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Wolbachia are maternally inherited bacterial endosymbionts that naturally infect

a diverse array of arthropods. They are primarily known for their manipulation

of host reproductive biology, and recently, infections with Wolbachia have been

proposed as a new strategy for controlling insect vectors and subsequent

human-transmissible diseases. Yet, Wolbachia abundance has been shown to

vary greatly between individuals and the magnitude of the effects of infection

on host life-history traits and protection against infection is correlated to

within-host Wolbachia abundance. It is therefore essential to better understand

the factors that modulate Wolbachia abundance and effects on host fitness. Nutri-

tion is known to be one of the most important mediators of host–symbiont

interactions. Here, we used nutritional geometry to quantify the role of macro-

nutrients on insect–Wolbachia relationships in Drosophila melanogaster. Our

results show fundamental interactions between diet composition, host diet

selection, Wolbachia abundance and effects on host lifespan and fecundity.

The results and methods described here open a new avenue in the study of

insect–Wolbachia relationships and are of general interest to numerous research

disciplines, ranging from nutrition and life-history theory to public health.
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1. Introduction
The use of managed Wolbachia infections has been proposed as a new strategy for

controlling vector-transmitted diseases, motivated by abundant evidence that

insect vectors show modifications in several traits directly linked to their vectorial

competence when infected either naturally or unnaturally (i.e. transfected) with

Wolbachia [1–11]. However, Wolbachia abundance varies between individuals in

both natural and laboratory-reared populations [12–14]. Explaining sources of

such variation is important, because the magnitude of the effects of infection on

host life-history traits and populations is often correlated to within-host Wolbachia
abundance [7,14–17] and this could have substantial population-level conse-

quences for disease dynamics [13,14,18]. Better understanding the factors that

modulate Wolbachia abundance and the impacts of infection on host fitness is,

therefore, an important ecological, evolutionary and public health issue.

The availability of nutrients is a fundamental constraint on symbiont popula-

tions [19] as it can directly influence the abundance and development of

symbionts [20–24] and shape virulence of parasitic infections [25–30]. While the

specific nutritional components influencing infection dynamics have not always

been clearly identified, recent research on gut microbiota has shown that dietary

macronutrients, notably protein (P) and carbohydrate (C), have a major impact

on bacterial species composition and abundance [31–35]. The dietary balance of

P and C has also been found to have profound impacts on host lifespan, ageing,

reproduction and immunity (see review in reference [36]), and it is now well estab-

lished that both vertebrates and invertebrates strongly regulate their macronutrient

intake [37–43]. In this study, we hypothesized that the balance of P to C in the diet
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is a key mediator of the Drosophila–Wolbachia relationship and

that Wolbachia-infected hosts are able to modify their food

selection to ameliorate the effects of infection on their fitness.

To tease apart the effects of host nutrition on Wolbachia abun-

dance, we used protocols from Nutritional Geometry [36] to

systematically vary the sugar and yeast composition of the

host diet. Because yeast is the only source of dietary protein,

as well as containing carbohydrate and various micronutrients,

the nutrient space can be decomposed into two principal axes: C

versus P (plus correlated micronutrients). We quantified the

effects of dietary P : C ratio on Wolbachia abundance in the

midgut and ovaries of naturally infected Drosophila melanogaster.
The gut is usually one of the first tissues to come into contact

with both food and orally ingested infectious pathogens, and

it is therefore important to gain a better understanding of the fac-

tors influencing the abundance of endosymbionts in this body

region. Because Wolbachia infection and diet have both been

reported to influence host reproduction and longevity (Wolba-
chia: [44–46]; diet: [37]), we also explored the functional

significance of this interaction by measuring the reproductive

rate and lifespan of Wolbachia-infected and non-infected flies

confined to diets differing in their P : C ratio. Finally, it has pre-

viously been shown that infected hosts can adjust their

macronutrient intake to compensate for the extra nutritional

demands of being infected [47–50]. We therefore measured

dietary selection by Wolbachia-infected and non-infected flies

and considered the consequences for lifetime reproductive

output. This study provides the first investigation of the effects

of dietary macronutrient balance on the relationships between

Wolbachia and Drosophila. The results and methods will more

generally open up new avenues for the study of host–symbiont

relationships and emphasize the importance of host nutrition as

a key mediator of symbiotic interactions.
2. Material and methods
(a) Nutritional treatments
In a first set of experiments, newly eclosed female Canton S flies

