than a serial implementation. Optimization tech-
niques such as memory coalescence are demonstrated to have a
significant effect on code performance. The results of numeri-
cal tests performed to validate the FDTD scheme are presented,
with a good agreement achieved when the simulation results are
compared to both the predictions of plasma theory and to the
results of the Tech-X VORPAL 4.2.2 software that was used as a
benchmark.

Index Terms—Electromagnetic propagation, finite-difference
time-domain (FDTD) methods, graphical processing unit (GPU)
computing, ionosphere, magnetized plasma.

I. INTRODUCTION

S INCE the early 1990s and the explosion in interest around
computational physics, the finite-difference time-domain

(FDTD) method has become an increasingly popular and
powerful technique for modeling the propagation of electro-
magnetic (EM) waves through a variety of media. Using the
methodology first proposed by Yee in 1966 [1], an FDTD model
simulates the fundamental EM and plasma wave interactions
at a spatially discrete series of nodes in computational space.
Approximate expressions for the fundamental governing equa-
tions are used to advance the field magnitude at each node
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in quantized time steps, following a leapfrog-style algorithm
[2]. This method of simulation leads to a natural update of the
simulated fields that is explicit in time.

The FDTD method has an advantage over many other numer-
ical simulation techniques as it deals with complex, nonlinear,
and impulsive interactions in a natural way, avoiding com-
plex and computationally intensive linear algebra calculations.
FDTD proves to be a particularly useful tool for geophys-
ical modeling due to the fact that the grid-based structure
allows material properties to be defined separately at each
point, enabling variations in properties such as topography,
composition, geomagnetic field, and plasma profile to be accu-
rately represented [3]. The versatility of the FDTD technique
has led to its application to a diverse range of geophysical
problems, from the study of lightning [4] to the modeling of
space weather effects on power grids [5], and advances in
computing technology will serve only to further enhance the
potential of this method. A detailed review of FDTD tech-
niques with emphasis on the computational cost of each can be
found in [6].

One of the most appealing applications of the FDTD method
is in the study of the interaction of EM waves with plasmas,
and the wide range of instabilities and nonlinear phenomena
that may result. Many of these processes are not fully under-
stood and would benefit from detailed study via numerical
simulation. As FDTD is well suited to computationally mod-
eling these scenarios, the original Yee FDTD scheme has often
been adapted to describe the propagation of EM waves through
dispersive media or simple plasmas using a variety of dis-
cretization and time-integration schemes [7]–[12]. Many FDTD
schemes extend these formulations further to incorporate the
anisotropic effect of a magnetic field on a plasma fluid, includ-
ing the three-dimensional (3-D) scheme described by Young
[13], which collocates plasma fluid velocity vector nodes with
the E-field vector nodes in the computational grid for ease of
coupling between the EM wave equations and the Lorentz equa-
tion of motion. This implementation includes a scalar pressure
node located at the corner of each basic computational unit cell
(Yee cell) to allow a warm plasma medium to be modeled. Lee
and Kalluri [14] locate the plasma current nodes in the cen-
ter of the Yee cell to avoid spatial averaging between nodes
and introduce a dynamic plasma medium through inclusion of
a time-dependent plasma frequency that is updated between
simulation steps. Yu and Simpson [15] collocate the plasma
current nodes with the E-field nodes and include individual
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coupled equations to describe the current due to electrons and
both positive and negative ion species. This scheme has been
used to develop a 3-D global Earth-ionosphere FDTD model
which has been used to study low-frequency wave propagation
[16], and has the potential to be coupled to other atmospheric
models as part of a multiphysics simulator. Numerical simula-
tion of the time-dependent behavior of the plasma medium in
response to interaction with an EM wave has been performed
by Gondarenko et al. [17] who use a one-dimensional (1-D)
or two-dimensional (2-D) alternating direction implicit (ADI)
finite-difference algorithm to simulate linear mode conversion
processes due to a radio-frequency (RF) pump wave incident
on an idealized ionospheric plasma. The numerical scheme
considers slow timescales that are comparable to that of the
plasma density evolution. This formulation is extended in [18]
to include updates to the plasma temperature and density as
part of the simulation algorithm to study the growth of density
structures.

This paper presents the formulation and implementation of a
3-D FDTD model which has been developed for use in mod-
eling the propagation of high-power radio waves through a
dynamic, magnetized, and collisional plasma, and can be used
as a virtual laboratory in which this scenario can be investi-
gated in detail. This formulation extends previously established
schemes with new finite-difference equations for the varia-
tion in plasma temperature and density with time, which are
incorporated into the simulation update algorithm and as such
allow the investigation of nonlinear perturbations of the plasma
medium. This FDTD scheme has been developed to study the
interaction between ionospheric plasmas and RF EM waves;
however, the formulation is equally applicable to waves of any
frequency interacting with laboratory-based plasma, astrophys-
ical plasma, or any medium where a fluid plasma description
holds, provided that sufficient computing resources are avail-
able and that stability criteria can be met.

In Section II, formation of the model’s update algorithm is
described, and factors contributing to the stability and accuracy
of the scheme are discussed. The possibility of accelerating
the FDTD code using graphical processing unit (GPU) tech-
nology is explored and found to be of great benefit to code
performance.

Section III presents a series of numerical tests performed
to validate the performance of the FDTD scheme. Simulation
results are compared to the predictions of plasma theory and
benchmarked against results provided by the VORPAL 4.2.2
software [19].

