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Forecasters and Rationality- a comment on Fritsch et al., Forecasting the Brazilian Real 

and Mexican Peso: Asymmetric loss, forecast rationality and forecaster herding 

Abstract 

In this commentary stimulated by Fritsch et al. (2014) paper on” Forecasting the Brazilian Real 

and Mexican Peso” and the implications for forecast rationality, I first survey the literature on 

forecaster behaviour concluding that in any particular application, organisational factors and 

psychological factors heavily influence the characteristics of the forecasters’ errors. 

Econometric models can never decompose the error into these potential sources due to the 

reliance on non-experimental data. An interdisciplinary research strategy of triangulation is 

needed if we are to improve both our understanding of forecaster behaviour and the value of 

such forecasts. 
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Introduction 

In the paper I comment on here, Fritsch et al. use the example of the Brazilian Real and the Mexican 

Peso to discuss the interesting and potentially important issues of forecasters’ behaviour; in particular 

they examine the question of whether an implicit loss function can be inferred for these exchange rate 

forecasters with which their forecast can be viewed as ‘rational’. The authors’ careful analysis leads to 

an ambivalent conclusion as to the form of the loss functions apparently adopted by the individual 

forecasters; for some the function may be symmetric, for others asymmetric. Where their tests lead to  

rejection of rationality they suggest that this may be due to the assumptions of the test rather than 

reflecting the reality of their forecasters behaviour. While there are a number of technical issues that 

could be explored1,  in this note I suggest the lack of a clear resolution to the questions posed by 

Fritsch and colleagues  is an inevitable result of the methodology they have adopted.  

 

The assumption that statistical or econometric models necessarily offer a more appropriate choice 

when forecasting for any problem situation has never been shared by practising forecasters. Surveys 

of forecasting practice regularly lead to the conclusion that judgment is at the heart of the forecasting 

process in many if not most applications (McCarthy, Davis, Golicic, & Mentzer, 2006). However, the 

early research on judgmental forecasting was focussed on the question of whether judgmental based 

                                                             
1 Peel (Lancaster) noted in correspondence the paper would benefit for greater clarity on: a. how the 

overlapping errors in 3 month ahead forecasts have been handled. 

b. More on precise dating of forecasts and outcomes. Irregular  interval changes due to data 

collection from the  forecasters can change results. 

c. The instrument set appears to contain non-stationary variables with unclear implications. 
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forecasts could outperform statistical model-based forecasts. Hogarth and Makridakis (1981) reached 

the unequivocal conclusion that quantitative methods outperform judgmental forecasts  Even at the 

time this contrasted with the conclusions coming out of the accounting earnings forecasting literature 

where analysts forecasts, primarily judgmental,  were proving more accurate than time series methods 

(Armstrong, 1983; Brown, Hagerman, Griffin, & Zmijewski, 1987)). Nor were such organisationally 

based judgmental forecasts executed in a vacuum – they were often based on a statistical forecast 

where judgment adjusted (or even overrode) the statistical forecast. Understanding judgmental 

forecasts and their characteristics became a core research question both for the microeconomic 

foundations of economics and finance as well as practical concerns focussed on improving business 

forecasting. In this commentary we briefly review the research evidence on forecaster behaviour 

across a number of business and economic applications concluding that reliance on a single paradigm 

to understand the issues (such as rationality, efficiency, herding etc.) is inadequate. What is needed is 

an interdisciplinary approach that combines methodologies; it is the only research route forward that 

can answer the important questions as to what influences organizational forecasts and how they might 

be made more valuable to their users. 

Bias and Efficiency 

The debate on the relative accuracy of judgmental forecasts quickly became more nuanced beyond 

forecast comparisons with first the accounting researchers followed by macroeconomists focusing on 

the question of bias, efficiency and rationality, and the availability of information. Recent examples 

include Kwag and Shrieves (2006) examining earnings forecasts, stock price forecasts (Aretz, 

Bartram, & Pope, 2011),  macroeconomic forecasts (Dovern & Weisser, 2011) and sports forecasting 

(Smith & Williams, 2010). Most of these studies have found apparent inefficiencies, adding further 

confirmation to the earlier research. In one of the less researched areas where judgment is 

undoubtedly most prevalent, company sales forecasting, both Fildes et al. (2009) and Franses and 

Legerstee (2009)   also found their forecasters to be biased and overly optimistic. In general then we 

may conclude that forecasters are biased but both the amount of bias and even the direction of bias 

depends on the organizational context. 

