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Abstract 

Previous studies suggested that the emotional connotation of single words automatically recruits 

attention. We investigated the potential of words to induce emotional engagement when reading 

texts. In an fMRI experiment, we presented 120 text passages from the Harry Potter book series. 

Results showed significant correlations between affective word (lexical) ratings and passage 

ratings. Furthermore, affective lexical ratings correlated with activity in regions associated with 

emotion, situation model building, multi-modal semantic integration, and Theory of Mind. We 

distinguished differential influences of affective lexical, inter-lexical, and supra-lexical variables: 

differential effects of lexical valence were significant in the left amygdala, while effects of 

arousal-span (the dynamic range of arousal across a passage) were significant in the left 

amygdala and insula. However, we found no differential effect of passage ratings in emotion-

associated regions. Our results support the hypothesis that the emotion potential of short texts can 

be predicted by lexical and inter-lexical affective variables.  

 

Keywords: emotion-laden words, reading, valence, arousal, arousal-span, fMRI 
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1. Introduction 

Literary reading of novels or poems brings pleasures, including feelings of suspense, vicarious 

joy (or fear), or beauty, which are unique and important to human beings (Brewer & Lichtenstein, 

1982; Nell, 1988). However, the neurocognitive processes underlying these feelings are poorly 

understood (Kringelbach, Vuust, & Geake, 2008; Schrott & Jacobs, 2011; Wolf, 2007). A recent 

neurocognitive poetics model of literary reading (Jacobs, 2011, 2014) has attempted to link the 

findings from the few existing neurocognitive studies on literary reading with results from 

cognitive linguistics, poetics, and aesthetics, by formulating hypotheses about which text 

elements evoke cognitive, emotional, or aesthetic processes. According to the model, literary 

reading can be viewed as a process of constructive content simulation (Mar & Oatley, 2008), 

closely linked to perspective taking and relational inferences associated at the neural level with 

the activation of the extended language network (ELN, Ferstl, Neumann, Bogler, & von Cramon, 

2008), the Theory of Mind (ToM) network (Mason & Just, 2009), brain regions associated with 

affective or mood empathy (Altmann, Bohrn, Lubrich, Menninghaus, & Jacobs, 2012, 2014; Frith 

& Frith, 2003; Lüdtke, Meyer-Sickendiek, & Jacobs, 2014; Mar & Oatley, 2008), the creation of 

“event gestalts” (Speer, Zacks, & Reynolds, 2007), and with reward and aesthetic pleasure 

(Bohrn, Altmann, Lubrich, Menninghaus, & Jacobs, 2013). These processes converge to fulfill 

the goal of literary reading, i.e., meaning construction and the closure of meaning gestalts which 

depends on many factors, including the affective meaning of single words and passages (Iser, 

1976; Jacobs, 2014).  

At the cognitive level, discourse comprehension involves at least three different processing steps 

(Schmalhofer & Glavanov, 1986; Van Dijk & Kintsch, 1983): 1) the construction of the surface 

structure of a text, which is a mental representation of the exact text read; 2) a text-base 

representation, which contains idea units explicitly stated in the text, including bridging 

inferences that help connecting consecutive clauses; and 3) a situation model of the text, in which 
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the current linguistic input (i.e., the linguistic meaning of the sentence or paragraph being read) is 

integrated with both general world knowledge and the prior discourse context (Graesser, Millis, 

& Zwaan, 1997; Zwaan & Radvansky, 1998).  

Affective aspects of discourse comprehension seem to involve embodied representations evoked 

through empathy, the simulation of emotion-related behavior, and autobiographical emotions 

related to memories of similar events. Empirical studies investigating emotional inferences during 

text comprehension (Gillioz, Gygax, & Tapiero, 2012; Gygax, Tapiero, & Carruzzo, 2007) have 

shown that the protagonist’s behavioral reactions to an event are likely to be an important 

component of emotional inferences in discourse comprehension, and are highly associated with 

the emotional arousal level of the protagonist’s behavior. Neuroscientific evidence that the 

affective aspect of meaning construction is possibly based on perspective simulation comes from 

an fMRI study of Moseley, Carota, Hauk, Mohr, and Pulvermuller (2012), who demonstrated that 

emotion-laden words indeed activated precentral cortex, including body-part-specific areas that 

are somatotopically activated by face- or arm-related words. 