II. METHODOLOGY

A. Governing Equations

The formation of the FDTD algorithm assumes a multi-
fluid description of a dynamic, anisotropic, collisional plasma,
in which electron or charged ion species are treated as indi-
vidual fluids of continuous mass and charge. The effect on
wave propagation due to the presence of plasma is intro-
duced through the coupling of Maxwell’s wave equations with
the Lorentz equations of motion for each constituent plasma
species, with anisotropy introduced through inclusion of a static

Fig. 1. Basic computational grid unit cell, with the positions of field nodes
indicated.

externally applied magnetic field. The time-dependent variation
in plasma temperature and density is treated by the inclusion of
expressions for the dynamic behaviors of small perturbations of
the plasma fluid temperature and density [20]. Together, these
form a set of coupled first-order partial differential equations
which govern the time-dependent behavior of the EM wave and
plasma medium

∇×E = −μ0
∂H

∂t
(1)
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∑
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Nama
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(NaTa) +∇ ·Qa −NaeaE ·Ua −�εa = 0. (5)

In these expressions, subscript a refers to plasma component
species. U is the time-varying fluid bulk velocity vector, B =
Bb̂ is the static background magnetic flux density, T and N
are the plasma temperature and number density, ν is the effec-
tive collision frequency, �N is a plasma species loss rate term,
∇ ·Q describes the heat flux transport, and �ε is a collisional
heating term. These expressions reduce to that of an unmagne-
tized plasma on removal of the B term, or a collisionless plasma
on removal of the ν term.

B. Discretization Scheme

The set of governing equations (1)–(5) is amenable to a full
finite-difference treatment. The discretization scheme used in
this model is shown in Fig. 1, which shows the spatial location
of the electric field, magnetic field, and fluid velocity vec-
tor components, along with the temperature and density scalar
nodes, in a grid unit cell. The E and U component nodes
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are taken to lie on the same points of the grid to facilitate
efficient coupling between the electric field and the plasma,
with Ex and Ux located at (m+ 1

2 , n, p), Ey and Uy located
at (m, n+ 1

2 , p), and Ez and Uz located at (m, n, p+ 1
2 ),

where m, n, and p are integer coordinates describing the x,
y, and z Cartesian position of a node in the computational
grid in units of the discrete special steps �x, �y , and, �z ,
respectively. To provide a finite differencing scheme consis-
tent with the curl operators in Maxwell’s (1) and (2), the H
nodes are spatially offset from the E nodes, with Hx located
at (m, n+ 1

2 , p+
1
2 ), Hy located at (m+ 1

2 , n, p+
1
2 ), and

Hz located at (m+ 1
2 , n+ 1

2 , p). Temperature and density
nodes are located at (m, n, p) in each cell to allow accu-
rate finite-difference evaluation of the grad and div operations
in (3)–(5). To facilitate consistent evaluation of the temporal
partial derivatives, the E, T , and N nodes are calculated at inte-
ger values of discrete time step q�t (where q is an integer),
while the H and U nodes are calculated at half-integer time
steps (q + 1

2 )�t.
1) Update Equation for Magnetic Field: The formation of

the FDTD update equations for the magnetic field is well estab-
lished and proceeds as described in [1] and others. For the
calculations below, equal spatial step sizes will be assumed
in all grid directions (�x = �y = �z). The temporal partial
derivative in (1) is expanded as a second-order finite-difference
approximation around integer time step q and the equation rear-
ranged to give an expression for H at time step q + 1

2 . The
spatial derivatives in the curl term of (1) are expanded about
the Yee cell points (m, n+ 1

2 , p+
1
2 ), (m+ 1

2 , n, p+
1
2 ), and

(m+ 1
2 , n+ 1

2 , p) to give independent update equations for
Hx, Hy , and Hz , respectively, shown in (6) at the bottom of

the page, where the notation H
q+ 1

2
x [m, n+ 1

2 , p+
1
2 ] repre-

sents the value of the x component of H that exists at point
(m, n+ 1

2 , p+
1
2 ) in the FDTD grid at time step q + 1

2 .
2) Update Equation for Electric Field: The classic Yee

method from [1] is likewise followed to form update equa-
tions for the E nodes, with the temporal partial derivative in
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(2) expanded around half-integer time step q + 1
2 and the spa-

tial partial derivatives in the curl term expanded about Yee
cell points (m+ 1

2 , n, p), (m, n+ 1
2 , p), and (m, n, p+ 1

2 )
for the Ex, Ey , and Ez update equations, respectively. The
location of the Ex,y,z and Ux,y,z nodes at the same point of the
fundamental grid cell allows the Yee formulation to be easily
extended to include the term coupling the E-field to the particle
velocity in a similar method to [16] with no loss of accuracy due
to spatial or temporal averaging. The complete E node update
equations are shown in (7) (as shown at the bottom of the page).
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3) Update Equation for Fluid Velocity: FDTD treatment of
plasma fluid velocity is well established and here it proceeds
following the methods of [13]. The temporal partial differential
in (3) is expanded as a finite-difference approximation about
integer time step q. As the U nodes are only known at half-
integer time steps, the undifferentiated U terms on the right-
hand side of (3) must then be temporally averaged around q as
shown by
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The U×B cross-product in (3) introduces coupling between
U components; thus to maintain consistency, the equation must
be rearranged using matrices R (10) and S (9) to give an update
equation for Uq+ 1

2 in terms of past values Uq , shown in (8). In
this expression, ωca refers to the cyclotron frequency of plasma
species a.

