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Abstract. We characterise finite and infinitesimal rigidity for bar-joint
frameworks in Rd with respect to polyhedral norms (i.e. norms with
closed unit ball P a convex d-dimensional polytope). Infinitesimal and
continuous rigidity are shown to be equivalent for finite frameworks in
Rd which are well-positioned with respect to P. An edge-labelling deter-
mined by the facets of the unit ball and placement of the framework is
used to characterise infinitesimal rigidity in Rd in terms of monochrome
spanning trees. An analogue of Laman’s theorem is obtained for all
polyhedral norms on R2. 52C25 and 52A21 and 52B12
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Introduction

A bar-joint framework in Rd is a pair (G, p) consisting of a simple undi-
rected graph G = (V (G), E(G)) (i.e. no loops or multiple edges) and a
placement p : V (G) → Rd of the vertices such that pv and pw are distinct
whenever vw is an edge of G. The graph G may be either finite or infinite.
Given a norm on Rd we are interested in determining when a given frame-
work can be continuously and nontrivially deformed without altering the
lengths of the bars. A well-developed rigidity theory exists in the Euclidean
setting for finite bar-joint frameworks (and their variants) which stems from
classical results of A. Cauchy [6], J. C. Maxwell [17], A. D. Alexandrov [1]
and G. Laman [14]. Of particular relevance is Laman’s landmark character-
isation for generic minimally infinitesimally rigid finite bar-joint frameworks
in the Euclidean plane. Asimow and Roth proved the equivalence of finite
and infinitesimal rigidity for regular bar-joint frameworks in two key papers
[2], [3]. A modern treatment can be found in works of Graver, Servatius and
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Servatius [9] and Whiteley [24], [26]. More recently, significant progress has
been made in topics such as global rigidity ([7], [8], [11]) and the rigidity
of periodic frameworks ([5], [16], [20], [21]) in addition to newly emerging
themes such as symmetric frameworks [22] and frameworks supported on
surfaces [19]. In this article we consider rigidity properties of both finite
and infinite bar-joint frameworks (G, p) in Rd with respect to polyhedral
norms. A norm on Rd is polyhedral (or a block norm) if the closed unit
ball {x ∈ Rd : ‖x‖ ≤ 1} is the convex hull of a finite set of points. Such
norms form an important class as they are computationally easy to use and
are dense in the set of all norms on Rd. While classical rigidity theory is
strongly linked to statics, it has also provided valuable new connections be-
tween different areas of pure mathematics and this latter property is one of
the emerging features of non-Euclidean rigidity theory. In particular, the
rigidity theory obtained with polyhedral norms is distinctly different to the
Euclidean setting in admitting new edge-labelling and spanning tree meth-
ods. There are potential applications of this theory to physical networks
with inherent directional constraints, or to abstract networks with a suit-
able notion of distance imposed. Non-Euclidean norms, and in particular
polyhedral norms, have been applied in this way to optimisation problems
in location modelling (see the industry which has resulted from [23]) and,
more recently, machine learning with submodular functions ([4]). A study
of rigidity with respect to the classical non-Euclidean `p norms was initi-
ated in [12] for finite bar-joint frameworks and further developed for infinite
bar-joint frameworks in [13]. Among these norms the `1 and `∞ norms are
simple examples of polyhedral norms and so the results obtained here extend
some of the results of [12].

In Section 1 we provide the relevant background material on polyhedral
norms and finite and infinitesimal rigidity. In Section 2 we establish the role
of support functionals in determining the space of infinitesimal flexes of a
bar-joint framework (Theorem 2.5). We then distinguish between general
bar-joint frameworks and those which are well-positioned with respect to
the unit ball. The well-positioned placements of a finite graph are open and
dense in the set of all placements and we show that finite and infinitesimal
rigidity are equivalent for these bar-joint frameworks (Theorem 2.7). We
then introduce the rigidity matrix for a general finite bar-joint framework,
the non-zero entries of which are derived from extreme points of the polar
set of the unit ball. In Section 3 we apply an edge-labelling to G which
is induced by the placement of each bar in Rd relative to the facets of the
unit ball. With this edge-labelling we identify necessary conditions for infin-
itesimal rigidity and obtain a sufficient condition for a subframework to be
relatively infinitesimally rigid (Proposition 3.3). We then characterise the
infinitesimally rigid bar-joint frameworks with d induced framework colours
as those which contain monochrome spanning trees of each framework colour
(Theorem 3.4). This result holds for both finite and infinite bar-joint frame-
works and does not require the framework to be well-positioned. For minimal
infinitesimal rigidity we must assume that the bar-joint framework is well-
positioned and an example is provided to demonstrate this. In Section 4 we
apply the spanning tree characterisation to show that certain graph moves
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preserve minimal infinitesimal rigidity for any polyhedral norm on R2. We
then show that in two dimensions a finite graph has a well-positioned min-
imally infinitesimally rigid placement if and only if it satisfies the counting
conditions |E(G)| = 2|V (G)|−2 and |E(H)| ≤ 2|V (H)|−2 for all subgraphs
H (Theorem 4.8). This is an analogue of Laman’s theorem [14] which char-
acterises the finite graphs with minimally infinitesimally rigid generic place-
ments in the Euclidean plane as those which satisfy the counting conditions
|E(G)| = 2|V (G)| − 3 and |E(H)| ≤ 2|V (H)| − 3 for subgraphs H with at
least two vertices. Many of the results obtained hold equally well for both
finite and infinite bar-joint frameworks.

1. Preliminaries

Let P be a convex symmetric d-dimensional polytope in Rd where d ≥ 2.
Following [10] we say that a proper face of P is a subset of the form P ∩H
whereH is a supporting hyperplane for P. A facet of P is a proper face which
is maximal with respect to inclusion. The set of extreme points (vertices) of
P is denote ext(P). The polar set of P is denoted P4 and is also a convex
symmetric d-dimensional polytope in Rd,

P4 = {y ∈ Rd : x · y ≤ 1, ∀ x ∈ P}.(1)

Moreover, there exists a bijective map which assigns to each facet F of P a
unique extreme point F̂ of P4 such that

F = {x ∈ P : x · F̂ = 1}.(2)

The polar set of P4 is P.
The Minkowski functional (or gauge) for P defines a norm on Rd,

‖x‖P = inf{λ ≥ 0 : x ∈ λP}.
This is what is known as a polyhedral norm or a block norm. The dual norm
of ‖ · ‖P is also a polyhedral norm and is determined by the polar set P4,

‖y‖∗P = max
x∈P

x · y = inf{λ ≥ 0 : y ∈ λP4} = ‖y‖P4 .