All these views on discourse processing suggest that affective processes during text reading may 

require, unlike in the respective minimalistic proposal of Jacobs’ (2014) model, more complex 

processes than those elicited by the emotion potential of single words (note that Jacobs’ model 

also elaborates on many higher level processes like immersion, situation model update, etc., but 

nevertheless posits some degree of texts’ emotion potential to directly arise from the single word 

level). 

Regarding the emotion potential of literary texts at the neuronal level, Ferstl, Rinck, and von 

Cramon (2005) were the first to show that listening to emotion-laden text passages indeed 

activates affect-related brain areas like the ventromedial prefrontal cortex (vmPFC), the left 

amygdala, and the pons. By auditorily presenting a near complete recording of “The Ugly 

Duckling” to participants, Wallentin et al. (2011) reported the neural correlates of intensity 
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ratings of each line of the text in the bilateral temporal, inferior frontal and premotor cortices, the 

thalamus, and the right amygdala. However, further neuroscientific evidence is still scarce (e.g., 

Bohrn et al., 2013; Hsu, Conrad, & Jacobs, 2014; Hsu, Jacobs, & Conrad, 2015; Lehne, Engel, 

Menninghaus, Jacobs, & Koelsch, in revision) compared to the more substantial body of research 

on the relationship between language and emotion using words in isolation (see Citron, 2012, for 

a review).  

The emotion potential of words is usually operationalized in terms of valence and arousal ratings: 

the former refers to how positive or negative a word is, whereas the latter refers to its 

physiological intensity (Bradley & Lang, 1999; Osgood, 1969). These properties are normally 

distributed across all words, which can be categorized into negative, neutral, and positive classes 

(see Jacobs et al., in prep.; Schmidtke, Schröder, Jacobs, & Conrad, 2014; Võ et al., 2009; Võ, 

Jacobs, & Conrad, 2006, for normative German lexical databases), and have significant effects at 

the three relevant psychological levels: the experiential (e.g., subjective ratings, self-reports; Võ 

et al., 2009; Võ et al., 2006), the behavioral (e.g., response times, oculo- and pupillometric 

responses; Briesemeister, Kuchinke, & Jacobs, 2011a, 2011b; Võ et al., 2006; Võ et al., 2008), 

and the neuronal level, using both electrophysiological (e.g., Briesemeister, Kuchinke, & Jacobs, 

2014; Conrad, Recio, & Jacobs, 2011; Fischler & Bradley, 2006; Hofmann, Kuchinke, Tamm, Võ, 

& Jacobs, 2009; Recio, Conrad, Hansen, & Jacobs, 2014) and functional neuroimaging methods 

(e.g., Citron, Gray, Critchley, Weekes, & Ferstl, 2014; Kuchinke et al., 2005). In particular, 

neuroscientific research on emotion-laden word processing using event-related potentials (ERP) 

has shown that such words capture attention more strongly than neutral words since early 

processing stages (e.g., Citron, Weekes, & Ferstl, 2013; Fritsch & Kuchinke, 2013; Hofmann et 

al., 2009; Kissler, Assadollahi, & Herbert, 2006; Kissler, Herbert, Peyk, & Junghofer, 2007; 

Schacht, Adler, Chen, Guo, & Sommer, 2012; see Citron, 2012, for a review). The attention 

capture seems to be automatic, i.e., it occurs even when participants attend to non-emotional 
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features of the words (e.g., Scott, O'Donnell, Leuthold, & Sereno, 2009), and it can also occur in 

the absence of conscious perception (Straube, Sauer, & Miltner, 2011).  

In the present study, we addressed the question to what extent the emotion potential of supra-

lexical units like narrative text passages is a function of the affective values of their constituting 

words, as proposed by Bestgen (1994) and by Whissell (2003; see also Jacobs, 2014). 