Four-node spatial averaging is required when no node of a
particular type exists at the desired location of the Yee cell. For
example, the Ex[m, n+ 1

2 , p] value required in (8) does not
exist as a predefined node, but can be formed by spatial aver-
aging of the four surrounding Ex nodes equidistant from the
desired reference point, as shown below
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This treatment is applied to all cases where the value of a vari-
able is required at a grid position where no update node exists.
Collisions are treated using an effective collision frequency
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∑
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νab for each species, which can be set

independently at each node. This expression encompasses col-
lisions with neutral particles through νan and collisions with
the other plasma species present in the simulation through the
νab terms. In reality, the effective collision frequency will vary
with time due to changes in particle temperature and density;
however, for the purposes of this work, it is kept constant
after initialization. The grad term coupling the particle fluid
velocity to the temperature and density ∇(kBNaTa) in (3) is
evaluated by finite difference approximation about the points
(m+ 1

2 , n, p), (m, n+ 1
2 , p), and (m, n, p+ 1

2 ) for the Ux,
Uy , and Uz update equations, respectively. Further spatial aver-
aging is required to perform this operation. The complete U
node update equations are shown in (11) (as shown at the
bottom of the page). In this expression, the notation [R]

ij

refers to the value located at the ith row and jth column of
matrix R.

4) Update Equations for Density and Temperature: To
make the scheme suitable for studying the response of a magne-
tized plasma to an incident EM wave, e.g., in the simulation of
an ionospheric modification experiment, the FDTD techniques
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described in Sections II-B1–II-B3 above must be augmented
with new time-explicit update equations to simulate changes to
the plasma density and temperature. Including on-grid updates
for perturbations to the plasma medium in the time-stepping
algorithm allows nonlinear plasma processes such as the self-
focusing instability to be simulated. A standard first-order
linearization technique such as that described in [21] is used to
express N and T as combinations of a constant background part
and a small time-dependent perturbation part such that N(t) =
N0 + Ñ(t) and T (t) = T0 + T̃ (t). Equations (4) and (5) are
reformed using the linearized fields, such that they become
expressions describing the time-dependent behavior of the per-
turbed parts only. Update equation formation then proceeds via
finite difference approximation about time step q + 1

2 and point
(m, n, p). Averaging between nodes is required to ensure con-
sistent evaluation of the grad and div terms in each expression.

A variety of forms can be used for the heat flux transport
∇ ·Qa and collisional heating �εa terms in (5); however, care
must be taken as not all valid expressions are amenable to the
finite-differencing scheme used here. As this model has been
developed for use in simulation of wave–plasma interactions
in the ionosphere, an elastic expression [20] is used for the
collisional term, with �εa = −Namaνa

ma+m0
[3(T0 − Ta) +m0U

2
a ],

where m0 and T0 represent the mass and temperature of back-
ground species. A further term taking into account in elastic
collisions 3

2NeR(Te − T0) is included in the electron temper-
ature update equation, where R is the heat loss per electron
to the background species. A simple heat flux density expres-
sion of Qa = κakB∇Ta is used, with thermal conductivity κa

taken to be NakBTa

maνa
. As both collisional and heat transport

terms are functions of T , these must be temporally averaged and
the update equation rearranged to give an expression for T q+1

only.
The final form of the update equations for the density and

temperature is shown by (12) at the bottom of the previous page
and (13) at the bottom of the page, respectively.

T̃ q+1
a [m,n, p] =

1

1− A
2

{(
1 +

A

2

)
T̃ q
a [m,n, p]

+ ATa0[m,n, p] +
2�t

3kB

(
eaE

q+ 1
2 ·Uq+ 1

2
a +

�ε
q+ 1

2
a −∇ ·Qq+ 1

2
a

Na0[m,n, p] + Ñ
q+ 1

2
a [m,n, p]

)}
(13)

where

A = �t∇ ·Uq+ 1
2

a +�t
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−Ñ
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(
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2

a [m,n+ 1, p]− Ñ
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a [m,n− 1, p]
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2

z [m,n, p]
(
Na0[m,n, p+ 1]−N0a[m,n, p− 1] + Ñ
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2

a [m,n, p+ 1]− Ñ
q+ 1

2
a [m,n, p− 1]

)}
.

5) Full Update Algorithm: The complete set of update (6),
(7), and (11)–(13) naturally lend themselves to a leapfrog
time-stepping scheme, following the cyclical update pat-
tern: Eq → T q → Hq+ 1

2 → Uq+ 1
2 → Nq+1 → Eq+1 → · · · .

Special processes such as source injectors or boundary condi-
tions can be added into this cycle at the appropriate points to
complete the update algorithm.

C. Stability and Accuracy

An important consideration in any FDTD scheme is the sta-
bility of the model. In an unstable simulation, small numerical
artifacts may grow rapidly with time to the extent that they may
alter or obscure the simulation results. Stability is enforced by
the Courant condition, which limits the ratio between the tem-
poral and spatial discrete steps in the simulation. For a 3-D grid
simulating free space, this condition is given by [2]

c�t ≤ 1√
�2

x +�2
y +�2

z

. (16)

This condition effectively ensures that energy in the simulation
is not able to propagate through more than one grid cell per
time step. It has been shown previously that in similar explicit
calculation systems, with E and U nodes located at the same
spatial points on the Yee grid and H and U nodes collocated
in time, that the Courant condition is dependent not only on
the grid parameters but also on the plasma medium contained
within the simulation domain [13]. For an unmagnetized, colli-
sionless plasma, the stability condition is given by (17) [13],
which implies a further restriction on the discrete time step
ωp�t < 2

c�t ≤

√√√√√ 1−
(

ωp�t

2

)2

�2
x +�2

y +�2
z

. (17)
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The effect of collisions or magnetically introduced aniso-
tropy on stability is more difficult to quantify; however, it has
been shown by [6] that direct integration FDTD schemes are
stable at the unmagnetized Courant limit for all nonzero values
of νc�t. The applicability of the nonmagnetized limit to colli-
sional and anisotropic situations has been tested numerically by
[4] for a time-implicit implementation, and is further verified
for the time-explicit scheme presented here by the validation
tests described in Section III.

