
Digital Signal Processing 42 (2015) 1–26
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Linear and synchrosqueezed time–frequency representations revisited: 

Overview, standards of use, resolution, reconstruction, concentration, 
and algorithms ✩

Dmytro Iatsenko, Peter V.E. McClintock, Aneta Stefanovska ∗

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 April 2015

Keywords:
Time–frequency analysis
Windowed Fourier transform
Wavelet transform
Synchrosqueezing

Time–frequency representations (TFRs) of signals, such as the windowed Fourier transform (WFT), 
wavelet transform (WT) and their synchrosqueezed versions (SWFT, SWT), provide powerful analysis 
tools. Here we present a thorough review of these TFRs, summarizing all practically relevant aspects 
of their use, reconsidering some conventions and introducing new concepts and procedures to 
advance their applicability and value. Furthermore, a detailed numerical and theoretical study of 
three specific questions is provided, relevant to the application of these methods, namely: the 
effects of the window/wavelet parameters on the resultant TFR; the relative performance of different 
approaches for estimating parameters of the components present in the signal from its TFR; and the 
advantages/drawbacks of synchrosqueezing. In particular, we show that the higher concentration of the 
synchrosqueezed transforms does not seem to imply better resolution properties, so that the SWFT and 
SWT do not appear to provide any significant advantages over the original WFT and WT apart from 
a more visually appealing pictures. The algorithms and Matlab codes used in this work, e.g. those for 
calculating (S)WFT and (S)WT, are freely available for download.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Identification and quantification of the oscillatory components 
present in a given signal is a classic problem of signal processing, 
and time–frequency analysis has been one of the most successful 
approaches for solving it. Thus, it is often useful to study the sig-
nal’s structure in both time and frequency simultaneously, which 
can be done by considering a specifically constructed projection 
of the signal onto the time–frequency plane. Such projections are 
called time–frequency representations (TFRs) and there are a num-
ber of different kinds, depending on the exact way in which the 
projection is carried out.

Time–frequency analysis is especially useful for signals contain-
ing many oscillatory components with time-varying amplitudes 
and/or frequencies, which is a very common scenario for real-life 
signals. The paradigmatic example is the heart beat: although the 
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cardiac frequency is usually localized around ∼1 Hz, it varies con-
tinuously about this average; these variations are hard to analyze 
in the time domain, or by using the Fourier transform (FT), but 
they can easily be traced in the time–frequency plane [1–6]. The 
TFRs have thus become established as very powerful tools that are 
routinely applied in almost every area of science, from image pro-
cessing and finance to geophysics and the life sciences [4,7–18].

General aspects of time–frequency analysis, and the properties 
of the different existing TFRs, have been thoroughly discussed in a 
number of excellent books [7,8,19–25] and reviews [9,13,26–28]. In 
a sense, however, there is too much information available, as well 
as some aspects remain to be revised. Therefore, instead of briefly 
reviewing all existing TFRs, we concentrate on an in depth study 
of only four specific types (to be discussed below), considering all 
their practically relevant aspects and clarifying various issues re-
lated to their use.

In general, there exist two main TFR classes: linear and 
quadratic. Although each of these has its own advantages, we will 
consider only linear TFRs, such as the windowed Fourier trans-
form (WFT) and wavelet transform (WT). We consider these types 
because, first, they are more readily interpretable on account of 
being additive (the TFR of a sum of signals = the sum of the 
TFRs for each signal) and, secondly, linear TFRs offer the possibil-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.dsp.2015.03.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
http://creativecommons.org/licenses/by/4.0/
mailto:dmytro.iatsenko@gmail.com
mailto:p.v.e.mcclintock@lancaster.ac.uk
mailto:aneta@lancaster.ac.uk
http://dx.doi.org/10.1016/j.dsp.2015.03.004
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2015.03.004&domain=pdf


2 D. Iatsenko et al. / Digital Signal Processing 42 (2015) 1–26
ity of extracting and reconstructing individual components, which 
can be problematic for quadratic representations. Additionally, we 
also consider the synchrosqueezed WFT and WT (abbreviated as 
SWFT and SWT) [5,6,29–31], which represent a particular nonlin-
ear transformation of the original WFT and WT to increase their 
concentration. Although not additive, the SWFT and SWT still allow 
for straightforward extraction and reconstruction of the signal’s 
components.

The purpose of the present work is therefore to: (i) bring 
together and summarize the minimal but sufficient knowledge 
needed to understand and apply the WFT and WT effectively; (ii) 
cover the aspects of their use that are not discussed and clari-
fied adequately in the literature; (iii) consider in detail the syn-
chrosqueezed transforms and their properties; (iv) advance the 
theory and extend the applicability of the (S)WFT and (S)WT by 
introducing certain improvements, procedures and concepts; (v) 
provide well-optimized and user-friendly algorithms and MatLab 
codes (available at [32]), appropriate for any window or wavelet; 
(vi) investigate some important related issues.

The paper falls into two parts. The first part provides a tu-
torial review of the above mentioned TFRs and their properties, 
supplemented with some additional contributions. The particular 
emphasis is placed on the TFR-based estimation of the properties 
of the components present in the signal, and on some underlying 
caveats. An experienced reader who is familiar with all these top-
ics can leave the first part for reference, and proceed directly to 
the second one, which considers more advanced issues. In partic-
ular, it is shown that synchrosqueezing does not seem to provide 
significant advantages apart from a more visually appealing pic-
ture, while having some drawbacks.

The main results of the work are summarized in the ultimate 
section. All notation, abbreviations, terminology, assumptions and 
conventions used throughout the paper are listed in Appendix A. 
Supplementary Material covers some technical details that are 
omitted from the main text.

Remark 1.1. Based on different TFRs, many advanced methods have 
been developed, such as wavelet coherence [16,33,34] and phase 
coherence [35–37], TFR-based harmonic identification [38], wavelet 
bispectral analysis [39,40], and others. However, it does not seem 
feasible to review appropriately all such techniques in one work, 
given their large number, and we do not consider them here. 
Rather, we concentrate on the in depth study of the basic time–
frequency representations, which provide the foundation for all 
these advanced techniques.

Part 1. Tutorial review

This part provides a tutorial review of the (S)WFT and (S)WT, 
considering their main properties and various related issues. We 
start by discussing the basic concepts, such as the notion of the 
AM/FM component and the analytic signal approach. The WFT, WT, 
SWFT and SWT are then defined, and different aspects of their use 
are discussed in detail.

2. Analytic signal

One of the basic notions of time–frequency analysis is the 
AM/FM component (or simply component), which is defined as a 
function of time t of form

x(t) = A(t) cosφ(t)
(∀t : A(t) > 0, φ′(t) > 0

)
. (2.1)

The time-dependent values A(t), φ(t) and ν(t) ≡ φ′(t) are then 
called the instantaneous amplitude, phase and frequency of the 
component (2.1) (see [41–43] for a more detailed discussion of 
their definitions and related issues).
Given that the signal is known to be of the form (2.1), the nat-
ural question is how to find its associated A(t), φ(t) and ν(t). The 
most convenient way of doing this is the analytic signal approach. 
However, before considering it, a few additional notions should be 
introduced. Thus, for an arbitrary function f (t), its Fourier trans-
form (FT), positive and negative frequency parts, time-average and 
standard deviation will be denoted as f̂ (ξ), f +(t), f −(t), 〈 f (t)〉
and std[ f (t)], respectively:

f̂ (ξ) ≡
∞∫

−∞
f (t)e−iξtdt

f (t) = 1

2π

∞∫
−∞

f̂ (ξ)eiξtdξ = 〈 f (t)〉 + f +(t) + f −(t),

f +(t) ≡ 1

2π

∞∫
0+

f̂ (ξ)eiξtdξ, f −(t) ≡ 1

2π

0−∫
−∞

f̂ (ξ)eiξtdξ,

〈 f (t)〉 =
∫

f (t)dt∫
dt

, std[ f (t)] ≡
√

〈[ f (t)]2〉 − [〈 f (t)〉]2. (2.2)

Here and in what follows the integrals are taken over (−∞, ∞) if 
unspecified (or, in practice, over the full time duration of f (t)).

For a given signal s(t) (which is always assumed to be real in 
this work), its doubled positive-frequency part is called its analytic 
signal and will be denoted as sa(t):

sa(t) ≡ 2s+(t)
(
s(t) = 〈s(t)〉 + Re[sa(t)]). (2.3)

The analytic signal is complex, so its dynamics can easily be sep-
arated into amplitude and phase parts. For signals represented 
by a single component (2.1), the analytic amplitude and phase 
Aa(t), φa(t) match closely the true amplitude and phase A(t), φ(t), 
thus providing an easy way to estimate them:

A(t) ≈ Aa(t) ≡ |sa(t)|, φ(t) ≈ φa(t) ≡ arg[sa(t)]. (2.4)

The approximate equality (2.4) will be called the analytic approx-
imation. According to the Bedrosian theorem [44] (see also [41,
42]), this approximation is exact when the spectrum of A(t) lies 
lower than the spectrum of eiφ(t) , and there are no intersections 
between the two; the amplitude and phase of the component are 
then uniquely defined. Usually, however, there is a small discrep-
ancy between the true and analytic amplitude/phase (considered 
in detail in Supplementary Section 2), but related errors are typi-
cally much smaller than those of the other methods of amplitude 
and frequency estimation [45].

However, real-life signals rarely consist of only one component, 
and they usually also contain noise. In what follows, we assume 
that the signal can be represented by a sum of AM/FM compo-
nents, each of which satisfies the analytic approximation (2.4), plus 
some noise η(t):

s(t) =
∑

i

xi(t) + η(t) =
∑

i

Ai(t) cosφi(t) + η(t),

∀t, i : Ai(t) > 0, φ′
i(t) > 0, [Ai(t) cosφi(t)]+ ≈ Ai(t)eiφi(t)/2,

(2.5)

In this case, the analytic signal will represent a mix of the ampli-
tude and phase dynamics of all components contained in the signal 
(additionally corrupted by noise), so their individual parameters 
cannot be recovered from it. One should therefore employ more 
sophisticated techniques, able to distinguish the different compo-
nents within a single time-series.
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Fig. 1. Different representations of a signal composed of three AM/FM components 
and corrupted by white Gaussian noise. (a): Signal in the time domain. (b): Sig-
nal in the frequency domain, given by its Fourier transform. (c, d): Signal in the 
time–frequency domain, given by its WFT and WT (see Sections 3.1 and 3.2 below), 
respectively. Note the logarithmic frequency scaling in (d).

This is illustrated in Fig. 1, which shows an example of a 
particular signal representation in the time, frequency, and time–
frequency domains, with the latter being given by its WFT and WT, 
to be discussed below. As can be seen, although all representations 
by definition contain the same amount of information about the 
signal, in the case of Fig. 1 the most readily interpretable view of 
this information is provided in the time–frequency domain. Note 
that, although signal representation (2.5) is not unique, in practice 
one aims at the sparsest among such representations, i.e. the one 
characterized by the smallest number of components xi(t).

3. Time–frequency representations (TFRs)

As illustrated in Fig. 1, instead of studying a signal in either 
of the (one-dimensional) time (s(t)) or frequency (ŝ(ξ)) domains, 
it is often more useful to consider its TFR, i.e. to study the signal 
in a (two-dimensional) time–frequency plane. Such an approach 
gives the possibility of tracking the evolution of the signal’s spec-
tral content in time, which is typically represented by variations 
of the amplitudes and frequencies of the components from which 
the signal is composed. Note that in the present section we will 
sometimes use the notions of time, frequency and time–frequency 
resolutions of the TFR, which will be further clarified in Section 4
below. We also refer the reader to classical books and reviews (e.g. 
[7,20,21,25]) for more details on the WFT/WT and their resolution 
characteristics.

3.1. Windowed Fourier transform (WFT)

The windowed Fourier transform (WFT), also called the short-
time Fourier transform or (in a particular form) the Gabor trans-
form [46], is one of the oldest and thus most-investigated linear 
TFRs. The WFT Gs(ω, t) of the signal s(t) can be constructed as:
Gs(ω, t) =
∫

s+(u)g(u − t)e−iω(u−t)du

= 1

2π

∞∫
0

eiξt ŝ(ξ)ĝ(ω − ξ)dξ, (3.1)

where g(u) is the chosen window function and ĝ(ξ) is its FT (with-
out loss of generality, we assume argmax |ĝ(ξ)| = 0); the use of 
s+(t) instead of simple s(t) is needed to remove the interference 
with negative frequencies (see Supplementary Section 3 for a dis-
cussion of this issue).

The WFT is an invertible transform, so that the original signal 
in both time and frequency domains can be recovered from it as 
(see Supplementary Section 5 for derivations):

sa(t) = C−1
g

∫
Gs(ω, t)dω, s(t) = 〈s(t)〉 + Re[sa(t)],

ŝ(ω > 0) = C̃−1
g

∫
Gs(ω, t)e−iωtdt, ŝ(−ω) = ŝ∗(ω),

C g ≡ 1

2

∫
ĝ(ξ)dξ = π g(0), C̃ g ≡

∫
g(t)dt = ĝ(0). (3.2)

In numerical applications, the WFT is calculated via the inverse 
FFT algorithm applied to the frequency domain form of (3.1). The 
full procedure including all related issues discussed in this work is 
summarized in Supplementary Section 2, with the corresponding 
codes being freely available at [32].

Gaussian window. Unless otherwise specified, all considerations 
and formulas in this work apply for an arbitrary window g(t), ̂g(ξ)

(for most common window forms and their properties, see Sup-
plementary Section 7). However, in what follows we pay particular 
attention to the Gaussian window function

g(u) = 1√
2π f0

e−u2/2 f 2
0 ⇔ ĝ(ξ) = e− f 2

0 ξ2/2, (3.3)

which we use for simulations. It is commonly used on account 
of its unique property of maximizing the “classic” joint time–
frequency resolution of the transform (see e.g. pp. 43–45 in [7]), 
while the trade-off between the time and frequency resolutions of 
this window is controlled by the resolution parameter f0 (by default 
we use f0 = 1).

3.2. Wavelet transform (WT)

The (continuous) wavelet transform (WT) is the other well-
known linear TFR. In contrast to the WFT, it has logarithmic fre-
quency resolution; in other respects the two TFRs are quite similar. 
The WT W s(ω, t) of a signal s(t) for a chosen wavelet function ψ(u)

can be constructed as

W s(ω, t) =
∫

s+(u)ψ∗(ω(u − t)

ωψ

)ωdu

ωψ

= 1

2π

∞∫
0

eiξt ŝ(ξ)ψ̂∗(ωψξ

ω

)
dξ, (3.4)

where

ωψ ≡ argmax |ψ̂(ξ)|, (3.5)

is the wavelet peak frequency, and we use the positive-frequency 
part of the signal s+(t) (2.2) to avoid interference with negative 
frequencies (see Supplementary Section 4). Note that the WT is 
commonly expressed through scales a(ω) = ωψ/ω, but in (3.4) we 
have already made transformation to frequencies.
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The reconstruction formulas for the case of the WT become (see 
Supplementary Section 5 for derivations)

sa(t) = C−1
ψ

∞∫
0

W s(ω, t)
dω

ω
, s(t) = 〈s(t)〉 + Re[sa(t)],

ŝ(ω > 0) = C̃−1
ψ

∫
W s(ω, t)e−iωtdt, ŝ(−ω) = ŝ∗(ω),

Cψ ≡ 1

2

∞∫
0

ψ̂∗(ξ)
dξ

ξ
,

C̃ψ ≡
[∫

ψ(t)e−iωψ tdt
]∗ = ψ̂∗(ωψ), (3.6)

where, in contrast to the WFT (3.2), the signal is reconstructed 
from its WT by integrating W s(ω, t) over the frequency logarithm 
dω/ω = d logω, which is standard for the WT-based measures. 
Note that, for a meaningful WT, the wavelet’s FT ψ̂(ξ) should van-
ish at zero frequency:

ψ̂(0) =
∫

ψ(t)dt = 0, (3.7)

which is called the admissibility condition.
Similarly to the WFT, the WT is computed by applying the in-

verse FFT algorithm to the frequency domain form of (3.4). All 
details of the procedure can be found in Supplementary Section 2, 
and the corresponding codes are available at [32].

Morlet wavelet. Except where otherwise specified, all considera-
tions and formulas in this work apply for an arbitrary wavelet 
ψ(t), ψ̂(ξ) (for most common window forms and their proper-
ties, see Supplementary Section 7). However, the so-called Morlet 
wavelet [47] is worthy of special consideration. It is constructed in 
analogy with the Gaussian window and takes the form

ψ(u) = 1√
2π

(
ei2π f0u − e−(2π f0)2/2

)
e−u2/2,

ψ̂(ξ) = e−(ξ−2π f0)2/2
(

1 − e−2π f0ξ
)

, (3.8)

where, in analogy with (3.3), f0 is the resolution parameter de-
termining resolution properties of the wavelet (we use f0 = 1
by default), while the second term in ψ(u) is needed to estab-
lish the wavelet admissibility condition (3.7). The fact that the 
Morlet wavelet is used so commonly for the continuous WT is 
attributable to the belief that it maximizes the time–frequency 
resolution, though in what follows (Section 4 and Supplementary 
Section 7) we will see that this is not really the case.