Certainly, one might wonder to what extent findings for isolated words could generalize to the 

processing of larger text units and literary reading. A text is more than a list of words, and the 

way these words are combined, or the context they are embedded in, clearly matter. For example, 

basic phenomena such as negation, or more sophisticated rhetorical elements like metaphor or 

irony, can turn the emotional information of a text unit into the opposite of what single words’ 

emotional content might suggest (Nagels et al., 2013; Regel, Gunter, & Friederici, 2011).  

ERP studies have addressed the issue of how emotionally relevant sentence context influences the 

way in which the brain processes otherwise identical lexical material. Van Berkum, Holleman, 

Nieuwland, Otten, and Murre (2009) reported increased N400 amplitudes for target words whose 

combination with the preceding sentence context resulted in a moral statement that was 

inconsistent with the reader’s political attitude. Schauenburg, Conrad, Ambrasat, Von Scheve, 

and Schröder (2013) extended this finding to the inconsistency concerning the general emotional 

content of single words across sentences describing social interactions. Their findings suggested 

that supra-lexical phenomena – like the relation between words within a sentence – affect 

emotion processing during sentence reading. In contrast, other ERP studies have shown that 

emotional features of single words can also reduce general context effects like the N400 

component, which is typically interpreted to reflect increased difficulty of semantic integration 

into context. In the study of Delaney-Busch and Kuperberg (2013), incongruent context only 

modulated N400 amplitudes for neutral, but not for emotion-laden words, whereas N400 

amplitudes were generally decreased for the latter. This suggests that emotional salience ensures 
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a partly context-independent processing of single lexical units, which “pop out” of context 

because of their general emotional relevance. In another study, Wang, Bastiaansen, Yang, and 

Hagoort (2013) presented question-answer pairs. Each answer contained a critical word (either 

positive, negative or neutral) that could be either the focus of the question or not. In both studies, 

the authors reported significant main effects of emotion and of congruency/focus, as well as a 

significant interaction between them, in the N400 component. Post-hoc analyses showed that the 

effect of congruency was only significant for neutral words, but not for both positive and negative 

words. One possible interpretation of the latter findings, proposed by Delaney-Busch and 

Kuperberg (2013), is that the emotional salience of such words gives rise to their prioritized 

processing from the earliest stages of meaning extraction, and leads readers to bypass a possible 

semantic incongruency with context. In this regard, both studies reviewed above suggest that the 

context-independent, highly automatic attention-capture potential of emotion-laden words can 

sometimes override integration processes or context effects during discourse comprehension. 

In the present study, we attempted to disentangle emotional effects during reading that arise at the 

lexical level from those that arise at the supra-lexical level. Following Jacobs’ (2014) proposal, in 

the absence of irony or similar stylistic devices, the emotion potential of supra-lexical units such 

as narrative passages can be hypothesized to be a direct function of the emotion potential of the 

constituting words. On the other hand, the principle of the whole being more than (or different 

from) the sum of its parts would predict emotional effects to be a function of more holistic 

processing of larger units, and thus emotional effects of a passage could not be fully accounted 

for by the affective values of its constituting words. 

In his pioneering study, Bestgen (1994) acquired valence ratings from 120 participants at three 

different processing levels: 1) the textual level: participants read the text in the context of 

narrative reading and rated all sentences sequentially; 2) The sentential level: sentences from all 

four stories were divided into three sets, each including one third of all sentences from each of the 
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four stories, but two sentences from the same story were not presented one after another; 3) The 

lexical level: words extracted from the four texts, excluding articles, pronouns, prepositions, 

proper names, and the verbs “to be” and “to have”. Bestgen (1994) computed the correlations 

between the rated valence of the sentences at the textual, sentential, and lexical level (by 

calculating mean valence values of words composing the sentences), in each of the four texts. The 

linear correlations between rated valence at the textual and lexical level, and between textual and 

sentential level were large and significant (between .55 and .84, depending on the text). A similar 

approach was adopted by Whissell using the Dictionary of Affect in Language (Whissell & 