(Bloomington centre, colony started in 2008) were provided with

one of 21 agar-based foods varying in sucrose (S) and hydrolysed

yeast (Y) content. The seven Y : S ratios used were 1 : 14, 1 : 7, 1 : 3.5,

1 : 1.6, 1 : 0.7, 1 : 0.2 or 1 : 0; yielding protein (P) to carbohydrate (C)

ratios of P : C ¼ 1 : 32, 1 : 16, 1 : 8, 1 : 4, 1 : 2, 1 : 1 and 1.9 : 1, respect-

ively. The three Y þ S concentrations were 90, 180 or 270 g l21.

Macronutrient compositions were calculated based on autolysed

yeast (MP Biomedicals, catalogue no. 103304 containing 45%

protein, 24% carbohydrate (as glucose equivalents), 21% indigesti-

ble fibre, 8% water and the remaining 2% fatty acids, minerals and

vitamins). Each diet contained 0.01% phosphoric acid and 0.1%

proprionic acid as antimould agents and were prepared in sterile,

distilled water. Flies were killed and dissected after four days of

feeding, a period for which mortality on high-protein diets was

less than 50% (see [37]). The experimental room was maintained

at 268C under a 12 L : 12 D photoregime.

(b) Antibiotic treatment
To obtain Wolbachia-free flies, insects were treated with tetra-

cycline (0.25 mg ml21 of food) for two generations. After the

treatment period, flies were transferred to culture food without

tetracycline for at least five generations (‘recovering lines’).

The absence of Wolbachia was checked using PCRs (target

genes: wsp and U16S, reference gene: RPII215 (RNA polymerase

II 215 kD subunit); see the electronic supplementary material,
table S1) in midguts and ovaries for five pools of 20 tissues for

each treatment.

(c) Measuring host nutritional state
Six fly bodies per diet (i.e. P : C 1 : 32, 1 : 16, 1 : 8, 1 : 4, 1 : 2, 1 : 1,

1.9 : 1, Y þ S concentrations ¼ 90, 180 or 270 g l21) were dissected

to remove the eggs. Bodies were freeze-dried and individually

weighed (i.e. dry weight, +0.01 mg), and the nutritional body

reserves were quantified for each individual. The insect carcasses

were lipid-extracted in three 24 h changes of chloroform. At the

end of the third chloroform wash, insects were freeze-dried

and reweighed. Lipid content was calculated from their mass

change. The lipid-free carcasses were ground and individually

analysed for protein content using the Bradford method [51].

(d) Measuring midgut morphology
Ten midguts per diet (i.e. P : C 1 : 32, 1 : 16, 1 : 8, 1 : 4, 1 : 2, 1 : 1, 1.9 : 1,

Y þ S concentrations¼ 90, 180 or 270 g l21) were dissected, fixed

in Bouin’s fluid for 24 h and stored in 70% ethanol at 48C. Fixed

midguts were photographed under a binocular microscope and pic-

tures analysed using the software IMAGEJ (Rasband, W.S., IMAGEJ,

US National Institutes of Health, Bethesda, MD, http://imagej.

nih.gov/ij/, 1997–2012). Length of midguts was measured.

(e) Identifying Wolbachia strains
The Wolbachia strain in midguts and ovaries was identified using

the multiple locus VNTR analysis (MLVA) [52]. Length of VNTR

amplicons (i.e. VNTR-105 and VNTR-141) was checked on agarose

gel for both ovary and gut samples with amplicons represent-

ing wMel strain. Sequences were confirmed by sequencing (see

electronic supplementary material, table S2 for sequences).