Lognormal wavelet. Since the WT has logarithmic frequency res-
olution, it seems more appropriate to construct a wavelet using 
log ξ as its argument. Therefore, a more correct WT analogy to the 
Gaussian window (3.3) would probably be not Morlet, but the log-
normal wavelet

ψ̂(ξ) = e−(2π f0 log ξ)2/2, ξ > 0 (3.9)

As discussed in Supplementary Section 7, the resolution properties 
of the wavelet (3.9) are generally better than that of the Morlet, 
and it has a variety of other useful properties. For example, it is 
“infinitely admissible”, i.e. 

∫
ξ−nψ̂(ξ)dξ/ξ is finite for any n ≥ 0, 

and one therefore can reconstruct any order time-derivative of the 
component’s amplitude and phase from its WT (see Section 5.2). 
This makes lognormal wavelet a preferable choice, though we will 
still employ the Morlet wavelet (3.8) in our simulations just be-
cause, apart from being the most widespread choice, it has more 
in common with the other wavelet forms and thus better demon-
strates what one typically gets.
3.3. Synchrosqueezed WFT/WT (SWFT/SWT)

Synchrosqueezing [5,6,29–31] provides a way to construct a 
more concentrated representation from the WFT or WT. The under-
lying idea is very simple, namely to join all WFT/WT coefficients 
corresponding to same phase velocities (the first derivative of the 
unwrapped WFT/WT phase) into one SWFT/SWT coefficient. In 
mathematical terms, the definition of the WFT/WT instantaneous 
frequency νG,W (ω, t) is

νG(ω, t) = ∂

∂t
arg[Gs(ω, t)] = Im

[
G−1

s (ω, t)
∂Gs(ω, t)

∂t

]
,

νW (ω, t) = ∂

∂t
arg[W s(ω, t)] = Im

[
W −1

s (ω, t)
∂W s(ω, t)

∂t

]
.

(3.10)

The SWFT V s(ω, t) [29] and SWT Ts(ω, t) [6] are then

V s(ω, t) = C−1
g

∫
δ(ω − νG(ω̃, t))Gs(ω̃, t)dω̃,

Ts(ω, t) = C−1
ψ

∞∫
0

δ(ω − νW (ω̃, t))W s(ω̃, t)
dω̃

ω̃
, (3.11)

where C g, Cψ are defined in (3.2), (3.6). Similarly to the underlying 
WFT/WT themselves, their synchrosqueezed versions also repre-
sent invertible transforms: integrating (3.11) over dω and using 
(3.2), (3.6), one can show that signal can be reconstructed from 
its SWFT/SWT as

sa(t) =
∞∫

0

V s(ω, t)dω =
∞∫

0

Ts(ω, t)dω. (3.12)

However, in contrast to the WFT/WT, there is no possibility of re-
constructing directly the signal’s FT from its SWFT/SWT.

Since the SWFT and SWT are generally not analytic (e.g. in the-
ory for a single tone signal they are δ-functions), in practice one 
computes not the true SWFT/SWT as defined in (3.11), but their 
integrals Ṽ s(ωk, t) and T̃ s(ωk, t) over each frequency bin:

Ṽ s(ωk, t) ≡
(ωk+ωk+1)/2∫

(ωk−1+ωk)/2

V s(ω, t)dω,

T̃ s(ωk, t) ≡
√

ωkωk+1∫
√

ωk−1ωk

Ts(ω, t)dω, (3.13)

where the difference between integral limits is on account of cen-
ters ωk of the frequency bins usually being linearly and logarith-
mically spaced for the SWFT and SWT, respectively. The compu-
tational cost of synchrosqueezing is of the same order as for the 
usual WFT/WT, and fast algorithm for performing it is discussed 
in Supplementary Section 2. Note that in terms of a numerical 
SWFT/SWT (3.13) the reconstruction formula (3.12) becomes sim-
ply sa(t) = ∑

k Ṽ s(ωk, t) = ∑
k T̃ s(ωk, t).

3.4. Other time–frequency representations

The (S)WFT and (S)WT represent only a few out of the many 
existing TFR types. The latter include different quadratic repre-
sentations (e.g. the Wigner–Ville [48,49], Rihaczek [50] and Choi–
Williams [51] distributions: see [20,21,26] for a more comprehen-
sive list), as well as various WFT/WT modifications (the windowed 
fractional Fourier transform [52–54], the local polynomial FT [19,
55], the chirplet transform [56,57] etc.). These are designed in 
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such a way as to provide better representation for particular signal 
types, e.g. chirps.

There are also techniques that allow one to improve certain 
properties of the TFR by applying some sort of processing to it. 
For example, the “sharpness” of different TFRs can be increased by 
use of the so-called reassignment methods [30,58], which include 
synchrosqueezing as a particular case. Furthermore, many meth-
ods have been proposed for adaptive signal representation, e.g. the 
method of frames [59], (orthogonal) matching pursuit [60,61], best 
orthogonal basis [62] and basis pursuit [63]: for overviews see [63]
and [7].

Even this list is far from being exhaustive, and there exist many 
other TFR types and related techniques (see e.g. [64–71], and an 
overview in [9]), including those devoted exclusively to some spe-
cific goal, such as instantaneous frequency estimation. Each repre-
sentation, however, has its own advantages and drawbacks, thus 
deserving a separate review. In the present work we concentrate 
solely on the (S)WFT and (S)WT.

4. Time-, frequency- and time–frequency resolution

We have made extensive use of the notions of time, frequency 
and time–frequency resolutions, although having defined them 
only briefly. In this section different resolution characteristics are 
considered in detail, and the definitions are made more precise. 
The TFR resolution properties and their classical treatment are 
discussed in detail in [7,20,21,25], so below we will focus only 
on some novel views and related issues. Furthermore, since syn-
chrosqueezing does not seem to change the resolution properties 
of the transform (see Sections 8 and 11 below), in what follows 
we will concentrate mainly on the WFT and WT, assuming that 
the same qualitative and quantitative considerations are applicable 
respectively to the SWFT and SWT.

4.1. General formulation

Consider a signal sνν(t) (sττ (t)) consisting of two frequency 
events – tones (time events – delta-peaks), so that its WFT (3.1)
and WT (3.4) are

sνν(t) = cos(νt) + cos((ν + �ν)t + �ϕ)

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Gs(ω, t) = 1
2

[
ĝ(ω − ν)

+ ĝ(ω − ν − �ν)ei�νtei�ϕ
]
eiνt,

W s(ω, t) = 1
2

[
ψ̂∗

(
ωψν
ω

)
+ ψ̂∗

(
ωψ(ν+�ν)

ω

)
ei�νtei�ϕ

]
eiνt,

(4.1)

sττ (t) = δ(t − τ ) + δ(t − τ − �τ)ei�ϕ

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Gs(ω, t) ∼= [
g(τ − t)

+ g(τ + �τ − t)e−iω�τ ei�ϕ
]
eiω(t−τ ),

W s(ω, t) ∼= ω
ωψ

[
ψ∗

(
ω(τ−t)

ωψ

)
+ ψ∗

(
ω(τ+�τ−t)

ωψ

)
ei�ϕ

]
.

(4.2)

Everywhere in this section, e.g. in (4.2), the symbol “∼=” denotes 
equality up to an error associated with the difference between the 
WFT/WT (3.1), (3.4) and their forms as calculated using the full 
signal s(t) instead of its positive-frequency part s+(t); note that, if 
redefining WFT/WT to use the full signal, the approximate equality 
will migrate from sττ (t) (4.2) to sνν(t) (4.1). See Supplementary 
Section 4 for a detailed discussion of these issues and the quality 
of the approximation in (4.2).

It seems reasonable to define the time (frequency) resolution 
γt (γω) of the transform as the reciprocal of the minimum time 
(frequency) difference �τ (�ν) in sττ (t) (sνν(t)) for which two 
delta-peaks (tones) can still be reliably resolved in the TFR:

γt(ν, τ ) = 1/�τmin(ν, τ ), γω(ν, τ ) = 1/�νmin(ν, τ ). (4.3)

However, the meaning of “reliably resolved” still remains impre-
cise, and will be dealt with later.

The joint time–frequency resolution γωt is most often defined 
as the reciprocal of the area of the minimal resolvable square 
[ν, ν +�νmin(ν, τ )] ×[τ , τ +�τmin(ν, t)], being equal to the prod-
uct of the time and frequency resolutions. However, within such a 
square γt(ν, τ ) and γω(ν, τ ) can vary considerably, so that these 
variations should be taken into account to make γωt more mean-
ingful. The latter can therefore be defined as

γωt(ν, τ ) = �τmin(ν, τ )�νmin(ν, τ )∫ ν+�νmin(ν,τ )

ν �τmin(ω, τ )dω
∫ τ+�τmin(ν,τ )

τ �νmin(ν, t)dt
.

(4.4)

Note that, if neither �νmin nor �τmin depends on time or fre-
quency, then one has the traditional γωt = γωγt .

4.2. Classical definitions and their flaws

Although �τmin (�νmin) in (4.3) was defined as the minimum 
time (frequency) difference which can reliably be resolved in the 
TFR, the meaning of “reliably resolved” remains mathematically 
unclear. Based on how it is defined, one can characterize the reso-
lution properties of the TFRs in different ways.

The traditional approach [7,25] implicitly assumes two delta-
peaks (tones) to be well-resolved if the time (frequency) distance 
between them exceeds some number of standard deviations of the 
squared window/wavelet function in the time (frequency) domain. 
Within this framework, for the WFT one has

�ν
(cl)
min = k1�ω, �2

ω = E−1
g

1

2π

∫
(ω − ωc)

2|ĝ(ω)|2dω,

�τ
(cl)
min = k2�t, �2

t = E−1
g

∫
(t − tc)

2|g(t)|2dt,

ωc ≡ E−1
g

1

2π

∫
ω|ĝ(ω)|2dω, tc ≡ E−1

g

∫
t|g(t)|2dt, (4.5)

where E g ≡ ∫ |g(t)|2dt (= 1
2π

∫ |ĝ(ξ)|2dξ by Parseval’s identity), 
and k1,2 are implicitly assumed to be the same for all window 
functions. Obviously, such a definition is far from universal, since 
for different windows different number of standard deviations are 
needed to resolve the two tones/delta-peaks.

For the WT, the classic variance-based framework is

�ν
(cl)
min(ν) = k1

ν

ωψ

�ω,

�2
ω = E−1

ψ

1

2π

∫
(ω − ωc)

2|ψ̂(ω)|2dω,

�τ
(cl)
min(ν) = k2

ωψ

ν
�t, �2

t = E−1
ψ

∫
(t − tc)

2|ψ(t)|2dt,

ωc ≡ E−1
ψ

1

2π

∫
ω|ψ̂(ω)|2dω, tc ≡ E−1

ψ

∫
t|ψ(t)|2dt, (4.6)

where Eψ ≡ ∫ |ψ(t)|2dt , and k1,2 are again implicitly assumed to 
be the same for all wavelet functions. This approach has the same 
drawbacks as (4.5) for the WFT. However, in the case of the WT it 
is actually not appropriate at all, at least in terms of the frequency 
resolution. Thus, the tones are represented in the WT as terms 
∼ψ̂(ωψν/ω), so that the decay of their contribution as ω → ∞, 
determined by the behavior of ψ̂(ξ) as ξ → 0, will obviously have 
a big effect on the frequency resolution. At the same time, the 
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usual variance �2
ω (4.6) takes no account of this fact, e.g. be-

ing invariant under ψ̂(ξ) → ψ̂(ξ + ωψ), that makes the wavelet 
inadmissible (in which case even infinitely distant in frequency 
tones interfere, so that the frequency resolution becomes effec-
tively zero). Hence, for wavelets it is more appropriate to study at 
least the variance of |ψ̂(ωψ/ξ)|2, but by no means that of |ψ̂(ξ)|2.

For both WFT and WT, the classic time–frequency resolution 
measure is taken as γ (cl)

ωt = [�ω�t]−1, with �ω, �t being given by 
(4.5) for the WFT and by (4.6) for the WT. It can be shown [7,8,25], 
that this measure attains its maximum for the Gaussian window 
(3.3) and (up to the effect of the admissibility term ∼e−(2π f0)2/2) 
for the Morlet wavelet (3.8). However, as follows from the dis-
cussion above, only in the case of the WFT does the classic γ (cl)

ωt
make some sense, though even in this case it remains highly non-
universal.

4.3. Notion of the window/wavelet ε-support

Before proceeding to a reconsideration of the classic defini-
tions, it is useful to introduce the notions of the window/wavelet 
ε-supports in frequency [ξ1(ε), ξ2(ε)] and time [τ1(ε), τ2(ε)], 
which will be used frequently in what follows. These ε-supports 
are defined as the widest intervals containing the (1 − ε) part of 
the total integrals of the window/wavelet function which appear 
in C g,ψ and C̃ g,ψ (3.2), (3.6). As will be seen below, they are di-
rectly related to the accuracy with which the components can be 
recovered from the WFT/WT.

Considering first the WFT, for an arbitrary window function, 
including functions that are not always positive and can be os-
cillating or complex, the corresponding definitions are

R g(ω) ≡
∫ ω
−∞ ĝ(ξ)dξ∫

ĝ(ξ)dξ
= C−1

g
1

2

ω∫
−∞

ĝ(ξ)dξ,

ξ1,2(ε) : |R g(ξ ≤ ξ1)| ≤ ε/2, |1 − R g(ξ ≥ ξ2)| ≤ ε/2,

P g(τ ) ≡
∫ τ
−∞ g(t)dt∫

g(t)dt
= C̃−1

g

τ∫
−∞

g(t)dt,

τ1,2(ε) : |P g(τ ≤ τ1)| ≤ ε/2, |1 − P g(τ ≥ τ2)| ≤ ε/2. (4.7)

Evidently, |R g(ω)| and |1 − R g(ω)| quantify the relative parts of 
ĝ(ξ) that are contained in the ranges ξ < ω and ξ > ω, respec-
tively, while the values ξ1,2(ε) specify the limits within which the 
(1 −ε) part of the window FT resides. In the same manner, |P g(τ )|
and |1 − P g(τ )| reflect the relative parts of g(t) contained in the 
ranges t < τ and t > τ , respectively, while [τ1(ε), τ2(ε)] repre-
sents the region encompassing its (1 − ε) part. The inequalities 
in the definitions of ξ1,2(ε) (τ1,2(ε)) are needed only for complex 
or real but not strictly positive ĝ(ξ) (g(t)) to ensure that the its 
integral over any frequency (time) region containing [ξ1(ε), ξ2(ε)]
([τ1(ε), τ2(ε)]) will always approximate the corresponding full in-
tegral with relative error not higher than ε .

Similarly to the case of the WFT, the ε-supports for the WT are 
defined based on (3.6) as

Rψ(ω) ≡
∫ ω

0 ψ̂∗(ξ)
dξ
ξ∫ ∞

0 ψ̂∗(ξ)
dξ
ξ

= C−1
ψ

1

2

ω∫
0

ψ̂∗(ξ)
dξ

ξ
,

ξ1,2(ε) : |Rψ(ξ ≤ ξ1)| ≤ ε/2, |1 − Rψ(ξ ≥ ξ2)| ≤ ε/2,

Pψ(τ ) ≡
∫ τ
−∞ ψ∗(t)eiωψ tdt∫

ψ∗(t)eiωψ tdt
= C̃−1

ψ

τ∫
−∞

ψ∗(t)eiωψ tdt,

τ1,2(ε) : |Pψ(τ ≤ τ1)| ≤ ε/2, |1 − Pψ(τ ≥ τ2)| ≤ ε/2. (4.8)
Like |P g(τ )| in (4.8), |Pψ(τ )| (|1 − Pψ(τ )|) quantifies the relative 
part of ψ(t)e−iωψ t contained at t < τ (t > τ ), with [τ1(ε), τ2(ε)]
specifying the interval encompassing its (1 − ε) part. In the same 
manner, |Rψ(ω)| and ξ1,2(ε) are related to the relative part of 
ψ̂(ξ), taken on a logarithmic scale.

The quantities (4.7), (4.8) are very convenient and will be used 
extensively below, not only in the present section. For simplicity, 
τ1,2(ε) and ξ1,2(ε) denote the respective ε-supports both for the 
window function in the WFT and for the wavelet function in the 
WT. The meaning will always be clear from the context. Note that 
the full supports of the window/wavelet in time (g(t), ψ(t)) and 
frequency ( ĝ(ξ), ψ̂(ξ)), whether finite or not, are [τ1(0), τ2(0)] and 
[ξ1(0), ξ2(0)], respectively.

