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Three-Particle Complexes in Two-Dimensional Semiconductors

Bogdan Ganchev,' Neil Drummond,’ Igor Aleiner,”! and Vladimir Fal’ko'
]Department of Physics, Lancaster University, Lancaster LAl 4YB, United Kingdom
2Physics Department, Columbia University, New York, New York 10027, USA
(Received 18 August 2014; published 11 March 2015)

We evaluate binding energies of trions X*, excitons bound by a donor or acceptor charge X?), and
overcharged acceptors or donors in two-dimensional atomic crystals by mapping the three-body problem in
two dimensions onto one particle in a three-dimensional potential treatable by a purposely developed
boundary-matching-matrix method. We find that in monolayers of transition metal dichalcogenides the

dissociation energy of X* is typically much larger than that of localized exciton complexes, so that trions
are more resilient to heating, despite the fact that their recombination line in optics is less redshifted from

the exciton line than the line of X2,
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Atomic layers of hexagonal transition metal dichalcoge-
nides (TMDCs) [1-4] represent a new class of systems
whose optical properties attract a lot of interest [4—10]
due to their promise for applications in optoelectronics.
These two-dimensional (2D) crystals are believed to be
direct band gap semiconductors [11-15], and their
luminescence spectra contain distinct lines interpreted as
the electron-hole recombination from neutral X and charged
excitons (trions X*) [4,16-24], which also coexist with the
recombination of excitons localized at defects.

Here, we study binding energies of acceptor- or donor-
bound excitons (X4(P)), trions (X*), and charged acceptors
(A1) or donors (D7) in atomic 2D crystals using a method
developed specifically to tackle such three-body problems
in two dimensions. For the trions, we also employ the
diffusion quantum Monte Carlo approach [25,26]. We take
into account a specific feature of atomically thin crystals
of TMDCs, where, due to the polarizability of atomic
orbitals, the interaction between charges g; ; is logarithmic,
(q:q;/r) In(r;;/r.), up to a distance r, much larger than
the excitonic Bohr radius [27], as indicated by the com-
parison of measured [42] and calculated [42—44] spectra of
ground and excited states of free excitons.

In Fig. 1 we display the calculated binding energies €
of all charged three-particle complexes, which determine
the activation energy needed to dissociate them into a
neutral complex and a free carrier (X — X + e/h;
XPA) — DO(A%) + h/e). For the parametric range 0.5 <
(pe/up) <2, which covers the cases of MoS,, WS,,
MoSe,, and WSe, [45], we find that the dissociation
of XP@ into a neutral donor (acceptor) and a hole
(electron) has a much smaller activation threshold than
the dissociation of a trion, which suggests that in TMDC
luminescence the stronger redshifted XA(?) line would be
more sensitive to temperature than the trion line.

Since most of the results displayed in Fig. 1 were
obtained using an original approach, we describe its logic
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FIG. 1 (color online). Binding energies € of charged complexes
XAP) X* and AT and D~ for various electron-hole mass ratios
u./u, <1 (for MoS, and MoSe,, u,./u, ~0.7; for WS, and
WSe,, u,/u, ~0.6 [11,15,46-49]). For trions, the results ob-
tained by the newly developed method (diamonds) are compared
to the binding energies determined using the diffusion Monte
Carlo technique (crosses). Sketch: sequence of luminescence
lines in TMDC spectra, including charged complexes as well as
ground and first radiative excited states of the free exciton.

and theoretical features in detail, whereas the diffusion
quantum Monte Carlo calculations [25,26] are discussed in
the Supplemental Material [28]. Three 2D particles have
six degrees of freedom, three of which correspond to
center-of-mass motion and overall rotation. The quantum
mechanics of the remaining degrees of freedom is
equivalent to that of a particle moving in an effective three-
dimensional potential. The wave function ¥ (r;,r,,r3) of
three logarithmically interacting particles with masses i, 5 3
[46-50] and charges |g;| = e, ¢,q, = €% and q3q,, = —€?
obeys the Schrodinger equation (r;; = r; —r;)
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TABLE 1.