In general, a linear functional on a convex polytope will achieve its maximum
value at some extreme point of the polytope and so the polyhedral norm ‖·‖P
is characterised by,

‖x‖P = ‖x‖∗∗P = ‖x‖∗P4 = max
y∈P4

x · y = max
y∈ext(P4)

x · y.(3)

A point x ∈ Rd belongs to the conical hull cone(F ) of a facet F if x =∑n
j=1 λjxj for some non-negative scalars λj and some finite collection x1, x2 . . . , xn ∈

F . By formulas (1), (2) and (3) the following equivalence holds,

x ∈ cone(F ) ⇔ ‖x‖P = x · F̂ .(4)

Each isometry of the normed space (Rd, ‖ · ‖P) is affine (by the Mazur-
Ulam theorem) and hence is a composition of a linear isometry and a trans-
lation. A linear isometry must leave invariant the finite set of extreme points
of P and is completely determined by its action on any d linearly indepen-
dent extreme points. Thus there exist only finitely many linear isometries
on (Rd, ‖ · ‖P).
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A continuous rigid motion of a normed space (Rd, ‖ · ‖) is a family of
continuous paths,

αx : (−δ, δ)→ Rd, x ∈ Rd,
with the property that αx(0) = x and for every pair x, y ∈ Rd the distance
‖αx(t)−αy(t)‖ remains constant for all values of t. In the case of a polyhedral
norm ‖ · ‖P , if δ is sufficiently small then the isometries Γt : x 7→ αx(t)
are necessarily translational since by continuity the linear part must equal
the identity transformation. Thus we may assume that a continuous rigid
motion of (Rd, ‖ · ‖P) is a family of continuous paths of the form

αx(t) = x+ c(t), x ∈ Rd,
for some continuous function c : (−δ, δ)→ Rd (cf. [13, Lemma 6.2]).

An infinitesimal rigid motion of a normed space (Rd, ‖ · ‖) is a vector field
on Rd which arises from the velocity vectors of a continuous rigid motion.
For a polyhedral norm ‖ · ‖P , since the continuous rigid motions are of
translational type, the infinitesimal rigid motions of (Rd, ‖ ·‖P) are precisely
the constant maps

γ : Rd → Rd, x 7→ a,

for some a ∈ Rd (cf. [12, Lemma 2.3]).
Let (G, p) be a (finite or infinite) bar-joint framework in a normed vec-

tor space (Rd, ‖ · ‖). A continuous (or finite) flex of (G, p) is a family of
continuous paths

αv : (−δ, δ)→ Rd, v ∈ V (G),

such that αv(0) = pv for each vertex v ∈ V (G) and ‖αv(t) − αw(t)‖ =
‖pv − pw‖ for all |t| < δ and each edge vw ∈ E(G). A continuous flex of
(G, p) is regarded as trivial if it arises as the restriction of a continuous rigid
motion of (Rd, ‖ · ‖) to p(V (G)). If every continuous flex of (G, p) is trivial
then we say that (G, p) is continuously rigid.

An infinitesimal flex of a (finite or infinite) bar-joint framework (G, p) in
a normed space (Rd, ‖ · ‖) is a map u : V (G)→ Rd, v 7→ uv which satisfies,

‖(pv + tuv)− (pw + tuw)‖ − ‖pv − pw‖ = o(t), as t→ 0,(5)

for each edge vw ∈ E(G). We will denote the collection of infinitesimal flexes
of (G, p) by F(G, p). An infinitesimal flex of (G, p) is regarded as trivial if
it arises as the restriction of an infinitesimal rigid motion of (Rd, ‖ · ‖) to
p(V (G)). In other words, in the case of a polyhedral norm, an infinitesimal
flex of (G, p) is trivial if and only if it is constant. A bar-joint framework is
infinitesimally rigid if every infinitesimal flex of (G, p) is trivial. Regarding
F(G, p) as a real vector space with component-wise addition and scalar
multiplication, the trivial infinitesimal flexes of (G, p) form a d-dimensional
subspace T (G, p) of F(G, p).

The interior of a subset A ⊂ Rd will be denoted by A◦.

2. Support functionals and rigidity

In this section we begin by highlighting the connection between the infin-
itesimal flex condition (5) for a general norm on Rd and support functionals
on the normed space (Rd, ‖ · ‖). We then characterise the space of infinitesi-
mal flexes for a general (finite or infinite) bar-joint framework in (Rd, ‖ · ‖P)
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Figure 1. An infinitesimally flexible and an infinitesimally
rigid placement of K2 in (R2, ‖ · ‖1).

in terms of support functionals and prove the equivalence of finite and infin-
itesimal rigidity for finite bar-joint frameworks which are well-positioned in
(Rd, ‖ · ‖P). Following this we describe the rigidity matrix for general finite
bar-joint frameworks in (Rd, ‖ · ‖P) and compute an example.

2.1. Support functionals. Let ‖·‖ be an arbitrary norm on Rd and denote
by B the closed unit ball in (Rd, ‖ · ‖). A linear functional f : Rd → R is a
support functional for a point x0 ∈ Rd if f(x0) = ‖x0‖2 and ‖f‖∗ = ‖x0‖.
Equivalently, f is a support functional for x0 if the hyperplane

H = {x ∈ Rd : f(x) = ‖x0‖}
is a supporting hyperplane for B which contains x0

‖x0‖ .

Lemma 2.1. Let ‖ · ‖ be a norm on Rd and let x0 ∈ Rd. If f : Rd → R is
a support functional for x0 then,

f(y) ≤ ‖x0‖
‖x0 + ty‖ − ‖x0‖

t
, ∀ t > 0,

and

f(y) ≥ ‖x0‖
‖x0 + ty‖ − ‖x0‖

t
, ∀ t < 0,

for all y ∈ Rd.

Proof. Since f is linear and f(x0) = ‖x0‖2 we have for all y ∈ Rd,

f(y) =
1

t
(f(x0 + ty)− ‖x0‖2).

If t > 0 then since f(x) ≤ ‖x0‖‖x‖ for all x ∈ Rd we have

f(y) ≤ ‖x0‖
‖x0 + ty‖ − ‖x0‖

t
.

If t < 0 then applying the above inequality,

f(y) = −f(−y) ≥ −‖x0‖
‖x0 − t(−y)‖ − ‖x0‖

−t
= ‖x0‖

‖x0 + ty‖ − ‖x0‖
t

.