4.4. Reconsidered definitions

A more universal and appropriate approach (than the tradi-
tional variance-based one) is to regard two components as being 
reliably resolved if they can each be accurately identified and re-
constructed from the signal’s TFR, i.e. can be recovered with a 
relative error not exceeding some threshold. Consider the WFT of 
the two-tone signal (4.1), from which one wants to find the in-
dividual analytic signals xa

νν;1(t) = eiνt , xa
νν;2(t) = ei(ν+�ν)tei�ϕ for 

each of the two tones. At any time t , this can be done by first di-
viding the frequency range at some ω = ωx(t) into two parts, each 
responsible for a separate tone, and then integrating the WFT as in 
(3.2), but over the corresponding frequency ranges. This will give 
the reconstructed analytic signals x̃a

νν;1(t) = C−1
g

∫ ωx(t)
−∞ Gs(ω, t)dω

and x̃a
νν;2(t) = C−1

g

∫ ∞
ωx(t) Gs(ω, t)dω which, using (4.1) and (4.7), 

can be represented as

x̃a
νν;1(t) = eiνt[(1 − R g(ν − ωx(t))

) + R g(ωx(t)

− ν − �ν)ei(�νt+�ϕ)
]
,

x̃a
νν;2(t) = eiνt[R g(ν − ωx(t)) + (

1 − R g(ωx(t)

− ν − �ν)
)
ei(�νt+�ϕ)

]
. (4.9)

Obviously, the reconstruction errors xa
νν;1,2(t) − x̃a

νν;1,2(t) gener-
ally depend on the phase-shift �ϕ . Therefore, in the corresponding 
expressions one should take the average over �ϕ , which will be 
denoted as 〈...〉�ϕ . The relative errors of each tone’s reconstruc-
tion ενν;1,2(ν, t, �ν) then become

ε2
νν;1,2(ν, t,�ν) ≡ 〈|xa

νν;1,2(t) − x̃a
νν;1,2(t)|2〉�ϕ

〈|xa
νν;1,2(t)|2〉�ϕ

= |R g(ν − ωx(t))|2 + |R g(ωx(t) − ν − �ν)|2.
(4.10)

Note that, in the present case, averaging over �ϕ and time-
averaging will give the same results, but in general the TFR res-
olution properties can depend on time, and taking the mean over 
phase-shifts allows one to localize these errors at each t .

The minimum resolvable frequency difference �νmin(ν, t) is 
then the minimum �ν in (4.10) for which the total error
ενν(ν, t, �ν) remains smaller than some accuracy threshold εr :

ενν(ν, t,�ν ≥ �νmin(ν, t))

≡
[
ε2
νν;1(ν, t,�ν) + ε2

νν;2(ν, t,�ν)
]1/2 ≤ εr . (4.11)

It can be expressed through the εr -support of the window in fre-
quency (4.7). Thus, consider the WFT with real, positive and sym-
metric ĝ(ω), e.g. a Gaussian (3.3). Then it follows from (4.1) that 
the minimum WFT amplitude between the peaks corresponding to 
two tones will always appear at ω = ν + �ν/2 (unless these two 
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peaks are merged into a single one at some times, which might 
happen if �ν is too small). Therefore, in practice the respective 
frequency regions of the tones will be separated exactly at their 
average frequency (see Section 5 below), so that one should use 
ωx(t) = ν + �ν/2 when estimating the errors (4.10). The overall 
reconstruction error is then

ενν(�ν) = [
2|R g(−�ν/2)|2 + 2|R g(−�ν/2)|2]1/2

= 2|R g(−�ν/2)|, (4.12)

and, taking into account that ξ1(ε) = −ξ2(ε) due to the assumed 
window symmetry, it follows from (4.11), (4.7) that the frequency 
difference for which two tones are recovered with inaccuracy ε is 
exactly equal to the ε-support of ĝ(ξ). For other window forms 
(e.g. asymmetric ĝ(ξ)) all becomes more complicated, but one can 
still expect to get an overall error of around ε when �ν = ξ2(ε) −
ξ1(ε). Note that the above considerations hold for reasonably small 
ε , so that �ν is high enough and there are always two distinct 
peaks in the WFT amplitude.

The case of two delta-peaks (4.2) is closely similar to that of 
two tones, so the same considerations apply, with just ξ1,2(ε) →
τ1,2(ε). Hence, setting εr as the maximum allowable reconstruc-
tion error for which two tones/delta-peaks can still be regarded as 
resolved, the resolution characteristics for the WFT become

�νmin = ξ2(εr) − ξ1(εr), �τmin
∼= τ2(εr) − τ1(εr),

γω ≡ �ν−1
min, γt = �τ−1

min,

γωt ≡ γωγt = [�νmin�τmin]−1, (4.13)

where τ1,2(ε) and ξ1,2(ε) are defined in (4.7). Accurate reconstruc-
tion can reasonably be assumed as being at 95% precision, so one 
can set εr = 0.05 in (4.13). The resolution characteristics of differ-
ent windows are listed in Supplementary Section 7.

The same approach straightforwardly extends to the WT case, 
where one applies similar considerations in terms of (4.8). Thus, 
it can be shown that two tones with frequency ratio ν+�ν

ν =
1 + �ν/ν = ξ2(ε)

ξ1(ε)
are reconstructed from the WT with an over-

all relative error of around ε . This estimate is exact if ψ̂(ξ) is 
real, positive and symmetric on a logarithmic scale (such as the 
lognormal wavelet (3.9)), in which case the tones will always be 
separated at ωx(t) = exp[logν + log(ν + �ν)] = √

ν(ν + �ν). For 
the resolution of two delta-peaks, it follows from (4.2) that one 
should consider the ε-supports corresponding to ψ∗(ωt/ωψ), so 
that the related error will be different at each frequency ω, char-
acterized by ε calculated from ω�τ/ωψ = τ2(ε) − τ1(ε). Hence, 
the resolution parameters (4.3), (4.4) for the WT are

�νmin(ν) = ν
( ξ2(εr)

ξ1(εr)
− 1

)
,

�τmin(ν) ∼= ωψ

ν

(
τ2(εr) − τ1(εr)

)
,

γω(ν) ≡ [�νmin(ν)]−1, γt(ν) = [�τmin(ν)]−1,

γωt ∼=
[
ωψ

(
τ2(εr) − τ1(εr)

)
log

ξ2(εr)

ξ1(εr)

]−1
, (4.14)

where τ1,2(ε) and ξ1,2(ε) are defined in (4.8), and εr is the maxi-
mum allowable reconstruction error, which can be set to εr = 0.05, 
similarly to that in (4.13). The resolution characteristics of different 
wavelets are listed in Supplementary Section 7.

Summarizing, in contrast to the classic resolution measures 
(4.5), (4.6), the quantities in (4.13), (4.14) are very universal and 
have clear physical meaning, being directly related to the accuracy 
with which two time or frequency events can be recovered from 
the resultant TFR.
5. Extraction of components from the TFR

One of the main purposes of time–frequency analysis is the 
identification and quantification of the AM/FM components present 
in a signal. Being reliably represented in the TFR, they can be iden-
tified and reconstructed. In this respect the TFR can be used to 
decompose a signal into its constituent components, or just to re-
cover some particular components of interest. We now discuss the 
two steps of component extraction from the TFR, namely its iden-
tification and reconstruction.

5.1. Identification of the components

AM/FM components visually appear as “curves” in the TFR plots 
(see e.g. Fig. 1). Thus, if the construction of the (S)WFT or (S)WT is 
well-matched to the signal’s structure, then each component will 
be represented by a unique sequence of TFR amplitude peaks – the 
ridge curve ωp(t), being mapped to a particular time–frequency re-
gion around it – the time–frequency support (TFS) [ω−(t), ω+(t)]. 
Hence, to identify the component one first needs to find its asso-
ciated ridge curve and TFS.

This is not a trivial task, since in real cases there exist many 
peaks in the TFR amplitude at each time and, moreover, their num-
ber can vary in time (e.g. due to noise). The problem of finding the 
appropriate sequence of peaks is widely discussed in the context 
of ridge analysis [1–3,72], but it is a separate topic, which we con-
sider in detail in [73]. For the remainder of this section, we will 
therefore assume that the ridge curve ωp(t) for the component 
of interest has already been found. The TFS can then be defined 
as the widest region of unimodal and non-zero (WFT/WT) or just 
non-zero (SWFT/SWT) TFR amplitude around ωp(t), as discussed 
below.

Definition 1. The time–frequency support [ω−(t), ω+(t)] of the 
component in the current TFR Hs(ω, t) (WFT, WT, SWFT or SWT) 
is defined as the widest frequency region around the correspond-
ing ridge curve ωp(t) where:

1. The TFR amplitude is higher than zero:

|Hs(ω, t)| > 0, ∀t,ω ∈ [ω−(t),ω+(t)].
2. [WFT/WT only] The TFR amplitude is unimodal:

sign(ω − ωp(t))∂ω|Hs(ω, t)| ≤ 0, ∀t,ω ∈ [ω−(t),ω+(t)].
Conversely, the ridge curve is then the sequence of highest TFR 
amplitude peaks in the corresponding TFS at each time:

ωp(t) = argmax
ω∈[ω−(t),ω+(t)]

|Hs(ω, t)|.

Examples of ridge curves and TFSs are shown in Fig. 2.

In relation to the WFT/WT, the first criterion in the TFS defini-
tion establishes that the support is cut when the WFT/WT ampli-
tude drops to zero, usually implying that the region to which some 
AM/FM component is mapped has ended. The second criterion es-
tablishes that if two supports are overlapping in the WFT/WT (i.e. 
the corresponding components interfere with each other), then 
they will be nearly-optimally separated at the frequency where 
the amplitude minimum between the two peaks occurs. Note that 
such a TFS definition is fully appropriate only for unimodal |ĝ(ξ)|
and |ψ̂(ξ > 0)|, while for windows and wavelets that are multi-
modal in frequency, the WFT/WT-based separation of the compo-
nents becomes much more problematic (and therefore such win-
dows/wavelets are rarely used).
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Fig. 2. Examples of the extracted components’ ridge curves ωp(t) and time–frequency supports [ω−(t), ω+(t)] in the WFT and SWFT (the case of the WT and SWT is similar) 
for two different signals, defined by the equations at the top (with ζ(t) denoting unit-deviation Gaussian white noise). Each signal consists of two components, and in 
each panel the colors magenta and orange refer to the first and second components, respectively. (a–d): Snapshots of the WFT and SWFT amplitudes (thick black lines) at 
time t0 = 50 s, with the corresponding ridge points ωp(t0) and the TFSs borders ω(1,2)

± (t0) being shown by filled colored circles and thin colored lines, respectively. (e–h): 
Full time-evolutions of the WFT and SWFT amplitudes (t0, corresponding to the snapshots in (a–d), are indicated by the dashed black lines), with the components’ TFSs 
[ω(1,2)

− (t), ω(1,2)
+ (t)] being indicated by thin colored lines, and their ridge curves ω(1,2)

p (t) by thick solid lines of the same colors. The gray background lines in (e, f) show the 
amplitudes of the SWFTs calculated with a frequency discretization step �ω/2π = 0.005, which is half that of the original. The signals were sampled at 100 Hz for 100 s. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
For the SWFT/SWT, on the other hand, the first criterion is 
enough, so that it is appropriate to extract the TFS simply as the 
widest region of non-zero amplitude around the given peaks. Thus, 
one cannot require strict unimodality as synchrosqueezed trans-
forms are non-smooth and often demonstrate saw-tooth patterns 
(see Fig. 2(b, d)). Neglecting the second criterion might seem to 
cause interfering components to be assigned to the same support 
(as would be the case for the WFT/WT), but numerical tests in-
dicate that this does not happen if the corresponding peaks are 
distinguishable (i.e. not merged together completely) in the under-
lying WFT/WT.

In general, the behavior of the synchrosqueezed TFRs is much 
more complex than that of the WFT/WT and, even in the noise-free 
case, the SWFT/SWT will contain a lot of spurious TFSs represented 
by small-amplitude spikes (see Fig. 2(b, d)). Thus, noise, interfer-
ence or amplitude/frequency modulation might cause some of the 
SWFT/SWT power of the component to be dissipated over other 
frequencies in the form of spiky TFSs. Such “leakage” is usually 
very small and does not lead to large errors in signal reconstruc-
tion (see Section 8), but the existence of so many TFSs greatly 
complicates the interpretation of the resultant SWFT/SWT, rep-
resenting a significant drawback in comparison with the usual 
WFT/WT. Moreover, in contrast to the latter, the amplitude of the 
synchrosqueezed TFRs depends on the width of the frequency bins 
in a quite sophisticated way (conditioned on the signal’s structure 
and characteristics of the components), as illustrated in Fig. 2(b, d). 
This reflects the important fact that, for the SWFT/SWT, only the 
integral over the whole support makes sense, so that e.g. the com-
ponent’s amplitude cannot be estimated based on the heights of 
the corresponding peaks, as can be done for the WFT/WT (see be-
low).

Remark 5.1. For the SWFT/SWT, it has also been proposed [5,30]
to reconstruct the components from the time–frequency area of 
constant width � around the corresponding ridge curve, i.e. to de-
fine the TFS as ω±(t) = ωp(t) ± �/2. Such an approach, however, 
is highly non-universal, as well as non-adaptive. Thus, the spread 
of the SWFT/SWT around each peak is often asymmetric and varies 
in time (see e.g. Fig. 2(f,h)), being determined by the signal’s struc-
ture and TFR resolution properties.
5.2. Estimation of the component’s parameters

Having found the ridge curve ωp(t) and TFS [ω−(t), ω+(t)] cor-
responding to the chosen AM/FM component A(t) cosφ(t), one 
then usually needs to estimate its amplitude A(t), phase φ(t) and 
frequency ν(t). This can be done by two methods: direct and ridge. 
Both these approaches are considered below, while their relative 
performance and the corresponding errors will be studied in detail 
in Sections 8 and 10.

5.2.1. Direct reconstruction
Given its TFS, the amplitude and phase of the component can 

be reconstructed using the inversion formulas (3.2), (3.6), (3.12), 
but with the integration over ω being restricted to only the cor-
responding time–frequency region [ω−(t), ω+(t)]. The expressions 
for estimating instantaneous frequency, and generally any order 
time-derivatives of amplitude and phase, can be derived in a sim-
ilar way (see Supplementary Section 5). Such a method will be 
referred to as direct reconstruction, and the corresponding formulas 
are:

direct[WFT]:

A(t)eiφ(t) = C−1
g

ω+(t)∫
ω−(t)

Gs(ω, t)dω,

ν(t) = Re

[∫ ω+(t)
ω−(t) ωGs(ω, t)dω∫ ω+(t)
ω−(t) Gs(ω, t)dω

− ωg

]
, ωg ≡ C−1

g

2

∫
ξ ĝ(ξ)dξ,

(ωg = 0 for symmetric ĝ(ξ), such as Gaussian window),

direct[WT]:

A(t)eiφ(t) = C−1
ψ

ω+(t)∫
ω−(t)

W s(ω, t)
dω

ω
,

ν(t) = Re

[
D−1

ψ

∫ ω+(t)
ω−(t) ωW s(ω, t)dω

ω

C−1
ψ

∫ ω+(t)
ω−(t) W s(ω, t)dω

ω

]
, Dψ ≡ ωψ

2

∞∫
0

1

ξ
ψ̂∗(ξ)

dξ

ξ
,
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direct[SWFT]:

A(t)eiφ(t) =
ω+(t)∫

ω−(t)

V s(ω, t)dω, ν(t) = Re

[∫ ω+(t)
ω−(t) ωV s(ω, t)dω∫ ω+(t)
ω−(t) V s(ω, t)dω

]
,

direct[SWT]:

A(t)eiφ(t) =
ω+(t)∫

ω−(t)

Ts(ω, t)dω, ν(t) = Re

[∫ ω+(t)
ω−(t) ωTs(ω, t)dω∫ ω+(t)
ω−(t) Ts(ω, t)dω

]
,

(5.1)

where the formula for reconstructing ν(t) from the SWFT/SWT 
was introduced simply by analogy to the WFT/WT case, thus being 
derived rather empirically. In practice, the frequency axis is parti-
tioned onto bins, so the formulas (5.1) should also be discretized, 
and the correct way of doing this is discussed in Supplementary 
Section 1.2.

Except for the SWFT/SWT-based ν(t), all direct estimates (5.1)
by definition give exact values (up to the error of the analytic 
approximation (2.4)) in the “ideal” case when TFS contains all 
the energy of the component and no other contributions. The 
SWFT/SWT-based instantaneous frequency estimates, though not 
rigorously derived, are also almost exact in this case, as will be 
seen in Section 8.