Parameters in Eqs. (1)—(4) for charged complexes in 2D semiconductors with effective electron(hole) masses p, ().

Exciton (X) localized on charged impurity

Two particles localized on charged impurity

Trion

Acceptor (X4) Donor (X?) Acceptor (AT) Donor (D7) Negative trion (X7) Positive trion (XT)
Hi He Hn Hi He He Hn
H2 ©o o Hi He He Hn
H3 Hi He © Cd Hn He
0, 2 arctan \/m 2 arctan \/M n/2 n/2 2 arctan m 2 arctan \/m
0, T i z/2 z/2 2 arctan \/m 2 arctan \/W

After separating the motion of the center of mass,
Ren = O uir;)/M, M=) ,u;, and introducing dimen-
sionless T = ryy/ro, ¥' = (3°7; pitia)/ (ro[Mp o/ us]'/?),
where 5! = {22 py /[, 7 (11 + )] }'/?, and spherical
coordinates

{[g;,gu} _ {[ <<I>+%>,sin<<1>+%>1}

sin [cos(® —2), sin(P — 2)]

Eq. (1) takes the form

i P10 (i + 1)
2 2e%ru3(uy + o)

where e are the eigenvalues of the Schrodinger equation

E

P e [1

_2M+r_* +€:|, (2)

[=Vi+Inr+U(0.¢)lw = ey,
0> 30 4L 6

-Vi=--5 >t
or* ror r rsin-0
1. [@=n-n;)(l=n-n,)
U =-1
(©.4) 2" (1-n-n,) '
n = [sin @ cos ¢, sin O sin ¢, cos 6. (3)

This transforms the three-body problem to a one-
body problem in a higher-dimensional space, where n
is a position of a fictitious particle on a sphere, L is a
three-dimensional angular momentum operator, L’ =
—(1/sin0)(0/00) sin 0(0/0) — (1/sin’0)(d*/0¢*), and
0 = [—(0/0P) + 4cos0(D/ )| (8/0P). Vectors n, and
n,_;, characterize the direction of the maximal repulsion
and attraction, respectively,

n_ = [0,0,1], n; = [(=1)"sin6;,0,cos 6],
tan (612/2) = [Muy 5/ (3p2,1)]"2, (4)

where parameters for particular complexes are specified in
Table I. The color-scale visualization of U is shown in the inset
to Fig. 2. Classically, the particle collapses to either n; or n,;
this observation is useful for finding the large-distance
asymptotic states.

Because of rotational symmetry, the potential U in
Eq. (3) does not depend on the angle ®. Hence, the
eigenstates can be classified by the integer angular

momentum J: ¥, (7,0, ¢, ®) = /Py, (r,0, ¢), with J = 0
for the ground state of the three-particle complex
(see the Supplemental Material [28]). For ¥ to be single
valued, we must have y(r,0+27,¢) =wy(r.0,¢+27) =
wo(r,—0,¢+7r)=wo(r,0,¢). In general, the potential U
also has a mirror reflection symmetry U(¢p) = U(—¢).
When two particles in the complex are identical (6; = 0,),
U(0) = U(-0), states are either symmetric (s) or antisym-
metric (a) in 6.

In the following, we use the conventional [54] basis of

spherical harmonics Y 5,,(0, @), |m| <[,
LITIHX l
Vio=D_ Y Yiumyi(n). LY, =1(+1)Ys,,.
1=0 m—0
1
Yio=Yi0: Yiicma :\/_E[Ylm +(=D"Y -l

Yl,m<9’¢) = (_1)m[Yl,—m(9v¢)]* = <_1)mYl,—m(9’ _¢)

=

O S

r

FIG. 2 (color online). Eigenvalues /,(r) of H(r) in Eq. (6) for
0, =0, = (z/2) and L., = 30 [53]. For r < 1, h,, are bunched
by the angular momenta /, whereas for » > 1, a and s doublets
correspond to the particle localization in the minima n;, with
vanishing tunneling (note that a-s crossings are allowed). The
red dashed line marks the boundary X of the continuum
spectrum for the exciton and a free particle, and at r>1,
h(r) ~ X3 — ¢/r?, determined by the 2D van der Waals attraction
between the charged particle and the neutral exciton, which
produces an infinite number of shallow bound states. Inset: color
scale image of the potential U in Eq. (3).
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In this basis, Eq. (3) becomes