Dewson, 1986), which contains valence and arousal ratings of 4500 words as an estimate of the 

affective tone of existing passages of literature (Whissell, 2003, 2010, 2011). With principle 

component analysis, Whissell (2003) showed that ratings of 20 excerpts of romantic poetry from 

68 participants on dimensions of pleasantness, activation, romanticism, and preoccupation with 

nature were consistent with estimations based on the Dictionary of Affect. By comparing two 

parts of Byron's Child Harold's Pilgrimage, written before and after an interruption of several 

turbulent years in England, Whissell (2010) showed that the later part employed fewer extreme 

emotional words and more abstract words than the pre-interruption part. Whissell (2011) found 

evidence for different pleasantness levels in four categories of speech (condescension, control, 

self-definition, and courtship of good opinion) given by Shakespeare’s character Henry V.  

We adopted this general approach of estimating a text’s emotion potential as a function of 

affective values of the constituting words and investigated it at the neural level. 

 

The present study 

We used text passages from the Harry Potter book series as stimuli, featuring concepts, events 

and descriptions that display a sufficiently wide range of lexical valence and arousal values. We 

acquired functional magnetic resonance imaging (fMRI) data to investigate the neural correlates 
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of the emotional potential of narratives, operationalized via: individual emotion ratings of entire 

passages (termed henceforth “subjective passage ratings”); and normative affective values of their 

constituting words (termed henceforth “affective lexical variables”). The lexical variables were 

derived from a recent, large-scale, normative database comprising affective ratings for 6,600 

words (Conrad, Schmidtke, Vo, & Jacobs, in prep.), which extends the Berlin Affective Word 

List (BAWL-R, Võ et al., 2009) and the Affective Norms for German Sentiment Terms (ANGST, 

Schmidtke et al., 2014). In particular, we use both mean and spread measures of affective lexical 

variables across a given piece of text because they might represent different specific aspects of 

the text’s emotion potential at the level of lexical surface features: While the mean of lexical 

valence and arousal values across a text may best represent its emotion potential as a function of 

the appearance of emotionally rather consistent concepts, spread measures of arousal or valence 

may, in turn, represent a proxy of dynamic changes or contrasts in the affective reactions a reader 

experiences. We consider “arousal-span” (i.e., the range of arousal values of single words across 

a text; see Jacobs, 2014, for a theoretical proposal concerning effects of this measure) and, 

accordingly, “valence-span” (the range of respective valence values) as the most appropriate 

lexical spread measures of a text’s emotion potential. Using data from a recent study by Lehne et 

al. (in revision), Jacobs (2014) showed that arousal-span could account for about 25% of the 

variance in suspense ratings from readers of E.T.A. Hoffmann’s black-romantic story „The 

Sandman“.  

We used these affective lexical variables and subjective passage ratings as parametric predictors 

of brain activation, assuming that the former would contribute significantly to the emotional 

reading experience. At the neuronal level, using parametric fMRI analyses, we expected both the 

affective lexical and supra-lexical variables to be correlated with BOLD signal intensity in the 

temporal, inferior frontal and premotor cortices, vmPFC, thalamus, amygdala, and the pons, 

which have all been reported to be specifically associated with emotional discourse 
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comprehension (Ferstl et al., 2005; Wallentin et al., 2011). In addition, our aim was to disentangle 

potential differential effects of the following variables that reflect a text’s emotion potential at 

three different levels (see also examples given in Table 2): 

1) The elementary level of general emotion content of lexical units or concepts – 

represented by the means of lexical valence and arousal values of single words, 

appearing in a given text. Note that this operationalization assumes that respective 

values for single elements (words or concepts) would condense into a homogenous 

affective impression. An illustrative example from our stimulus material is the 

sentence “’You disgusting little Squib, you filthy little blood traitor!’ roared Gaunt, 

losing control” (Rowling, 2005), whose lexical units are consistently negative in 

valence and high in arousal (“disgusting”, “filthy”, “blood”, “traitor”, “roar”, and 

“losing”); 