� �

Let (G, p) be a (finite or infinite) bar-joint framework in (Rd, ‖ · ‖) and fix
an orientation for each edge vw ∈ E(G). We denote by supp(vw) the set of
all support functionals for pv − pw. (The choice of orientation on the edges
of G is for convenience only and has no bearing on the results that follow.
Alternatively, we could avoid choosing an orientation by defining supp(vw)
to be the set of all linear functionals which are support functionals for either
pv − pw or pw − pv.)
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Proposition 2.2. If (G, p) is a (finite or infinite) bar-joint framework in
(Rd, ‖ · ‖) and u : V (G)→ Rd is an infinitesimal flex of (G, p) then,

uv − uw ∈
⋂

f∈supp(vw)

ker f,

for each edge vw ∈ E(G).

Proof. Let vw ∈ E(G) and suppose f is a support functional for pv − pw.
Applying Lemma 2.1 with x0 = pv − pw and y = uv − uw we have,

lim
t→0−

‖x0 + ty‖ − ‖x0‖
t

≤ f(y)

‖x0‖
≤ lim

t→0+

‖x0 + ty‖ − ‖x0‖
t

.

Since u is an infinitesimal flex of (G, p), limt→0
1
t (‖x0 + ty‖− ‖x0‖) = 0 and

so f(y) = 0. � �

Let ‖ · ‖P be a polyhedral norm on Rd. For each facet F of P denote by
ϕF the linear functional

ϕF : Rd → R, x 7→ x · F̂ .

Lemma 2.3. Let ‖ · ‖P be a polyhedral norm on Rd, let F be a facet of P
and let x0 ∈ Rd. Then x0 ∈ cone(F ) if and only if the linear functional,

ϕF,x0 : Rd → R, x 7→ ‖x0‖P ϕF (x),

is a support functional for x0.

Proof. If x0 ∈ cone(F ) then by formula (4), ϕF,x0 (x0) = ‖x0‖2P . By (1) we
have ϕF,x0(x) ≤ ‖x0‖P for each x ∈ P and it follows that ϕF,x0 is a support
functional for x0. Conversely, if x0 /∈ cone(F ) then by (4), ϕF,x0(x0) <
‖x0‖2P and so ϕF,x0 is not a support functional for x0. � �

For each oriented edge vw ∈ E(G) we denote by suppΦ(vw) the set of all
linear functionals ϕF which are support functionals for pv−pw

‖pv−pw‖P .

Proposition 2.4. Let (G, p) be a finite bar-joint framework in (Rd, ‖ · ‖P).
If a mapping u : V (G)→ Rd satisfies,

uv − uw ∈
⋂

ϕF∈suppΦ(vw)

kerϕF ,

for each edge vw ∈ E(G) then there exists δ > 0 such that the family,

αv : (−δ, δ)→ Rd, αv(t) = pv + tuv,

is a finite flex of (G, p).

Proof. Let vw ∈ E(G) and write x0 = pv − pw and u0 = uv − uw. If ϕF
is a support functional for x0

‖x0‖P then, by the hypothesis, ϕF (u0) = 0. By

Lemma 2.3, x0 is contained in the conical hull of the facet F . Applying
formulas (3) and (4),

‖x0‖P = max
y∈ext(P4)

x0 · y = x0 · F̂
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By continuity there exists δvw > 0 such that for all |t| < δvw,

‖x0 + tu0‖P = max
y∈ext(P4)

(x0 + tu0) · y

= (x0 + tu0) · F̂
= ‖x0‖P + t ϕF (u0)

= ‖x0‖P .

Since G is a finite graph the result holds with δ = minvw∈E(G) δvw > 0. �
�

The following is a characterisation of the space of infinitesimal flexes of a
general bar-joint framework in (Rd, ‖ · ‖P).

Theorem 2.5. Let (G, p) be a (finite or infinite) bar-joint framework in
(Rd, ‖ · ‖P). Then a mapping u : V (G) → Rd is an infinitesimal flex of
(G, p) if and only if,

uv − uw ∈
⋂

ϕF∈suppΦ(vw)

kerϕF ,

for each edge vw ∈ E(G).

Proof. If u is an infinitesimal flex of (G, p) then the result follows from
Proposition 2.2. For the converse, let vw ∈ E(G) and write x0 = pv − pw
and u0 = uv − uw. Applying the argument in the proof of Proposition 2.4,
there exists δvw > 0 with ‖x0 + tu0‖P = ‖x0‖P for all |t| < δvw. Hence u is
an infinitesimal flex of (G, p). � �

2.2. Equivalence of finite and infinitesimal rigidity. A placement of a
simple graph G in Rd is a map p : V (G)→ Rd for which pv 6= pw whenever
vw ∈ E(G). A placement p : V (G) → Rd is well-positioned with respect
to a polyhedral norm on Rd if pv − pw is contained in the conical hull of
exactly one facet of the unit ball P for each edge vw ∈ E(G). We denote
this unique facet by Fvw. In the following discussion G is a finite graph and
each placement is identified with a point p = (pv)v∈V (G) in the product space∏
v∈V (G) Rd which we regard as having the usual topology. The set of all

well-positioned placements of G in (Rd, ‖·‖P) is an open and dense subset of
this product space. The configuration space for a bar-joint framework (G, p)
is defined as,

V (G, p) = {x ∈
∏

v∈V (G)

Rd : ‖xv − xw‖P = ‖pv − pw‖P , ∀ vw ∈ E(G)}.

Proposition 2.6. Let (G, p) be a finite and well-positioned bar-joint frame-
work in (Rd, ‖ · ‖P) with pv − pw ∈ cone(Fvw) for each vw ∈ E(G). Then
there exists a neighbourhood U of p in

∏
v∈V (G) Rd such that,

(i) if x ∈ U then xv − xw ∈ cone(Fvw) for each edge vw ∈ E(G),
(ii) (G, x) is a well-positioned bar-joint framework for each x ∈ U , and,

(iii) V (G, p)∩U = {x ∈ U : ϕFvw(xv−xw) = ϕFvw(pv−pw), ∀ vw ∈ E(G)}.
In particular, V (G, p) ∩ U = (p+ F(G, p)) ∩ U .
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Proof. Let vw ∈ E(G) be an oriented edge and consider the continuous map,

Tvw :
∏

v′∈V (G)

Rd → R, (xv′)v′∈V (G) 7→ xv − xw

Since (G, p) is well-positioned, pv − pw is an interior point of the conical
hull of a unique facet Fvw of P. The preimage T−1

vw (cone(Fvw)◦) is an open
neighbourhood of p. Since G is a finite graph the intersection,

U =
⋂

vw∈E(G)

T−1
vw (cone(Fvw)◦)

is an open neighbourhood of p which satisfies (i), (ii) and (iii).
Since (G, p) is well-positioned, by Lemma 2.3, there is exactly one support

functional in suppΦ(vw) for each edge vw and this functional is given by
ϕFvw . If x ∈ U then define u = (uv)v∈V (G) by setting uv = xv − pv for each
v ∈ V (G). By (iii), x ∈ V (G, p) ∩ U if and only if x ∈ U and

ϕFvw(uv − uw) = ϕFvw(xv − xw)− ϕFvw(pv − pw) = 0

for each edge vw ∈ E(G). By Theorem 2.5, the latter identity is equivalent
to the condition that u is an infinitesimal flex of (G, p). Thus x ∈ V (G, p)∩U
if and only if x ∈ U and x− p ∈ F(G, p). � �

We now prove the equivalence of continuous rigidity and infinitesimal
rigidity for finite well-positioned bar-joint frameworks.