( f ) Genomic DNA extraction
Twenty fly midguts per diet (i.e. P : C 1 : 32, 1 : 16, 1 : 8, 1 : 4, 1 : 2,

1 : 1, 1.9 : 1, Y þ S concentrations ¼ 90, 180 or 270 g l21) were dis-

sected, pooled and stored in TE buffer at 2208C. Twenty ovaries

were also dissected from another group of flies, pooled and

stored in TE buffer at 2208C. Total genomic DNA was extracted

for dissected midguts and ovaries using the DNeasy blood and

tissue kit (Qiagen, Valencia, CA) following a protocol modified

from the manufacturer’s instructions for Gram-positive bacteria

(see also [53]). Briefly, midguts and ovaries were transferred to

2 ml Eppendorf containing 180 ml of lysis buffer (20 mM Tris–

HCl; 2 mM sodium-EDTA, 1.2% Triton X-100) supplemented

with lysozyme (20 mg ml21). Midguts were incubated at 378C
for 1.5 h with a 5 min bead-beating at 45 min using 0.1 mm glass

beads (Scientific Industries). All other steps were performed

according to the manufacturer’s protocol.

(g) Pyrosequencing
The purified metagenomic DNA samples were sent to a sequence

service provider (Research and Testing Laboratory, Lubbock, TX)

and tag-encoded amplicon pyrosequencing performed using the

Roche 454 FLX instrument with titanium reagents, with protocols

based on versions of the primer pair 28F 50TTTGATCNTGGCT

CAG and 519r 50GTNTTACNGCGGCKGCTG incorporating

domains for 454 sequencing and sample-specific identification

tags. Data were filtered to exclude all failed, short or low-quality

reads, assembled into clusters at 95%, 97% and 99% threshold

and classified by query against a database of 16S bacterial

sequences [54]. The final dataset from the dissected midguts of

D. melanogaster contained 165090 reads, with more than 2000

reads per sample (average of 7500 per sample). Operational taxo-

nomic units (OTUs) that were represented by just one or two
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reads in experimental samples were interpreted as contaminants

and excluded from diversity analyses.

(h) Measuring DNA levels of bacteria and Wolbachia
Triplicate DNA aliquots for each sample served as templates for

quantitative PCR using SYBR Green PCR master mix (Applied

Biosystems). Amplification reactions were performed in 10 ml

total volumes with 4.5 ml of gDNA (diluted 1 : 100) and 150 nM

of each primer, in 384-well optical plates under the following

sequential conditions: incubation at 508C for 2 min, 958C for

10 min, followed by 45 cycles of 958C for 15 s and 608C for

1 min. Quantitative RT-PCR efficiency was determined for each

gene and each treatment using the second derivative method.

Relative standard curves for the gene transcripts were generated

with serial (5�) dilutions of DNA (i.e. 1/10, 1/30, 1/90, 1/270

and 1/810). Stock DNA used for the relative standard curves

was constituted as a pool of DNA from the different samples.

(i) Measuring reproductive output
Newly eclosed Wolbachia-infected and Wolbachia-free male and

female flies were maintained for four days on seven solid diets

varying in the protein-to-carbohydrate ratio (i.e. P : C ¼ 1 : 32,

1 : 16, 1 : 8, 1 : 4, 1 : 2, 1 : 1, 1.9 : 1, Y þ S ¼ 180 g l21). At day four,

females were transferred onto normal culture food (10 females

per cage, three biological replicates per diet). Twenty-four hours

later, females were removed from the cages. Cages with dead

females were not considered in the analysis. Cages were then

checked every day for 20 days and newly eclosed adults were

counted and sexed.