2) The inter-lexical level, between single words and holistic supra-lexical processing –

operationalized by lexical valence- and arousal-span. Note that, in contrast to the 

mean measures described above, these lexical span measures should especially 

account for dynamic changes and salient contrasts characterizing the relation between 

single lexical units and concepts in a text (Jacobs, 2014). These aspects may not be 

captured by overall lexical mean measures. For example, in the sentence “And then a 

silence fell over the crowd, from the front first, so that a chill seemed to spread down 

the corridor” (Rowling, 1999), a high lexical arousal-span is produced by the contrast 

between the low arousal of “silence” and the high arousal of “chill”, whereas the mean 

lexical arousal of the whole sentence would be rather moderate; 

3) The supra-lexical level, represented by subjective valence and arousal ratings for 

whole passages. Specific supra-lexical emotion potential may go beyond what lexical 

values alone would predict: e.g., the passage “Ginny glanced round, grinning, winked 
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at Harry, then quickly faced the front again. Harry's mind wandered a long way from 

the marquee, back to afternoons spent alone with Ginny in lonely parts of the school 

grounds.” (Rowling, 2007) was rated as positive, while its mean lexical valence was 

neutral. The emotional impact probably results from the drift of Harry’s mind into the 

past remembering his relationship with Ginny, that the reader is rather invited to 

imagine than actually being told about. 

 

As a main hypothesis, we expect lexical variables to significantly predict subjective ratings and 

BOLD responses in emotion-related brain areas, therefore corroborating the approach of Bestgen 

(1994) and Whissell (2003), i.e., the prediction of the affective impact of text units from mean 

lexical valence and arousal values. Furthermore, we expect lexical variables’ effects on BOLD 

responses to be, at first glance, largely comparable to those of subjective ratings of the whole text 

passages. However, we also hypothesize that our data might reveal discernable effects of emotion 

potential at lexical and supra-lexical levels: In the usage of language, we can employ different 

words to express the same thing, and the specific choice of our words has a huge impact on how 

our message will be received at the affective level. Thus, it makes a difference whether we say: 

“why don’t you clean up your mess vs. thing behind you?”, or whether we call a person living on 

the street a “homeless” or a “bum”. In this case, lexical affective variables could produce 

emotional effects beyond the ones obtained for subjective ratings of entire text units, because the 

latter ones might lose focus on fine-grained emotional connotations at the lexical level when 

trying to evaluate complex parts of text as a whole.  

In addition, the automatic attention-capture potential of emotion-laden words can override 

integration processes involved in discourse comprehension by ensuring their processing 

prioritization relative to the context. Therefore, we expected to find significant lexical effects 
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after partialling out the variance accounted for by passage ratings, in particular in the “salience 

network” (Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012; Seeley et al., 2007).  

Furthermore, specific lexical effects may not be limited to single words’ salience alone: all words 

we encounter embedded in a sentence have already been seen or heard previously from us in 

many other and potentially very different contexts. All of these contribute to the complex pattern 

of emotional connotations a single word can have in our memory, which has the potential to 

“project” affective processes triggered by single words via associative links far beyond the given 

context of a sentence – which is another reason to expect lexical effects to be at least somewhat 

independent from more general text evaluations. 

Finally, after partialling out the variance accounted for by affective lexical variables first, we 

might expect rating values to correlate with activation in areas associated with emotional 

conceptualization, evaluation (Lindquist et al., 2012), and the ToM network (Mar, 2011), which 

are supposed to represent the specific emotion potential of supra-lexical units (e.g., Bohrn, 

Altmann, & Jacobs, 2012).  

 

2. Materials and Methods 

2.1 Participants  

Twenty-four right-handed native German speakers (16 women) gave written consent to take part 

in the experiment, which was approved of by the ethics committee of the Freie Universität Berlin. 