Theorem 2.7. Let (G, p) be a finite well-positioned bar-joint framework in
a normed space (Rd, ‖ · ‖P) where ‖ · ‖P is a polyhedral norm. Then the
following statements are equivalent.

(i) (G, p) is continuously rigid.
(ii) (G, p) is infinitesimally rigid.

Proof. (i) ⇒ (ii). If u = (uv)v∈V (G) ∈ F(G, p) is an infinitesimal flex of
(G, p) then by Theorem 2.5 and Proposition 2.4, the family

αv : (−ε, ε)→ Rd, αv(t) = pv + tuv, v ∈ V (G),

is a finite flex of (G, p) for some ε > 0. Since (G, p) is continuously rigid this
finite flex must be trivial. Thus there exists δ > 0 and a continuous path
c : (−δ, δ)→ Rd such that αv(t) = pv + c(t) for all |t| < δ and all v ∈ V (G).
Now uv = α′v(0) = c′(0) for all v ∈ V (G) and so u is a constant, and hence
trivial, infinitesimal flex of (G, p). We conclude that (G, p) is infinitesimally
rigid.

(ii)⇒ (i). If (G, p) has a finite flex given by the family,

αv : (−ε, ε)→ Rd, v ∈ V (G)

then consider the continuous path,

α : (ε, ε)→ V (G, p), t 7→ (αv(t))v∈V (G).

By Proposition 2.6, V (G, p)∩U = (p+F(G, p))∩U for some neighbourhood
U of p. Since α(0) = p, there exists δ > 0 such that α(t) ∈ V (G, p) ∩ U for
all |t| < δ. Choose t0 ∈ (−δ, δ) and define,

u : V (G)→ Rd, uv = αv(t0)− pv.
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Then u = α(t0)−p ∈ F(G, p) is an infinitesimal flex of (G, p). Since (G, p) is
infinitesimally rigid, u must be a trivial infinitesimal flex. Hence uv = c(t0)
for all v ∈ V (G) and some c(t0) ∈ Rd. Apply this same argument to show
that for each |t| < δ there exists c(t) such that αv(t) = pv + c(t) for all
v ∈ V (G). Note that c : (−δ, δ)→ Rd is continuous and so {αv : v ∈ V (G)}
is a trivial finite flex of (G, p). We conclude that (G, p) is continuously
rigid. � �

The non-equivalence of finite and infinitesimal rigidity for general finite
bar-joint frameworks in (Rd, ‖ · ‖P) is demonstrated in Example 2.9.

2.3. The rigidity matrix. We define the rigidity matrix RP(G, p) for a
finite bar-joint framework (G, p) in (Rd, ‖ ·‖P) as follows: Fix an ordering of
the vertices V (G) and edges E(G) and choose an orientation on the edges of
G. For each vertex v assign d columns in the rigidity matrix and label these
columns pv,1, . . . , pv,d. For each directed edge vw ∈ E(G) and each facet F
with pv − pw ∈ cone(F ) assign a row in the rigidity matrix and label this
row by (vw, F ). The entries for the row (vw, F ) are given by

[ pv,1 ··· pv,d pw,1 ··· pw,d

0 · · · 0 F̂1 · · · F̂d 0 · · · 0 −F̂1 · · · −F̂d 0 · · · 0
]

(6)

where pv − pw ∈ cone(F ) and F̂ = (F̂1, . . . , F̂d) ∈ Rd. If (G, p) is well-
positioned then the rigidity matrix has size |E(G)| × d|V (G)|.

Proposition 2.8. Let (G, p) be a finite bar-joint framework in (Rd, ‖ · ‖P).
Then

(i) F(G, p) ∼= kerRP(G, p).
(ii) (G, p) is infinitesimally rigid if and only if rankRP(G, p) = d|V (G)| −

d.

Proof. The system of equations in Theorem 2.5 is expressed by the matrix
equation RP(G, p)uT = 0 where we identify u : V (G) → Rd with a row

vector (uv1 , . . . , uvn) ∈ Rd|V (G)|. Thus F(G, p) ∼= kerRP(G, p). The space
of trivial infinitesimal flexes of (G, p) has dimension d and so in general we
have

rankRP(G, p) ≤ d|V (G)| − d
with equality if and only if (G, p) is infinitesimally rigid. � �

If F is a facet of P and y1, y2, . . . , yd ∈ ext(P) are extreme points of
P which are contained in F then for each column vector yk we compute
[1 · · · 1]A−1 yk = 1 where A = [y1 · · · yd] ∈Md×d(R). Hence,

F̂ = [1 · · · 1]A−1.(7)

Moreover, if y1, y2, . . . , yd are pairwise orthogonal thenA−1 =
[

y1

‖y1‖22
· · · yd
‖yd‖22

]T
and so

F̂ =

d∑
j=1

yj
‖yj‖22

(8)

where ‖ · ‖2 is the Euclidean norm on Rd.
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Example 2.9. Let P be a crosspolytope in Rd with 2d many extreme
points ext(P) = {±ek : k = 1, . . . , d} where e1, e2, . . . , ed is the usual basis
in Rd. Then each facet F contains d pairwise orthogonal extreme points

y1, y2, . . . , yd each of Euclidean norm 1. By (8), F̂ =
∑d

j=1 yj and the re-
sulting polyhedral norm is the 1-norm

‖x‖P = max
y∈ext(P4)

x · y =
d∑
i=1

|xi| = ‖x‖1

Consider for example the placements of the complete graph K2 in (R2, ‖·‖1)
illustrated in Figure 1. The polytope P is indicated on the left with facets
labelled F1 and F2. The extreme points of the polar set P4 which correspond
to these facets are F̂1 = e1 + e2 = (1, 1) and F̂2 = e1 − e2 = (1,−1). The
first placement is well-positioned with respect to P and the rigidity matrix
is, [ pv,1 pv,2 pw,1 pw,2

(vw,F1) 1 1 −1 −1
]

Evidently, this bar-joint framework has a non-trivial infinitesimal flex. The
second placement is not well-positioned and the rigidity matrix is,

[ pv,1 pv,2 pw,1 pw,2

(vw,F1) 1 1 −1 −1
(vw,F2) 1 −1 −1 1

]
As the rigidity matrix has rank 2 this bar-joint framework is infinitesimally
rigid in (R2, ‖ · ‖1), but continuously flexible.