With rational agents at the core of important microeconomic models of market efficiency as well as 

models of the economy, research moved on from the question of bias to the question of the efficiency 

of the forecasters in their use of information. Assuming the primary goal of the forecaster is to 

produce the most accurate forecasts achievable, as measured by mean squared error, then a forecaster 

is said to be efficient with regard to an information set Xt-1  know at period (t-1) if in the regression: 
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where 
1(1)tY 

 is the one-period ahead forecast made at period t-1 for period t, β0=β1=0 with t 

independent.. The information set may include past forecasts and past actuals. Crucially, it may 

include unobservables and also β1 may be time varying. 

The interpretation is straightforward: if β1≠0, then knowledge of X could be used to improve the 

forecaster’s  accuracy.  

In Accounting earnings forecasting  research on this question of efficiency in earnings forecasting  

has been particularly vigorous with Ramnath, Rock, & Shane (2008) offering a structured 

bibliography. But the research has not stopped with the question of mean squared error efficiency. It 

has concerned itself with a variety of interesting and important questions as to why earnings forecasts 

might be inefficient. The reasons can be split into organisational, institutional and psychological 

although the boundary between these categories is often unclear 

Organisational and institutional reasons for inefficiency include employer characteristics such as firm 

size, the number of firms the forecaster follows (Clement, Michael B., 1999) and differences in 

accounting regulations across countries (see Ramnath et al., 2008, Table 5). 

Individual forecaster characteristics also prove important determinants of accuracy with optimism an 

often observed phenomenon.  For example,  Easterwood and Nutt (1999) examined the effects of 

positive and negative information on earnings forecasts finding overreaction to positive information, 

underreaction to negative information and as a consequence, the forecasts are  systematically 

optimistic. Other authors have followed up this question with no conclusive result (see Ramnath, 

Table 4). Organisational and linked career concerns also affect accuracy (Hong & Kubik, 2003). In 

addition, analyst forecasts are also affected by such factors as pressure to conform to the prevailing 

consensus or even Seasonal Affective Disorder (Dolvin, Pyles, & Wu, 2009)). Whether such pressures 

are psychological factors or the forecaster’s reaction to organisational incentives, many forecasters 

tend to ‘herd’, that is their released forecast is influenced by the prevailing consensus. Contrarian 

‘bold’ forecasts prove more accurate (Bernhardt, Campello, & Kutsoati, 2006; Clement, M. B. & Tse, 

2005). 

In addition the accounting literature has concerned itself with the question of how users (in this case 

investors) respond to the forecasts and investors’ preferences for different types of analyst: there is no 

necessary match between the two. 

Economic forecasting also supplies us with examples where again both organisational, institutional 

and behavioural factors affect accuracy. For example,  anti-herding bold forecasts are observed with 

exchange rate and oil price forecasters, (Pierdzioch, Ruelke, & Stadtmann, 2010; Pierdzioch & 
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Stadtmann, 2010). Personal anecdote offers a contrasting account of how an oil price forecaster aimed 

to fall “half way between Esso and Shell”.  In analyses of individual forecasters, bias is common 

although inefficiencies where publicly available information is neglected are rarer. In fact as Franses, 

Kranendonk, & Lanser  (2011) point out at least with regard to their Dutch macroeconomic 

forecasters, the judgments they made tended to remove bias arising from the base line econometric 

model. In contrast, at the industry level Fildes (1991)  showed how macroeconomic forecasts were 

inefficiently interpreted as to their effects on construction output forecasts, despite the construction 

forecasts being unbiased. Forecast accuracy is partially explained by the forecaster’s ideology as well 

as their chosen primary technique (Batchelor & Dua, 1990)). But the personal characteristics, in this 

case the age of the macroeconomic forecasters also affects accuracy: the older forecasters, eager to 

benefit from a reputational effect led them to make overly bold forecasts with the bold forecasters 

proved less accurate (Lamont, 2002). 

