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Abstract. A key feature of the growth of industrial society is the acquisition of increasing quantities of re-

sources from the environment and their distribution for end-use. With respect to energy, the growth of industrial

society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that

the global distribution of resources that underpins this growth may be facilitated by the continual development

and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However,

despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over

time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term ex-

ponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations

deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate

that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate

of ∼ 2.4 % yr−1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

1 Introduction

The growth of industrial society since the Industrial Revolu-

tion has required the continual exploitation of a diverse range

of environmentally derived resources. Because resources are

seldom consumed at the point of extraction, this in turn has

required the construction of ever-expanding distribution net-

works. These networks can be seen to form part of a global

Resource Acquisition, Distribution and End-use (RADE)

system linking environmental resources with points of end-

use. In many respects these man-made networks resemble

those seen in natural systems, both in terms of form and func-

tion. Here we attempt to apply theoretical insights from re-

search into the evolution of natural systems to the man-made

system that constitutes global industrial society, with a par-

ticular focus on energy.

This paper builds on a long tradition of attempting to un-

derstand socio-economic systems through the application of

insights from the natural sciences. Initially these insights

were largely metaphoric, but increasingly the application of

evolutionary (Nelson and Wilson, 1982), metabolic (Fischer-

Kowalski and Huttler, 1998) and thermodynamic (Garrett,

2011, 2012) theories has become much more direct in this

area. The fundamental physical constraints that underpin the

development of distribution networks have previously been

used to try and explain the behaviour of biological systems

(West et al., 1997), river basins (Rodríguez-Iturbe and Ri-

naldo, 1997), electricity grids, water distribution systems,

road networks (Dalgaard and Strulik, 2011; Pauliuka et al.,

2014; Bettencourt et al., 2007), and even cities (Bettencourt,

2013), but have not previously been applied to the behaviour

and growth of global industrial society itself.

Here we explore the possibility that the growth of indus-

trial society is in part regulated by the behaviour of the dis-

tribution networks within a global RADE system. The re-

sources moved by man-made distribution networks include

energy and the other materials from which industrial soci-

ety is constructed. In the following analysis we focus specifi-

cally on the energy used in acquisition, distribution and end-

use. We do this because the performance of RADE networks

is determined by their energy efficiency (i.e. the proportion
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of energy lost in transporting mass across networks) and be-

cause energy use is one of the best observed metrics of global

economic activity. Furthermore, because all aspects of indus-

trial society use energy, and are themselves constructed using

energy, a potentially self-reinforcing feedback exists between

energy use and the growth of industrial society.

Our analysis suggests that:

1. By definition, resource distribution networks must fill

the space occupied by industrial society. These net-

works appear to behave near-optimally with respect to

minimising energy losses if the space being filled is

three-dimensional.

2. Whether optimal or not, the distribution efficiency of

the global RADE system declines over time, apparently

due to the increasing distribution costs associated with

growth-induced network expansion.

3. This declining distribution efficiency appears to be off-

set by increasing acquisition and end-use efficiencies.

This is evidenced by the observed near-constant relative

growth rate in energy use that has been maintained at the

global scale despite declining distribution efficiencies.

4. The maintenance of growth in energy use at the global

scale, specifically at the observed long-term average of

∼ 2.4 % yr−1, may be explained by the minimisation of

energy losses over a timescale characteristic of human

working lifetimes.

The paper is structured as follows. Section 2 introduces the

distribution network theory that underpins the work. This is

then used in Sect. 3 to specify and test a predicted scaling

relationship between energy flows at the point of acquisition

(global primary energy) and those arriving at the points of

end-use (global final energy). Section 4 is a discussion on

the geometry of the space being filled by the RADE system.

Section 5 extends the analysis to consider behaviour at the

country scale and how this aggregates to give the observed

global-scale behaviour. Section 6 then explores how the ob-

served global trends (at least with respect to primary energy)

may extend back to at least 1850. In so doing we focus on

one of the specific mechanisms that appears to mediate the

evolution of the RADE system, namely the dematerialisation

of resource flows. Section 7 offers a simple model of the full

RADE system that accounts for the exponential growth in

global energy use observed. This model yields constant rel-

ative growth in energy use despite the decreasing returns to

scale associated with the expansion of the RADE distribution

network(s). Section 8 uses this simple model to attempt to

account for the specific observed long-term relative growth

rate in global primary energy use of ∼ 2.4 % yr−1. This is

done by exploring an optimisation of average personal en-

ergy use over specific integration timescales. Finally, Sect. 9

offers some concluding remarks concerning the growth of

industrial society in general and some thoughts on further

work.

2 Energy and resource distribution networks

Resource distribution networks are ubiquitous in nature.

Specifically, in biology these networks, such as cardiovas-

cular systems in mammals and vascular systems in higher

plants, distribute resources from points of acquisition to the

end-use tissues and cells which require these resources to

function. Because this form of spatial distribution must it-

self consume a significant proportion of the acquired energy

resources, this has provided strong selective pressure for the

evolution of optimal forms of network architecture and op-

eration, with branched directed networks becoming ubiqui-

tous in nature (Savage et al., 2004). Furthermore, biological

systems are frequently comprised of complex networks of

networks. These networks often co-evolve together as parts

of an overall system that both collects and distributes re-

sources, e.g. lungs, blood, lymph and nerves in animals. This

means that the networks can be configured both many-to-

one (i.e. points of acquisition to collection point) and one-to-

many (i.e. distribution point to points of end-use) within the

same organism. Interestingly, these integrated systems still

appear to follow the same theoretical laws, and thus exhibit

the same scaling behaviour, as single directed networks (Sav-

age et al., 2004).

We believe it is self-evident that the growth of industrial

society has also required the construction of ever-expanding

resource distribution networks. These networks include a

wide range of infrastructures such as pipes, cables, footpaths,

roads, railways, shipping lanes and flight paths. The re-

sources being distributed through these networks are also di-

verse, including energy, raw materials, manufactured goods,

waste, people etc. Here we focus largely on flows of energy.

These flows originate from the acquisition of environmen-

tally derived resources which pass through distribution net-

works to points of end-use. These terminal points of the net-

works can be thought of as units of energy consumption dis-

tributed in the space occupied by industrial society. Taken as

a whole, we view this entire process as a RADE system.