Their age ranged from 18 to 31 years (mean ± SD = 23.71 ± 3.67). All participants had read at 

least one Harry Potter book, and were therefore familiar with its context enough to understand the 

novel-specific contents. They all had normal or corrected-to-normal vision, and reported no 

neurological or psychiatric disorders. Participants were compensated properly monetarily or with 

course credits for their participation. 
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2.2 Stimuli  

To prepare our stimulus material we screened all seven HP novels (Rowling, 1997, 1998, 1999, 

2000, 2003, 2005; 2007, German translations by Klaus Fritz, Carlsen Verlag, Hamburg) for text 

passages featuring either particularly emotional or neutral moments or events. We finally selected 

120 passages, each of which was 4 lines long. The passages provide a wide range of valence and 

arousal as demonstrated in two previous studies (Hsu et al., 2014; Hsu et al., 2015) based on the 

same set of fMRI data. Passage selection further ensured that: 1) comprehension of the passages 

did not require a high level of familiarity with Harry Potter novels; 2) the emotional connotations 

of the passages clearly emerged at their very beginning; 3) emotional contents were unambiguous 

and generally consistent throughout the passage.  

 

2.3 Design  

The 120 text passages were divided into two subsets of 60. During the experiment, each 

participant read one subset in German and the other one in English. Each subset was presented to 

12 participants in German and English respectively. Only the data for reading in German was 

used for analyses in this study (see Hsu et al., 2015, for analyses of the complete data following a 

bilingualism research question).  

 

2.4 Procedure 

The experiment consisted of four runs, each containing 15 German and 15 English passages. The 

order of presentation was pseudo-randomized so that the distribution of language switch positions 

was balanced in each run and across all participants. Similar to the design of a previously 

successful fMRI experiment on text-reading (Altmann et al., 2012), each passage was presented 

for 14 s in the MR scanner, distributed on 4 lines (shown consecutively for 3.5 s each), and then 
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followed by 14 s of fixation cross. The visual input was presented on a computer screen and was 

reflected to the participants’ eyes via a mirror.  

To make sure that participants were attentive and actively comprehended the passages, they had 

been informed that several (leaving open how many) randomly selected passages in each run 

were immediately followed by a context-specific yes/no question, unrelated to emotion (e.g., 

‘Was Harry in a train station?’ ‘Was the alarm clock broken again?’), to which participants 

responded via button press.  

 

2.5 fMRI data acquisition 

Functional data were acquired on a Siemens Tim Trio 3T MR scanner. Four runs of 440 volumes 

were measured using a T!∗-weighted echo-planar sequence [slice thickness: 3 mm, no gap, 37 

slices, repetition time (TR): 2s, echo time (TE): 30ms, flip angle: 70°, matrix: 64 × 64, field of 

view (FOV): 192 mm, voxel size: 3.0 mm × 3.0 mm × 3.0 mm] and individual high-resolution 

T1- weighted anatomical data (MPRAGE sequence) were acquired (TR: 1.9, TE: 2.52, FOV: 256, 

matrix: 256 × 256, sagittal plane, slice thickness: 1 mm, 176 slices, resolution: 1.0 mm × 1.0 mm 

× 1.0 mm). 

 

2.6 Post-scan ratings, affective lexical variables, and correlational analyses 

Following the experiment in the MR scanner, participants rated all 120 passages in the language 

version they had read inside the scanner on valence, scaled from -3 (very negative) to +3 (very 

positive, see Võ et al., 2006), and arousal, scaled from 1 (very calming) to 5  (very arousing, see 

Bradley & Lang, 1999; Schmidtke et al., 2014; Võ et al., 2009; Võ et al., 2006). For each passage, 

we calculated affective lexical variables based on valence and arousal values provided by a large 

scale German normative database for lemma forms of single words contained in the passages 

(Conrad et al., in prep., see also BAWL-R, Võ et al., 2009, and ANGST, Schmidtke et al., 2014). 



 15 

Note that this database containing normative affective rating values for over 6,600 German 

lemmata provided matches for overall 54% of content words of our stimulus material. Based on 

these values we computed the following affective lexical variables for all of our text passages 

stimuli: 1) mean lexical valence, 2) mean lexical arousal, 3) lexical valence-span and 4) lexical 

arousal-span. Bivariate and partial correlations between affective lexical variables and mean 

values of valence and arousal ratings for each passage are given in Table 1. Note that, although 

mean rating values correlated with lexical values, respective correlations were not too large (<0.6 

in all cases between ratings on the one hand and lexical values on the other, except .66 between 

arousal ratings and lexical arousal span; higher correlations only occurred in some cases between 

variables at one and the same level – lexical vs. ratings); this leaves open the possibility to obtain 

differential effects for ratings by partialling out shared variance with lexical values, or vice versa, 

on brain activation. 