The FDTD technique is inherently approximate, so it is
important to be able to assess the accuracy of a particular
scheme. The discrete nature of the FDTD grid introduces both a
numerical phase error to signals traveling through the computa-
tional domain (numerical dispersion) and an energy dissipation
error (numerical dissipation) which must be accounted for. Both
quantities are heavily dependent on the choice of discretiza-
tion parameters used in the FDTD grid. The accuracy of the
FDTD scheme for a particular set of grid parameters can be
gauged using a dispersion analysis of the type presented in [6].
This approach is equivalent to a standard dispersion calculation
for a wave propagating through plasma in continuous space,
but with the assumed plane-wave form of the constituent wave
fields substituted for a numerical world equivalent that takes
into account the discrete nature of the grid

e−i(ωt−kxx−kyy−kzz) → e−i(ωq�t−kxm�x−kyn�y−kzp�z).
(20)

This has the effect of transforming the continuous-space par-
tial differential operator Fourier pairs ∂

∂t → iω and ∇ → −ik
into their discrete-space analogues

∂

∂t
→ i

(
2

�t

)
sin

(
ω�t

2

)
(21)

∇ → −i

(
2

�j

)
sin

(
kj�j

2

)
ĵ for j = x, y, z. (22)

It can be seen from (21) and (22) that as the discrete steps
approach zero, the continuous-space expressions are recovered.
By applying relations (21) and (22) to (1) and (2), time-
harmonic versions of Maxwell’s wave equations can be formed
for plane waves propagating in the numerical domain

−
(

2

�j

)
sin

(
kj�j

2

)
ĵ×E = −μ0

(
2
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)
sin

(
ω�t

2

)
H

(23)

−i
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2
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)
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)
ĵ×H−

∑
a

NaeaUa

= iε0
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2
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)
sin

(
ω�t

2

)
E. (24)

n2 =
c2K2

Ω2
= 1−

(ωp

Ω

)2
1− i

(
νc

Ω

)
+

ω2
csin

2θ
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ω2
c sin2θ

2(Ω2−ω2
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+(ωp
Ω )

2
cos2θ

] 1
2

(18)

Ω =
2

δt
sin

(
ωδt
2

)
. (19)

An expression for the frequency-dependent refractive index in
the numerical domain can then be derived starting from (23)
and (24), with the U term in (24) eliminated via substitution of
a numerical time-harmonic version of (3)

i

(
2

�t

)
sin

(
ω�t

2

)
Ua =

ea
ma

(E+Ua ×B)− νaUa.

(25)

Note that for this calculation, homogeneous plasma density
and temperature has been assumed as the particle sound speed
typically found in an ionospheric plasma is significantly less
than the EM wave propagation velocity ( csc << 1), and thus
the inclusion of finite temperature or density inhomogeneities
adds a negligibly small perturbation to the EM wave disper-
sion relation. A static magnetic field in the z-direction has bee
assumed, with wave propagation constrained to occur in the xz-
plane. From here, the derivation follows the standard refractive
index calculation for oblique plane wave propagation in a mag-
netized, collisional plasma as can be found in [22] and others,
and leads to the expression shown in (18) at the bottom of the
page. This is similar to the familiar Appelton–Hartree equation
for oblique wave propagation, but with the continuous-space
frequency replaced by the numerical equivalent Ω, given in (19)
(as shown at the bottom of the page). In this expression, ωp rep-
resents the fundamental plasma frequency, ωc is the cyclotron
frequency, and θ is the angle between the external B-field and
the direction of wave propagation.

To assess the accuracy of the FDTD scheme, the frequency
dependence of the discrete-space refractive index was calcu-
lated for a range of discretization regimes. Medium parameters
were fixed, such that ωp = 1.78× 107 rad s−1, ωc = 8.18×
106 rad s−1, and νc = 500 s−1 for an electron-only plasma.
The magnetic field direction was set to be θ = π

4 from the z-
axis in the xz-plane, with wave propagation taken to be along
the z-direction. The Courant number was chosen to be Sc =
c�t

�x
= 0.5 to ensure stability, with spatial step sizes set to be

equal in each grid direction (�x = �y = �z). Discretization
was varied by changing the size of discrete time step �t (chang-
ing this parameter also scaled the discrete spatial step size
through the relationship with fixed Sc). The equivalent refrac-
tive index for nondiscrete continuous space was calculated from
(18) and (19) in the limit �t,�x,y,z → 0. In this limit, Ω → ω
and (18) reverts to the familiar Appelton–Hartree equation.
The error between the numerical refractive index curve and its
continuous-space counterpart is then calculated using

error(ω) =

∣∣∣∣ncontinuous(ω)− nnumerical(ω)

ncontinuous(ω)

∣∣∣∣ . (26)

By considering the real part of the refractive index, the
numerical dispersion error introduced by the discrete nature
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Fig. 2. Dispersion curves (upper) and relative errors when compared to the continuous-world regime (lower) for a range of dimensionless parameter ωp�t shown
for the ordinary mode (left) and extraordinary mode (right) branches of (18). Positive root shown only.