3. Edge-labellings and monochrome subgraphs

In this section we describe an edge-labelling on G which depends on the
placement of the bar-joint framework (G, p) in (Rd, ‖ · ‖P) relative to the
facets of P. We provide methods for identifying infinitesimally flexible
frameworks and subframeworks which are relatively infinitesimally rigid.
We then characterise infinitesimal rigidity for bar-joint frameworks with d
framework colours in terms of the monochrome subgraphs induced by this
edge-labelling.

3.1. Edge-labellings. Let (G, p) be a general bar-joint framework in (Rd, ‖·
‖P) (i.e. it is not assumed here that (G, p) is finite or well-positioned). Since
P is symmetric in Rd, if F is a facet of P then −F is also a facet of P. Denote
by Φ(P) the collection of all pairs [F ] = {F,−F}. For each edge vw ∈ E(G)
define

Φ(vw) = {[F ] ∈ Φ(P) : pv − pw ∈ cone(F ) ∪ cone(−F )}

We refer to the elements of Φ(vw) as the framework colours of the edge vw.
For example, if pv − pw lies in the conical hull of exactly one facet of P
then the edge vw has just one framework colour. If pv − pw lies along a ray
through an extreme point of P then vw has at least d distinct framework
colours. By Lemma 2.3, [F ] is a framework colour for an edge vw if and
only if either ϕF or −ϕF is a support functional for pv−pw

‖pv−pw‖P .
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For each vertex v0 ∈ V (G) denote by Φ(v0) the collection of framework
colours of all edges which are incident with v0,

Φ(v0) =
⋃

v0w∈E(G)

Φ(v0w)

Proposition 3.1. If a (finite or infinite) bar-joint framework (G, p) is in-
finitesimally rigid in (Rd, ‖ · ‖P) then |Φ(v)| ≥ d for each vertex v ∈ V (G).

Proof. If v0 ∈ V (G) and |Φ(v0)| < d then there exists non-zero

x ∈
⋂

[F ]∈Φ(v0)

kerϕF

By Theorem 2.5, if u : V (G)→ Rd is defined by

uv =

{
x if v = v0

0 if v 6= v0

then u is a non-trivial infinitesimal flex of (G, p). � �

We now consider the subgraphs of G which are spanned by edges possess-
ing a particular framework colour. For each facet F of P define

EF (G, p) = {vw ∈ E(G) : [F ] ∈ Φ(vw)}
and let GF be the subgraph of G spanned by EF (G, p). We refer to GF as
a monochrome subgraph of G.

Denote by Φ(G, p) the collection of all framework colours of edges of G,

Φ(G, p) =
⋃

vw∈E(G)

Φ(vw)

We refer to the elements of Φ(G, p) as the framework colours of the bar-joint
framework (G, p).

Proposition 3.2. Let (G, p) be a (finite or infinite) bar-joint framework
which is infinitesimally rigid in (Rd, ‖·‖P). If C is a collection of framework
colours of (G, p) with |Φ(G, p)\C| < d then⋃

[F ]∈C

GF

contains a spanning tree of G.

Proof. Suppose that
⋃

[F ]∈C GF does not contain a spanning tree of G. Then

there exists a partition V (G) = V1 ∪ V2 for which there is no edge v1v2 ∈
E(G) with framework colour contained in C satisfying v1 ∈ V1 and v2 ∈ V2.
Since |Φ(G, p)\C| < d there exists non-zero

x ∈
⋂

[F ]∈Φ(G,p)\C

kerϕF

By Theorem 2.5, if u : V (G)→ Rd is defined by

uv =

{
x if v ∈ V1

0 if v ∈ V2

then u is a non-trivial infinitesimal flex of (G, p). We conclude that
⋃

[F ]∈C GF
contains a spanning tree of G. � �
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It is possible to construct examples which show that the converse to
Proposition 3.2 does not hold in general. In Theorem 3.4 we show that a con-
verse statement does hold under the additional assumption that |Φ(G, p)| =
d.

3.2. Edge-labelled paths and relative infinitesimal rigidity. Let (G, p)
be a finite bar-joint framework in (Rd, ‖ · ‖P) and, for each edge vw ∈ E(G),
let Xvw be the vector subspace of Rd,

Xvw =
⋂

ϕF∈suppΦ(vw)

kerϕF =
⋂

[F ]∈Φ(vw)

kerϕF

If γ = {v1v2, v2v3, . . . , vn−1vn} is a path in G from a vertex v1 to a vertex
vn then we define,

Xγ = Xv1v2 +Xv2v3 + · · ·+Xvn−1vn

For each pair of vertices v, w ∈ V (G) denote by ΓG(v, w) the set of all paths
γ in G from v to w.

A subframework of (G, p) is a bar-joint framework (H, p) obtained by
restricting p to the vertex set of a subgraph H. We say that (H, p) is
relatively infinitesimally rigid in (G, p) if the restriction of every infinitesimal
flex of (G, p) to (H, p) is trivial.

Proposition 3.3. Let (G, p) be a finite bar-joint framework in (Rd, ‖ · ‖P)
and let (H, p) be a subframework of (G, p). If for each pair of vertices v, w ∈
V (H), ⋂

γ∈ΓG(v,w)

Xγ = {0}

then (H, p) is relatively infinitesimally rigid in (G, p).

Proof. Let u ∈ F(G, p) be an infinitesimal flex of (G, p) and let v, w ∈ V (H).
Suppose γ ∈ ΓG(v, w) where γ = {v1v2, . . . , vn−1vn} is a path in G with
v = v1 and w = vn. Then by Theorem 2.5,

uv − uw = (uv1 − uv2) + (uv2 − uv3) + · · ·+ (uvn−1 − uvn) ∈ Xγ

Since this holds for all paths in ΓG(v, w) the hypothesis implies that uv =
uw. Applying this argument to every pair of vertices in H we see that the
restriction of u to V (H) is constant and hence a trivial infinitesimal flex of
(H, p). Thus (H, p) is relatively infinitesimally rigid in (G, p). � �

3.3. Monochrome spanning subgraphs. Applying the results of the pre-
vious sections we can now characterise the infinitesimally rigid bar-joint
frameworks in (Rd, ‖ · ‖P) which use exactly d framework colours.

Theorem 3.4. Let (G, p) be a (finite or infinite) bar-joint framework in
(Rd, ‖ · ‖P) and suppose that |Φ(G, p)| = d. Then the following statements
are equivalent.