 

2.7 fMRI preprocessing  

The fMRI data were preprocessed and analyzed using the software package SPM8 

(www.fil.ion.ucl.ac.uk/spm). Preprocessing consisted of slice-timing correction, realignment for 

motion correction, and sequential coregistration. Structural images were segmented into grey 

matter, white matter, cerebrospinal fluid, bone, soft tissue, and air/background with the ‘New 

Segment’ module (Ashburner & Friston, 2005). A group anatomical template was created with 

DARTEL (Diffeomorphic Anatomical Registration using Exponentiated Lie algebra, Ashburner, 

2007) toolbox from the segmented grey and white matter images. Transformation parameters for 

structural images were then applied to functional images to normalize them to the brain template 

of the Montreal Neurological Institute (MNI) supplied with SPM. For the univariate analysis, 

functional images were resampled to a resolution of 1.5 × 1.5 × 1.5 mm, and spatially smoothed 

with a kernel of 6 mm full-width-at-half-maximum during normalization.  
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2.8 fMRI Analyses 

We calculated statistical parametric maps by multiple regressions of the data onto a model of the 

hemodynamic response (Friston et al., 1995). In this study, we tried to disentangle specific or 

potentially differential influences of emotion potential at lexical and supra-lexical levels on brain 

activation using three different models of parametric modulation (see Fig. 1): all models 

contained two regressors for German and English conditions, and each passage lasted 14 seconds. 

Six parametric modulators and their polynomial expansions (detailed below for each model 

separately) were added after the German condition. The context-specific questions were modeled 

as the third condition, and each question lasted four seconds. The six realignment parameters 

were modeled as six additional regressors. Regressors were convolved with the canonical 

hemodynamic response function in SPM8. 

In all models, parametric modulators (predictors) and their second-order derivatives were serially 

orthogonalized from the first to the last one, in a Gram-Schmidt process (Büchel, Holmes, Rees, 

& Friston, 1998; Büchel, Wise, Mummery, Poline, & Friston, 1996; Golub & Van Loan, 1996) 

by SPM8. Note that, despite orthogonalization, first order effects (i.e., effects of the first 

predictors entered in the model), potentially include shared variance that cannot be uniquely 

attributed to any of the lexical, inter-lexical, or supra-lexical variables. On the other hand, effects 

of the last predictors entered in the model represent differential effects specific to those predictors, 

i.e., variance that could be uniquely attributed to a specific level, since all shared variance has 

already been partialled out by previously entered predictors. The current study, thus, uses 

conservative inferences concerning differential effects specific to each level of text processing.  

In Model 1, six predictors were entered in the following order (see Fig. 1): 1) linear lexical 

arousal mean; 2) linear and quadratic lexical valence mean; 3) linear arousal-span; 4) linear 

valence-span; 5) linear arousal ratings; 6) linear and quadratic valence ratings. This model reveals 
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first order effects of affective lexical variables and differential, or unique, effects of subjective 

passage ratings – after partialling out variance shared with affective lexical variables.  

In Model 2, the order of entry was: passage ratings (predictor 1 & 2), arousal- and valence-span 

(predictor 3 & 4), and lexical means (predictor 5 & 6). This model focused on the differential 

effects of lexical means after partialling out variance due to subjective passage ratings and lexical 

arousal- and valence-span.  

In Model 3, arousal- and valence-span (predictor 5 & 6) were entered after lexical means 

(predictor 3 & 4) and passage ratings (predictor 1 & 2). Therefore, this model focused in 

particular on differential effects specific to lexical arousal- and valence-span. 