Remark 5.2. The direct estimation of instantaneous frequency (5.1)
is not possible for windows and wavelets with infinite ωg and Dψ

(5.1), respectively. While for the WFT this situation arises only for a 
very exotic windows with | ∫ ξ ĝ(ξ)dξ | = ∞, for the WT it is more 
common, occurring e.g. for the Morlet wavelet. In such circum-
stances one can use a kind of empirical approximation which we 
refer to as hybrid reconstruction:

hybrid[WFT]: ν(t) = Re

[∫ ω+(t)
ω−(t) νG(ω, t)Gs(ω, t)dω∫ ω+(t)

ω−(t) Gs(ω, t)dω

]
,

hybrid[WT]: ν(t) = Re

[∫ ω+(t)
ω−(t) νW (ω, t)W s(ω, t)dω

ω∫ ω+(t)
ω−(t) W s(ω, t)dω

ω

]
. (5.2)

When both direct and hybrid reconstructions are possible, direct 
is to be preferred (as it was rigorously derived, see Supplemen-
tary Section 5), though the difference between the two estimates 
is usually negligible.

5.2.2. Ridge reconstruction
The other widely used possibility is to reconstruct the com-

ponent’s parameters using TFR values at the ridge points ωp(t)
[1,7,72], which will be referred to as the ridge reconstruction. 
Thus, by considering the WFT/WT of a single tone signal s(t) =
A cos(νt + ϕ) it can be seen that the tone amplitude and phase 
can be perfectly reconstructed from the TFR value at any fre-
quency as Aei(νt+ϕ) = 2Gs(ω, t)/ĝ(ω − ν) (WFT) or Aei(νt+ϕ) =
2W s(ω, t)/ψ̂∗(ωψν/ω) (WT). Generalizing such an approach to 
the case of any AM/FM component, one obtains the ridge recon-
struction formulas:

ridge[WFT]:
ν(t) = ωp(t) + δνd(t), A(t)eiφ(t) = 2Gs(ωp(t), t)

ĝ(ωp(t) − ν(t))
,

ridge[WT]:
ν(t) = ωp(t)eδ log νd(t), A(t)eiφ(t) = 2W s(ωp(t), t)

ψ̂∗(ω ν(t)/ω (t))
,

ψ p
ridge[SWFT]:
ν(t) = ωp(t), φ(t) = arg

[
V s(ωp(t), t)

]
,

ridge[SWT]:
ν(t) = ωp(t), φ(t) = arg

[
Ts(ωp(t), t)

]
, (5.3)

where δνd(t) and δ logνd(t) are the corrections for discretization 
of the frequency scale (see below). There are no expressions for 
the SWFT/SWT-based amplitude estimates because there is no 
possibility of reconstructing amplitude from the ridges of syn-
chrosqueezed TFRs. This is because single points in the latter do 
not reflect the component’s amplitude and will generally depend 
on the widths of frequency bins, as illustrated in Fig. 2 (see also 
[73,74]).

The corrections δνd(t) in (5.3) arise because, in practice, the 
TFRs are calculated at the discrete frequencies (see Section 6.2), so 
the peak positions ωp(t) are determined only up to the half-width 
of a frequency bin, leading to inaccuracies in all estimate. For the 
WFT/WT, these discretization errors can greatly be reduced by us-
ing quadratic interpolation to better locate the peak, so that in 
(5.3) one sets

WFT: δνd(t) = �ω

2

a3 − a1

2a2 − a1 − a3
,

WT: δ logνd(t) = n−1
v log 2

2

a3 − a1

2a2 − a1 − a3
,

a{1,2,3} ≡ |Gs(ω{kp(t)−1,kp(t),kp(t)+1}, t)| or

|W s(ω{kp(t)−1,kp(t),kp(t)+1}, t)|, (5.4)

where kp(t) denotes the discrete index of the peak at each time: 
ωp(t) ≡ ωkp(t) . The corrections (5.4) then propagate to the am-
plitude and phase estimates (5.3), making them more accurate 
as well. The interpolation cannot, however, be performed for the 
SWFT/SWT due to their non-smoothness, and therefore in this case 
one uses the “uncorrected” estimates in (5.3). The discretization er-
rors of ridge reconstruction for each TFR are discussed in detail in 
Supplementary Section 1.2.

In contrast to direct reconstruction (5.1), ridge estimates (5.3)
are not exact, having errors proportional to the strengths of the 
amplitude and frequency modulations of the component [1,72]. On 
the other hand, they are more robust to noise and interference 
than direct estimates (5.1). These and other related issues will be 
discussed in Section 10.

6. Practical issues

In theory, one has infinite time and frequency scales, and both 
of these variables are continuous. In practice, however, everything 
is finite and discrete, which has specific consequences in terms 
of the resultant TFRs. In this section, the issues that arise while 
dealing with real signals are briefly reviewed, while the technical 
details and a more detailed discussion are provided in Supplemen-
tary Section 1.

6.1. Signal preprocessing

To obtain a reliable TFR, an initial preprocessing of the signal 
should be performed. First, one should remove trends, which can 
otherwise spoil the resultant representation due to having non-
negligible power at a range of frequencies; we detrend the signal 
by subtracting a third order polynomial fit from it, though other 
possibilities can also be considered. Secondly, the signal should be 
filtered in the frequency band of interest to eliminate the interfer-
ence with the other components lying outside, and we use simple 
bandpass filtering to do so. The motivation behind these two steps 
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and their effects are thoroughly discussed in Supplementary Sec-
tion 1.1.

6.2. Frequency discretization

In theory one has a continuous frequency variable ω, but in 
practice the TFRs are calculated at the chosen discrete values ωk =
(k − k0)�ω (WFT and SWFT: linear scale) or ωk/2π = 2(k−k0)/nv

(WT and SWT: logarithmic scale). Therefore, the widths of the fre-
quency bins, determined by the discretization parameters �ω or 
nv , set an upper bound on the TFR frequency resolution (as it be-
comes impossible to distinguish components with frequencies in 
the same bin), as well as introducing related errors into the direct 
and ridge estimates.

It can be argued, that the optimal discretization parameters, for 
which bin widths are small enough so as not to degrade the theo-
retical resolution properties of the TFR, but not smaller, are

(S)WFT: �ω = ξ2(0.5) − ξ1(0.5)

Nb
,

(S)WT: nv = Nb log 2

log ξ2(0.5) − log ξ1(0.5)
, (6.1)

where Nb is a number larger than one (we use Nb = 10 by de-
fault). Furthermore, with the choice (6.1) the discretization errors 
in both direct and ridge estimates also become negligible. See Sup-
plementary Section 1.2 for more details.

6.3. Finite signal length effects

Theoretically, one integrates over an infinite time while com-
puting the WFT (3.1) and WT (3.4), but in practice the signal has a 
finite time duration. Consequently, the resultant TFR becomes ill-
defined near the signal’s time borders (when t is close either to 0
or to the overall time-length T ), and one needs to find an appro-
priate way to estimate it there.

This problem is usually tackled by first calculating the TFR for a 
longer signal obtained by padding the original one with specifically 
chosen values at both ends (thus continuing it to t < 0 and t > T
according to some rule), and then “trimming” the resultant TFR 
to the original time limits. The commonest padding rules include 
zero padding (just set s(t < 0) = s(t > T ) = 0), symmetric/peri-
odic padding (reflect/periodically-continue the signal at both ends) 
and predictive padding (infer past and forecast future signal val-
ues, with Supplementary Section 6 presenting one possible way of 
doing so).

However, irrespectively of the padding scheme being used, 
there often appear some distortions of the WFT/WT near both sig-
nal ends – boundary effects – which obviously propagate to the 
SWFT/SWT as well. For the case of zero padding, the relative 
boundary error εb(ω, t) in the TFR coefficient at frequency ω and 
time t can be estimated as (see Supplementary Section 1.3):

(S)WFT: εb(ω, t) = ∣∣P g(−t) + P g(t − T )
∣∣,

(S)WT: εb(ω, t) = ∣∣Pψ(−ωt/ωψ) + Pψ(ω(t − T )/ωψ)
∣∣. (6.2)

For the other schemes boundary errors are harder to estimate, but 
the above expressions can serve as a good proxy for their upper 
bounds. Predictive padding typically leads to the smallest distor-
tions, and we therefore use it by default.

Nevertheless, for better accuracy it is advisable to estimate 
all quantities of interest from the time–frequency region where 
boundary distortions are negligible (i.e. smaller than some chosen 
accuracy threshold ε) – the so-called cone-of-influence:
Cone-of-influence {ω, t}(ε)
coi : (ω, t) ∈ {ω, t}(ε)

coi ⇔ εb(ω, t) ≤ ε.

(6.3)

A more detailed discussion of the padding schemes and boundary 
effects, as well as the expressions for cones-of-influence in the case 
of the (S)WFT/(S)WT, can be found in Supplementary Section 1.3 
(see also [7,8]).

6.4. TFR frequency range

For completeness, the restrictions on the frequency range 
[ωmin, ωmax] over which to calculate the TFR, i.e. how high/low 
in frequency one can in principle go, should also be discussed. For 
a signal s(t) sampled at f s Hz for T seconds, one has

ωmin/2π ≥ 1/T , ωmax/2π ≤ f s/2, ω
(stat)
min /2π = 5/T ,

WFT: ω(ε)

min = −∞; WT: ω(ε)

min ≤ ωψ

[
τ2(ε) − τ1(ε)

]
/T ;

SWFT: ω(ε)

min = −∞; SWT: ω(ε)

min ≤ ξ2(ε)
[
τ2(ε) − τ1(ε)

]
/T ,

(6.4)

where ω(stat)
min is the minimal frequency for which one can do any 

statistically meaningful conclusions based on the behavior of the 
corresponding TFR coefficients, while ω

(ε)

min is the minimal fre-
quency for which some TFR coefficients are determined with an 
accuracy better than ε in terms of the time boundary effects.

Finally, it should also be noted that to calculate SWFT/SWT in 
the region [ωmin, ωmax] with accuracy ε in terms of the frequency 
boundary effects, the underlying WFT/WT should be calculated 
over a slightly wider range [ω̃min, ̃ωmax] given by

WFT: [ω̃min, ω̃max] = [ωmin + ξ1(ε),ωmax + ξ2(ε)],
WT: [ω̃min, ω̃max] =

[
ωmin

ξ1(ε)

ξ2(ε)
,ωmax

ξ2(ε)

ξ1(ε)

]
. (6.5)

The derivations of (6.4) and (6.5) are provided in Supplementary 
Section 1.4 together with a more detailed discussion.

Part 2. Advanced topics

Having reviewed the main aspects of the (S)WFT and (S)WT, 
we now consider three more sophisticated but important issues, 
namely: the effects of window/wavelet parameters on the resultant 
TFR, the relative performance of different reconstruction methods, 
and the advantages/drawbacks of synchrosqueezing. We start by 
discussing the questions to be addressed. Their numerical study is 
then performed in four different cases, when the signal is repre-
sented as: two interfering tones; an amplitude-modulated compo-
nent; a frequency-modulated component; and a single tone cor-
rupted by noise. In this way, accounting for all possible complica-
tions, one can build up quite a complete picture of how the issues 
in question manifest themselves for an arbitrary signal. Using the 
acquired knowledge, we summarize the results, provide additional 
discussion and draw conclusions for each issue being considered.

For this second part of the work, we introduce few additional 
assumptions and conventions:

• From now on, ĝ(ξ) and ψ̂(ξ > 0) are assumed to be real, posi-
tive and unimodal, thereby automatically implying the realness 
and positivity of R g,ψ (ω) (4.7), (4.8).

• The boundary effects for all TFRs (see Section 6.3) will be min-
imized by padding the signal with exact values (i.e. simulating 
it for a longer period and considering only the central part, 
with the rest used as padding).
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• Where needed, the ridge curve ωp(t) will be selected so as to 
provide the most realistic component extraction. This will usu-
ally correspond to selecting the highest TFR amplitude peaks 
at each time: ωp(t) = argmaxω|Hs(ω, t)|. Such an approach is 
very fast, but works only for simulated examples, while for 
real signals a more universal schemes should be used [73].

• In all simulations of Section 8 we will use very fine frequency 
binning: �ω/2π = 0.002 for (S)WFT and nv = 256 for (S)WT. 
These values are chosen to guarantee that the discretization-
related errors of SWFT/SWT-based frequency estimates (see 
Section 6.2) are �νd/2π ≤ 0.001 (SWFT) and �νd/ν ≤ 0.0015
(SWT). We will therefore not discuss reconstruction errors that 
are < 0.001.

Furthermore, since the only significant difference between the 
WFT and WT lies in their linear and logarithmic frequency res-
olutions, one can unify many related expressions. Denoting the 
WFT/WT as Hs(ω, t), we therefore write

Hs(ω, t) =
∫

s+(t)hu−t(ω)dt = 1

2π

∞∫
0

eiξt ŝ(ξ)ĥξ (ω)dξ,

WFT: ht(ω) = g(t)e−iωt, ĥξ (ω) = ĝ(ω − ξ),

WT: ht(ω) = (
ω/ωψ

)
ψ∗(ωt/ωψ), ĥξ (ω) = ψ̂∗(ωψξ/ω).

(6.6)

The WFT/WT of the multitone signal is then

s(t) =
∑

n

An cos(νnt + ϕn)

⇒ Hs(ω, t) =
∑

n

Aneiϕn

2
ĥνn(ω)eiνnt, (6.7)

and, denoting φn ≡ νnt + ϕn and �φnm ≡ φn(t) − φm(t), one gets

|Hs(ω, t)|2 =
∑

n

A2
nĥ2

νn
(ω)

4

+
∑

n,m>n

An Amĥνn (ω)ĥνm (ω)

2
cos�φnm(t),

arg[Hs(ω, t)] = arctan

∑
n Anĥνn (ω) sin φn(t)∑
n Anĥνn (ω) cos φn(t)

,

νH (ω, t) ≡ ∂targ[Hs(ω, t)] =
∑

n

A2
nĥ2

νn
(ω)

4|Hs(ω, t)|2 νn

+
∑

n,m>n

An Amĥνn (ω)ĥνm (ω)

4|Hs(ω, t)|2 [νn + νm] cos �φnm(t).

(6.8)

Note that the expressions for the synchrosqueezed TFRs are more 
complicated and cannot be obtained in a simple form.

Finally, the formulas (3.2) and (3.6) for reconstructing the signal 
in the time-domain are generalized as

sa(t) = C−1
h

∫
Hs(ω, t)dμ(ω), Ch = 1

2

∫
ĥξ (ω)dμ(ω)

WFT: Ch = C g, μ(ω) = ω ∈ (−∞,∞),

WT: Ch = Cψ, μ(ω) = [logω] ∈ (−∞,∞)
(
ω ∈ (0,∞)

)
. (6.9)
Fig. 3. The WFT and SWFT calculated at different f0 for a signal consisting of four 
components s(t) = s1(t) + s2(t) + s3(t) + s4(t): 1) FM component s1(t) = cos(2π ·
0.5(t +0.25 cos(2π ·0.1t))); 2) AM component s2(t) = (1 +0.5 cos(2π ·0.2t)) cos(2π ·
1.5t); 3,4) two tones with close frequencies s3,4(t) = cos(2π · (2.5 ∓ 0.1)t). The sit-
uation for the WT and SWT is qualitatively the same. The signal was sampled at 
50 Hz for 200 s.

7. The questions to be addressed

7.1. Choice of the window/wavelet parameters

The parameters of the window/wavelet, e.g. the resolution pa-
rameter f0, determine the time and frequency resolution of the 
TFR (see Section 4.3), thus having great impact on the resultant 
representation. In particular, f0 “instructs” the TFR on how to treat 
AM/FM components present in the signal: either as single entities, 
or as sums of tones [75]. This is illustrated in Fig. 3, where differ-
ent TFRs are shown for signals consisting of one FM component, 
one AM component, and two tones. As can be seen, for f0 = 1, the 
TFRs treat both AM/FM components as individual entities, while at 
f0 = 5 they are represented as sums of tones; at the same time, 
two tones present in the signal that appear indistinguishable at 
f0 = 1 can be resolved at f0 = 5. For the case considered in the 
figure, neither f0 = 1 nor f0 = 5 is suitable, and one needs to 
choose the resolution parameter based on a compromise between 
reliable representation of the AM/FM components and reliable rep-
resentation of the tones.

Generally, the effects of changing f0 are not always fully un-
derstood and appreciated. We will investigate them in detail by 
studying the TFR behavior for different signals, with the aim of 
answering the questions: How high should f0 be to distinguish 
between two tones? How low should it be to reliably represent 
components with particular amplitude and/or frequency modula-
tion? Within what range can it be chosen?

Since the AM/FM component can be represented as a sum of 
tones (see Section 2), consideration can be restricted to the TFR 
for a multitone signal s(t) = ∑M

m=1 am cos(νmt + ϕm). For WFT/WT, 
one way to classify its behavior is to consider the time-averaged 
number 〈Np〉 of TFR amplitude peaks

〈Np〉 = 〈#ωp(t) : |∂ω Hs(ωp(t), t)| = 0, |∂2
ω Hs(ωp(t), t)| < 0〉,

(7.1)

where only peaks larger than 10−6 of the summed amplitude of all 
peaks are taken into account (to discard spurious peaks, e.g. due to 
round-off errors). In addition, the degree of interference between 
the tones will be quantified by η (with η → 0 and η → 1 corre-
sponding to no and complete interference, respectively); it will be 
defined for each particular case separately.