(i) (G, p) is infinitesimally rigid.
(ii) GF contains a spanning tree of G for each [F ] ∈ Φ(G, p).



FINITE AND INFINITESIMAL RIGIDITY WITH POLYHEDRAL NORMS 13

Proof. The implication (i) ⇒ (ii) follows from Proposition 3.2. To prove
(ii) ⇒ (i) let u ∈ F(G, p). If v, w ∈ V (G) then for each framework colour
[F ] ∈ Φ(G, p) there exists a path in GF from v to w. Hence⋂

γ∈ΓG(v,w)

Xγ ⊆
⋂

[F ]∈Φ(G,p)

kerϕF = {0}

and, by Proposition 3.3, uv = uw. Applying this argument to all pairs
v, w ∈ V (G) we see that u is a trivial infinitesimal flex and so (G, p) is
infinitesimally rigid. � �

A bar-joint framework (G, p) is minimally infinitesimally rigid in (Rd, ‖ ·
‖P) if it is infinitesimally rigid and every subframework obtained by remov-
ing a single edge from G is infinitesimally flexible.

Corollary 3.5. Let (G, p) be a (finite or infinite) bar-joint framework in
(Rd, ‖ · ‖P) and suppose that |Φ(G, p)| = d. If GF is a spanning tree in G
for each [F ] ∈ Φ(G, p) then (G, p) is minimally infinitesimally rigid.

Proof. By Theorem 3.4, (G, p) is infinitesimally rigid. If any edge vw is
removed from G then GF is no longer a spanning tree for some [F ] ∈ Φ(G, p).
By Theorem 3.4, the subframework (G\{vw}, p) is not infinitesimally rigid
and so we conclude that (G, p) is minimally infinitesimally rigid. � �

There exist bar-joint frameworks which show that the converse statement
to Corollary 3.5 does not hold in full generality. In the following corollary,
the converse is established for bar-joint frameworks that are well-positioned.

Corollary 3.6. Let (G, p) be a (finite or infinite) well-positioned bar-joint
framework in (Rd, ‖ ·‖P) and suppose that |Φ(G, p)| = d. Then the following
statements are equivalent.

(i) (G, p) is minimally infinitesimally rigid.
(ii) GF is a spanning tree in G for each [F ] ∈ Φ(G, p).

Proof. (i) ⇒ (ii). Let [F ] ∈ Φ(G, p). If (G, p) is minimally infinitesimally
rigid then by Theorem 3.4, the monochrome subgraph GF contains a span-
ning tree of G. Suppose vw is an edge of G which is contained in GF .
Since (G, p) is minimally infinitesimally rigid, (G\{vw}, p) is infinitesimally
flexible. Since (G, p) is well-positioned, vw is contained in exactly one mono-
chrome subgraph of G and so GF is the only monochrome subgraph which is
altered by removing the edge vw from G. By Theorem 3.4, GF \{vw} does
not contain a spanning tree of G. We conclude that GF is a spanning tree
of G. The implication (ii)⇒ (i) is proved in Corollary 3.5. � �

4. An analogue of Laman’s theorem

In this section we address the problem of whether there exists a combina-
torial description of the class of graphs for which a minimally infinitesimally
rigid placement exists in (Rd, ‖ · ‖P). We restrict our attention to finite bar-
joint frameworks and prove that in two dimensions such a characterisation
exists (Theorem 4.8). This result is analogous to Laman’s theorem [14] for
bar-joint frameworks in the Euclidean plane and extends [12, Theorem 4.6]
which holds in the case where P is a quadrilateral.
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4.1. Regular placements. Let ω(G,Rd,P) denote the set of all well-positioned
placements of a finite simple graph G in (Rd, ‖ · ‖P). A bar-joint framework
(G, p) is regular in (Rd, ‖ · ‖P) if the function

ω(G,Rd,P)→ {1, 2, . . . , d|V (G)| − d}, x 7→ rankRP(G, x)

achieves its maximum value at p.

Lemma 4.1. Let G be a finite simple graph.

(i) The set of placements of G in (Rd, ‖·‖P) which are both well-positioned
and regular is an open set in

∏
v∈V (G) Rd.

(ii) The set of placements of G in (Rd, ‖·‖P) which are well-positioned and
not regular is an open set in

∏
v∈V (G) Rd.

Proof. Let p be a well-positioned placement of G and let U be an open
neighbourhood of p as in the statement of Proposition 2.6. The matrix-
valued function x 7→ RP(G, x) is constant on U and so either (G, x) is
regular for all x ∈ U or (G, x) is not regular for all x ∈ U . � �

A finite simple graph G is (minimally) rigid in (Rd, ‖ · ‖P) if there exists
a well-positioned placement of G which is (minimally) infinitesimally rigid.

Example 4.2. The complete graph K4 is minimally rigid in (R2, ‖ · ‖P) for
every polyhedral norm ‖ · ‖P . To see this let F1, F2, . . . , Fn be the facets of
P and let x0 ∈ ext(P) be any extreme point of P. Then x0 is contained in
exactly two facets, F1 and F2 say. Choose a point x1 in the relative interior
of F1 and a point x2 in the relative interior of F2. Then by formulas (3) and
(4),

max
k 6=1

(x1 · F̂k) < ‖x1‖P = x1 · F̂1 = 1(9)

max
k 6=2

(x2 · F̂k) < ‖x2‖P = x2 · F̂2 = 1(10)

Since (x0 · F̂1) = (x0 · F̂2) = ‖x0‖P = 1, if x1 and x2 are chosen to lie in a
sufficiently small neighbourhood of x0 then by continuity we may assume,

x1 · F̂2 = max
k 6=1

(x1 · F̂k) > 0(11)

x2 · F̂1 = max
k 6=2

(x2 · F̂k) > 0(12)

We may also assume without loss of generality that

x1 · F̂2 = x2 · F̂1(13)

Define a placement p : V (K4)→ R2 by setting

pv0 = (0, 0), pv1 = x1, pv2 = (1− ε)x2, pv3 = x1 + (1 + ε)x2

where 0 < ε < 1. The edges v0v1, v0v2 and v1v3 have framework colours,

Φ(v0v1) = [F1], Φ(v0v2) = [F2], Φ(v1v3) = [F2]

To determine the framework colours for the remaining edges we will apply
the above identities together with formulas (3) and (4). Consider the edge
v2v3. If k 6= 1 and ε is sufficiently small then applying (9),

(pv3 − pv2) · F̂k = (x1 · F̂k) + 2ε (x2 · F̂k) < 1
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Also by (9) and (12) we have,