& 3
dr? rd

] v = ((r) — 1)y (5)

where vector y is comprised of the components v ,, and the matrix H (r) has elements

41,(1 )
Hﬁﬁ; = r12 21 }51 1,Omm, + Vgrm";

lml

Remarkably, the matrix elements U},
Material [28])

UI;Z; = (=1)"/=(20 +

I=lin

where m =m; — my, Ly, = max(1,|l; — L], |m]), the 3j
symbols follow Ref. [54], and n; are from Eq. (4).

Numerically found eigenvalues of Hamiltonian (6) are
shown in Fig. 2. At r > 1, the eigenfunctions are peaked
nearn = n,; , suggesting an adiabatic solution for Eq. (5) at
r > 1. Consider the equation

[ld d m?
pdp dp

+ 2+1np}<on< Y= gran(p). ()

which determines the spectrum of a 2D exciton with the
logarithmic interaction e?/r, In(p/r,):

e 1 > (uy +p3)
xm = | S AL 8
oo [2 ! 267,13 —H(n} ®)

Integer m and n > 0 are the 2D angular momentum and
radial quantum number, respectively, and the interlevel
distances [42,44] determined by the eigenvalues listed in
Table II do not depend on the masses.

The adiabatic wave function (closely bound electron-
hole pair and the third particle far from the pair) is

y12(r,0) = @f(r| sin(6/2)) F?(reos(6/2)),  (9a)
where “local” coordinates near n;/, on the unit sphere are

introduced as n (6, ¢) =cosfn; +sinfcosgn’, +sinPsingn’,
where n} and n’ are two unit vectors orthogonal to each other

TABLE II. The eigenvalues of Eq. (7) that determine the
spectrum of ground and excited states of the exciton, Eq. (8).

an m=20 m=1 m=2
n=20 0.5265 1.386 1.844
n=1 1.661 2.009

n=2 2.177

L+1,
V2I+1 (1
2L+ 1) Y i < ‘

1, m172 > O,
lymy __ ryrlimy my prli—m 1 —
Vlzmz - [Ulzmz + ( ) ]Ulzm, ] X 21’ mlllvz .O’ (6)
— TWISE.
75 otherwise

can be found in a closed analytic form (for the derivation, see the Supplemental

Y ()],

I [ [ SRR EACOE

and to n;. Representation (9a) is valid if the tunneling between
the two minima is weak. Substituting Eq. (9a) into Eq. (5),
treating the singular logarithmic potential exactly and the
remainder in second-order perturbation theory, we find

1d d 7’1 2 ~ (1,2)
- fe (1’2>‘7:6’ s
[x dx dx + ] ( )=¢ ()
1 2sin2%t%
—E“’Z)Ee—;(g——ln—z (9b)
Y] ’
2 sin? 32

where € is the binding energy of a complex and the
dimensionless strength of the van der Waals attraction is

v1, = 1.23[cot(0;,/2) — cot((0, + 6,)/2)]

= 1.23p5 1 (412 + p3)*/ [Mpy 213). (9¢)
The solution corresponding to the bound state is
FU2 =K, (xVel2), (9d)

where K, (y) is the MacDonald function, and €% is deter-
mined by matching Eq. (9d) with the solution of Eq. (5)

21

Win(r) o« r, r<l. (9e)

In the interaction region, r = 1, the problem can only be
handled numerically. Numerical solution of Eq. (5) is not
practical as many states in the interaction region are
evanescent (see Fig. 2), and the search for the bound state
would require the finding of N = (L + 1) (Linax +2)/2
boundary conditions at » — 0 with exponential accuracy.
Instead, we employ a procedure that does not suffer from
exponential dependence on r.