The qualitative behavior of the WFT/WT for a multitone signal 
can then be partitioned into four different regimes, as illustrated 
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Table 1
Regimes of possible WFT/WT behavior for an M-tone signal s(t) = ∑M

m=1 am cos(νmt + ϕm); the εc (= 0.001 by default) denotes a precision threshold used for regarding the 
tones as completely resolved or completely merged together.

Regime Description Condition

I All tones are fully resolved, i.e. at each time there are M well-separated peaks in the WFT/WT amplitude, and the 
time-variations of the latter are zero or negligible.

〈N p〉 = M, η ≤ εc

II Tones partly interfere with each other, so the WFT/WT amplitude varies in time, but there are always M distinct peaks. 〈N p〉 = M, η > εc

III Tones severely interfere, so that the nearest ones sometimes merge, i.e. there exist moments when there are fewer 
than M (non-negligible) peaks in the WFT/WT amplitude.

〈N p〉 < M, η < 1 − εc

IV Tones are completely merged so that, although the WFT/WT amplitude varies strongly in time, it usually has only one 
dominant peak.

〈N p〉 ≈ 1, η ≥ 1 − εc
in Table 1. Evidently, for a few unrelated tones, one should aim 
at Regime I, while for AM/FM components – at Regime IV. The 
SWFT/SWT, on the other hand, cannot be classified using the same 
measures (e.g. 〈Np〉) due to being non-smooth but, as will be seen 
below, synchrosqueezing does not seem to change the qualitative 
aspects of the TFR behavior.

7.2. Choice of the reconstruction method

As discussed in Section 5, there are two possible methods – 
direct and ridge – by which a component can be reconstructed 
from its support in a TFR. However, to the best of our knowledge, 
there are no works comparing their performance, so it is not clear 
in what cases which method should be used. This issue will be 
thoroughly investigated in the following sections. We will quantify 
the relative error of reconstruction εa,φ, f of amplitude, phase and 
frequency of the AM/FM component as

εa ≡
√〈[Arec(t) − Atrue(t)]2〉√〈[Atrue(t)]2〉 ,

εφ ≡
√

1 − |〈ei(φrec(t)−φtrue(t))〉|2,

ε f ≡
√〈[νrec(t) − νtrue(t)]2〉

ν0
(7.2)

where Arec,true(t), φrec,true(t), νrec,true(t) denote the reconstructed 
and true parameters, while ν0 ≡ 2π for the (S)WFT and ν0 ≡
〈νtrue(t)〉 for the (S)WT (to account for the linear and logarith-
mic frequency resolutions of these transforms). The form of εφ was 
chosen so as to magnify the corresponding error and make it com-
parable to the others.

7.3. Advantages/drawbacks of synchrosqueezing

As can be seen from Fig. 3, if the components are not reli-
ably represented in the WFT/WT, they will be not well reflected 
in the SWFT/SWT either. Therefore, it is not immediately obvious 
what are the advantages of SWFT/SWT over the usual WFT/WT, 
apart from being more visually appealing. Does synchrosqueez-
ing improve the time or frequency resolution of the transform? 
Or does it allow more accurate reconstruction of the components? 
And generally, does the concentration of the TFR represent the pri-
mary characteristic of its performance? To answer these questions, 
we compare not only the performance of different reconstruction 
methods, but also the accuracy of estimates obtained by these 
methods from the usual and synchrosqueezed TFRs. For exam-
ple, to understand whether synchrosqueezing improves frequency 
resolution it is sufficient to study the case of two interfering com-
ponents: the resolution can be regarded as being increased only if 
one is able to extract the parameters of these components more 
accurately from the SWFT/SWT than from the underlying WFT/WT.
8. Simulation study

8.1. Resolution of two tones

Consider a two-tone signal, and define

s(t) = cos(ν1t + ϕ1) + r cos(ν2t + ϕ2), ν1 < ν2;
�ν ≡ ν2 − ν1, �φ(t) ≡ �νt + (ϕ2 − ϕ1), ν̄ ≡ ν1 + ν2

2
.

(8.1)

Then, according to (6.8) and (6.7), one has

2Hs(ω, t) = ei(ν1t+ϕ1)
[

ĥν1(ω) + rĥν2(ω)ei�φ(t)
]
,

4|Hs(ω, t)|2 = ĥ2
ν1

(ω) + r2ĥ2
ν2

(ω) + 2rĥν1(ω)ĥν2(ω) cos �φ(t),

νH (ω, t)

= ν1ĥ2
ν1

(ω) + ν2r2ĥ2
ν2

(ω) + 2rν̄ĥν1(ω)ĥν2(ω) cos �φ(t)

ĥ2
ν1

(ω) + r2ĥ2
ν2

(ω) + 2rĥν1(ω)ĥν2(ω) cos �φ(t)
.

(8.2)

As can be seen, the supports of different tones in the WFT/WT can 
overlap with each other, so that ĥν1(ω)ĥν2 (ω) �= 0. In this situation 
one says that the two tones interfere in the TFR, which is re-
flected in the appearance of terms ∼ĥν1 (ω)ĥν2 (ω) cos �φ(t), caus-
ing time-variations in the squared TFR amplitude |Hs(ω, t)|2 and 
an instantaneous frequency νH (ω, t). These terms will be called 
interference terms, and they are mainly responsible for the different 
types of TFR behavior, considered below.

Effects of the window/wavelet parameters. Different types of 
(S)WFT behavior (see Table 1) for a two-tone signal (8.1) are il-
lustrated in Fig. 4 (for the (S)WT all is similar). As can be seen, 
for sufficiently high f0, the WFT amplitude has two well-separated 
peaks at all times (Regime I). For lower f0, although there are 
still two distinct peaks in the WFT at all times, “bridges” begin 
to appear between them at certain moments, reflecting interfer-
ence between components and causing localized corruption of the 
WFT (Regime II). Regime III behavior appears when we further de-
crease f0, so the window/wavelet frequency resolution becomes 
insufficient to resolve the two tones, and they become mixed, i.e. 
sometimes there are two peaks in the WFT amplitude and some-
times only one. Finally, for a very low value of the resolution 
parameter, the frequency resolution becomes so poor (although 
the time resolution is extremely sharp) that the two tones are 
completely merged, appearing as a single AM/FM component in 
TFR (Regime IV).

Comparing (a–d) and (m–p) in Fig. 4, it can be seen that, in 
agreement with what was said above, synchrosqueezing does not 
change the qualitative behavior of the TFR. Thus, when interference 
is present, it affects both the TFR amplitude and instantaneous fre-
quency (8.2), which are used in the SWFT/SWT construction. Note 
that, for an SWT based on the wavelet with compact frequency 
support, the resolution of two tones was also considered in [76].
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Fig. 4. Possible behaviors of the (S)WFT for a two-tone signal, sampled at 20 Hz for 500 s; for illustrational purposes, the (S)WFT was calculated using a compact support 
Gaussian window: ĝ(ξ /∈ [ξ1(0.001), ξ2(0.001)]) = 0. (a–d): Time-averaged WFT amplitudes; dotted lines indicate WFTs of each tone separately, with the area shared by both 
of them being shown in gray. (e–h): WFT amplitudes in time–frequency domain. (i–l): Time-averaged WFT frequency νG(ω, t), with dashed lines showing the frequencies 
of each tone ν1, ν2. (m–p): SWFT amplitudes in time–frequency domain. In (a–d) and (i–l), the yellow regions indicate ±√

2 standard deviations around the corresponding 
average values. The interference measure ηr is defined in (8.3). Note that (d, h, l, p) correspond to Regime IV only if we take εc > 0.06 in its condition (see Table 1), while 
for lower precision smaller f0 are needed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
For the first and second tone separately (i.e. in the absence 
of the other one), the “interference-free” WFT/WT amplitude will 
equal hν1 (ω)/2 and rhν2 (ω)/2 (dotted lines in Fig. 4(a–d)). The 
area shared by these two interference-free amplitudes (shown in 
gray in Fig. 4(a–d)) in relation to the total area under hν1 (ω)/2
(first tone) or rhν2 (ω)/2 (second tone) can therefore serve as a 
measure of the interference-related corruption for each tone. The 
overall degree of interference ηr can then be taken as the maxi-
mum between the two:

ηr ≡ max[η1, η2],

η1 = rη2 =
∫

min[ĥν1(ω), rĥν2(ω)]dμ(ω)∫
ĥν1(ω)dμ(ω)

. (8.3)

Proceeding as in Section 4.4, one can show that the maxima 
(over time) of the direct reconstruction errors of the tones are pro-
portional to η1,2. The condition ηr ≤ εc for the first type of TFR 
behavior (see Table 1) may therefore be approximated as

(S)WFT: �ν ≥ ξ2(εc) − ξ1(εc); (S)WT: ν2

ν1
≥ ξ2(εc)

ξ1(εc)
. (8.4)

As will be seen below, this approximation is very accurate even for 
small and large r, especially in the case of the WFT. In fact, (8.4)
implies η1 ≤ (1 + r)ε/2 and η2 ≤ (1 + r−1)ε/2.

Fig. 5 shows the parameter regions (found by numerical simu-
lations) corresponding to each type of TFR behavior (see Table 1) 
for the two-tone signal (8.1). Clearly, the behavior of the (S)WFT 
(Fig. 5(a)) depends only on r and the product f0�ν , so that the 
corresponding pictures remain the same for any f0; they also do 
not change if one exchanges the tones r → 1/r, which for symmet-
ric ĝ(ξ) is equivalent to η1,2 → η2,1. A similar situation will ap-
pear for the lognormal wavelet (S)WT (except f0�ν → f0 log ν2

ν1
=

f0
�ν
ν1

+ O (�ν2

ν2
1

)). The Morlet wavelet, however, changes its form 
when one reduces f0 (see Section 3.2), so the behavior of the 
corresponding (S)WT (Fig. 5(b)) also changes and becomes progres-
sively asymmetric under r → 1/r.
Fig. 5. Dependence of the TFR behavior on the parameters r, ν1, ν2 ≡ ν1 + �ν of 
the two-tone signal (8.1) and Gaussian window (a) or Morlet wavelet (b) resolution 
parameter f0. In both plots, light-blue lines show approximate Regime I boundaries 
according to (8.4). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Direct vs ridge reconstruction. We now investigate numerically 
the performance of the different reconstruction methods (direct 
and ridge-based) for the two-tone signal (8.1). For each tone, the 
ridge curve (see Section 5.1) is extracted by finding at each time 
the two most dominant peaks in the TFR amplitude and picking 
the one nearest to the actual tone frequency. Note that this is 
done for each tone separately so, when they merge into a sin-
gle peak, both will have the same extracted support. We then 
apply the direct (5.1) and ridge (5.3) reconstruction methods to 
obtain parameters of each tone and calculate the respective errors 
εa,φ, f (7.2).

Fig. 6 shows examples of amplitudes, phases and frequencies as 
reconstructed from the (S)WFT. As can be seen, all methods fail 
in Regime III (Fig. 6(d, e, f)), so any comparison does not make 
sense in that case. On the other hand, when the interference is 
not so strong (Regime II – Fig. 6(a, b, c)) the ridge estimates are 
clearly superior to the direct ones, both for the WFT and for the 
SWFT. The robustness of the ridge reconstruction to interference is 
furthermore confirmed by Supplementary Figs. 10 and 11, where 
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Fig. 6. Instantaneous parameters of the first tone in a signal (8.1), as reconstructed 
from the signal’s WFT and SWFT (colored lines); the true values are indicated by 
thick gray lines. Reconstruction errors εa,φ, f (7.2) are shown in the same order as 
lines in legend, corresponding to direct[WFT] (blue), direct[SWFT] (red), ridge[WFT]
(green), ridge[SWFT] (brown). In (a, d), ridge reconstruction from the SWFT is not 
shown as it is not appropriate for amplitude (see Section 5). In (b, e), the difference 
between the reconstructed and true phases is shown. The signal (8.1) was sampled 
at 50 Hz for 100 s, and it was simulated with ν1 = ν2 − π/2 = 4π , r = 1.25 and 
ϕ1 = ϕ2 = 0. Note that ordinate scale in (d, e, f) is four times zoomed out as com-
pared to (a, b, c). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

the (S)WFT-based and (S)WT-based estimation errors are shown 
in dependence on f0 and parameters of the signal (8.1). There 
one can also see that, for both methods, reconstruction errors are 
largely determined by the type of TFR behavior, being negligible in 
Regime I, increasing in II and becoming very large in III–IV.

WFT/WT vs SWFT/SWT. From Fig. 4 it is clear that the interfer-
ence between components propagates from the WFT/WT to the 
SWFT/SWT, but it remains to be established whether it is re-
duced/magnified in the process of synchrosqueezing, and to which 
extent. In practice, however, it appears that synchrosqueezing does 
not change the degree of interference between the components. 
Thus, when the interference is not overwhelmingly strong, the 
WFT and SWFT provide almost identical ridge estimates for all 
parameters (Fig. 6(a, b, c)). On the other hand, the SWFT-based 
direct estimates of amplitude (phase and frequency) are slightly 
less (more) accurate than the WFT-based ones (Fig. 6(a, b, c)), 
but this is likely to be on account of the difference between the 
TFS definitions for these transforms (see Section 5.1). Supplemen-
tary Figs. 10 and 11 provide detailed information regarding relative 
performance of the WFT/WT and SWFT/SWT (in terms of compo-
nent reconstruction) in dependence on signal parameters. It can 
be concluded that synchrosqueezing does not allow better resolu-
tion of two interfering tones, and therefore does not increase the 
frequency resolution of the TFR.

8.2. Amplitude modulation

We now consider the AM component with sinusoidal amplitude 
modulation, and define

s(t) = [1 + ra cos(νat + ϕa)] cos(νt + ϕ)

= cosφ(t) + ra

2

[
cos

(
φ(t) + φa(t)

) + cos
(
φ(t) − φa(t)

)];
φ(t) ≡ νt + ϕ, φa(t) ≡ νat + ϕa, (8.5)

where the amplitude definition implies ra ≤ 1, 0 ≤ νa < ν .
It is evident that the AM component (8.5) can be represented as 

a sum of three tones: the main one at frequency ν and two equal 
amplitude side tones at ν ± νa; the latter appear as a result of the 
amplitude modulation and therefore will be called “AM-induced”. 
Therefore, all the formulas and classification for multitone signals 
also apply for the AM component (8.5), for which (6.8) become

2Hs(ω, t) = eiφ(t)
[

ĥν(ω) + ra

2
ĥν+νa (ω)eiφa(t)

+ ra

2
ĥν−νa (ω)e−iφa(t)

]
,

4|Hs(ω, t)|2 = ĥ2
ν1

(ω) + r2
a

4

[
ĥ2
ν+νa

(ω) + ĥ2
ν−νa

(ω)
]

+ raĥν(ω)
[
ĥν+νa (ω) + ĥν−νa (ω)

]
cosφa(t)

+ r2
a

2
ĥν+νa (ω)ĥν−νa (ω) cos 2φa(t),

νH (ω, t) = ν + raνa

2

ĥν+νa (ω) − ĥν−νa (ω)

4|Hs(ω, t)|2
×

( ra

2
[ĥν+νa (ω) + ĥν−νa (ω)] + ĥν(ω) cos φa(t)

)
.

(8.6)

Comparing with the two-tone case (8.2), we now have two in-
terference terms, ∼ cosφa(t) and ∼ cos 2φa(t), responsible for in-
terference between the main tone and the AM-induced ones, and 
between the two AM-induced ones, respectively.

Effects of the window/wavelet parameters. From (8.5) it is clear 
that one can look at the AM component from two different per-
spectives: either as an oscillation with amplitude modulation, or 
as the superposition of three tones with particular amplitude, 
phase and frequency relationships. The way in which the compo-
nent (8.5) is represented in the TFR is determined by the win-
dow/wavelet parameters: if the time resolution is high ( f0 small), 
it will be treated as a single component; if the frequency reso-
lution is high ( f0 large), it will be treated as three independent 
tones. This is illustrated in Fig. 7, where different types of (S)WFT 
behavior (see Table 1) are shown for an AM signal (8.5). Note that 
the TFR behavior is not changed qualitatively after synchrosqueez-
ing, as usual.

In the present case, we define an interference measure ηa as 
the ratio of the area shared by the interference-free TFR amplitude 
for the main tone, ĥν(ω)/2, and the sum of such amplitudes for 
the AM-induced tones, ra

2 [ĥν+νa (ω) + ĥ(ν −νa)]/2, to the total area 
under the latter:

ηa =
∫

min
(

ĥν(ω), ra
2

[
ĥν+νa (ω) + ĥν−νa (ω)

])
dμ(ω)

ra
2

∫ [
ĥν+νa (ω) + ĥν−νa (ω)

]
dμ(ω)

. (8.7)

This definition is motivated by (8.3) and the analogy between (8.6)
and (8.2). Note that ηa in fact quantifies the degree to which the 
component behaves as a single entity in the TFR.