(pv3 − pv2) · F̂1 = (x1 · F̂1) + 2ε (x2 · F̂1) = 1 + 2ε (x2 · F̂1) > 1

We conclude that F1 is the unique facet of P for which ‖pv3 − pv2‖P =

(pv3 − pv2) · F̂1 and so pv3 − pv2 ∈ cone(F1)◦. Thus Φ(v2v3) = [F1]. Consider
the edge v0v3. Applying (10) and (11), for k 6= 1, 2 we have,

(pv3 − pv0) · F̂k = (x1 · F̂k) + (1 + ε) (x2 · F̂k) < (x1 · F̂2) + 1 + ε

By applying (13),

(pv3 − pv0) · F̂1 = (x1 · F̂1) + (1 + ε)(x2 · F̂1) < (x1 · F̂2) + 1 + ε

and by (10),

(pv3 − pv0) · F̂2 = (x1 · F̂2) + (1 + ε)(x2 · F̂2) = (x1 · F̂2) + 1 + ε

Hence F2 is the unique facet of P for which ‖pv3 − pv0‖P = (pv3 − pv0) · F̂2.
Thus pv3−pv0 ∈ cone(F2)◦ and so Φ(v0v3) = [F2]. Finally, consider the edge
v1v2. Applying (13) we have,

(pv2 − pv1) · F̂2 = (1− ε)(x2 · F̂2)− (x1 · F̂2) = 1− ε− (x2 · F̂1)

and this value is positive provided ε is sufficiently small. By (9) we have,

(pv2 − pv1) · (−F̂1) = −(1− ε)(x2 · F̂1) + (x1 · F̂1) = 1 + ε(x2 · F̂1)− (x2 · F̂1)

We conclude that (pv2 − pv1) · (±F̂2) < ‖pv2 − pv1‖P . Hence pv2 − pv1 /∈
cone(F2). By making a small perturbation we can assume that pv2 − pv1

is contained in the conical hull of exactly one facet of P and so Φ(v1v2) =
[Fk] for some [Fk] 6= [F2]. Thus (G, p) is well-positioned. This framework
colouring is illustrated in Figure 2 with monochrome subgraphs GF1 and GF2

indicated in black and gray respectively and GFk
indicated by the dotted

line. Suppose u ∈ F(K4, p). To show that u is a trivial infinitesimal flex
we apply the method of Proposition 3.3. The vertices v0 and v1 are joined
by monochrome paths in both GF1 and GF2 and so uv0 = uv1 . Similarly,
uv2 = uv3 . The vertices v1 and v2 are joined by monochrome paths in
GF2 and GFk

and so uv1 = uv2 . Thus u is a constant and hence trivial
infinitesimal flex of (K4, p). We conclude that (K4, p), and all regular and
well-positioned placements of K4, are infinitesimally rigid.

v3v2

v1v0

Figure 2. A framework colouring for an infinitesimally rigid
placement of K4 in (R2, ‖ · ‖P)
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4.2. Counting conditions. The Maxwell counting conditions [17] state
that a finite minimally infinitesimally rigid bar-joint framework (G, p) in

Euclidean space Rd must satisfy |E(G)| = d|V (G)| −
(
d+1

2

)
with inequalities

|E(H)| ≤ d|V (H)| −
(
d+1

2

)
for all subgraphs H which containing at least d

vertices. The following analogous statement holds for polyhedral norms.

Proposition 4.3. Let (G, p) be a finite and well-positioned bar-joint frame-
work in (Rd, ‖ · ‖P). If (G, p) is minimally infinitesimally rigid then

(i) |E(G)| = d|V (G)| − d, and,
(ii) |E(H)| ≤ d|V (H)| − d for all subgraphs H of G.

Proof. If (G, p) is minimally infinitesimally rigid then by Proposition 2.8 the
rigidity matrix RP(G, p) is independent and,

|E(G)| = rankRP(G, p) = d|V (G)| − d.

The rigidity matrix for any subframework of (G, p) is also independent and
so

|E(H)| = rankRP(H, p) ≤ d|V (H)| − d,
for all subgraphs H. � �

A graph G is (d, d)-tight if it satisfies the counting conditions in the above
proposition. The class of (2, 2)-tight graphs has the property that every
member can be constructed from a single vertex by applying a sequence of
finitely many allowable graph moves (see [18]). The allowable graph moves
are:

(1) The Henneberg 1-move (also called vertex addition, or 0-extension).
(2) The Henneberg 2-move (also called edge splitting, or 1-extension).
(3) The edge-to-K3 move (also called vertex splitting).
(4) The vertex-to-K4 move.

A Henneberg 1-move G→ G′ adjoins a vertex v0 to G together with two
edges v0v1 and v0v2 where v1, v2 ∈ V (G).

Proposition 4.4. The Henneberg 1-move preserves infinitesimal rigidity
for well-positioned bar-joint frameworks in (R2, ‖ · ‖P).

Proof. Suppose (G, p) is well-positioned and infinitesimally rigid and let
G → G′ be a Henneberg 1-move on the vertices v1, v2 ∈ V (G). Choose
distinct [F1], [F2] ∈ Φ(P) and define a placement p′ of G′ by p′v = pv for all
v ∈ V (G) and

p′v0
∈ (pv1 + (cone(F1)◦ ∪− cone(F1)◦))∩ (pv2 + (cone(F2)◦ ∪− cone(F2)◦)).

Then (G′, p′) is well-positioned and the edges v0v1 and v0v2 have framework
colours [F1] and [F2] respectively. If u ∈ F(G′, p′) then the restriction of u
to V (G) is an infinitesimal flex of (G, p). This restriction must be trivial and
hence constant. In particular, uv1 = uv2 . By Theorem 2.5, ϕF1(uv0−uv1) = 0
and ϕF2(uv0 − uv1) = ϕF2(uv0 − uv2) = 0 and so uv0 = uv1 . We conclude
that (G′, p′) is infinitesimally rigid. � �

A Henneberg 2-move G → G′ removes an edge v1v2 from G and adjoins
a vertex v0 together with three edges v0v1, v0v2 and v0v3.
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Proposition 4.5. The Henneberg 2-move preserves infinitesimal rigidity
for well-positioned bar-joint frameworks in (R2, ‖ · ‖P).