( j) Measuring lifespan
Newly eclosed Wolbachia-infected and Wolbachia-free female flies

were collectively maintained (n ¼ 100, three replicate cages per

treatment) on two solid dietary treatments varying in the

protein-to-carbohydrate ratio (i.e. P : C ¼ 1 : 1 (Y þ S ¼ 180 g l21),

or P : C ¼ 1 : 16 (Y þ S ¼ 180 g l21)), or given a choice between

two complementary foods (pure yeast versus sucrose solution,

Y or S ¼ 180 g l21). Dietary treatments were chosen to extend

across the nutritional landscape. Cages were checked every

two days, dead flies were counted and removed, and food was

changed. We stopped the experiment when all flies were dead.

(k) Measuring dietary macronutrient selection
The capacity of flies to maintain a target P–C intake trajectory was

measured by providing them simultaneously with two liquid

foods, one containing autolysed yeast (MP Biomedicals, catalogue

no. 103304) at 180 g l21 and the other containing sucrose at

180 g l21. The two solutions were prepared in sterile distilled

water. Thirty Wolbachia-infected and Wolbachia-free newly eclosed

female flies were individually provided with two 5 ml microcapil-

lary tubes (Drummond Microcaps) filled with the two liquid diets.

Intake was measured against a scale bar by height difference in

the column of liquid within the microcapillary every two days

(see [37,55]). Evaporation was measured for each solution using

four blank test tubes and used to correct volume consumed.

(l) Statistical analyses and constructing response
landscapes

A general additive model was implemented using the mgcv pack-

age (1.7-22) in R (v. 2.10.1) to test variable responses to dietary

macronutrient composition. Main effects and two-way interactions

for protein and carbohydrate were tested, and non-significant

interactions between the main effects were removed from the

final model [56]. When a significant effect of carbohydrate and/
or protein intake was detected, surface plots using the fields pack-

age were created (http://www.image.ucar.edu/GSP/software/

fields/index.shtml). Mantel–Haenszel log-rank tests were used

to compare longevity of Wolbachia-infected and Wolbachia-free

flies fed different diets. Survival curves were constructed using

Kaplan–Meier survival estimates with the survfit function in

R. All other statistical analyses (ANOVA and two-way ANOVA)

were performed using SPSS (IBM Corp. released 2012. IBM SPSS

Statistics for WINDOWS, v. 21.0. Armonk, NY: IBM Corp.). Differ-

ence in reproductive output between Wolbachia-infected and

Wolbachia-free flies fed seven P : C ratios was assessed in a two-

way ANOVA (infection � diet) followed by planned con-

trasts between the reproductive output of Wolbachia-infected and

Wolbachia-free flies fed the same diet. Macronutrient intakes were

compared between Wolbachia-infected and Wolbachia-free flies

using one-way ANOVA. All results were considered significant at

the 5% level. Outliers in body reserve and midgut length datasets

were identified and removed for statistical analyses.
3. Results and discussion
(a) Macronutrients and body composition in Drosophila
Mated female Canton–S D. melanogaster were confined to one

of the 21 diets (n ¼ 180 flies per treatment cage, three cages per

treatment). After four days of feeding, the flies were randomly

selected from the replicate cages and killed. Body mass and

body fat were measured, and midguts and ovaries dissected

for separate analysis. Most flies fed P : C ¼ 2 : 1 at 180 g l21

died within the first three days of the experiment and so

were excluded from the analysis. To visualize the response to

dietary macronutrients, response landscapes for total body

dry mass and percentage of body fat were constructed based

on dietary P and C concentrations (see §2a).

Total body dry mass was influenced by diet composition,

with significant main effects of P and C concentration (elec-

tronic supplementary material, table S3). Total body dry

mass decreased in response to increasing P concentration

(figure 1a). The principal reason for this was a decline in

body fat mass. The percentage of body fat was significantly

influenced by P (electronic supplementary material, table S3):

the higher the dietary concentration of P, the leaner flies were

(figure 1b, see also [57]). In parallel, response landscapes

were constructed using estimated food intake previously

measured on 1000 flies that were individually fed from micro-

capillary tubes containing one of 28 diet solutions differing in

yeast and sugar ratio and concentration [37] (electronic sup-

plementary material, table S4). Total body dry mass and

percentage of body fat were significantly influenced only by

estimated P intake (electronic supplementary material, table

S5), both measures declining with increased P consumption

(electronic supplementary material, figures S1a,b).