RADE networks are optimised by minimising energy dis-

tribution losses whilst facilitating resource use (West et al.,

1997; Banavar et al., 2010). For energy flows we can define

the distribution efficiency of such networks by the ratio of

the energy entering the network (primary energy, x) to that

arriving at the points of end-use (final energy, x∗). Networks

can be thought of as optimal if, under the constraint of having

to satisfy particular end-use demand, the distribution losses,

x− x∗, are minimised for any given x and hence the distribu-

tion efficiency can be defined as x∗/x. Maximisation of this

distribution efficiency (x∗/x) can be achieved by both min-

imising total path lengths and maximising unit path length

efficiencies.
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One of the most effective means of minimising path

lengths is to optimise the structure of the system by co-

locating points of end-use at optimal locations within RADE

networks. Such behaviour is ubiquitous in industrial soci-

ety expressed through the process of urbanisation. As for

unit path length efficiencies, these can be affected by the

method of distribution and the nature of the resource being

distributed. Two examples are the increasing use of more fuel

efficient vehicles and the liquefaction of natural gas for trans-

portation. It is also important to appreciate that path lengths

and their efficiencies are not only determined by infrastruc-

tural modes of distribution and the geographies of points of

end-use but also by decisions that people make when choos-

ing between the pathways available to them. For example,

there may be many routes between two locations, but quicker

and less arduous routes are generally preferred.

In summary, our conceptual model of the distribution ele-

ment of the global RADE system is one of a space-filling net-

work linking points of environmental resource acquisition to

points of societal end-use. To explore the possibility that the

distribution element of the global RADE system behaves in

this way we now investigate the relationship between global

primary energy use, x, and global final energy use, x∗. We

refrain from looking at the architectures of specific networks

because, as stated previously, our analysis is largely depen-

dent on flows of energy at the global scale. As such, we be-

lieve it is the emergent behaviour of the network of networks

that comprise the global RADE system that is relevant. This

suggests that the behaviour of individual network elements

must be considered within the context of the other network

elements they operate alongside.

3 Primary and final energy flows at the global scale

As discussed previously, one definition of an optimal net-

work is where distributional energy losses are minimised.

West et al. (1997) employed an optimal model of a fractal

space-filling network to demonstrate how distribution net-

works in nature can give rise to observed scaling patterns.

Banavaar et al. (2010) showed that these patterns were not re-

stricted to fractal networks. Although not articulated in these

papers, both of these analyses allude to a theoretical upper

limit of the distribution efficiency x∗/x for any given space

being occupied by a distribution network. If L is the linear

size of the network then the size of the space being filled

by the network is given by LD where D is the dimension

of the space being filled by the network. Independent of the

specific modelling assumptions considered by either West or

Banavaar, to be consistent with their modelling results, op-

timal network efficiency has to scale with network size ac-

cording to x∗/x∝L−D/(D+1). This even holds as L tends to

zero because D must also tend to zero in the limit, so the

efficiency of the network has a theoretical unity upper limit

even as L→ 0.

The scaling relationship between x∗/x and L suggests

that the relationship between the energy arriving at the

points of final use, x∗, and the primary energy flow enter-

ing the network, x, should scale as x∗∝ xD/(D+1). This is

the same scaling relationship proposed by Dalgaard and Stru-

lik (2011), building on Banavar et al. (2010), when attempt-

ing to account for the energy distribution losses in the US

electricity grid. The reason for sub-unity scaling between x∗

and x is simply because as the size of the system increases

so does its average path length between points of acquisition

and end-use, L. This increase in path length causes the dis-

tribution efficiency, x∗/x, to fall. However, rather than the

efficiency falling in proportion to increases in network size,

LD , it falls in proportion to LD/(D+1) , i.e. at a rate slower

than one would predict from geometric considerations alone.

This is because of the optimisation of the distribution links

within the RADE network as discussed earlier.

We define global primary energy use, x, as the annual en-

ergy flow from nature to society in the form of wood, coal,

oil, gas, nuclear, renewables and food. Primary energy is gen-

erally treated as the combustible energy equivalent of these

sources. This does introduce some complexity when han-

dling non-combustible sources (e.g. wood used for construc-

tion), but given that these are such a small fraction of the total

this is not believed to significantly affect the quality of the ag-

gregate global primary energy data (Macknick, 2009). Total

food use was estimated by assuming global per capita con-

sumption of 3× 109 J yr−1 (United Nations, 2002), although

presently this represents less than 1 % of the total.

We define x∗ (final energy use) as the energy available

to industrial society once distribution losses have been ac-

counted for. The International Energy Agency (IEA) pro-

vides estimates of energy lost through its acquisition, pro-

cessing and delivery to end users. However, these data do not

account for energy losses associated with either the acqui-

sition of non-energy resources and agriculture or the trans-

port of all mass through industrial society. In an effort to ac-

count for these losses to obtain x∗ we have subtracted the

IEA estimates of energy used in quarrying, mining, agricul-

ture, forestry and, in particular, transport, from the IEA final

energy consumption data.

Considering transport as a distributional loss raises an

important conceptual issue. Currently approximately 50 %

of transport energy use is associated with passenger move-

ments. Traditionally these are seen as end-use energy ser-

vices enjoyed by people. However, here we treat them as nec-

essary distributional losses required to get energy consumers

to spatial nodes where they can contribute to the continued

growth of the RADE system. In other words, we view the

flow of people like the flow of any other mass in the RADE

system. Hence we view nodes of final consumption as static

locations where final energy is consumed, albeit with human

agency applied to the purpose of consumption. Importantly,

this means that nodes are best viewed as more than just pas-

sive recipients of resource. Instead final consumption nodes
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must in turn facilitate the further acquisition of resources

through extending the interface between industrial society

and the environment (Garrett, 2011, 2012). Taking this ap-

proach essentially means that all components of the RADE

system that are mobile are distributional and all static compo-

nents are either acquiring resources or consuming resources

for end-use. Although this framing may be contrary to more

traditional views of humans as “energy consumers” we be-

lieve it is at least internally consistent with our view of the

RADE system and the role of humans in it.

It should be noted that our estimates of x∗ do not ade-

quately account for the distribution energy losses occurring

between the point of sale and the point of end-use of energy

(e.g. in the case of electricity, losses occurring between the

meter and the plug). However, we assume these to be rel-

atively small relative to all upstream losses associated with

acquiring and distributing all resources. The small underesti-

mate of distributional loss implied by our estimate of final en-

ergy using the IEA data should be partially offset by the fact

that our revision of the IEA final energy use will also include

some non-distributional energy uses (e.g. end-use energy in

agriculture) due to the way the IEA data are compiled.

We define the space associated with unit final energy con-

sumption (referred to as a “control volume” by Dalgaard and

Strulik, 2011) as being that where the consumption of useful

energy in that space is significantly greater than the trans-

fer of useful energy from that space to other regions of the

network. These spaces are complex entities and not easy to

identify, because in a global mean sense they are comprised

of broad portfolios of energy uses. That said, examples of

end-use processes might include reading this article on a

computer, cooking, constructing or demolishing a residential

building etc.