of the grid can be evaluated. Considering the imaginary part
allows the energy dissipation error to be evaluated. Fig. 2 shows
the continuous-space dispersion curves for the ordinary-mode
(O-mode; left panels) and extraordinary-mode (X-mode; right
panels) branches of (18) compared to curves calculated for
different values of dimensionless parameter ωp�t. The lower
panels show the relative errors calculated using (26). Fig. 3
shows the equivalent dissipation curves. As would be expected,
deviation from the continuous-space case decreases as the dis-
crete step sizes are reduced. The greatest source of error in all
cases is in the frequency at which cutoffs and resonances occur,
which shift to higher frequencies as the discretization becomes
more coarse. As ωp�t is increased to 2, the numerical disper-
sion and dissipation relationships break down completely and
bear very little resemblance to the desired curves, as predicted
by the stability requirement ωp�t < 2 introduced above.

Grid parameter choice for this FDTD scheme is ultimately
constrained by the need for stability and the the requirement for
a simulation to sample features of a desired spatial or tempo-
ral resolution. Beyond this, discrete step size choice must be a
compromise between the accuracy needs of a given simulation
and the computational resource required to run it, which would
be expected to increase drastically with accuracy. For example,
the simulation of an RF wave interaction with a kilometer-scale
plasma feature requires the simulation time step to be small
enough (of the order 10−8 s), such that the wave period can
be well resolved; however, this automatically scales the spatial
step size to be small (of the order 10 m) to maintain stability,
meaning that a large computational grid is required to model
the desired feature. A larger grid necessarily means that more
memory is required and more calculations must be performed,
thus increasing runtime.

D. Computational Performance

Among the prime considerations when developing the FDTD
code was that simulation runtimes be kept to a minimum. As
has been explored by [6], the direct integration method of
FDTD used here is under most circumstances the most com-
putationally efficient of finite-difference schemes, with smaller
equivalent-simulation runtimes than the recursive convolution
and exponential fitting methods it was tested against.

As the FDTD method scales particularly well with the single-
instruction multiple-data (SIMD) concept of parallel process-
ing, huge benefits in performance (often several orders of
magnitude) were encountered when the code was accelerated
using GPU technology as has been reported by [23]. The mul-
tiprocessor architecture of the GPU allows similar-type nodes
to be updated simultaneously while still following the over-
all update algorithm described in Section II, vastly reducing
processing time when compared to a serial implementation.
A major advantage of the use of GPU technology was that
almost all calculations and memory operations occur on-chip,
with the only (comparatively slow) communication with the
host machine occurring at initialization when memory arrays
and input data are loaded onto the chip, and at the points where
the code performs a data dump.

The FDTD code was written using the OpenCL parallel
processing language, allowing it to be easily ported between
heterogeneous devices of different hardware configurations. In
the OpenCL implementation, the GPU receives computation
instructions from the host CPU in the form of precompiled
kernel functions. Before execution of a kernel, the computa-
tional grid is divided into work items (equivalent to CUDA
threads), with each work item handling the update of an indi-
vidual node in the grid. Due to the data-parallel properties of
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Fig. 3. Dissipation curves (upper) and relative errors when compared to the continuous-world regime (lower) for a range of dimensionless parameter ωp�t shown
for the ordinary mode (left) and extraordinary mode (right) branches of (18). Positive root shown only.

OpenCL, each work item can simultaneously execute the same
arithmetic instruction on different parts of the data stored in the
GPU memory. The grid can also be subdivided into discrete
blocks of work items with user-defined dimensions, known as
work groups. On kernel execution, work groups to be processed
are distributed among the available device compute units by an
on-chip instruction unit. Each compute unit is a multicore pro-
cessor made up of many discrete processing elements capable
of performing simple arithmetic operations. Once a work group
has been assigned to a compute unit, the processing elements
simultaneously execute the same kernel instruction on wave-
fronts of 32 consecutively indexed work items. For the FDTD
code described here, synchronous kernel execution was used
to maintain consistency between nodes, meaning that all com-
pute units on the device must finish executing a particular kernel
before moving on to the next set of instructions in the queue.

The choice of work group dimensions is therefore of critical
importance to code performance; after division of the grid, there
must be a sufficient number of work groups to fully occupy all
compute units, and each must be large enough to ensure that
all processing elements are in operation as close to 100% of
the time as possible. Wavefronts are executed concurrently, and
thus a high number of active wavefronts are required to mask
delays due to thread stalling or memory latency. Additionally,
members of a work group have shared access to the fast-access
scratch memory (OpenCL local memory) available on the GPU
chip, which can significantly reduce memory transaction times
and thus speed up performance, but is limited in size compared
to chip global memory.

To test the impact of changing the number of work groups
on FDTD code performance, a simple simulation was repeated
for varying ratio of the total number of work groups to device

Fig. 4. Code performance variation with the number of work groups per device
compute unit, for a constant work group size.

compute units, with work group size kept constant. The tests
were performed on a Nvidia Tesla M2075 GPU containing
a total of 14 compute units, with the number of FDTD grid
cells fully advanced by one time step per wall-clock second
used as a measure of performance. The results are shown in
Fig. 4, which demonstrates that code performance increases
significantly as the ratio of work groups to compute units is
increased. Performance can be seen to continue to increase far
beyond a ratio of one work group per compute unit due to
the fact that each compute unit can handle many work groups
simultaneously, and increasing the workload of each compute
unit ensures that the processing elements are always occupied.
Saturation in this case likely occurs due to the limit on the
number of active work items imposed by the limited number
of private memory registers available to each compute unit.