(b) Dietary P : C ratio modulates Wolbachia abundance
relative to other gut microbes

We used next-generation sequencing (454 pyrosequencing) to

measure the effects of macronutrients on the bacterial diversity

in total midgut samples (including bacteria in tissue and

midgut lumen). This revealed low bacterial diversity. Although

the diversity of the gut microbiota is classically low in Drosophila
[53,58–61], this was almost certainly exacerbated by the

fact that, in this experiment, the food was sterile and chan-

ged every two days (see also [62]). In all flies, the majority of

http://www.image.ucar.edu/GSP/software/fields/index.shtml
http://www.image.ucar.edu/GSP/software/fields/index.shtml
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sequence reads were Rickettsiales, especially the endosymbiont

Wolbachia, with relative abundance ranging from 65% to near

100% (electronic supplementary material, table S6). When a

response surface for the abundance of Wolbachia relative to

other taxa was fitted over the dietary P–C composition array,

we found a significant interactive effect of P and C (electronic

supplementary material, table S7), with the relative abundance

of Wolbachia being positively associated with both macronutri-

ents but more particularly with C (figure 2). Similar results

were obtained when the relative abundance of Wolbachia was

fitted over the estimated P–C consumption array (electronic

supplementary material, table S8 and figure S2).

In order to establish whether the pattern in relative abun-

dance of Wolbachia in the midgut resulted from differences in

the density of bacteria (i.e. number per quantity of tissue) [34]

or in the total abundance of bacteria (i.e. total number in the
tissue), mediated via changes in gut morphology in response

to diet, a separate experiment was conducted with female

flies fed the 21 dietary treatments for four days (n ¼ 180

flies per treatment cage). DNA was extracted from 20

pooled midguts for each dietary treatment, and the copy

numbers of U16S (16S ribosomal DNA) and wsp (Wolbachia
surface protein) were measured, using levels of the host

gene RPII215 (electronic supplementary material, table S1)

as a proxy for the quantity of host midgut tissue. The analysis

showed that there was no significant effect of dietary P and/

or C on the level of wsp and U16S when normalized by the

quantity of host tissue (electronic supplementary material,

table S9 and figures S3 and S4). Similarly, we did not find

any effect of P and C intake (electronic supplementary

material, table S10).

Rather than directly affecting the density of bacteria in gut

lumen and tissue, diet may impact total bacterial loads by

modifying the morphology of the digestive tract. Previous

studies on other insect species have shown that gut size is

related to dietary nutrients [63]; larger digestive tracts might

help to deal with higher levels of protein intake, facilitate the

absorption of other limiting nutrients [64] and/or increase

the net nutrient uptake [65]. To test whether dietary P : C

ratio affected midgut morphology in D. melanogaster, we

measured the effects of macronutrients on midgut length of

flies fed the 21 diets (see §2a). Midgut length was significantly

influenced by the interaction between P and C concentration

(electronic supplementary material, table S11). When data

were analysed using estimated macronutrient intakes, we did

not find any significant interactive effect of P and C but a sig-

nificant main effect of estimated P intake (electronic

supplementary material, table S12). Midgut length was maxi-

mized for a P : C ratio between 1 : 1 and 1 : 2 (figure 3a, see

also electronic supplementary material, figure S5). Moreover,

the amount of bacterial DNA was significantly correlated

with midgut length, i.e. flies with larger digestive tracts

hosted more bacteria (R2 ¼ 0.348, n ¼ 21, p ¼ 0.005, figure

3b), including Wolbachia (R2 ¼ 0.251, n ¼ 21, p ¼ 0.021, figure

3c). These results are consistent with the hypothesis that the

impact of macronutrients, particularly P, on total bacterial

http://rspb.royalsocietypublishing.org/
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load occurs through changes in the morphology of the