As for energy losses due to energy transformations that oc-

cur between primary and final energy, these are far more sig-

nificant. One way of reconciling these transformations within

the current framework is that they are deployed to reduce

mass flows in critical parts of the system (e.g. by generat-

ing electricity from coal). Here the substantial energy losses

incurred by these transformations are presumably offset by

the downstream savings they facilitate (in this example, by

reducing the amount of coal distributed to individual house-

holds). This point will be explored in greater detail in Sect. 4.

Figure 1a shows the relationship between x and x∗ for

the available IEA data (IEA, 2012). We find that x∗∝ xc

(c= 0.75± 0.02)1, i.e. the scaling exponent c is statistically

indistinguishable from three quarters. For reference, using

the IEA definition of final energy gives c= 0.84± 0.01 with

1Scaling exponents have been estimated using ordinary least

squares of the linear model ln(x∗)= θ1 ln(x)+ θ2. Parameter uncer-

tainties are reported at 95 % confidence. 1σ uncertainties in the data

were assumed to be 5 % (Macknick, 2009). All results were also

cross-checked using nonlinear least squares of the untransformed

data.

practically all of the difference between these two estimates

attributable to the inclusion of transport in our specification

of final energy. Figure 1b shows the equivalent relationship

between the distribution efficiency, x∗/x, and primary en-

ergy, x. It confirms that, as predicted, the overall efficiency

of the network has progressively fallen over time as x has

increased and is now below 50 %, i.e. more than half of all

primary energy is now used simply to move all the materi-

als and resources required by industrial society (e.g. environ-

mentally derived materials, mobile system infrastructure and

people) to final nodes of end-use.

4 What space does society inhabit?

The fact that we observe scaling between x∗ and x that is

statistically indistinguishable from three quarters suggests

D= 3 in the framework set out above. Although the rela-

tive dimensions are far from equal, it is self-evident that the

networks moving mass through global industrial society oc-

cupy a three-dimensional space. However, since the horizon-

tal dimensions of this space are approximately 3 orders of

magnitude greater than the vertical dimension (delineated by,

for example, the distance between the deepest mines and the

height at which aircraft fly), it is appropriate to ask whether

this space is more appropriately approximated by a two-

dimensional surface rather than a three-dimensional volume.

This question cannot be answered conclusively here but we

offer the following lines of evidence to suggest that D= 3

does indeed provide a plausible description of the space filled

by the global RADE system.

Firstly, the effect of gravity obviously imposes dispropor-

tionately higher distribution costs on movement in the ver-

tical dimension than in the horizontal. We conjecture that

these differences in cost are between 1 and 2 orders of mag-

nitude. This could rise significantly above 3 orders of magni-

tude when the engineering difficulties of exploring the verti-

cal dimension below ground are considered. Whether this is

sufficient to result in D= 3 in the global RADE networks is

unclear although we note that we invariably treat the atmo-

sphere as a three-dimensional object even though it too has

a severely diminished vertical dimension. Secondly, the scal-

ing behaviour of urban centres suggests that people occupy a

three-dimensional space at the city scale, despite the fact that

the vertical dimension is again very much attenuated (Nord-

beck, 1971). Even silicon chips, which have a trivial vertical

dimension, exhibit scaling of the order ofD= 2.5 (Deng and

Maly, 2004) suggesting that even a highly attenuated vertical

dimension with no disproportional losses can result in non-

trivial scaling effects. Finally, although the Earth’s surface

can, by definition, be considered a two-dimensional object,

the curvature of this surface at the global scale may be suf-

ficient to introduce three-dimensional effects in the links be-

tween network nodes.
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Figure 1. (a) The relationship between global primary energy use, x, and global final energy, x∗. Two definitions of final energy are shown;

(o) are the IEA estimates, (•) are the IEA estimates adjusted for energy used for transport, agriculture, forestry, mining and quarrying.

(b) The relationship between global primary energy use, x, and primary to final network efficiency, defined as the ratio x∗/x( q). Also shown

are the estimated variations in end-use efficiency assuming a total system efficiency 10 % (+). The IEA definition of primary to final energy

efficiencies (o) are also shown for reference. (c) The relationship between global primary energy use, x, and global anthropogenic CO2

emissions, y, for the data shown in Fig. 3. (d) The relationship between global primary energy use, x, and the carbon intensity of global

primary energy, x/y again for the data shown in Fig. 3. The bands for all plots represent 5th to 95th uncertainty ranges from the linear

regressions. See text for all data sources and compilation.

An alternative explanation to our observed scaling be-

haviour of the global energy system is thatD< 3 and that the

system operates supra-optimally, which appears infeasible.

Equally, the observed exponent of three quarters may have

arisen by chance and the systemic explanation explored here

is incorrect. This proposition cannot be rejected, but then nei-

ther can the proposition that D= 3. It also seems somewhat

anomalous that we would observe a scaling exponent that is

indistinguishable from three quarters if the system was two-

dimensional.

If the global RADE network has the dimensions of D= 3,

then the scaling observed between x and x∗ suggests that,

at the global scale, the distribution networks that under-

pin the RADE system are, in aggregate, optimised with re-

spect to energy losses, despite filling a highly irregular three-

dimensional space. That the RADE networks created within

industrial society should be near-optimal does not seem un-

reasonable given the pressures to seek out performance im-

provements in a competitive global market system.

As a result of the framework set out above we identify

three related mechanisms through which distribution effi-

ciency gains, and hence the optimisation of this element of

the global RADE system, could be realised.

1. The efficiency of network infrastructure is progressively

improved over time (e.g. by the use of more aerody-

namic vehicles, more efficient combustion processes).

2. The flows are themselves persistently dematerialised

over time (e.g. by introduction of lighter vehicles, shift-

ing the primary fuel mix from wood to coal to oil to gas

or turning coal into electricity – see later).

3. The structure of and practices on the network are modi-

fied over time to reduce average path lengths, L (e.g. by

building a new road, introducing car navigation sys-

tems, by the reorganisation of the points of acquisition

and end-use during urbanisation).

The first two of these are primarily concerned with maximis-

ing unit path length efficiencies, whilst the third is primarily

concerned with minimising total path lengths. It may also

be that processes like urbanisation offer additional benefits

in that the increased social interactions that result from the

clustering of people stimulate the innovations required to dis-

cover and realise the three efficiency mechanisms mentioned

above (Bettencourt, 2013). These innovations have to be con-

tinuously discovered, developed and implemented in order to

accommodate the growth of the RADE system. We shall re-

turn to the subject of resource flow dematerialisation in more

detail in Sect. 6.