Sales forecasting of detailed SKU-level products is perhaps the most common area of business 

forecasting activity, applying to suppliers, manufacturers and retailers . Here however there has been 

less research on forecaster behaviour. Surveys have repeatedly highlighted the role of judgment 

(Fildes & Goodwin, 2007; McCarthy et al., 2006) but there has been limited examination of the 

judgmental forecasts themselves. Various studies by Diamantopoulos and Mathews (for example 

Mathews & Diamantopoulos, 1986, 1989) showed bias in simple statistical forecasting being removed 

by the judgmental adjustment process and they also argued that accuracy was improved. But the 

analysis of these forecasts are fraught with difficult statistical issues of magnitude and non-normality. 

Only recently have researchers returned to the problem (Fildes et al., 2009; Franses & Legerstee, 

2009; Franses & Legerstee, 2010; Franses & Legerstee, 2011). To summarise this recent forecasting 

literature, the judgmental forecasts are biased,  inefficient and there is evidence of optimism bias with 

too many forecasts being overly adjusted positively. It would seem that different forecasters (faced 

with different products in different countries) enjoy unsurprisingly different levels of forecasting 

accuracy. There is also an effect on manufacturer forecasting accuracy depending on which retail 

company is purchasing. The adjustments (and their accuracy) depend in part on the past forecast 

errors themselves, the baseline statistical forecast as well as external events.  

Forecaster’s loss functions – the key research issues 

For want of anything better economists have committed themselves to the notion that forecasts and 

forecasters are rational, that is to say unbiased and efficient. While some of the studies of aggregate 

forecaster behaviour in earnings forecasting and economic forecasting have suggested rationality, 

micro studies of individual forecasters and many consensus forecasts have fallen at these hurdles. 

How then to resurrect rationality? While the variety of loss functions that may apply in different 

forecasting situations has long been recognized (Granger, 1969) the attempts to identify the loss 
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functions of forecasters are more recent: for example, in the earnings literature Clatworth et al. 

(2012), in economic forecasting (Christodoulakis & Mamatzakis, 2008; Elliott, Timmermann, & 

Komunjer, 2008; Sinclair, Joutz, & Stekler, 2010) and in government revenue forecasting Krol 

(2013). Fritsche et al. (this issue) consider the case of exchange rate forecasters in the emerging 

markets of the Brazilian Real and the Mexican Peso, their objective being to identify the likely form 

of the asymmetric loss and any deviations from rationality.  Unsurprisingly given the flexibility 

provided by a wide range of alternative loss functions, this strand of research has claimed to 

rehabilitate the efficiency and rationality of individual forecasters.. But even within this framework 

the model does not always hold (Capistran & Timmermann, 2009) due to a shift (for many of the 

forecasters) over time in the sign of the bias.  

A laboratory experiment of sales forecasting Lawrence (Lawrence & O'Connor, 2005)  has also 

provided evidence to support the notion of asymmetric loss. However, survey evidence Fildes and 

Goodwin  (2007) showed accuracy (measured by MAPE, almost symmetric ove plausible ranges) as 

the primary objective of a large group of industry forecasters. Other objectives also emerge in 

discussion with forecasters, including the need for smoothing and transparency. 

In non-experimental data there is an obvious confounding between the rationality of the forecasts and 

the imputed loss function, that is to say forecasters can be regarded as irrational with one loss function 

and rational as evaluated with another. Even if rationality is assumed according to some unobserved 

loss function, the aim being to identify the loss function, there remain problems of identification  

(Lieli & Stinchcombe, 2013). The study by Fritsche et al. (this issue) adds further evidence on the 

question of individual forecaster’s loss functions, concluding that even allowing for general 

asymmetric loss some forecasters are still apparently irrational.  

Conclusions 

Fritsche et al.’s  conclusion that “forecast accuracy is not the only argument in forecasters loss 

functions”, from the literature described here, is clearly correct in many application areas. But why 

would we expect it to be? – a forecaster has to make a living and may be rewarded by forecast users 

from a variety of motives. The final question I therefore I wish to raise here , stimulated by Fritsche 

al.’s study of exchange rates, is whether their chosen research strategy of examining the ex post 

realisations of a forecasting process is sufficiently rich to lead to an understanding of the drivers 

behind individual forecasting accuracy. We know from the literature cited that many forecasters are 

biased, inefficient (in a MSE sense), herd (or don’t), seek reputational effects (or don’t), are motivated 

towards accuracy (or not) and are affected by all the various psychological ailments that may lead to 

forecast error. We have less knowledge of the forecaster’s (usually implicit) predictive density 
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function which lies behind the point prediction. What are the important research questions that 

remain?  