Proof. Suppose (G, p) is well-positioned and infinitesimally rigid and let
G → G′ be a Henneberg 2-move on the vertices v1, v2, v3 ∈ V (G) and
the edge v1v2 ∈ E(G). Let [F1] be the unique framework colour for the
edge v1v2 and choose any [F2] ∈ Φ(P) with [F2] 6= [F1]. Define a place-
ment p′ of G′ by setting p′v = pv for all v ∈ V (G) and choosing p′v0

to
lie on the intersection of the line through pv1 and pv2 and the double cone
pv3 + (cone(F2)◦ ∪ − cone(F2)◦). (If pv1 , pv2 , pv3 are collinear then choose
p′v0

to lie in the intersection of this double cone and a small neighbourhood
of pv3). Then (G′, p′) is well-positioned. The edges v0v1 and v0v2 both
have framework colour [F1] and the edge v0v3 has framework colour [F2]. If
u ∈ F(G′, p′) then by Theorem 2.5,

ϕF1(uv1 − uv2) = ϕF1(uv1 − uv0) + ϕF1(uv0 − uv2) = 0.

Hence the restriction of u to V (G) is an infinitesimal flex of (G, p) and
must be trivial. In particular, uv1 = uv3 . Now ϕF1(uv0 − uv1) = 0 and
ϕF2(uv0 − uv1) = ϕF2(uv0 − uv3) = 0 and so uv0 = uv1 . We conclude that u
is a constant and hence trivial infinitesimal flex of (G′, p′). � �

Let v1v2 be an edge of G. An edge-to-K3 move G→ G′ (on the edge v1v2

and the vertex v1) is obtained in two steps: Firstly, adjoin a new vertex v0

and two new edges v0v1 and v0v2 to G, (creating a copy of K3 with vertices
v0, v1, v2). Secondly, each edge v1w of G which is incident with v1 is either
left unchanged, or, is removed and replaced with the edge v0w.

Proposition 4.6. The edge-to-K3 move preserves infinitesimal rigidity for
finite well-positioned bar-joint frameworks in (R2, ‖ · ‖P).

Proof. Suppose (G, p) is well-positioned and infinitesimally rigid and let
G → G′ be an edge-to-K3 move on the vertex v1 ∈ V (G) and the edge
v1v2 ∈ E(G). Let [F1] be the unique framework colour for v1v2 and choose
any [F2] ∈ Φ(P) with [F2] 6= [F1]. Since v1 has finite valence, there exists an
open ball B(pv1 , r) such that if pv1 is replaced with any point x ∈ B(pv1 , r)
then the induced framework colouring of G is left unchanged. Define a
placement p′ of G′ by setting p′v = pv for all v ∈ V (G) and choosing,

p′v0
∈ (pv1 + cone(F2)◦) ∩B(pv1 , r).

Then (G′, p′) is well-positioned. Suppose u ∈ F(G′, p′) is an infinitesimal flex
of (G′, p′). The framework colours for the edges v0v1 and v0v2 are [F2] and
[F1] respectively. Thus there exists a path from v0 to v1 in the monochrome
subgraph G′F1

given by the edges v1v2, v2v0 and there exists a path from

v0 to v1 in the monochrome subgraph G′F2
given by the edge v0v1. By the

relative rigidity method of Proposition 3.3, uv0 = uv1 . If an edge v1w in G
has framework colour [F ] induced by (G, p) and is replaced by v0w in G′

then the framework colour is unchanged. Thus applying Theorem 2.5,

ϕF (uv1 − uw) = ϕF (uv1 − uv0) + ϕF (uv0 − uw) = 0,

and so the restriction of u to V (G) is an infinitesimal flex of (G, p). This
restriction is constant since (G, p) is infinitesimally rigid and so u is a trivial
infinitesimal flex of (G′, p′). � �
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A vertex-to-K4 move G → G′ replaces a vertex v0 ∈ V (G) with a copy
of the complete graph K4 by adjoining three new vertices v1, v2, v3 and six
edges v0v1, v0v2, v0v3, v1v2, v1v3, v2v3. Each edge v0w of G which is incident
with v0 may be left unchanged or replaced by one of v1w, v2w or v3w.

Proposition 4.7. The vertex-to-K4 move preserves infinitesimal rigidity
for finite well-positioned bar-joint frameworks in (R2, ‖ · ‖P).

Proof. Suppose (G, p) is well-positioned and infinitesimally rigid and let
G→ G′ be a vertex-to-K4 move on the vertex v0 ∈ V (G) which introduces
new vertices v1, v2 and v3. Since v0 has finite valence, there exists an open
ball B(pv0 , r) such that if pv0 is replaced with any point x ∈ B(pv0 , r) then
(G, x) and (G, p) induce the same framework colouring on G. Let (K4, p̃) be
the well-positioned and infinitesimally rigid placement of K4 constructed in
Example 4.2. Define a well-positioned placement p′ of G′ by setting p′v = pv
for all v ∈ V (G) and,

p′v1
= pv0 + εp̃v1 , p′v2

= pv0 + εp̃v2 , p′v3
= pv0 + εp̃v3 ,

where ε > 0 is chosen to be sufficiently small so that p′v1
, p′v2

and p′v3
are each

contained in B(pv0 , r). Suppose u ∈ F(G′, p′). By the argument in Example
4.2, the restriction of u to the vertices v0, v1, v2, v3 is constant. Thus if v0w
is an edge of G with framework colour [F ] which is replaced by vkw in G′

then applying Theorem 2.5,

ϕF (uv0 − uw) = ϕF (uv0 − uvk) + ϕF (uvk − uw) = 0,

and so the restriction of u to V (G) is an infinitesimal flex of (G, p). Since
(G, p) is infinitesimally rigid this restriction is constant and we conclude
that u is a trivial infinitesimal flex of (G′, p′). � �

We now show that the class of finite graphs which have minimally in-
finitesimally rigid well-positioned placements in (R2, ‖ · ‖P) is precisely the
class of (2, 2)-tight graphs. In particular, the existence of such a placement
does not depend on the choice of polyhedral norm on R2.

Theorem 4.8. Let G be a finite simple graph and let ‖ · ‖P be a polyhedral
norm on R2. The following statements are equivalent.

(i) G is minimally rigid in (R2, ‖ · ‖P).
(ii) G is (2, 2)-tight.

Proof. (i) ⇒ (ii). If G is minimally rigid then there exists a placement
p such that (G, p) is minimally infinitesimally rigid in (R2, ‖ · ‖P) and the
result follows from Proposition 4.3.

(ii) ⇒ (i). If G is (2, 2)-tight then there exists a finite sequence of al-
lowable graph moves, K1 −→ G2 −→ G3 −→ · · · −→ G. Every placement
of K1 is certainly infinitesimally rigid. By Propositions 4.4-4.7, for each
graph in the sequence there exists a well-positioned and infinitesimally rigid
placement in (R2, ‖ · ‖P). In particular, (G, p) is infinitesimally rigid for
some well-positioned placement p. If a single edge is removed from G then
by Proposition 4.3, the resulting subframework is infinitesimally flexible.
Hence (G, p) is minimally infinitesimally rigid in (R2, ‖ · ‖P). � �
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