5 What happens at the regional scale?

Thus far our analysis has been focused at the global scale,

yet this global behaviour must emerge from regional-scale

dynamics. Each region, i, uses primary energy, xi , and final
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energy, x∗i , where
∑
xi = x and

∑
x∗i = x

∗. As we have al-

ready discussed, networks tend to become less efficient as

they expand due to the size-related penalties of growth. It ap-

pears that this behaviour is observed at the global scale with

x∗/x decreasing as x increases (Fig. 1b). In the absence of

further innovation and all else remaining equal, we would an-

ticipate the same behaviour at the regional scale. This means

that in portions of the system with higher energy use densities

(i.e. higher energy use per unit space) we would expect lower

regional distribution network efficiencies, x∗i /xi . Conversely,

in portions of the system with lower energy use densities

(i.e. lower energy use per unit space) we would anticipate

higher regional distribution network efficiencies. However, if

this divergence in distribution efficiencies between regions,

due to differing energy use densities, actually arose at any

given point in time it would presumably cause the global sys-

tem to be sub-optimal because global final energy use could

be increased for the same global primary energy use simply

by shifting resource distribution from the less efficient to the

more efficient portions of the system.

This sub-optimality is not what we observe at the global

scale. Instead, as discussed above, the observed approximate

three quarter scaling between x and x∗ indicates that the

global RADE system is operating near-optimally with re-

spect to distribution if D= 3. Because it appears that the

system could be near-optimal at the global scale, we would

expect distribution efficiency gains to be persistently sought

out. In other words, if optimal, the RADE system would

evolve such that it seeks to exhaust all potential improve-

ments with respect to energy use. As a result, we hypothesise

that, at any particular point in time, all countries of the world

should have similar network efficiencies and these should be

independent of their energy use densities (i.e. their xi per unit

space). In order to achieve this, countries located in more

energy-dense (i.e. more developed) portions of the system

presumably innovate more aggressively on distribution effi-

ciency to overcome the size-related penalties of growth than

do those in less energy-dense (i.e. less developed) portions of

the system. Once again, examples of these innovations might

be the enhanced efficiency of mass transport, enhanced ur-

banisation and the enhanced use of gas or electricity.

We test this hypothesis using IEA data for 140 countries

for the period 1971–2010. Figure 2 shows the relationship

between primary and final energy use (xi and x∗i ) for these

data. In the absence of a measure of the effective volume be-

ing filled by society, we have normalised energy use by coun-

try land area in order to attempt to reflect the space-filling

aspect of the system. Because this assumes uniform average

vertical dimensions between countries and is applied to both

xi and x∗i this only changes the relative positions of coun-

tries, not their individual efficiencies.

As predicted, Fig. 2 shows that at any given point in time

x∗i /xi is largely independent of xi (x∗i ∝ x
c
i ; c= 0.97± 0.03

for all 40 years). This appears to hold across all 140 coun-

tries sampled, which have a range of 105 in energy use per

Figure 2. The relationship between country-specific primary en-

ergy use, xi , and final energy use, x∗
i

for the period 1971–2010.

Individual countries are marked with different colours, N = 140.

The data for all countries for 2010 are marked separately (o). All

country-specific energy data are normalised using the surface area

of the country. The surface area is an imperfect proxy for the space

occupied by each country if the global system is filling a three-

dimensional volume. In the absence of data, we assume that the

magnitude of the vertical dimension is constant across all 140 coun-

tries. Note that the higher per unit area energy consumers have per

unit area energy flows that are a significant proportion of the so-

lar constant. The inset figure shows both the exponential scaling

coefficient estimated from the annual relationship between xi and

x∗
i

(values near 1) along with the primary-to-final energy efficiency

x∗
i
/xi plotted for each year 1970 to 2010. The bands represent 5th to

95th uncertainty range for the estimates. See text for data sources

and compilation.

unit area. For example, currently the UK has a similar distri-

bution efficiency, x∗/x, to that of Bolivia (0.473 vs. 0.466),

despite having > 102 greater energy use density. A signifi-

cant contributor to the variation in x∗i and xi is probably the

less reliable IEA energy data for less-developed countries.

We note that the variation created by these uncertainties is

not systematically above or below the central trend. More-

over, we would expect the relationship to be even clearer if

we were able to normalise the data by the appropriate vol-

ume, rather than area, occupied by society in each country.

Because of the apparent invariance of distribution network

efficiency with energy use density it would appear that re-

gional networks are not scaled versions of the global sys-

tem, i.e. the global RADE network appears to be scale de-

pendent rather than scale free. This implies that you cannot

simply look at isolated sub-components of the global RADE

Earth Syst. Dynam., 6, 689–702, 2015 www.earth-syst-dynam.net/6/689/2015/



A. J. Jarvis et al.: Resource acquisition, distribution and end-use efficiencies 695

network (e.g. individual countries) in order to infer the be-

haviour of the global system.

6 Long-run growth and decarbonisation of global

energy use

Thus far we have focused on data on primary and final en-

ergy use covering the last 40 years. However, there are data

on primary energy use going back much further than this. As

mentioned earlier, global primary energy use, x, is taken here

to be the annual energy flow from the environment to soci-

ety in the form of wood, coal, oil, gas, nuclear, renewables

and food. In order to construct a consistent time series for

x since 1850, following Jarvis et al. (2012), the global pri-

mary energy use data for the period 1850 to 1964 are taken

from Grübler (2003) and for the period from 1965 to 2010

from BP (2011). We note that compiling long-term historic

series for virtually any relevant measure of economic activ-

ity is challenging due to the paucity of available data and

increasing uncertainties the further back one goes. Data on

energy use are not exempt from these limitations. For exam-

ple, the Grübler data we use do not appear to capture the full

portfolio of renewables in use in the 1800s (e.g. wind and

water power). However, we also note that the energy data

used here still represents one of the best observed metrics

of global economic activity. Also on the specific issue of re-

newables post-1850, evidence suggests that they constituted

a negligible part of the global energy portfolio during this

period (O’Connor and Cleveland, 2014; Fouquet, 2014).

We opt to use the BP data in order to attempt to have some

limited independence from the IEA data used to explore the

relationship between x and x∗. To produce a homogeneous

record for 1850 to 2010 the mean difference between the two

series for the period 1965 to 1995 (which is largely due to

lack of wood fuel use in the BP data set) was added to the BP

data. The data were converted from tonnes of oil equivalent

(toe) to Joules, assuming 1018 J= 2.38× 107 toe (Sims et al.,

2007).