An individual forecaster’s loss function cannot be identified by non-experimental data on point 

predictions alone. What is needed is a research strategy of methodological triangulation whereby field 

data, survey and interview are combined, with further insights gained from behavioural experiments. 

The questions that need to be addressed do not stop with the identification of a loss function but the 

circumstances which engender it. And more particularly, how the biases and inefficiencies can be 

removed as far as the forecast users are concerned as there is potentially a serious mismatch between 

the users’ objectives and the forecasters’.  The user does not want a forecast ‘tainted’ by the adoption 

of an unknown loss function. If improvements in the decision being faced are to be made, they need to 

be made first in the forecasts and separately in the conditional decisions. To make this point concrete 

in the context of sales forecasting, can software be designed to ensure that information is used 

efficiently by a company’s forecasters and the various organisational biases mitigated against so that 

the final forecast is as accurate as possible (given the company’s metrics)?  Here the aim must be to 

support the forecaster in producing a well-calibrated predictive density so that users facing decisions 

incurring different losses can decide for themselves. As yet little or no progress has been made on this 

question, either through research or in practice (where prediction intervals are rarely meaningful or 

monitored). Too much of the research carried out uses only one tool rather than an interdisciplinary 

approach to answering the range of interesting questions, both academic and practical as to how to 

improve the organisational effectiveness of forecasters. 

Acknowledgements: Paul Goodwin, David Peel, Herman Stekler and an anonymous referee provided 

helpful comments. The opinions  expressed of course remain my own. 

References 

 

Aretz, K., Bartram, S. M., & Pope, P. F. (2011). Asymmetric loss functions and the rationality of 
expected stock returns. International Journal of Forecasting, 27(2), 413-437.  

Armstrong, J. S. (1983). Relative Accuracy of Judgmental and Extrapolative Methods in Forecasting 
Annual Earnings. Journal of Forecasting, 2(4), 437-447.  

Batchelor, R., & Dua, P. (1990). Forecaster Ideology, Forecasting Technique, and the Accuracy of 
Economic Forecasts. International Journal of Forecasting, 6(1), 3-10.  

Bernhardt, D., Campello, M., & Kutsoati, E. (2006). Who herds? Journal of Financial Economics, 80(3), 
657-675.  

Brown, L. D., Hagerman, R. L., Griffin, P. A., & Zmijewski, M. E. (1987). Security analyst superiority 
relative to univariate time-series models in forecasting quarterly earnings. Journal of 
Accounting & Economics, 9(1), 61-87.  

Capistran, C., & Timmermann, A. (2009). Disagreement and Biases in Inflation Expectations. Journal 
of Money Credit and Banking, 41(2-3), 365-396.  



7 

 

Christodoulakis, G. A., & Mamatzakis, E. C. (2008). An assessment of the EU growth forecasts under 
asymmetric preferences. Journal of Forecasting, 27(6), 483-492.  

Clatworthy, M. A., Peel, D. A., & Pope, P. F. (2012). Are Analysts' Loss Functions Asymmetric? Journal 
of Forecasting, 31(8), 736-756.  

Clement, M. B. (1999). Analyst forecast accuracy: Do ability, resources, and portfolio complexity 
matter? Journal of Accounting and Economics, 27(3), 285-303.  

Clement, M. B., & Tse, S. Y. (2005). Financial analyst characteristics and herding behavior in 
forecasting. Journal of Finance, 60(1), 307-341.  

Dolvin, S. D., Pyles, M. K., & Wu, Q. (2009). Analysts Get SAD Too: The Effect of Seasonal Affective 
Disorder on Stock Analysts' Earnings Estimates. Journal of Behavioral Finance, 10(4), 214-
225.  

Dovern, J., & Weisser, J. (2011). Accuracy, unbiasedness and efficiency of professional 
macroeconomic forecasts: An empirical comparison for the G7. International Journal of 
Forecasting, 27(2), 452-465.  

Easterwood, J. C., & Nutt, S. R. (1999). Inefficiency in analysts' earnings forecasts: Systematic 
misreaction or systematic optimism? Journal of Finance, 54(5), 1777-1797.  

Elliott, G., Timmermann, A., & Komunjer, I. (2008). Biases in macroeconomic forecasts: Irrationality 
or asymmetric loss? Journal of the European Economic Association, 6(1), 122-157.  