gut, such that increased gut length drives both the increase

in Wolbachia load within midgut cells and in luminal bacterial

load. The notion that Wolbachia load increases owing to

increased gut length rather than tissue-specific symbiont

carrying capacity is further supported by the observation

that there was no change in wsp abundance (normalized by

the quantity of host tissue) in the ovaries (electronic sup-

plementary material, tables S13 and S14, electronic

supplementary material, figure S6).
(c) Dietary P : C ratio modulates the effects of
Wolbachia infection on host reproductive output
and lifespan

Diet-induced changes in gut morphology influence total

Wolbachia load. Because both Wolbachia infection and host
diet have been reported to influence reproductive output

(Wolbachia: [44,45]; diet: [37]), we next explored the functio-

nal significance of this interaction. Pools of 10 infected

and non-infected flies were fed one of seven diets varying in

P : C ratio (P : C ¼ 1 : 32, 1 : 16, 1 : 8, 1 : 4, 1 : 2, 1 : 1 and 1.9 : 1,

Y þ S ¼ 180 g l21, three replicate cages per diet) for four

days, and their reproductive rate was measured at the end of

this period by counting the number of newly eclosed adults

arising from eggs deposited over a 24 h period (see §2i).

There was a significant effect of the interaction between infec-

tion status (with or without Wolbachia) and diet composition

(P : C ratio) on the total number of newly eclosed adults

(two-way ANOVA, infection: F1,40¼ 3.715, p ¼ 0.065; diet:

F6,40¼ 27.940, p , 0.001; infection � diet: F6,40¼ 4.593, p ¼
0.003). Non-infected female flies had highest rate of reproduc-

tive output on a P : C ratio between 1 : 4 and 1 : 2, whereas flies

infected with Wolbachia maximized their reproductive rate on a

more protein-rich diet, P : C ¼ 1 : 1 (figure 4). Although the

http://rspb.royalsocietypublishing.org/
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magnitude of Wolbachia effects on host reproduction has gener-

ally been shown to be modest in D. melanogaster [66–70], our

results suggest that Wolbachia impose a significant nutritional

demand on the host that limits egg production when hosts

are fed intermediate P : C diets. Wolbachia-infected and non-

infected flies had low reproductive rate on high-carbohydrate

diets (i.e. P : C ¼ 1 : 32), presumably owing to shortage of

dietary protein. We did not detect any effect of diet com-

position or Wolbachia infection status on the sex ratio of

newly eclosed adults (two-way ANOVA, infection: F1,168 ¼

1.350, p ¼ 0.254; diet: F6,168 ¼ 0.719, p ¼ 0.638, electronic

supplementary material, table S15).

To further disentangle the interactive effect of nutrition

and Wolbachia on life-history traits, we investigated how the

balance of dietary macronutrients and infection status influ-

enced longevity. Wolbachia infection has been shown to

affect longevity in Drosophila, either increasing or decreasing

lifespan depending on context [46,71–73]. The ratio of macro-

nutrients in the diet is also an important driver of lifespan

variation [36,37] and is likely to modulate the effects of

Wolbachia. Flies (n ¼ 100) were either fed one of two foods

that differed in their macronutrient composition (P : C ¼ 1 :

1 (180 g l21) or P : C ¼ 1 : 16 (180 g l21)), or given a choice

between two complementary foods (pure yeast versus

sucrose solution, 180 g l21). Lifespan was measured for

three replicate cages per diet. We found a significant effect

of diet composition on survivorship (log-rank test, x2 ¼

1091.101, d.f. ¼ 5, p , 0.001), with flies fed P : C ¼ 1 : 16

living longer than flies fed P : C ¼ 1 : 1 (figure 5), and flies

offered the dietary choice having an intermediate lifespan

(figure 5). This is consistent with results previously obtained

by Lee et al. [37], showing that when flies were offered a

choice of complementary foods they regulated intake of

macronutrients to maximize lifetime egg production rather

than longevity. Survivorship curves were not significantly

different between infected and non-infected flies both for

those fed P : C ¼ 1 : 16 (pairwise comparisons, p ¼ 0.125,

median lifespan (mean+ s.e.): Wolbachia-infected ¼ 27.1+
0.6 days, non-infected ¼ 24.2+ 0.6 days, figure 5), and for