Figure 3 shows the primary energy use data, x, for the pe-

riod 1850–2010. These suggest that, in the long term, x has

grown near exponentially since at least 1850, with a long-

term relative growth rate of 2.4 (±0.08) yr−1 (Jarvis et al.,

2012).2 Using global Gross Domestic Product (GDP) data

as a proxy for global energy use, Garrett (2014) suggests

that the relative growth rate of global primary energy has

2Relative growth rates have been estimated using ordinary least

squares of the general linear model ln(x)= θ (t − t1). Parameter un-

certainties are reported at 95 % confidence. The model residuals,

which were significantly autocorrelated, have been de-correlated

assuming a first-order autoregressive noise model to minimise any

bias in the estimates of θ . 1σ uncertainties in the data were assumed

to be 5 % in energy use and fossils fuel emissions (Macknick, 2009);

and 20 % in land-based emissions (C. Le Quéré, personal commu-

nication, 2013).

 

x 
(1

018
 J

 y
r-1

)
y 

(1
015

 g
C

 y
r-1

)
y/

x 
(1

0-3
 g

C
 J

-1
 y

r-1
)

 

1850 1900 1950 2000
0.001

0.01
0.1

1
10

100
1000

10000

year

i

ii

iii

 

Figure 3. (i) Annual global primary energy use [11, 12, 13] with re-

gression line given by ln x= a(t − t1); a= 0.0238± 0.0008 yr−1;

t1= 1775± 3.5 CE. (ii) Annual global anthropogenic CO2 emis-

sions [15, 16, 17] with regression line given by ln y= b(t − t1);

b= 0.0179± 0.0006 yr−1; t1=AD 1883± 1.7. (iii) Carbon inten-

sity of global primary energy determined by the ratio y/x. See text

for data sources and compilation.

increased significantly over this period. The data and analy-

sis in Fig. 3 would indicate otherwise, although clearly there

are significant uncertainties over actual global primary en-

ergy measures both now and more significantly pre-1900. For

example it is unclear what contribution wind makes through

shipping over this period. That said, that the long-run growth

in primary energy use observed over the last 40 years actu-

ally appears to extend back at least 160 years suggests that

the processes and trends that have underpinned the develop-

ment of the global RADE system may have actually been

operating for considerably longer than the IEA data provide

evidence for. If this is the case we would predict that the opti-

misation mechanisms identified earlier would also have been

at work over the same period. In particular, we would ex-

pect that these optimisation mechanisms would be sought out

and implemented at a rate that matches the growth-induced

declines in distribution efficiency experienced by the global

RADE system revealed in Fig. 1b.

To explore this proposition we focus on the demateriali-

sation of resource flows. The primary energy carrier for in-

dustrial society is carbon, and in fact some estimates sug-

gest that carbon currently accounts for as much as 50 % of

the total amount of materials moved by industrial society

through its RADE networks (Dittrich and Bringezu, 2010).

This material flow ultimately leads to the emissions of car-

bon dioxide as carbon-based energy carriers are consumed.

Hence the emission rates of carbon dioxide can be seen as

giving a measure of the flow of carbon-based energy carri-

ers through the RADE system. In the context of the distri-

bution costs of resources, decarbonisation can therefore be

viewed as merely one, albeit important, component of a gen-

eral systemic dematerialisation of resource flows (Ausubel,

1989) through the RADE system. Here dematerialisation is

taken as the removal of “unnecessary” mass from resource
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flows through innovation. This systemic dematerialisation is

almost certainly not unique to carbon and may indeed be a

necessary response to the increasing distribution costs inher-

ent in any expanding network.

To estimate the amount of carbon flowing through

the RADE system we use global carbon emissions data

from Houghten (2010), Boden et al. (2010) and Peters et

al. (2012).3 Figure 3 shows that global carbon emissions,

y, have also grown near-exponentially since at least 1850 at

the long-term rate of 1.8 (±0.06) % yr−1 (Jarvis et al., 2012).

The difference between this growth rate and the growth rate

of primary energy indicates that the global primary energy

portfolio has been systematically decarbonised at a rate of

∼ 0.6 % yr−1 since at least 1850 (Jarvis et al., 2012). This

decarbonisation is normally viewed as being the result of so-

cietal preferences for cleaner, more convenient, energy car-

riers (Grübler and Nakienovic, 1996). It has also been par-

tially attributed to improvements in the efficiency of convert-

ing solid, liquid and gaseous fuels to electricity (Nakienovic,

1993). Both these explanations seem unsatisfactory given the

constant long-run nature of the decline in carbon intensity.

Furthermore, conversion efficiency affects the distribution

efficiency, x∗/x, and hence x∗. It does not directly affect

the primary portfolio comprising x. Instead, it is more ap-

propriate to consider innovations on energy transformations

as co-evolving with the portfolio of global primary energy.

More specifically, it appears to us that the pattern of decar-

bonisation of the global energy portfolio is in line with, and

a necessary response to, the declining distribution efficiency

of the global RADE network, x∗/x.

The long-term exponential growth in both x and y set

out above suggests that global primary energy use and car-

bon flows share a common exponential scaling relationship,

y∝ xb/a , where a and b are the relative growth rates of x and

y, respectively. Figure 1c shows the scaling relationship be-

tween x and y since 1850. From these data we see that the

exponential scaling between x and y is not only a property

of the 160 year average behaviour, but also holds remark-

ably well on intervening timescales. This relationship has a

scaling exponent of b/a= 0.76 (±0.05). Calculating this ex-

ponent using the long-term (160 year) exponents for x and y

gives b/a= 0.75 (±0.06). As with the primary-to-final scal-

3As in Jarvis et al. (2012), we have included land use change

in the measurement of carbon emissions because our definition of

x necessarily includes wood use. However, although deforestation

dominates the land use change emissions estimates, not all defor-

estation emissions are associated directly with the production and

distribution of wood as a fuel, as they include significant contribu-

tions from slash-and-burn land clearance activities for food produc-

tion. Furthermore, carbon-neutral biomass production is not accom-

modated by net anthropogenic CO2 emissions inventories. Between

1850 and 1900 wood fuel use constituted a significant proportion

of global primary energy use (Grubler, 2003) but beyond 1900 their

contribution to global carbon use quickly become dominated by fos-

sil fuels.
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Figure 4. A schematic 1-D representation of the global RADE sys-

tem. Here units of primary energy, x, are linked to those of final

energy, x∗, via a distribution network. The black outlined system

represents the initial stage of the systems evolution. The red out-

lined system represents the subsequent addition of units of final en-

ergy use and hence primary energy use and hence the expansion of

the network linking the two.

ing identified earlier, this too is statistically indistinguishable

from three quarters.