We notice that one can replace solving Eq. (5) for all r
with the solution on only r > R, where R >0 is an
arbitrary distance, if one knows the N x N boundary

condition matrix A defining the behavior of y/(r — R 4 0)
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[rdy/dr + A(R)y],_g = 0. (10)

Requiring the invariance of solutions of Eq. (5) with
respect to changes in R, we find

RdA/dR = R2[e1 — H(R)] - 2A + A%, (11a)

where matrix multiplication is defined in the basis (5) as
[ABY = 320 o (ALl 1Bl A= A" = AT, and

m=0 lymy im >
the initial condition follows from Eq. (9e)
[A(())];/r::l/ = _21511’5mm" (1 1b)

The asymptotic dependence of the highest eigenvalues

A, of matrix A(R) corresponds to the asymptotic wave
function in Egs. (9a) and (9d), so that for an energy e
corresponding to a bound state [55]

Ae(R> 1) = —(x/F)dF /dx|,_g. (12)

We use Eq. (12) to find energies of bound states numeri-
cally. First, we match tangentially the numerically calcu-
lated dependence of the highest eigenvalue Ay(R) using
Eq. (12) (as illustrated in Fig. 2), and find the distance R("
and an overestimated binding energy é(). Next, we choose
a distance R, R < R, < Lma to be used as a
reference point in the rest of iterative procedure. Then,
using Egs. (11a) with 1/R? determined by the variable
energy & < &), we evaluate A(R,), and its highest
eigenvalue A%(R,.), and find such energy € that
[xdF/(Fdx)|,—g,+ Aua(Rmax)]* is minimal. The outcome
of such matching is exemplified in Fig. 3 showing the

eigenvalues of matrix A(R) found for a trion [56].

The resulting binding energies, calculated for various
cases listed in Table I and various electron-hole mass ratios
[27] are shown Fig. 1, where, for comparison, we also show
our results of the trion binding energies calculated using the
diffision quantum Monte Carlo method. These two theo-
retical approaches give very close values, within the error
bars determined by the limited size L,,,, of the spherical-
harmonic basis. This agreement indicates that the new
method offers an efficient tool to study complexes with
more generic forms of electron-electron and electron-hole
interaction, taking into account crossover from logarithmic
to 1/r dependence at the longest distances. Note that the
results displayed in Fig. 1 for u, <y, can be used for
fn < pe by swapping (s, X, X*) < (u, X, XP).

After comparing the binding energies of various three-
particle complexes, we conclude that the “third” charge is
more weakly bound (has a smaller dissociation energy) in
an exciton localized on a charged donor or acceptor than in
a trion [57]. As a result, heating of a 2D crystal would
suppress the luminescence from localized complexes much
more than the luminescence of trions, because the evapo-
ration of one of the optically active carriers from X
would happen at a much lower temperature than the
temperature required for the decomposition of X*. Such

e

‘ €.= 0.14140.0006
‘:—:: 0.7 for X+

FIG. 3 (color online). Eigenvalues 4, of matching matrix /AX(R)
evaluated numerically for ¢ = e slightly above (blue, ¢_) and
slightly below (red, €, ) the bound state energy of a trion with
., = 0.7u;,. The energy-sensitive highest eigenvalue is compared
to the asymptotic of a logarithmic derivative in Eq. (9d) (green)
calculated at the converged binding energy.

behavior is highly counterintuitive, because, despite
weaker binding, the line of X?(4) in recombination spectra,
Wxp) = Wx — (ez/r*){éXDW + (1/2> In [1 + (He(h)/ﬂh(e))]}’
lies below (redshifted) the line of a trion, wy: =
wy — (e*/r,)éx-. For comparable masses of electrons
and holes, the exciton-trion splitting appears to be an order
of magnitude smaller than the splitting between the ground
state of the exciton and its first optically active excited state
X at A\ =wy —wx=1.14(e?/r,), whereas wypu) — wy=
0.5A, as prescribed by the two-particle binding energy of
the electron (hole) in the donor (acceptor) being much
larger than the one of the exciton, overcompensating the
difference between the three-particle binding energies.
Such temperature behavior of the lower end of the
recombination spectra in TMDCs has recently been
observed in several experiments on WSe, [58-60].
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