The compute unit executes work groups in units of 32-work-
item wavefronts; therefore, a work group size of less than
32 will leave processing units idle and reduce performance.
Likewise, a work group that is not made up of an integer number
of warps will reduce processing core occupancy. Fig. 5 shows
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Fig. 5. Code performance variation with the number of wavefronts in a work
group, for a constant total number of work groups.

Fig. 6. Code performance for varying offsets of the z-direction work item
index. Offset multiples of 32 correspond to coalesced memory access.

how the performance of the FDTD code varies with the number
of wavefronts in a work group, for a constant total number of
work groups. Performance peaks are seen at integer numbers
of wavefronts per work group, as in these scenarios, there are
no partially complete wavefronts. There is a general increase in
performance due to increased occupancy of the compute units
with greater block sizes.

Further performance gains were achieved by the use of a
memory coalescence model such as that described by [24]. In
this structure, kernel execution is organized such that all work
items in a half-wavefront simultaneously access data from a
contiguous block of memory, allowing the GPU to combine
multiple memory calls into a single transaction and greatly
reducing the net memory access time per work item. Without
memory coalescence, multiple memory fetches may be required
to access the same data, resulting in a significantly lower
effective memory bandwidth. This is shown by Fig. 6, which
shows the FDTD code performance for varying offsets of the z-
direction work item index. Adding an offset to the index causes
the work item grid to be out of alignment with the data stored in
page-aligned global memory, resulting in uncoalesced memory
access. Increasing the offset to 32 (one whole wavefront out
of alignment) brings each wavefront back into phase with the
global memory and performance returns to coalesced-memory
levels.

Using several GPU nodes together in a networked cluster
as described by [25] or [26] was found to increase the perfor-
mance by a factor approximately equal to the number of GPUs
available, with the only major bottleneck being the communi-
cation times between nodes. In this scenario, the computational
domain was split between each GPU, such that each device
was responsible for updating a different region of the grid and
an OpenMPI framework used to initialize and pass commands
to each GPU on separate threads. To ensure consistency, the

TABLE I
TABLE COMPARING THE PERFORMANCE OF A SERIAL IMPLEMENTATION

OF THE FDTD CODE RUNNING ON A SINGLE CPU WITH PARALLEL

IMPLEMENTATIONS RUNNING ON A SINGLE GPU AND ON TWO

NETWORKED GPUS

regions of the grid updated by each GPU were set to over-
lap slightly, and the overlap regions passed between chips as
boundary conditions. Increasing the size of these shared over-
lap regions meant that data transfer between chips did not
have to occur every time step, but did introduce an additional
overhead as it increased the number of redundant calculations
(since the overlap regions of the grid are effectively updated
twice—once by each chip that shares this region). It was found
that an overlap region depth of 32 cells produced the optimal
results; however, this is heavily dependent on the hardware
available, and will likely vary between systems. Table I shows
how the performance is increased when a serial implementa-
tion of the FDTD code running on an Intel Core i5-3750 CPU
is compared to a parallel implementation running on a Nvidia
Tesla M2075 GPU. The number of nodes fully advanced by
one time step per wall-clock second is used as a measure of
performance. Also shown is the performance of a dual-GPU
implementation, which shows a gain factor of approximately
2 over the single-GPU implementation. Due to hardware lim-
itations, an implementation using more than two GPUs could
not be tested; however, performance would be expected to scale
approximately linearly with the number of GPUs used, with the
only additional overheads arising from the transfer of overlap
regions between devices.

III. VALIDATION

A. Wave Propagation Through Homogeneous Plasma

To test the validity of the FDTD algorithm, the model was
used to simulate the propagation of a plane-polarized EM wave
through a homogeneous block of plasma, in a similar man-
ner to the numerical experiments used to validate the FDTD
algorithm in [16]. Several test cases involving different homo-
geneous plasma regimes were considered. In each case, the
results were benchmarked against those obtained using Tech-
X’s VORPAL 4.2.2 software package [19]. The grid was initial-
ized with discrete spatial steps of �x = �y = �z = 11.626m
and a discrete step size of �t = 1.939× 10−8 s chosen to
give a Courant number of 0.5, ensuring stability. Discretization
parameters were chosen to represent those used in a typical
ionospheric simulation, with accuracy balanced by a need for
computational efficiency. The simulation boundaries were ter-
minated using second-order absorbing boundary conditions of
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Fig. 7. Ex signal for an EM pulse of form (27) propagating through a free-
space simulation, recorded at a point 128 cells from the z = 0 launch plane.
Upper panel shows time-domain comparison of signals measured using the
FDTD algorithm described in this work (red) and an equivalent VORPAL sim-
ulation (black). Lower panel shows the frequency domain form of the signals,
which peak at ωpeak = 4.55× 106 rad s−1.

the type described by Mur [27], which allowed outgoing waves
to be absorbed with minimal numerical reflection. The bound-
aries of the VORPAL comparison simulation were terminated
using absorbing boundary conditions, and a particle-in-cell
approach implementing a Boris push update to particle veloci-
ties [28] used to mediate any interaction between the simulated
EM field and plasma. A linearly polarized input pulse in the
form of a twice-differentiated Gaussian described by (27) was
introduced into the computational domain from the lower z-
boundary, and allowed to propagate through the domain in the
positive z-direction

Ex(q) =

[
1− 1

2
(ωpeakq�t − 1)

2

]
exp

[
−
(
ωpeakq�t

2π
− 1

)2
]
.