The scaling observed between x∗ and x and between y and

x therefore leads to direct proportionality between carbon in-

tensity and network distribution efficiency (y/x∝ xc x∗/x;

c=−0.006± 0.043, hence xc≈ 1; see Fig. 2c and d). As pre-

dicted then, the implementation of dematerialisation appears

to occur at a rate that is proportional to the growth-induced

declines in distribution efficiency experienced by the global

RADE system. This would appear to further corroborate our

view of the role of the distribution networks that make up the

global RADE system. Interestingly, the result of the scaling

between x, x∗ and y also indicates that total global anthro-

pogenic CO2 emissions grow in proportion to the consump-

tion of final energy, x∗, not primary energy, x.

To place our interpretation of the role of decarbonisation of

the primary fuel mix in context, the historic trend in primary

energy use from wood to coal to oil to gas and renewables has

occurred because it has allowed less mass to be transported

through the RADE network per unit of energy used (Ausubel,

1989). Fundamentally this represents an innovation on the

distribution efficiency, x∗/x.

The recent shift towards the use of gas globally (Exxon-

Mobil, 2013) represents a particularly interesting continua-

tion of this trend. Gas has a lower unit volume energy den-

sity than other fossil fuel sources (i.e. coal or oil). Lower

energy density carriers like gas suffer from higher long-

distance transportation costs, which is presumably why a

smaller proportion of gas is traded internationally than oil
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or coal (ExxonMobil, 2013). However, gas also incurs lower

energetic costs when being distributed though the more tortu-

ous finer terminal parts of the distribution network (Banavar

et al., 2010).

To illustrate this point it is useful to consider the paths that

make up the global distribution network as passing through

three stages: the gathering together of resources from their

extraction points in the environment; the intermediate trans-

portation of resources from regions of extraction to regions of

end-use; and lastly the distribution of resources to the nodes

of final end-use (see Fig. 4). As the global distribution net-

work develops, the relative importance of these three net-

work elements in controlling overall distribution costs should

change. This is because, although the long-distance interme-

diate costs increase as the network expands, the final distribu-

tion costs increase faster (Banavar et al., 2010). This concept

is already well established in transportation and telecom-

munications networks as “the last mile problem”. So as the

RADE system as a whole grows, low carbon energy carriers

such as gas are increasingly preferred, and this preference

is most keenly felt in the final distribution elements of the

RADE system. This seems intuitive when one imagines the

vastly increased distributional costs that an advanced (i.e. en-

ergy dense) country like Germany would incur if it tried

to meet its energy demands for heating and cooking solely

through distributing coal to individual end users, instead of

by the increasing use of gas.

This demand for low-carbon energy carriers in the termi-

nal parts of the RADE system may also stimulate innovations

such as the liquefaction of natural gas (LNG) because LNG

reduces the costs of moving gas long distances during in-

termediate transportation. Similarly, innovations in hydraulic

fracturing can allow the exploitation of gas resources near to

the final point of use, removing some of the need for long-

distance transport. Lastly, electrification is currently the pri-

mary means of dematerialising energy flows through trans-

formation and, just as with gas, the lower energetic costs of

transmitting electricity are most effectively deployed in the

final distribution parts of the network, e.g. in developed, ur-

banised areas. This would explain why decarbonisation is

sometimes associated with energy transformation efficien-

cies given that both would co-evolve as distribution networks

expand. However, we would argue that it is misleading to

implicate conversion efficiency as a driver for the decarbon-

isation of energy portfolios. It is interesting to note from

Fig. 3 that the recent increase in global coal use, which tends

to counter the long-term trend of decarbonisation, has been

largely offset at the global scale by the increased use of gas,

renewables and decreases in land-based emissions. Further-

more, the vast majority of this coal is not distributed to final

points of end-use as it was a century ago. Instead it is used

to generate electricity which is then distributed to end users,

which is consistent with the process of dematerialisation dis-

cussed above.

7 Total energy efficiency and growth – a model

If industrial society does indeed experience declining net-

work distribution efficiency, as indicated by Fig. 2b, then,

all else remaining equal, global industrial society should ex-

perience size-related limits to growth in x, just as growth is

self-limiting in most biological systems (West et al., 2001). It

is possible that the observed long-term exponential growth in

x could reflect the early stages of what is otherwise logistic

size-restricted growth. If this is the case then ultimately the

growth of the global RADE system would be self-limiting,

even though primary energy use has risen exponentially and

by ∼ 50-fold since 1850. This in and of itself is a fascinating

prospect.

However, we argue that global industrial society is con-

tinually innovating to overcome the increasing size-related

penalties associated with growth. This seems consistent with

the apparent growth imperative of industrial society and

the fact that the observed declines in distribution efficiency

shown in Fig. 1b have been countered in order to maintain

the near-constant relative growth rate of ∼ 2.4 % yr−1 shown

in Fig. 3. We illustrate this point with the following simple

endogenous growth model in which we treat global industrial

society as a homogeneous unit.

As global society grows, it acquires additional primary

energy flows to support additional end uses, the two being

linked by extensions to existing networks. Therefore, we can

conceptualise the growth of industrial society both as its ex-

pansion into new environmental resources, and hence space,

and the establishment of new points of end-use. Although the

space occupied by industrial society is complex, if D= 3,

then it is appropriate to consider society as occupying an (ir-

regular) volume, V . If the end-use control volumes are con-

sidered as being within V then, from a network perspective,

it is also reasonable to assume the in-use environmental re-

sources are also within V , i.e. industrial society grows into its

resources (Garrett, 2011). If so, then we assume in the sim-

plest case that the flow of resource into industrial society is

proportional to the volume of resources subsumed and hence

V .4 Therefore, in the absence of any storage, the supply and

consumption of primary energy resources might simply be

described by

x = kAV, (1)

where the proportionality kA is the resource acquisition effi-

ciency and is the product of the energy potential between the

environmentally derived energy resources and society and

the efficiency with which these resources can be assimilated

into the RADE system and hence into industrial society.

4We note that Garrett (2014) assumes environmental resources

flow to industrial society across an environment–society interface

(surface) and hence speculates that this flow is proportional to V 1/3

on theoretical grounds.

www.earth-syst-dynam.net/6/689/2015/ Earth Syst. Dynam., 6, 689–702, 2015



698 A. J. Jarvis et al.: Resource acquisition, distribution and end-use efficiencies

Assuming networks distribute captured resources opti-

mally within the volume, V , then the final energy flow ar-

riving at points of end-use, x∗, is given by

x∗ = gxD/(D+1), (2)

where g is a scaling constant (Dalgaard and Strulik, 2011).