Fildes, R. (1991). Efficient Use of Information in the Formation of Subjective Industry Forecasts. 
Journal of Forecasting, 10(6), 597-617.  

Fildes, R., & Goodwin, P. (2007). Against your better judgment?  How organizations can improve 
their use of management judgment in forecasting. Interfaces, 37, 570-576.  

Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and 
judgmental adjustments: an empirical evaluation and strategies for improvement in supply-
chain planning. International Journal of Forecasting, 25(1), 3-23.  

Franses, P. H., Kranendonk, H. C., & Lanser, D. (2011). One model and various experts: Evaluating 
Dutch macroeconomic forecasts. International Journal of Forecasting, 27(2), 482-495.  

Franses, P. H., & Legerstee, R. (2009). Properties of expert adjustments on model-based SKU-level 
forecasts. International Journal of Forecasting, 25(1), 35-47.  

Franses, P. H., & Legerstee, R. (2010). Do Experts' Adjustments on Model-Based SKU-Level Forecasts 
Improve Forecast Quality? Journal of Forecasting, 29(3), 331-340.  

Franses, P. H., & Legerstee, R. (2011). What drives the quality of expert SKU-level sales forecasts 
relative to model forecasts? In F. Chan, D. Marinova & R. S. Anderssen (Eds.), 19th 
International Congress on Modelling and Simulation (pp. 13-24). 

Granger, C. W. J. (1969). Prediction with a generalised cost of error function. Opl. Res. Q., 20, 199-
207.  

Hogarth, R. M., & Makridakis, S. (1981). Forecasting and Planning - an Evaluation. Management 
Science, 27(2), 115-138.  

Hong, H., & Kubik, J. D. (2003). Analyzing the analysts: Career concerns and biased earnings 
forecasts. Journal of Finance, 58(1), 313-351.  

Krol, R. (2013). Evaluating state revenue forecasting under a flexible loss function. International 
Journal of Forecasting, 29(2), 282-289.  

Kwag, S. W., & Shrieves, R. E. (2006). Chronic bias in earnings forecasts. Financial Analysts Journal, 
62(1), 81-96.  

Lamont, O. A. (2002). Macroeconomic forecasts and microeconomic forecasters. Journal of Economic 
Behavior & Organization, 48(3), 265-280.  

Lawrence, M., & O'Connor, M. (2005). Judgmental forecasting in the presence of loss functions. 
International Journal of Forecasting, 21(1), 3-14.  

Lieli, R. P., & Stinchcombe, M. B. (2013). ON THE RECOVERABILITY OF FORECASTERS' PREFERENCES. 
Econometric Theory, 29(3), 517-544.  



8 

 

Mathews, B. P., & Diamantopoulos, A. (1986). Managerial intervention in forecasting: an empirical 
investigation of forecast manipulation. International Journal of Research in Marketing, 3, 3-
10.  

Mathews, B. P., & Diamantopoulos, A. (1989). Judgemental Revision of Sales Forecasts - a 
Longitudinal Extension. Journal of Forecasting, 8(2), 129-140.  

McCarthy, T. M., Davis, D. F., Golicic, S. L., & Mentzer, J. T. (2006). The evolution of sales forecasting 
management: A 20-year longitudinal study of forecasting practices. Journal of Forecasting, 
25(5), 303-324.  

Pierdzioch, C., Ruelke, J. C., & Stadtmann, G. (2010). New evidence of anti-herding of oil-price 
forecasters. Energy Economics, 32(6), 1456-1459.  

Pierdzioch, C., & Stadtmann, G. (2010). Herd Behavior of Exchange Rate Forecasters? Jahrbucher Fur 
Nationalokonomie Und Statistik, 230(4), 436-453.  

Ramnath, S., Rock, S., & Shane, P. (2008). The financial analyst forecasting literature: A taxonomy 
with suggestions for further research. International Journal of Forecasting, 24(1), 34-75.  

Sinclair, T. M., Joutz, F., & Stekler, H. O. (2010). Can the Fed predict the state of the economy? 
Economics Letters, 108(1), 28-32.  

Smith, M. A., & Williams, L. V. (2010). Forecasting horse race outcomes: New evidence on odds bias 
in UK betting markets. International Journal of Forecasting, 26(3), 543-550.  

 

 