Numerically found parameter regions corresponding to each 
type of TFR behavior (see Table 1) for the AM signal (8.5) are 
shown in Fig. 8. Similarly to the case of a two-tone signal, the 
(S)WFT behavior in the present case (Fig. 8(a)) depends only on 
ra and f0νa , and not on f0 or νa separately (this, however, ceases 
to be true for asymmetric ĝ(ξ)). In contrast, the behavior of the 
(S)WT depends, apart from ra , on both f0 and νa/ν . This will 
generally be true for any wavelet, since AM-induced tones are lo-
cated around the main one symmetrically on a linear, rather than 
logarithmic, frequency scale. Note also that νa < ν is needed for 
the analytic approximation (2.4) to hold, which is required for 
a reliable time–frequency analysis (see Section 2); this implies 
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Fig. 7. Possible behaviors of the (S)WFT for an AM signal, sampled at 20 Hz for 500 s. The interference measure ηa is defined in (8.7), and the dotted lines in (a–d) show 
ĥν (ω)/2 and ra

2 [ĥν+νa (ω) + ĥν−νa (ω)]/2 (see text), with the area shared by both of them being shown in gray. All other details are the same as in Fig. 4.
Fig. 8. Dependence of the TFR behavior on the parameters ra, ν, νa of the AM signal 
(8.5) and Gaussian window (a) or Morlet wavelet (b) resolution parameter f0. In 
(b), the red area separated by magenta line indicates region where νa > ν , which 
is prohibited (see text). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

f0νa/ν ≤ f0, and the corresponding “prohibited” region is shown 
in red in Fig. 8(b).

Direct vs ridge reconstruction. To investigate the performance of 
different reconstruction methods in the present case, we first ex-
tract the ridge curve by selecting the highest TFR amplitude peaks 
at each time, and then estimate the component’s parameters by 
the direct (5.1) and ridge (5.3) methods. Examples of amplitudes, 
phases and frequencies reconstructed from the (S)WFT are shown 
in Fig. 9. It is clear that, for both the WFT and SWFT, direct am-
plitude estimates are much more accurate than ridge estimates 
(Fig. 9(a, d)). Next, for constant frequency components, ampli-
tude modulation does not affect phase and frequency reconstruc-
tion, which can therefore be recovered exactly by both methods 
(Fig. 9(b, c, e, f)). This, however, is a unique property of windows 
with symmetric ĝ(ξ) only, for which the WFT of an AM compo-
nent at each time has peak at ω = ν and is symmetric around it. 
For asymmetric windows and for the WT, phase and frequency es-
timates will contain errors, with direct estimates being the more 
accurate.
Fig. 9. Instantaneous parameters of the AM component (8.5) with ν/2π = 10, ra =
0.15, νa = π/8 and ϕ = ϕa = 0 (sampled at 50 Hz for 100 s), as reconstructed from 
its WFT and SWFT (colored lines); the true values are indicated by thick gray lines. 
All other details are the same as in Fig. 6. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

The full dependences of the reconstruction errors on the pa-
rameters of an AM signal (8.5) are shown in Supplementary 
Figs. 12 and 13 for the (S)WFT and (S)WT, respectively. Although 
the errors depend very much on the type of TFR behavior, the di-
rect estimates are almost always superior in the present case (for 
Regime IV, they are exact).

WFT/WT vs SWFT/SWT. The issues related to amplitude represen-
tation seem to affect the WFT/WT and the SWFT/SWT to a similar 
extent (see Fig. 7). This is confirmed by Fig. 9 and Supplementary 
Figs. 12 and 13, which show that the quality of the SWFT/SWT-
based estimates (both direct and ridge) for all parameters is ei-
ther the same as, or worse than, that of the WFT/WT-based ones. 
Hence, synchrosqueezing does not improve the representation of 
amplitude modulation.
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Fig. 10. Possible behaviors of the (S)WFT for an FM signal, sampled at 20 Hz for 500 s. The interference measure ηb is defined in (8.10), and the dotted lines in (a–d) show 
ĥ(+)(ω)/2 and |ĥ(−)(ω)|/2 (see text), with the area shared by both of them being shown in gray. All other details are the same as in Fig. 4.
8.3. Frequency modulation

We now consider the FM component with sinusoidal frequency 
modulation, and define

s(t) = cos[φ0(t) + rb sinφb(t)]

=
∞∑

n=−∞
Jn(rb) cos[φ0(t) + nφb(t)];

φ0(t) ≡ νt + ϕ, φb(t) ≡ νbt + ϕb, (8.8)

where we have used the expansion eia sin θ = ∑∞
n=−∞ Jn(a)einθ .

According to the definition of phase (2.1), one should have 
∂t[φ0(t) + rb sin φb(t)] > 0 ⇒ ν > rbνb . Furthermore, for the ana-
lytic approximation (2.4) to hold, which is a prerequisite for any 
time–frequency analysis (see Section 2), all non-negligible terms 
in the expansion (8.8) should correspond to positive frequencies 
ν + nνb > 0. This can be formulated as ν > n J (rb)νb , where n J (rb)

is the maximal order of Jn(rb) for which it is non-negligible, i.e. 
higher than some specified threshold ε J :

n J (rb) = max[n : | Jn(rb)| > ε J ] (8.9)

Thus, one can effectively reduce the sum in (8.8) to just the 
terms with |n| ≤ n J (rb). Under precision ε J = 0.01, one has n J (rb ∈
[0.02, 0.3]) ≈ 1 and n J (rb ∈ [0.3, 0.8]) ≈ 2.

Clearly, the FM component (8.8) can be represented in the form 
of a multitone signal: the main tone at frequency ν , and many side 
tones of pairwise-equal amplitudes at ν ± nνb; the latter appear 
due to the frequency modulation and will be called “FM-induced”. 
Therefore, the classification and formulas for the multitone signals 
apply here as well, and the expressions for |Hs(ω, t)|2 and νH (ω, t)
follow from (6.8); they are quite complicated and do not give much 
insight, so we omit them.

Effects of the window/wavelet parameters. Similarly to the previ-
ously considered case of AM component, the FM component (8.8)
can be perceived either as an oscillation with frequency modula-
tion, or as a multitone signal with particular relationships between 
the characteristics of the tones. The way it is represented in the 
TFR is determined by the window/wavelet parameters, as illus-
trated in Fig. 10 for the (S)WFT. Note that the behaviors of the 
WFT and SWFT are qualitatively the same.

Rather intuitively, we define the interference measure ηb as

ηb =
∫

min(ĥ(+)(ω), |ĥ(−)(ω)|)dμ(ω)∫ |ĥ(−)(ω)|dμ(ω)
;

ĥ(+)(ω) = J0(rb)ĥν(ω)

+
∞∑

n=1

J2n(rb)
[

ĥν+2nνa(ω) + ĥν−2nνa(ω)
]
,

ĥ(−)(ω) =
∞∑

n=1

J2n−1(ω)
[

ĥν+(2n−1)νa(ω) − ĥν−(2n−1)νa(ω)
]
.

(8.10)

One motivation behind considering such ηb , ĥ(+)(ω) and ĥ(−)(ω) is 
that in the limit of vanishing frequency modulation νb → 0, where 
FM component reduces to a single tone, one has ηb → 1, as de-
sired. Furthermore, in this limit ĥ(+)(ω) → ĥν(ω) and ĥ(−)(ω) → 0
for any rb , i.e. all energy concentrates in ĥ(+)(ω).

In what follows, we consider rb ∈ [0, 1], in which case n J � 2
and consideration can be restricted to only five terms ∼ J0,±1,±2(rb)

in (8.8), corresponding to one dominant tone at the main fre-
quency ν and two pairs of FM-induced ones with smaller am-
plitudes. For higher rb , e.g. rb � 1.45, J1(rb) becomes higher than 
J0(rb) so, instead of one main tone, there will be two dominant 
side tones, as well as additional FM-induced tones to be considered 
(as Jn>2(rb) will no longer be negligible). With further increase of 
rb , the FM-induced tones with frequencies further distant from ν
become dominant, and additional terms become non-negligible. 
Note, however, that ηb (8.10) remains appropriate for any rb .

Fig. 11 shows the numerically found parameter regions corre-
sponding to each type of TFR behavior (see Table 1) for the FM 
signal (8.8). As usual, the behavior of the (S)WFT depends on rb
and the product f0νb (at least for symmetric ĝ(ξ)), while the be-
havior of the (S)WT depends on all rb , f0 and νb/ν . Note also the 
red area in Fig. 8(b), which indicates the region where one of the 
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Fig. 11. Dependence of the TFR behavior on the parameters rb, ν, νb of the FM signal 
(8.8) and Gaussian window (a) or Morlet wavelet (b) resolution parameter f0. In 
(b), the red area separated by magenta line indicates region where 2νa > ν , which 
is prohibited (see text). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 12. Instantaneous parameters of the FM component (8.8) with ν/2π = 10, rb =
1, νb = π/8 and ϕ = ϕb = 0 (sampled at 50 Hz for 100 s), as reconstructed from its 
WFT and SWFT (colored lines); the true values are indicated by thick gray lines. All 
other details are the same as in Fig. 6. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

prominent FM-induced tones has negative frequency, so that ev-
erything becomes ill-defined (see Section 2).

Direct vs ridge reconstruction. We investigate the performance of 
different reconstruction methods for the FM signal (8.8) by first 
forming the ridge curve ωp(t) from the highest TFR amplitude 
peaks at each time and then, based on it, estimating the compo-
nent’s parameters by the direct (5.1) and ridge (5.3) methods. Ex-
amples of amplitudes, phases and frequencies reconstructed from 
the (S)WFT are shown in Fig. 12, while Supplementary Figs. 14 
and 15 show (S)WFT-based and (S)WT-based reconstruction er-
rors in dependence on signal parameters. Similarly to the case of 
the AM component, the estimates obtained using direct methods 
are exact in Regime IV and are almost always preferred to ridge 
estimates. All reconstruction errors, as always, are significantly cor-
related with the TFR behavior type. Note that, while amplitude 
modulation does not introduce errors into the (S)WFT-based fre-
quency estimates if ĝ(ξ) is symmetric (as was seen in Fig. 9), 
frequency modulation can seriously affect amplitude estimates, es-
pecially if reconstructed from ridges (see Fig. 12(a, d)).

WFT/WT vs SWFT/SWT. From Fig. 10 it is clear that synchrosqueez-
ing does not change qualitative aspects of the representation of 
frequency modulation in TFR. Furthermore, Fig. 12 and Supplemen-
tary Figs. 14 and 15 indicate that, for both reconstruction methods, 
the SWFT/SWT-based estimates of the FM component’s parameters 
are either the same as the WFT/WT-based ones, or can even be 
much worse. Thus, in contrast to the WFT/WT, in the case of strong 
frequency modulation, side peaks in the SWFT/SWT (see Fig. 10(o)) 
can become dominant at certain times, and selecting them as part 
of the ridge curve introduces rapid jumps into the estimated pa-
rameters (Fig. 12(d, e, f)). In conclusion, synchrosqueezing does not 
allow better reconstruction of frequency or amplitude (see Sec-
tion 8.2) variations, and therefore it does not improve the TFR’s 
time resolution.

8.4. Noise and its effects

We study the effects of noise by considering the signal

s(t) = cosνt + σ√
2
ζ(t) (8.11)

where ζ(t) denotes white Gaussian noise of unit variance, and 
σ/

√
2 is its standard deviation. The 1/

√
2 multiplier is introduced 

to make σ equivalent to the noise-to-signal ratio (standard devia-
tion of the noise divided by that of the signal).

Effects of the window/wavelet parameters. In general, noise can 
be regarded as a superposition of infinitely many tones with ran-
dom independent phase shifts and frequency-dependent ampli-
tudes (for white noise these amplitudes are the same: |ζ̂ (ω)| =
const). Thus, in some sense the case of noise is similar to the case 
of interfering components; but, for noise, we have (in theory) in-
finitely many tones with infinitely close frequencies. It is therefore 
hard to devise any useful classification of the TFR behavior, so we 
restrict ourselves to qualitative and illustrative considerations.

The (S)WFT of the signal (8.11) is presented in Fig. 13 for dif-
ferent values of f0. As can be seen, both WFT and SWFT are 
equally affected by noise. Furthermore, we observe that the higher 
f0 is, the better one can distinguish a genuine tone within the 
noise. This is because the frequency range where noise tones are 
picked up while calculating the WFT or WT is determined by the 
spread of ĝ(ξ) or ψ̂(ξ), which is inversely proportional to f0. Note 
that, for this reason, white noise intensity in the WT amplitude 
|W s(ω, t)| is proportional to 

√
ω (not shown), since the spread of 

ψ̂(ωψξ/ω) (which is used in the WT computation (3.4)) increases 
with ω.

We conclude that, for the single tone corrupted by noise (8.11), 
the higher f0 is the better (in fact, the best one can use here is 
the usual Fourier transform, which provides the maximum possible 
frequency resolution). However, if the signal represents a noise-
corrupted component with amplitude or frequency modulation, 
then one needs to choose f0 as a compromise between reducing 
the effect of noise and ensuring that the AM/FM component is still 
represented as a single entity in the TFR; for the previously con-
sidered cases (8.5) and (8.8) this will correspond to selecting f0
near the border of Regime IV.

Direct vs ridge reconstruction. We now investigate the noise-
robustness of different reconstruction methods by estimating the 
characteristics of the tone in (8.11) from the signal’s TFR. At each 
time, we find the corresponding ridge curve ωp(t) as the frequency 
of the maximum among the TFR amplitude peaks (in the case of 
the WT, they are multiplied by 1/

√
ω to account for the white 

noise power scaling mentioned above). Examples of the resultant 
estimates are presented in Fig. 14, while Supplementary Figs. 16 
(WFT/SWFT) and 17 (WT/SWT) show the full dependences of the 
reconstruction errors on f0 and the noise intensity σ . Similarly to 
the case of two tones (Section 8.1), ridge estimates of all parame-
ters (amplitude, phase and frequency) appear to be more accurate 
than the corresponding direct estimates. This is true for any f0, σ
and TFR type, which indicates the exceptional noise-robustness of 
the ridge reconstruction method.
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Fig. 13. Behavior of the (S)WFT for a single tone plus noise signal (sampled at 20 Hz for 500 s) in dependence on the Gaussian window resolution parameter f0. All other 
details are the same as in Fig. 4.
Fig. 14. Instantaneous parameters of the tone embedded in noise (8.11) with 
ν/2π = 5 and σ = 0.5 (sampled at 50 Hz for 100 s), as reconstructed from its 
WFT and SWFT (colored lines); the true values are indicated by thick gray lines. All 
other details are the same as in Fig. 6. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

WFT/WT vs SWFT/SWT. Fig. 13 suggests that synchrosqueezing 
does not change the noise corruption of the TFR, and this is con-
firmed by Fig. 14 and Supplementary Figs. 16 and 17. Thus, the 
quality of the SWFT/SWT-based estimates is the same as that of 
the WFT/WT-based ones (there are slight differences between the 
corresponding direct estimates, but they can be attributed to in-
equivalence of the TFS definitions, see Section 5.1). Hence, the 
SWFT/SWT and WFT/WT are susceptible to noise to the same ex-
tent.

9. Selecting window/wavelet parameters

As seen in previous sections, the TFR behavior depends drasti-
cally on the choice of window/wavelet parameters, which in turn 
strongly affects the extraction and reconstruction of the compo-
nents. Moreover, in the analysis of real data, inappropriate res-
olution can even lead to wrong conclusions, e.g. that there ex-
ist a number of oscillations while there is actually only a single 
one but with amplitude and/or frequency modulation. Thus, the 
choice of appropriate window/wavelet parameters is crucial for 
both the interpretation and quantitative estimation of the signal 
structure.

Unfortunately, there is no universal choice, and the optimal res-
olution parameter depends on the signal composition. It should 
be chosen in such a way as to resolve the independent com-
ponents (Regime I), e.g. tones, but at the same time to repre-
sent AM/FM components as single curves in the TFR (Regime IV). 
In other words, each component, with or without amplitude/fre-
quency modulation, at each time should ideally be mapped to a 
single individual peak and time–frequency support.

Usually, however, this cannot be achieved for all components 
simultaneously, so the optimal choice requires compromise. Fur-
thermore, in real situations, one often does not know for sure 
whether it is appropriate to represent the underlying process as a 
single AM/FM component, or as separate tones. This arbitrariness 
is unavoidable, but the TFR-based methods give the possibility of 
specifying a criterion by choosing appropriate window/wavelet pa-
rameters. Methods that can be used for this task are considered 
below. An extensive overview of the methods themselves and of 
the related literature is presented in [9]; here we extend those 
works by concentrating on some significant drawbacks which can 
greatly restrict the application of the methods in practice. Note 
that, because synchrosqueezing does not change the resolution 
properties of the transform (see Sections 8 and 11), we consider 
below only the case of the WFT/WT (the optimal parameters for 
the SWFT/SWT will be the same).