Once at the points of end-use, and after subtracting the end-

use inefficiencies (i.e. the costs of transforming final energy

into useful work), the remaining portion of x∗ provides work

which is used to increase the size of industrial society (Gar-

rett, 2011, 2012). This in turn expands V and allows the co-

option of further resources. Because it requires work to ex-

pand V , the size of industrial society can also be viewed as

the accumulation of this work, X, occupying the space, V .

The balance of this accumulated work can be seen as the dif-

ference between work done and the decay of the stock of

accumulated work,

dX

dt
= kEx

∗
− kDX, (3)

where kE is the end-use efficiency of final energy conversion

to useful work and kD is the aggregate decay rate of X.

Equations (1)–(3) are exponential in x, in line with the ob-

servations in Fig. 3, ifX∝V , i.e. work operates uniformly in

space. Because the mean energy density of industrial society

is unknown we assume X=V for simplicity given this has

no bearing on our analysis. Equations (1)–(3) now give

dx

dt
=

(
kAkEgx

−1/4
− kD

)
x = ax, (4)

where a is the relative growth rate of global primary energy,

or ∼ 2.4 % yr−1. From Eq. (4) we see that a∝ x−1/4 (West

et al., 2001), i.e. as the system grows the relative growth

rate should fall. Therefore, in order to maintain exponential

growth in x, the acquisition efficiency, kA, and/or the end-use

efficiency, kE, must be increased and/or the decay rate, kD,

must be decreased to compensate for the declining capacity

of primary energy to support growth.

We assume that both kA and kE are dynamically adjusted

by society in order to maintain growth, whilst kD remains

fixed. The assumption of a fixed decay rate is supported

by the observation that the mean lifetime of technologies

(Grübler et al., 1999), including large energy projects (Davis

et al., 2010) has remained fairly constant at ∼ 40 years, or

(∼ 2.4 % yr−1)−1, i.e. technologies decay at the same rate as

the relative growth of industrial society (kD= a). One way

of understanding such a link is that physical capital is turned

over at about the same rate as the system evolves, thereby

allowing the appropriate rate of adoption of the innovations

required to preserve growth at the rate a.

In the absence of any change in the acquisition and end-use

efficiencies, a∝ x−1/4. Therefore for a to remain constant

requires

kAkE = hx
1/4, (5)

where again h is a scaling constant. This now gives exponen-

tial growth in x as

dx

dt
= (hg− kD)x = ax (6)

and hg= 2a if kD= a as discussed above. Within this frame-

work, if kD= a, the energy that is available to grow X and

hence V , xG, is given by

xG = k
−1
A hgx = εx, (7)

where ε is the overall primary to end-use energy efficiency

of the RADE system (see also Garrett, 2011). The observed

near-constancy of the long-term relative growth rate in global

primary energy use strongly suggests that ε has remained

more or less constant over at least the last 160 years. Us-

ing IEA data, Nakicenovic et al. (1996) have estimated ε to

be ∼ 30 %, although this figure is highly uncertain because

their analysis could not accurately account for the end-use

efficiency of final energy in productive work. Ayres (1989)

attempted a similar analysis for the US attempting to account

for so-called useful work (or exergy) effects and derived an

estimate of 2.5 % for ε. In addition to the declining network

distribution efficiency x∗/x, Fig. 1b also shows an illustra-

tion of the simultaneous increases in end-use efficiencies, kE,

required to keep ε at a hypothetical value of 10 %, assuming

kA is constant.5 Figure 5 shows the model described above

in block diagram form.

8 Growth optimisation and working lifetimes

Thus far we have sought to illustrate how the growth of in-

dustrial society, as determined by its energy use, could be

controlled by the optimisation of the RADE network. In part

this optimisation is facilitated by reducing material flows in-

cluding decarbonisation of the primary energy portfolio. We

have also attempted to show that, despite this optimisation,

RADE network efficiency necessarily falls. We have there-

fore set out how an observed near-constant relative growth

rate is maintained through continuous but measured imple-

mentation of innovations on both energy acquisition and end-

use efficiencies. An important question that remains is, if

growth is desirable, why does industrial society only com-

pensate for falling distribution network efficiency, and not

overcompensate to allow super-exponential growth? Or, put

another way, why is constant relative growth good? This can-

not be due to the lack of innovative capacity because there ap-

pears to be a surplus of this available to enhance acquisition

5Here 10 % is simply taken as an illustrative value for ε given

its true value remains highly uncertain. This only affects the level

of the relationship between xG/x
∗ and x, not its scaling. Having

assumed this value we can also specify a fixed value for kA from

Eq. (7) of 2a/0.1= 0.5 yr−1 for the case of X=V .
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Figure 5. The system diagram representation of the endogenous growth model set out in Eqs. (1)–(5). Numbers in boxes denote which

equations apply. s in the “construction” transfer function is the derivative operator, d/dt .

and end-use efficiencies in the global RADE system. This

suggests that industrial society is somehow self-regulated

such that the relative growth rates of, for example, energy

use, are held near-constant in the long run.

If there is a tendency in industrial society to implicitly

regulate growth in things such as energy use, insights into

this could be obtained from considering the ∼ 2.4 % yr−1

long-term growth rate on which industrial society appears

to settle. At this point, we note that a relative growth rate

of a= 2.4 % yr−1 corresponds to a growth timescale of

a−1
= 42 years. It would therefore appear sensible to attempt

to understand growth in the context of this timescale.

To explore the possible relationships between a and the

timescale a−1 we start by assuming that the optimisation of

the distribution component of the RADE network, combined

with the increasing acquisition and end-use efficiencies to

control growth (as implied by the control in Eq. 5), point

to energy efficiency being an important systemic consider-

ation. Energy efficiency improvements of any kind amount

to actions taken to reduce waste and hence increase energy

available for specific end uses. Although end-use is notori-

ously difficult to specify, in the highly reduced description of

the global energy system offered above, this end-use can be

summarised simply as the work done to expand the size of

industrial society. As a result, we refer to the energy not used

directly in this work as “supportive” energy use, xS, i.e. en-

ergy supporting, but not directly used, in growth. System-

wide optimal energy efficiency improvements imply that xS

is minimised in order to liberate as much energy for growth

as necessary. Examples of supportive energy might be the

energy expended on exploring, acquiring and distributing re-

sources, personal transport, waste heat and light, etc. Exam-

ples of energy directly used for growth, xG, would be energy

used to construct, replace and repair the physical components

of industrial society such as buildings, oil wells, pipelines,

power stations, electricity grids, roads, railways etc.