(27)

This form of pulse was particularly suitable as the frequency of
peak amplitude could be set easily using the wpeak parameter,
and it avoided the DC frequency component found in undif-
ferentiated Gaussian signals. For the following tests, the peak
frequency of the input pulse was set to be ωpeak = 4.55×
106 rad s−1, corresponding to a wavelength of 36 cells. The
free space time-domain and frequency-domain signals from this
pulse measured at a point 128 cells from the source plane are
shown in Fig. 7. In this simple free-space example, the FDTD
model was in almost perfect agreement with the benchmark,
with the greatest error between signals of order 10−4 V/m.

The pulse was then introduced into a spatially homogeneous
unmagnetized electron-only plasma medium of electron num-
ber density 2× 109 m−3. Figs. 8 and 9 show the time- and
frequency-domain signals, respectively, again recorded at a
point 128 cells from the source plane. Signals from both the
FDTD code and VORPAL are shown, alongside the expected
result from plasma theory. The time-domain waveform shows a
distorted pulse with a long tail oscillating at the electron plasma
frequency. This agrees with expected behavior, as in a disper-
sive plasma, different frequency components should propagate

Fig. 8. Time-domain Ex signal for pulse propagating through an unmagnetized
plasma simulation. Upper panel shows FDTD signal (red), VORPAL signal
(blue), and the expected result from plasma theory (black). Central panel shows
the error between the simulated signals and the predictions of plasma theory.
Lower panel shows the error between FDTD and VORPAL signals.

Fig. 9. Frequency domain Ex signal for pulse propagating through an unmag-
netized plasma simulation. Upper panel shows discrete Fourier transform of
FDTD signal (red), VORPAL signal (blue), and the expected result from plasma
theory (black). A clear cutoff can be seen at simulation plasma frequency
ωp = 2.5× 106 rad s−1. Central panel shows the error between the simu-
lated signals and the predictions of plasma theory. Lower panel shows the error
between FDTD and VORPAL signals.

through the plasma at different velocities, causing the observed
distortion. The slow tail is caused by frequency components
on or close to the electron plasma frequency which propagate
with very low group velocities. The FDTD algorithm results
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Fig. 10. Time-domain Ex signal for pulse propagating through a magnetized
plasma simulation. Upper panel shows FDTD signal (red) and VORPAL signal
(blue). Lower panel shows the error between FDTD and VORPAL signals.

demonstrate good agreement with both the benchmark and the-
ory, with substantial error between the FDTD and benchmark
signals only creeping into the trace during later time tail. This
difference is likely due to the different levels of numerical dis-
persion present in each simulation. The FDTD result was found
to match very closely to the theoretical prediction at all times
sampled. The frequency-domain waveform clearly shows a cut-
off at the electron plasma frequency ωp = 2.52× 106 rad s−1.
This agrees well with expectations, as no frequency compo-
nents below the fundamental plasma frequency should be able
to propagate through a plasma of this type. Note that this fre-
quency is the numerical plasma frequency, calculated using the
methods of Section II-C above, and depends not only on the
plasma density but also on the choice of grid discretization
parameters.

A static magnetic field of magnitude B = 10ẑμT was then
applied to the medium, fixing the electron cyclotron frequency
in the simulation to be ωc = 1.76× 106 rad s−1. The magnetic
field was directed parallel to the direction of pulse propa-
gation. In this situation, the initially linearly polarized pulse
should decompose into left-handed and right-handed circularly
polarized components as it propagates through the magnetized
plasma. The different components propagate at different phase
velocities and experience different cutoff frequencies below
which they will not propagate, given by

ωLHC =
1

2

([
ω2
c + 4ω2

p

] 1
2 − ωc

)
= 1.79× 106 rad s−1

(28)

ωRHC =
1

2

([
ω2
c + 4ω2

p

] 1
2 + ωc

)
= 3.55× 106 rad s−1.

(29)

The time- and frequency-domain signals for this case are shown
in Figs. 10 and 11. The time-domain signal agrees well with
the benchmark until, as encountered in the previous case, a
small error creeps into the low-amplitude tail. Again, this is
likely due to the different numerical dispersion regimes. The
predicted cutoffs can clearly be seen in the frequency-domain
signal. There are substantial differences between the FDTD

Fig. 11. Frequency domain Ex signal for pulse propagating through a mag-
netized plasma simulation. Upper panel shows discrete Fourier transform of
FDTD signal (red) and VORPAL signal (blue). Clear cutoffs can be seen due
to the different propagation characteristics of the right- and left-hand circularly
polarized components. The expected positions of the cutoffs are indicated in
black. Lower panel shows the error between FDTD and VORPAL signals.

frequency-domain signal and the benchmark at lower frequen-
cies; however, this is mostly due to a resonance encountered
in the kinetic PIC code that is not developed in the fluid-
only FDTD scheme. Despite this, the qualitative features and
position of the cutoffs are present and in good agreement in
each trace. In all the above tests, the FDTD code was found
to complete the simulation considerably more quickly than
the benchmark software, with the single-core CPU version of
VORPAL found to perform on average 4.7× 105 node updates
per second compared to a rate of 2.4× 106 node updates per
second achieved by the FDTD code on the same hardware.
The GPU accelerated version of the FDTD code was able to
run the simulations almost two orders of magnitude faster than
this with a node update rate of 1.1× 108 nodes s−1 achieved
using a single-GPU implementation. A GPU enabled version
of VORPAL was not available for comparison.