Remark 9.1. Although in what follows we consider optimization 
of the (single) resolution parameter f0, the same methods can be 
used quite generally for choosing any set of window/wavelet pa-
rameters. For example, it might be advantageous to use a chirped 
window g(t) ∼ e−t2/2 f 2

0 eiαt2
in the WFT [19,52–55,77–83], and se-

lection of the optimal pair { f0, α} in this particular case does not 
differ qualitatively from the selection of f0 alone. However, as will 
be seen, even a single f0 is hard to choose appropriately.
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Fig. 15. Adapting the WFT according to (9.2) for the first harmonic of the human ECG signal (3-lead, with electrodes placed on shoulders and the lowest left rib [86]), as 
obtained by bandpass filtering it in the region [0.5, 1.5] Hz. (a): Signal in the time domain. (b): The signal’s WFT calculated for f0 = 1. (c): Examples of the dependencies of 
F p,q (9.2) on f0 for different pairs of p, q (upper row); optimal f0 minimizing F p,q are shown by filled circles, with the WFTs calculated for these values being presented at 
the bottom. (d): Optimal f0 in dependence on p and q in (9.2). The signal was sampled at 40 Hz for 30 min, but only central 5 min part is taken for analysis, while other is 
used for padding to eliminate boundary effects. The WFT was calculated in the frequency range [0, 2] Hz, and the optimal f0 was searched in a range [0.05, 20].
9.1. “Monocomponent” approaches

Optimization of the TFR parameters for the representation of a 
single AM/FM component (possibly embedded in noise) was con-
sidered in [78,84,85]. The main aim of these approaches is usu-
ally to estimate the component’s instantaneous frequency ν(t) =
φ′(t) (see [21,42,43] for an overview of related concepts and al-
gorithms), which is reconstructed from the optimized TFR. Real 
signals, however, are rarely monocomponent, and such an assump-
tion is often too restrictive. In fact, it is multicomponent signals for 
which time–frequency analysis is most useful (see Section 2) and, 
as will be shown below, the main difficulty of adapting f0 lies 
in estimating the number of components. We will therefore not 
consider the monocomponent case but will proceed with a more 
general approach.

9.2. Functional approaches

A particular class of methods for selecting an appropriate f0
based on the signal’s structure was considered in [77,82,87–89]. 
According to these works, the optimal window/wavelet parameters 
f ∗
0 can be selected as being those that minimize a suitably chosen 

functional F [·] of the signal’s TFR:

f ∗
0 = argmin f0

(
F [Hs{ f0}(ω, t)]

)
(9.1)

where Hs{ f0}(ω, t) denotes the WFT/WT calculated using the cho-
sen f0. Almost all functional approaches proposed so far [77,82,
87–89] can be reduced to the minimization of

F p,q[Hs(ω, t)] = log

(∫ |Hs(ω, t)|pdμ(ω)dt
)q/p∫ |Hs(ω, t)|qdμ(ω)dt

,

q > p > 0. (9.2)

For example, the Renyi entropy of order α, which was thoroughly 
investigated in [87,90–92], corresponds to p = 2, q = 2α; the mea-
sures proposed in [88] correspond to p = 1, q = 2; while max-
imization of the ratio of the fourth power of L4-norm to the 
squared L2-norm proposed in [77,82,89] corresponds to the mini-
mization of F2,4. Note that the numerator power q/p in (9.2) guar-
antees that the functional does not depend on window/wavelet 
normalization (that can depend on f0), while the inequality q > p
establishes that f ∗
0 → ∞ ( f ∗

0 → 0) for the single tone (delta-peak) 
signal.

For signals consisting of Gaussian pulses ∼e−a(t−t0)2
cos(bt +ϕ), 

delta-peaks, tones and/or components whose frequency modula-
tion contains a trend-like term ∼ta , a > 0 (with all components 
being allowed to exist only during certain time intervals), it was 
shown [77,82,87–89] that using the functional (9.2) one can indeed 
select appropriate window/wavelet parameters. An interesting fea-
ture is that for p � 2 one gets an f ∗

0 that maximizes the concen-
tration of only one of the signal’s components, while for p � 2 the 
optimal resolution parameter is chosen based on a compromise be-
tween representing well all components. This was previously noted 
in [88], and gives a good reason to use the functional F1,2 (instead 
e.g. of the previously proposed F2,4), which we would also recom-
mend.

The component’s amplitude/frequency, however, might simply 
oscillate around some mean value, not subject to any trends. In 
this case, which often appears in practice, F p,q (9.2) will usu-
ally prefer a more concentrated representation of such a compo-
nent as a sum of tones (Regime I) rather than as a single entity 
(Regime IV), being therefore unable to resolve the correspond-
ing ambiguity. For example, it can easily be verified that for any 
p > 0 and q > p in (9.2) one will get f ∗

0 → ∞ for simple AM 
and FM components (8.5) and (8.8). This issue is not restricted to 
sinusoidal amplitude/frequency modulation, but occurs quite gen-
erally for persistent AM/FM components occupying well-defined 
frequency bands, as illustrated in Fig. 15 on the example of ECG 
signal. As can be seen, although the heart rate modulation is gen-
erally quite complex, minimizing F p,q still tries to separate it into 
tones, giving too large f ∗

0 for which the TFR becomes unsuitable 
for the analysis (e.g. one cannot extract the instantaneous heart 
frequency from it).

In addition to (9.2), another measure of TFR performance was 
suggested in [93–95]. It is based on the relationships between 
various characteristics of the different TFR peaks, such as their fre-
quencies, widths and heights. The optimal TFR can then be selected 
by minimizing this measure, which can therefore be taken as a 
functional in (9.1). This approach was shown to perform very well 
on signals containing chirps, but it is not clear how well it will 
perform when the component can be represented both as a sin-
gle entity and as a sum of tones. Most likely, it will also prefer a 
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more concentrated representation as a sum of tones, thus suffer-
ing from the same drawback as the previously considered class of 
measures (9.2).

9.3. Other approaches

Apart from the methods already considered, there exist many 
other ways of selecting optimal window/wavelet parameters. For 
example, it was proposed [67,79,80] to construct an adaptive TFR 
based on certain characteristics (e.g. ridge frequencies) estimated 
from some initial TFR. It is easy to see, however, that these ap-
proaches are susceptible to the choice of initial f0 whereas, if 
the latter is chosen adaptively based on some variation of the 
functional (9.2), as in [81], then the drawbacks of this functional 
approach will apply.

Another idea is to optimize the WFT/WT based on its local mo-
ments in the time–frequency plane [83]. This method, however, 
is very expensive computationally, being O(N3), though the cost 
might possibly be reduced if estimating the global resolution pa-
rameter and not its time–frequency varying version f0(ω, t), as 
originally. Some “monocomponent” methods can also be gener-
alized to the case of multicomponent signals by introducing fre-
quency dependence into the resolution parameter [96], but this 
will at the same time increase the computational complexity and 
give rise to additional issues.

Finally, there are various methods [87–89,96–103] for optimiz-
ing types of TFR other than the (S)WFT/(S)WT considered here. 
Most of them represent a modification of one of the approaches al-
ready mentioned, but tailored for a particular TFR, e.g. the Wigner–
Ville distribution.

Nevertheless, to the best of the authors’ knowledge, there are 
at present no universal methods for selecting the optimal win-
dow/wavelet parameters. Thus, the existing approaches can work 
very well for a particular class of signals (usually the one discussed 
in Section 9.2), but will fail for other classes. Generally, given the 
duality of the representation of an AM/FM component as a sin-
gle entity and as a sum of tones, it is questionable whether any 
universal approach can in principle be developed. However, what 
suggests that this may in fact be feasible is that an adaptive sig-
nal decomposition method known as basis pursuit [63] seems to 
have all the desired properties, albeit at a computational cost of 
O(N3). Therefore, it might be possible that, for example, the func-
tional approach can be made more universal by choosing instead 
of (9.2) a better performance measure, which will distinguish be-
tween independent components and AM/FM-induced ones by im-
plicitly taking into account the specific relationships between their 
amplitudes, phases and frequencies. This remains an open prob-
lem.

10. Selecting reconstruction method

In previous sections we have investigated the relative perfor-
mance of the direct (5.1) and ridge (5.3) methods for reconstruct-
ing components from the signal’s TFR. This section summarizes 
related results and considers the errors of each method in more 
detail, as well as devising the scheme for adaptively choosing be-
tween the direct and ridge estimates.

10.1. Errors of different estimates

As we saw in previous sections, synchrosqueezing does not usu-
ally change the accuracy of parameter estimates, so in what fol-
lows we concentrate on the WFT/WT-based reconstruction errors 
only. Suppose we are given a signal that consists of M + 1 AM/FM 
components corrupted by some noise ζ(t),
s(t) = A(t) cosφ(t) +
M∑

n=1

Ãn(t) cos φ̃n(t) + σζ(t), (10.1)

and we want to estimate A(t), φ(t) and ν(t) ≡ φ′
0(t) from the sig-

nal’s TFR (assume for simplicity that A(t) cos φ(t) is the dominant 
component in the signal). As described in Section 5, we do this by 
first finding the component’s ridge curve ωp(t) and the associated 
TFS [ω−(t), ω+(t)], and then applying the direct or ridge recon-
struction method to obtain parameter estimates. The latter will be 
denoted as

P (d,r)(t) ≡ {A(d,r)(t),φ(d,r)(t), ν(d,r)(t)}, (10.2)

where (d) and (r) stand for direct and ridge reconstruction.
We are now interested in the errors of the estimates (10.2). 

They can be represented as

�P (d,r)(t) ≡ P (d,r)(t) − P (true)(t) ≡ �P (d,r)
T (t) + �P (d,r)

I (t),

(10.3)

where �P (d,r)
T (t) is the theoretical error (the one arising in the 

case when there is only one component and no noise), while 
�P (d,r)

I (t) denotes interference-related error (the one attributable 
to noise and the interferences with other components).

If the TFR can represent the component of interest A(t) cos φ(t)
reliably (Regime IV), then direct reconstruction is by definition ex-
act (see Section 5.2), while the theoretical ridge errors are given in 
[72], so one has

Regime IV: �P (d)
T (t) = 0

�P (r)(t) ≈ Q 2(ν(t))

2

{
A′′(t),φ′′(t),φ′′′(t) + 2

A′(t)
A(t)

φ′′(t)
}
,

Q 2(ω) ≡
[

∂2
ν ĥν(ω)

ĥν(ω)

]
ν=ω

=
⎡⎢⎣ − ĝ′′(0)

ĝ(0)
for the WFT,

−ω2
ψ

ω2
ψ̂ ′′(ωψ )

ψ̂(ωψ )
for the WT.

(10.4)

In the above expression, the quality of approximation for �P (r)(t)
is {O (δ2

NT
), O (δ2

NT
), O (δ3

NT
)}, where the value of δNT is determined 

by the strength of the amplitude/frequency modulation in relation 
to the window/wavelet parameters (see [72]). For example, in the 
higher order approximation the ridge estimates of amplitude also 
contain errors proportional to φ′′(t), which can become dominant 
if δNT is large and/or A′′(t) is small (this becomes especially clear 
for chirps).

Remark 10.1. Only the WT was considered in [72], but the ex-
pressions for the WFT-based ridge errors (10.4) can be inferred 
simply by analogy based on comparison of the linear/logarithmic 
frequency resolution of the WFT/WT; the correctness of (10.4) was 
also confirmed numerically.

All becomes more complicated if the TFR cannot represent the 
component reliably, i.e. its behavior in the case when there is only 
one component and no noise is of the I–III type. However, from 
the analysis performed in Sections 8.2 and 8.3 one can see that 
the errors of the direct estimates are still smaller than those of the 
ridge ones, so that in all cases

|�P (d)
T (t)| � |�P (r)

T (t)| (10.5)

The interference-related errors �P (d,r)
I are also hard to esti-

mate, though some analytic expressions can be derived under cer-
tain assumptions. These expressions are not very informative, how-
ever, so we do not present them here. Nevertheless, the results of 
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Fig. 16. The actual reconstruction errors (7.2) of the direct and ridge methods (light-blue and light-red lines, respectively) and the corresponding discrepancies (10.9) (direct – 
blue, ridge – red) in their dependence on the noise level σ . (a, d, g): Amplitude reconstruction errors. (b, e, h): Phase reconstruction errors. (c, f, i): Frequency reconstruction 
errors. The signals associated with each row are given by the equations above the central panels (b, e, h), with ζ(t) denoting unit-deviation Gaussian white noise; each signal 
was sampled at 50 Hz for 200 s. Where present, the gray (or black) points with the corresponding dashed lines indicate the intersections between the true errors (7.2) (or 
the discrepancies (10.9)) of the direct and ridge methods. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
Sections 8.1 and 8.4 indicate that ridge estimates are more robust 
to noise and interference than direct ones, so that

|�P (d)
I (t)| � |�P (r)

I (t)| (10.6)

Summarizing, direct reconstruction allows more accurate es-
timation of amplitude/frequency variations but is less robust to 
noise and interferences between the components in comparison to 
ridge reconstruction. Therefore, the choice of the method depends 
on the signal under consideration: when the noise is small and dif-
ferent components are well-separated in the TFR, then the direct 
method should be used; if the noise and/or interference is strong, 
or the component’s amplitude/frequency modulation is weak, the 
ridge method is the better choice. For example, the ridge method is 
always preferable for estimating parameters of the tone, as the cor-
responding theoretical errors (10.4) become zero in this case. Note 
also that the (S)WFT with symmetric ĝ(ξ) provides additional ad-
vantages in terms of parameter estimation (see Fig. 9 and related 
discussion). However, since the reconstruction errors very much 
depend on the type of TFR behavior, as shown in previous sec-
tions, the window/wavelet resolution properties are what matters 
the most.

Remark 10.2. Using ridge error estimates (10.4), one can in fact 
devise a criterion for good representation of a given component in 
the TFR by requiring these errors to be small√

〈[�A(r)(t)]2〉
〈A2(t)〉 ≤ εp,

√
〈[�φ(r)(t)/π ]2〉 ≤ εp, (10.7)

where εp is some chosen precision (for determination of Regime IV, 
εp ∈ [0.05, 0.1] works quite well). For a Gaussian window WFT and 
lognormal wavelet WT this gives

f 2
0 ≤ 2εp

max
[√〈[A′′(t)]2〉/〈A2(t)〉,√〈[φ′′(t)/π ]2〉

] (WFT),
f 2
0 ≤ 2εp/4π2

max
[√〈[A′′(t)/ν2(t)]2〉/〈A2(t)〉,√〈[φ′′(t)/(πν2(t))]2〉

]
(WT). (10.8)

10.2. Adaptive choice of the method

To choose the best method automatically, one can devise an 
empirical criterion as follows. Suppose we have found direct and 
ridge parameter estimates A(d,r)(t), φ(d,r)(t) and ν(d,r)(t). To un-
derstand which of them are more accurate, we calculate the 
TFR (using the same window/wavelet as originally) of the signal 
s(d)(t) = A(d)(t) cos φ(d)(t), extract the ridge curve and TFS from 
it (taking simple maxima ωp(t) = argmaxω |Hs(ω, t)| is sufficient 
here), and reconstruct by the direct method the “refined” param-
eters Ã(d)(t), φ̃(d)(t), ̃ν(d)(t). The same procedure is performed for 
the “ridge” signal s(r)(t) = A(r)(t) cos φ(r)(t), now using the ridge 
method to reconstruct the refined estimates.

Obviously, if e.g. the direct estimates are accurate, one should 
have { Ã(d)(t), φ̃(d)(t), ̃ν(d)(t)} ≈ {A(d)(t), φ(d)(t), ν(d)(t)}. Therefore, 
one can assess which method is better on the basis of the discrep-
ancies between the original and refined estimates, which can be 
quantified as

ε̃
(d,r)
a ≡ κ

(d,r)
a

√
〈[ Ã(d,r)(t) − A(d,r)(t)]2〉

〈[A(d,r)(t)]2〉 ,

ε̃
(d,r)
φ ≡ κ

(d,r)
φ

√
1 − |〈ei[φ̃(d,r)(t)−φ̃(d,r)(t)]〉|2,

ε̃
(d,r)
ν ≡ κ

(d,r)
ν

√
〈[ν̃(d,r)(t) − ν(d,r)(t)]2〉

2π
, (10.9)

where κ(d,r)
a,φ,ν are the coefficients that can be used to tune the 

performance of the approach (they were found empirically to be 
κ

(d)
a,φ,ν = {3, 4, 2}, κ(r)

a,φ,ν = 1). For each parameter, the choice be-
tween its direct and ridge estimate is then made based on the 
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corresponding discrepancy (10.9): the smaller it is, the more accu-
rate the reconstructed parameter is expected to be.