those given a food choice (pairwise comparisons, p ¼ 0.074,

median lifespan (mean+ s.e.): Wolbachia-infected ¼ 21.9+
0.6 days, non-infected ¼ 20.5+ 0.7 days, figure 5). However,

survivorship curves of infected flies fed P : C ¼ 1 : 1 were

significantly different from those of non-infected insects,

with non-infected flies living longer than infected flies
(pairwise comparisons, p , 0.001, median lifespan (mean+
s.e.): Wolbachia-infected ¼ 7.6+ 0.6 days, non-infected ¼

8.2+0.7 days, figure 5). These results might reflect some

nutritional competition for carbohydrate between the host

and the endobacterium on low-C diets. Wolbachia possesses

only a limited number of metabolic pathways [74], and lar-

gely depends on its host for metabolic support [2,74,75].

For instance, Wolbachia uses host sugars for glycolysis [76]

and to synthesize lipid II, a vital molecule for the bacterium

to divide [77,78]. Carbohydrate is limited in P : C ¼ 1 : 1,

and this may explain why the infection has a negative
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effect on host longevity. This result is particularly relevant for

other arthropod species that feed on diets that are naturally

low in sugars, such as blood-feeding insects.

(d) Wolbachia-infected flies show modified diet
selection to protect lifetime reproductive rate

Symbionts and parasites divert host energy and nutrients

towards their own growth and might cause the host to invest

resources in immune function. Infected hosts, however, have

the capacity to adjust their dietary intake to recoup the extra

nutritional demands of being infected [47–50]. We tested

whether Wolbachia infection also affects host diet selection by

examining the feeding behaviour of Wolbachia-infected and

non-infected Drosophila offered a choice of two microcapillaries,

one containing ayeast solution (180 g l21) and the other a sucrose

solution (180 g l21; protocol from references [37,55]). Flies were

fed individually for eight days, a period long enough to allow

flies to balance their macronutrient intake. Dietary intake

was recorded every two days. We analysed total food con-

sumption over the entire eight days, excluding from the

analysis insects that died before the end of the experiment.

Infected and non-infected flies mixed diets of different com-

positions. Wolbachia-infected flies ingested less protein than

non-infected individuals (ANOVA, F1,44¼ 6.46, p ¼ 0.015,

figure 6) but similar quantities of carbohydrate (ANOVA,

F1,44 ¼ 0.05, p ¼ 0.82, figure 6). Mean selected P : C ratio after

eight days was 1 : 20 for infected flies and 1 : 9 for non-infected
individuals (figure 6). Therefore, Wolbachia-infected flies inges-

ted a relatively lower P : C diet, thereby mitigating the life-

shortening effects of infection but at a cost of lowered rate of

reproduction. These results suggest that Wolbachia-infected flies

adjust their diet composition to ameliorate the life-shortening

consequences of infection for reproductive output.

Wolbachia infection is used as a biocontrol strategy to reduce

the transmission of vector-borne disease, and some of the effects

of the nutritional competition between the host and its sym-

bionts might contribute to the phenotype observed in infected

hosts, such as decreased fecundity and an increased protec-

tion against viral development [75]. Others have shown that

different strains of Wolbachia impose specific nutritional costs

for cholesterol and amino acids [75,79], and differences in

blood source influence the effects of Wolbachia infection in

mosquitoes [80]. Our results further emphasize the essential

role of macronutrients, and are likely to be pertinent to a diverse

range of research disciplines spanning from host nutrition and

life-history theory to public health.
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