We can express this supportive energy simply as

xS = x− xG = (1− ε)x. (8)

This definition of supportive energy may, at first, appear

counter-intuitive because a significant proportion of xS (such

as personal transport) may be thought of as being useful to

society. However, in the spatial context considered here, the

components of xS simply represent expenditures of energy

necessary to facilitate the useful work of actually expanding

the size of industrial society.

If industrial society does indeed attempt to minimise sup-

portive energy use then we should be able to identify a value

of a that minimises xS over a given timescale, T . Noting

that Eq. (6) resolves to x= eat , and combining within Eq. (8)

gives

XS = a
−1(1− ε)eaT , (9)

where XS is supportive energy accumulated over the inte-

gration timescale T . We can now differentiate Eq. (9) with
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Figure 6. The relationship between the relative growth rate on

global primary energy, a, and the total energy not directly used in

growth, XS. Two scenarios are presented, one with an integration

timescale of T = 42 years (–) and one with an integration timescale

of T = 84 years (–).

respect to a to find the value of a that minimises XS and, by

implication, maximises growth over this timescale. Hence,

dXS

da
=

(1− ε)T eaT

a
−

(1− ε)eaT

a2
(10)

which, for dXS/da= 0, has a minimum in XS at T = a−1.

Therefore, the growth rate of such a system is fundamentally

linked to the timescale over which the system behaviour is

optimised with respect to xS.

Figure 6 shows the relationship between a and XS pre-

dicted by Eq. (9). The minimum in XS with respect to a can

be understood in that, for any given integration timescale T ,

if a is below its optimum then the system experiences dispro-

portionate short-term increases in xS and hence inXS (Eq. 8).

However, if a is above its optimum the system experiences

disproportionate long-term increases in XS because of the

effects of enhanced growth (Eq. 6).

Having established a possible connection between the

long-run relative growth in global primary energy use,

a≈ 2.4 % yr−1, and the associated timescale, a−1
= 42 yr,

the question remains, why does growth proceed on this

timescale? As pointed out above, both technologies in gen-

eral (Grübler et al., 1999) and large power schemes in partic-

ular (Davis et al., 2010) have average lifetimes of∼ 40 years.

However, as also noted above, these may simply be manifes-

tations of the need to evolve the global energy portfolio in

line with its growth rate in order to allow for the required rate

of uptake of innovations. Therefore, we look to an alternative

explanation of the underlying driver for growth organised at

this ∼ 40 year timescale.

Thus far, we have largely avoided discussing the role of

the now 7 billion agents involved in making the decisions

that lead to the observed emergent behaviour we have at-

tempted to describe above. We note that where observations

are available, ∼ 40 years is the average working lifetime of

people in industrial societies and that this has been a rela-

tively constant property of industrial societies (Ausbel and

Grübler, 1995; Conover, 2011) despite the very significant

improvements in overall life expectancy in most countries. In

addition to the empirical observation that working lifetimes

have been stable at around 40 years for a long time, the rea-

son we might implicate working lifetimes as a possible factor

on which growth might be organised is that it is only during

this timeframe that people can exert influence over the deci-

sions governing the evolution of industrial society. Prior to

working, or during retirement, although people are using re-

sources, they are not directly able to influence the evolution

of the system. If during their working lifetimes the objective

is to seek out near-optimal energy efficiency improvements

and hence, by implication, to maximise work done, then this

should be sufficient to result in a∼ T −1
∼ 2.4 % yr−1.

Figure 6 also shows that the objective function (Eq. 9)

is more sensitive to changes in a below the optimum than

above it. If this is true it would explain why periods of be-

low optimum growth are more acutely experienced by indus-

trial societies than are periods of above optimum growth.6

Figure 6 also shows the effects of doubling the integration

timescale T . As T is increased the optimal growth rate falls

because the effects of the long-run growth on supportive

energy (Eq. 6) weigh more than those of short-term losses

(Eq. 8). This is equivalent to an inter-generational view of

sustainability in that, by extending the integration interval

beyond an individualistic working lifetime, growth is mod-

erated.

9 Concluding remarks

In this paper we offer a novel analysis of the behaviour of in-

dustrial society based on the physical behaviour of distribu-

tion networks. Specifically, we have used global energy use

data to explore our hypothesis that industrial society progres-

sively fills space as it grows and that innovations are contin-

ually used to overcome the increasing size-related penalties

of this growth.

In order for industrial society to grow, the Resource Ac-

quisition, Distribution and End-use (RADE) system must be

adaptive because the optimal portfolio of resources and end-

uses and the appropriate networks linking the two cannot be

known a priori. Solving this problem under conditions of rel-

atively deep uncertainty would require forms of dynamic op-

6In many respects this is linked to the concept of business cy-

cle asymmetries; or what Keynes (1936) referred to as “the phe-

nomenon of the crisis” – the fact that the substitution of a down-

ward for an upward tendency often takes place suddenly and vio-

lently, whereas there is, as a rule, no such sharp turning-point when

an upward is substituted for a downward tendency.
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timisation. As a result, it is not surprising that we see quite

rich dynamic behaviour in the growth rate of global primary

energy use about its long-run value of ∼ 2.4 % yr−1 (Jarvis

and Hewitt, 2014). Such behaviour is clearly not planned

centrally, but emerges through the free exchange of informa-

tion afforded by globalised market mechanisms.

We have identified three distinct points at which we be-

lieve the innovations necessary for adaptation occur: at the

point of acquisition of resources from the environment; dur-

ing their distribution; and during their conversion at points of

end-use. Without such adaptive capacity both resource avail-

ability and their associated distribution costs should limit

growth.

Within the framework we have set out, growth in global

primary energy use is fundamentally controlled by the opti-

misation of the RADE system. We have speculated that this

optimisation is driven by the inherent desire of people in in-

dustrial societies to minimise energy losses and hence max-

imise work. Since people are only able to significantly influ-

ence such decisions during their working lifetimes it may not

be surprising that the growth in industrial society appears to

be regulated on this timescale.

We acknowledge there are many contentious points in our

discussion that challenge conventional views about how in-

dustrial society behaves. If it could be stated with confidence

that the behaviour of industrial society is largely known, then

our attempts to offer an alternative perspective could be con-

sidered foolish. However, industrial society must rank as one

of the most complex objects in the known universe and our

understanding of its behaviour remains poor, to say the least.

Utilising theoretical insights from other fields in order to ex-

plore this behaviour appears a reasonable strategy. The same

can be said for exploiting long-run global energy use data

given that changes in energy use are obviously coupled with

the evolution of global industrial society. However, signif-

icant further work is required to substantiate or refute our

arguments. This is ongoing.
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