Despite being empirical, the approach outlined above works 
very well in practice, selecting the best estimates in the major-
ity of cases. This is illustrated in Fig. 16, where the discrepancies 
(10.9) are shown together with the actual reconstruction errors 
(7.2) for each method. As can be seen, the values of ε̃(d,r)

a,φ,ν are pro-
portional to the true errors and allow one to judge reliably about 
the relative performance of the two reconstruction methods. Thus, 
as discussed previously, for a single tone signal embedded in noise 
the ridge estimates are always preferred, and the criterion based 
on (10.9) correctly reflects this fact (see Fig. 16(a–c)). Next, when 
amplitude/frequency modulation is present, at low noise levels the 
direct estimates are preferred, but with increasing noise strength 
their inaccuracy grows faster than in the case of ridge reconstruc-
tion. Therefore, beyond some threshold noise level (indicated by 
gray vertical dashed lines in Fig. 16) ridge estimates become the 
more accurate; this threshold and the optimal method in each 
case can be well recovered from the behavior of the discrepancies 
(10.9), as is clear from Fig. 16(g, h, i).

11. Do we really need synchrosqueezing?

As we have seen in Sections 8.1–8.4, synchrosqueezing does 
not change the qualitative behavior of the TFR and does not al-
low better resolution of components or more accurate estimation 
of their amplitude/frequency variations (for both direct and ridge 
methods). Therefore, it does not increase the time or frequency 
resolution of the transform, as might have seemed the case at first 
glance: all interferences and other complications are just summed 
into a more compact supports. In other words, synchrosqueezing 
improves only the “readability” of the TFR [58], providing a more 
visually appealing picture.

While not providing significant advantages, the SWFT/SWT has 
a few drawbacks in comparison to the WFT/WT, namely:

• The behavior of the SWFT/SWT is more complicated than that 
of the WFT/WT, being harder to study analytically and practi-
cally (e.g. see Fig. 2 and related discussion). In some cases this 
may lead to drastically reduced quality of the resultant param-
eter estimates (Fig. 12).

• The estimation of amplitude by the ridge method is not pos-
sible for the SWFT/SWT (in contrast to the WFT/WT), because 
the SWFT/SWT amplitude depends on the discretization of the 
frequency scale (see Section 5).

• The SWFT/SWT-based direct and ridge estimates of instanta-
neous frequency suffer greatly from the discretization effects 
(in contrast to the WFT/WT-based estimates, see Section 6.2), 
thus requiring very small frequency bins to make discretiza-
tion errors negligible, which increases the computational cost 
of such estimation.

Hence, the usefulness of synchrosqueezing is questionable, because 
in terms of the components’ reconstruction it only introduces ad-
ditional complications.

Remark 11.1. For windows/wavelets with multimodal |ĝ(ξ)| and 
|ψ̂(ξ > 0)| (which case is outside of the assumptions made at the 
beginning of Part 2), synchrosqueezing has the advantageous prop-
erty of joining together the component’s power contained in all 
sidelobes into one TFS in the SWFT/SWT, hence making the latter 
more interpretable than the underlying WFT/WT. Nevertheless, in 
practice it appears that such a property is greatly affected even 
by small interference between components (or by considerable 
amplitude/frequency modulation). However, the advantages of syn-
chrosqueezing for multimodal |ĝ(ξ)| and |ψ̂(ξ > 0)| is a separate 
topic, which is not of much relevance since such windows/wavelets 
are rarely used.

The fact that synchrosqueezing increases the concentration of 
the TFR, but at the same time does not improve its resolution 
properties, leads to reconsideration of a more general question: 
does concentration of the TFR alone represent the main measure 
of its performance, as is often believed? Our results argue against 
such a view, indicating that the most important characteristics of 
the TFR are its resolution properties.

To understand the difference between concentration and reso-
lution, consider the “ideal” TFR I(ω, t) ∼ ∑

k Ak(t)δ(ω − φ′
k(t)) of 

the signal s(t) = ∑
k Ak(t)eiφk(t) cosφk(t). Then the inverse of the 

(somehow defined) “distance” between this perfect representation 
I(ω, t) and the calculated TFR can be considered as a measure of 
its performance. What one aims to achieve, therefore, is not just 
to increase the TFR concentration, but to increase it around the in-
stantaneous frequencies φ′

k(t) and/or to improve the representation 
of the amplitude variations. For example, a TFR having peaks at 
ω = φ′

k(t), but not being too concentrated, is obviously to be pre-
ferred to an extremely concentrated TFR with peaks distant from 
the true instantaneous frequencies. In other words, the main goal 
is to represent appropriately all the components present in the sig-
nal, so that their parameters can accurately be recovered.

Considering synchrosqueezing, from the previous sections it is 
clear that the positions of the SWFT/SWT ridges are no closer to 
the actual frequencies than the WFT/WT ridges. Thus, “curves” in 
synchrosqueezed TFRs, although being more concentrated, are not 
located around the actual instantaneous frequencies of the com-
ponents (though the latter can be fully recovered from the full 
TFS). This is illustrated in Fig. 17, where the SWFT is compared 
with the ridge/direct WFT skeletons. For each time, the latter are 
constructed by partitioning the WFT into regions of unimodal am-
plitude (time–frequency supports [ω(m)

− (t), ω(m)
+ (t)]), reconstruct-

ing from them the amplitudes A(m)(t), phases φ(m)(t) and fre-
quencies ν(m)(t) using the chosen method, and then assigning 
A(m)(t)eiφ(m)(t) to the frequency bin where the estimated frequency 
ν(m)(t) lies; the WT skeletons can be constructed in the same way. 
For example, up to frequency discretization effects, the ridge-based 
WFT/WT skeleton is simply the WFT/WT with only peaks left (and 
multiplied by 2/ĝ(0)), while other coefficients are set to zero. The 
MatLab codes for calculating TFR skeletons can be downloaded 
from [32] together with the other codes used in this work.

Pairwise comparison of Fig. 17(b, f) and (c, g) shows that the 
SWFT is similar to a simple ridge-based WFT skeleton (which is ad-
ditionally more concentrated and easier to interpret): in both for-
mer and latter cases, the “curves” are not located around the true 
component frequency, but have similar deviations from it. On the 
other hand, the direct WFT skeleton in the noiseless case provides 
an almost perfect representation (Fig. 17(d)), being clearly supe-
rior to the SWFT or ridge skeleton, though the picture becomes 
more complicated when noise is present (Fig. 17(e–h)). However, 
both skeletons are constructed from the original WFT and obvi-
ously have the same resolution properties (as the accuracy of the 
parameters’ estimates remains does not change), providing advan-
tages mainly in terms of visual appearance, similarly to the case of 
the SWFT.

12. Summary and conclusions

In Part 1 of this work we provided a thorough review of the 
linear and synchrosqueezed TFRs and their properties. Addition-
ally, we introduced some new concepts and procedures to advance 
the theory and applicability of these methods, as well as revisiting 
certain related issues. For example, in Section 4 we argued that the 
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Fig. 17. Comparison of the WFT, SWFT and WFT skeletons based on ridge and direct reconstruction for: (a–d) the FM component s(t) = cos(10πt + sin(2πt/5)); (e–h) the 
same component additionally corrupted by noise 

√
2ζ(t). Magenta lines show the true frequency of the component. The small intermittent components appearing at both 

sides of the main frequency in (c, d) are due to III type of TFR behavior. The signal was sampled at 100 Hz for 50 s. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
classical resolution measures (4.5), (4.6) are not really appropriate 
for characterizing the resolution properties of a TFR (especially for 
the (S)WT), and new, more physically meaningful measures (4.13), 
(4.14) have been designed.

Practical aspects of using the (S)WFT and (S)WT were consid-
ered in Section 6 (technical details being provided in Supplemen-
tary Section 1). This included devising criteria (6.1) for selecting 
the optimal frequency bin width (Section 6.2); derivation of ex-
pressions for boundary errors (6.2) and related quantities; and in-
troduction of the predictive padding scheme (Supplementary Sec-
tions 1.3 and 6). Finally, we discussed ways of reconstructing the 
components’ parameters from different TFRs and derived the cor-
responding formulas (Section 5).

Part 2 presented a detailed numerical and theoretical study of 
the specific issues discussed in Section 7. The results can be sum-
marized as:

• Parameters of the window/wavelet, e.g. the resolution param-
eter f0, determine the resolution properties of the TFR, so 
their appropriate choice is of crucial importance. Thus, dif-
ferent choices lead to different TFR behaviors, and therefore 
different quantitative and qualitative results: if the frequency 
resolution is too high, the AM/FM component might be rep-
resented as a number of independent tones, whereas if it is 
too low, the two interfering tones can be merged together 
and appear as a single component in the TFR. We considered 
and illustrated these issues on numerous examples in Sections 
8.1–8.4.

• The optimal f0 depends on the signal. For a particular class 
of signals it can be selected using some of the approaches re-
viewed in [9] and Section 9 here (e.g. based on F1,2 (9.2)), but 
there does not seem to be any universal approach suited to 
the general case. The question of how best to select the appro-
priate window/wavelet parameters for a given signal therefore 
remains open.

• In the absence of an adaptation scheme, one can choose f0
based on the desired resolution properties of the TFR using 
conditions (8.4) and (10.7) for resolving two tones and for 
representing the AM/FM component reliably. Note that, in re-
spect of different kinds of signals (with different characteristic 
frequency bands), the choice of f0 for the WT seems to be 
slightly more universal than for the WFT, with the commonest 
value being f0 = 1.
• The relative performance of the direct (5.1) and ridge (5.3)
reconstruction methods depends on the signal. The direct 
method better estimates amplitude/frequency variations but is 
less robust to noise and interference than the ridge method. 
An automatic procedure for selecting optimal reconstruction 
method was suggested in Section 10.2. It remains possible, 
however, that some universal estimate combining the advan-
tages of both direct and ridge methods could be designed, 
which would be highly desirable.

• Synchrosqueezing does not provide significant advantages in 
terms of components’ reconstruction, but it introduces addi-
tional complications. Thus, the concentration and resolution 
are not always the same: although being more concentrated, 
the SWFT/SWT actually has the same time and frequency reso-
lutions as the WFT/WT from which it is constructed, so it does 
not enable more accurate estimation of time-variations in the 
components’ parameters, and nor does it enable the resolution 
of components that lie closer in frequency. On the other hand, 
if one is mainly interested in concentration and/or a visually 
appealing picture, then the most natural choice would be the 
TFR skeletons (see Section 11).

Appendix A. Nomenclature

Abbreviations

ECG Electrocardiogram
FT Fourier Transform
FFT Fast Fourier Transform (algorithm)
IFFT Inverse Fast Fourier Transform (algorithm)
WFT Windowed Fourier Transform (see Section 3.1)
WT Wavelet Transform (see Section 3.2)
SWFT Synchrosqueezed WFT (see Section 3.3)
SWT Synchrosqueezed WT (see Section 3.3)
TFR Time–Frequency Representation (there are many different 

types, but in this work we refer to the (S)WFT and (S)WT 
only)

TFS Time–Frequency Support (see Section 5)

Terminology

AM/FM component, 
or simply component

Sinusoidal oscillation A(t) cosφ(t) with 
amplitude and/or frequency modulation 
(see Section 2 for a detailed discussion).
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Tone AM/FM component with constant amplitude
and frequency, i.e. a simple sine x(t) =
A cos(νt + ϕ).

Gaussian window Window function of the form (3.3).
Morlet wavelet Wavelet function of the form (3.8).
Lognormal wavelet Wavelet function of the form (3.9).
Time, frequency and 
joint time–frequency 
resolution of the TFR

The measures of how fast changes in time
and how close differences in frequencies
can be resolved in the TFR, and the tradeof
between the two, respectively; their precise
definitions are discussed in Section 4.

Main notation

f̂ (ξ), f ±(t) Fourier Transform and positive/negative fre
quency part of f (t), see (2.2).

〈 f (t)〉, std[ f (t)] Mean and standard deviation of f (t), see
(2.2).

f ∗(t) Complex conjugate of f (t).
c.c. Complex conjugate of preceding expression
Re[x], Im[x] Real and imaginary parts of x.
sa(t) = 2s+(t) Analytic signal (2.3), see Section 2.
sign(x) Sign function: sign(x > 0) = 1, sign(x < 0) =

−1, sign(0) = 0.
Jn(x) nth order Bessel function of the first kind.
In(x) nth order modified Bessel function of the

first kind.
�(a) Gamma function �(a) ≡ ∫ ∞

0 xa−1e−xdx.

erf(x) Gauss error function erf(x) ≡ 2√
π

∫ x
0 e−u2

du.

nG(ε) Number of standard deviations of the Gaus
sian distribution within which its (1 − ε

part is contained: 1√
2π

∫ nG
−nG

e−u2/2du =
erf(nG/

√
2) = 1 − ε. For example

nG(0.05) ≈ 2, nG(0.01) ≈ 2.5.
Gs(ω, t), W s(ω, t) WFT (3.1) and WT (3.4) of a given signal.
g(t), ̂g(ξ) Time domain and frequency domain forms

of the window function used for computa-
tion of the WFT (3.1), respectively.

ψ(t), ψ̂(ξ) Time domain and frequency domain forms
of the wavelet function used for computa
tion of the WT (3.4), respectively.

ωψ Wavelet peak frequency (3.5).
C g, Cψ Integration constants defined in (3.2), (3.6).
ωg, Dψ Integration constants defined in (5.1).
f0 Window/Wavelet resolution paramete

which determines its resolutions properties
(see Supplementary Section 7 for a list o
different window and wavelet functions).

R g(ω), P g(τ ) Quantitative measures of the area below
ĝ(ξ < ω) and g(t < τ), as defined in (4.7).

Rψ(ω), Pψ(τ ) Quantitative measures of the area below
ψ̂(0 < ξ < ω) and ψ(t < τ), as defined
in (4.8).

ξ1,2(ε), τ1,2(ε) ε-supports of the window/wavelet function
in time and frequency, defined in (4.7) fo
windows and in (4.8) for wavelets.

V s(ω, t), Ts(ω, t) SWFT and SWT (3.11) of a given signal.
Ṽ s(ω, t), ̃Ts(ω, t) Numerical SWFT and SWT (3.13).
[ωmin, ωmax] Frequency range for which the currently

considered TFR is calculated.
ωp(t) Ridge curve of some component in the cur

rently considered TFR (see Section 5).
[ω−(t), ω+(t)] Time–frequency support of some compo

nent in the currently considered TFR (see
Section 5).
Hs(ω, t) Either WFT Gs(ω, t) or WT W s(ω, t), see
(6.6).

ht(ω), ̂hξ (ω) The functions with which the signal is
convoluted respectively in time and in
frequency while constructing its WFT/WT
see (6.6).

Ch Either C g (WFT) or Cψ (WT), see (6.9).
μ(ω) The integration measure for the WFT

(μ(ω) = ω) or WT (μ(ω) = logω), see (6.9)

Conventions

• Where undefined, integrals are taken over (−∞, ∞), or over 
the full range of the variable: for a signal s(t), one has ∫

s(t)dt ≡ ∫ ∞
−∞ s(t)dt theoretically and 

∫
s(t)dt ≡ ∫ T

0 s(t)dt
practically, with T denoting the overall time duration of the 
signal.

• All TFRs are computed for a real signal s(t) assuming, without 
loss of generality that ωg ≡ argmaxξ |ĝ(ξ)| = 0.

• Unless otherwise specified, the (S)WFT and (S)WT are calcu-
lated using the Gaussian window (3.3) and Morlet wavelet 
(3.8), with resolution f0 = 1. The frequency axis is discretized 
as ωk = (k − k0)�ω for the (S)WFT, and as ωk/2π = 2(k−k0)/nv

for the (S)WT, with the discretization parameters �ω and nv
selected according to (6.1). To reduce boundary effects (see 
Section 6.3), predictive padding is used by default; in most 
cases, however, only the “distortion-free” TFR parts (i.e. lying 
within the cones-of-influence (6.3) with ε = 0.001) are shown. 
In plots of time-averaged TFR amplitudes or phase velocities, 
the yellow regions indicate ±√

2 of the corresponding stan-
dard deviations.

• For simplicity, circular frequencies (rad/s) are mainly used, de-
noted by ω, ν, ξ ; to convert them to Hz, divide by 2π . Note, 
however, that the sampling frequency f s is always in Hz.

• The additional assumptions and conventions used in Part 2 are 
summarized just before Section 7.

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2015.03.004.
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[65] L. Stanković, T. Alieva, M.J. Bastiaans, Time–frequency signal analysis based 
on the windowed fractional Fourier transform, Signal Process. 83 (11) (2003) 
2459–2468.

[66] H.K. Kwok, D.L. Jones, Improved instantaneous frequency estimation using 
an adaptive short-time Fourier transform, IEEE Trans. Signal Process. 48 (10) 
(2000) 2964–2972.

[67] H. Kawahara, I. Masuda-Katsuse, A. de Cheveigné, Restructuring speech 
representations using a pitch-adaptive time–frequency smoothing and an 
instantaneous-frequency-based f0 extraction: possible role of a repetitive 
structure in sounds, Speech Commun. 27 (3) (1999) 187–207.
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