B. Wave Propagation Through Inhomogeneous Plasma

This section describes further validation tests that are more
representative of the intended end-use of the model. Simple
numerical experiments were performed demonstrating the abil-
ity of the FDTD algorithm to replicate some of the key features
that are required for realistic simulation of RF wave propa-
gation in the ionosphere. The model was set up to simulate a
simple ionospheric heating experiment, with a continuous har-
monic input wave at a frequency of ω0 = 2.7× 107 rad s−1

introduced into a domain containing a linear electron density
profile given by (30), where Ncrit is the critical density at
which the plasma frequency equals the frequency of the inci-
dent wave, zcrit is the height at which this density occurs, and
Lz is the scale size of the gradient. The variable z refers to
the distance from the lower edge of the simulation domain. For
these tests, zcrit was set to be at 29.8 km from the lower edge
of the simulation and Lz set to be 60 km

N0(z) = Ncrit

(
1 +

z − zcrit
Lz

)
. (30)
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Fig. 12. Upper panel shows the numerical refractive index curves for a mag-
netized plasma of density profile (30). Lower panel shows a comparison of the
time-averaged O- and X-mode E-field amplitudes measured along the central
axis of the computational domain.

Fig. 13. Comparison between standing wave pattern developed in FDTD
simulation and theoretical calculation following the method of [31].

The simulation was initialized using the discretization param-
eters used in Section III-A and run in a 2-D configuration in
which all y-direction gradients were assumed to be zero. A
static background magnetic field of magnitude 4.65× 10−5 T
at an angle of 12◦ to the z-axis was applied to mimic the geo-
magnetic field. Background electron temperature was set to
1500 K and electron-neutral collision frequency to 500 s−1.
Domain boundaries were terminated by 64-cell complex-
frequency-shifted perfectly matched layers [29], which allowed
outgoing waves at a range of oblique angles to be absorbed
effectively with minimal numerical reflection. The input wave

was given an angular spread to appear as if it originated form a
point located 220 km below the z = 0 launch edge. The polar-
ization of the wave could be set at launch to represent either
the O-mode or X-mode using the polarization relations given
in [30] for a cold, collisional, magnetized plasma. The FDTD
model was used to check that the propagation of these modes
proceeded in the expected manner. The upper panel of Fig. 12
shows how the refractive index for O- and X-mode waves in
this simulation varies with altitude. The curves shown are the
numerical forms of the refractive index curves specific to the
chosen discretization parameters, calculated as described in
Section II-C. The traces in the lower panel of Fig. 12 show the
time-averaged electric field amplitude measured along the cen-
tral axis of the computational domain after 2× 106 time steps
for both the O- and X-mode input waves. The results demon-
strate that the simulation is able to replicate the propagation
characteristics of each mode successfully. The O-mode wave
was able to propagate almost the whole length of the simulation
domain before being reflected at zcrit as expected from the dis-
persion curve. The X-mode wave was attenuated at a distance of
around 10 km from the lower edge of the simulation, the point at
which the theory predicts that this wave should become evanes-
cent. A small amount of X-mode amplitude appears to have
leaked beyond this point and can be seen to have been ampli-
fied at the resonance just above zcrit. The standing wave pattern
that develops below the reflection height in the O-mode case is
a well-understood phenomenon which has been characterized
by [31]. Fig. 13 shows a comparison between the wave pattern
developed in the simulation and that predicted by theoretical
calculation. Note that the numerical form of the the refrac-
tive index has been used in calculating the theoretical result.
The results from the FDTD simulation are in good agreement
with those from theory and successfully reproduce the expected
wave pattern for all E-field components. The wave amplitudes
in the simulated case are lower than the predicted values by a
factor of ∼ 0.8; however, this is likely due to energy leaking out
of the grid through absorption at the grid boundaries.

IV. CONCLUSION

This paper describes the formulation of a 3-D FDTD scheme
suitable for the simulation of RF wave propagation in a
dynamic, magnetized plasma. This work builds on the well-
established FDTD technique by extending it to include a time-
explicit update of the plasma fluid temperature and density,
allowing the time-dependent behavior of the plasma medium
to be studied. The stability criteria and accuracy of the FDTD
scheme were analyzed and found to be heavily dependent on
the choice of spatial and temporal discrete step parameters.
Computational efficiency is crucial for a numerical simula-
tion of this type and it was found that accelerating the FDTD
code using GPU technology yielded significantly better per-
formance, with a dual-GPU implementation achieving a rate
of node update almost two orders of magnitude faster than a
serial implementation. Optimization techniques such as mem-
ory coalescence were shown to have a significant effect on
code performance, and it was demonstrated that large perfor-
mance gains could be achieved through careful choice of the
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GPU work group dimensions. Numerical validation tests sim-
ulating EM propagation through a range of plasma regimes
demonstrate that this model agrees well with plasma theory and
the benchmark software results. In particular, the propagation
characteristics of waves of ordinary- and extraordinary-mode
polarizations in an inhomogeneous, anisotropic plasma were
accurately replicated. In the case of the ordinary-mode wave,
the amplitude swelling effects produced around the critical
density demonstrate that the FDTD scheme is able to suc-
cessfully simulate the mode-conversion process responsible for
this phenomenon. Both these effects are crucial to the ongo-
ing and planned work involving this model, which concern the
numerical simulation of an artificial ionospheric modification
experiment and the study of the resulting nonlinear processes.
The FDTD code was found to run the validation test simula-
tions considerably more quickly than the benchmark software
using equivalent hardware.
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