To explore the effect of reading vs. fixation at the group level, beta-images of the contrast 

[German reading > fixation] from each participant were entered into a random effect, one-sample 

t-test. For each parametric effect at the group level, beta-images of each polynomial expansion of 

each parametric modulator were taken from each participant and entered into random effect, one-

sample t-tests. 

We calculated correlations with both first and second order polynomial expansions (Büchel et al., 

1998; Büchel et al., 1996) for the valence dimension because 1) valence is a bipolar variable; and 

2) a meta-analysis on emotion studies suggested that some emotion-related structures, like 

amygdala and pregenual anterior cingulate cortex (ACC), would respond to bipolar emotional 

valence of the passages, possibly in a quadratic fashion (e.g., Lewis, Critchley, Rotshtein, & 

Dolan, 2007); 3) according to Lewis et al. (2007), both arousal and quadratic valence code for a 

generalized form of “salience”, by directing attention toward behaviorally important goals 

(Cunningham, Raye, & Johnson, 2004; Winston, O'Doherty, & Dolan, 2003). Results from Recio 

et al. (2014) indicate that valence and arousal contribute independently to early attentional stages 

of word processing. In line with these findings, while the second order of valence ratings for our 

stimuli strongly correlates with arousal ratings (r = 0.54), at the lexical level, quadratic mean 
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lexical valence is quite independent of mean lexical arousal (r = -0.18). All this justifies using 

both first and second order valence and arousal values as predictors for our models in order to 

explore their potentially independent contributions to brain activations. We always entered 

arousal before valence variables into our models in order not to exclude potential arousal effects, 

given that valence already enters in both linear and quadratic fashions. In this way, variance 

attributed to quadratic valence is not attributable to arousal. 

None of the affective lexical variables or subjective passage ratings showed significant 

correlations with passage length (all ps > 0.1), operationalized in numbers of letters and words, 

passage-wise average word imageability taken from the BAWL-R (Võ et al., 2009) and the 

ANGST (Schmidtke et al., 2014) databases, or passage-wise average log frequency of words 

given in the Leipzig Wortschatz Lexicon (available at http://wortschatz.uni-leipzig.de/). 

Therefore, our material involves no confound of affective dimensions with length, frequency, or 

imageability, thus we did not use these variables as additional predictors in order not to inflate 

our models. 

Unlike Wallentin et al. (2011), who factored out “physiological nuisance effects” including 

cardiac and respiratory oscillation, as well as six motion parameters, we did not attempt to partial 

out respective effects of physiological regressors from emotion related fMRI effects, though this 

may represent an interesting matter of debate: 

Emotion theorists and empirical evidence have long associated affective processing and behaviors 

with the autonomic (sympathetic and parasympathetic) nervous system (ANS) activity, e.g., 

Damasio’s “somatic marker hypothesis” (Damasio, 1998; Damasio & Carvalho, 2013), 

Critchley’s emphasis of internal bodily feedback of autonomic arousal influencing subjective 

emotional states (Critchley, 2005, 2009; Critchley, Wiens, Rotshtein, Ohman, & Dolan, 2004), 

see also Barrett, Mesquita, Ochsner, and Gross (2007) and Nummenmaa, Glerean, Hari, and 

Hietanen (2014). Respiratory and cardiac oscillations are regulated by the ANS. Hence, 
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physiologically correlated BOLD signals could include variance due to ANS activity, as well as 

variance due to noise of cardiac pulse and respiratory movements. Among fMRI studies, 

physiological recordings are often used as regressors of no interest (Lund, Madsen, Sidaros, Luo, 

& Nichols, 2006). Dagli, Ingeholm, and Haxby (1999) have found that cardiac cycle related 

BOLD variability could effectively hide or mask changes of the BOLD signal due to neural 

activity on the order of 1 to 2% in regions, thus reduce sensitivity in the detection of cognitive 

activity in regions near major arterial vessels: anterior insula, anterior temporal lobe, and medial 

frontal cortex. On the other hand, Gray et al. (2009) stressed the value of physiological recordings 

in fMRI analysis to investigate the brain-body interaction for emotional/cognitive neuroscience 

and psychosomatic medicine. In line with the theoretical proposals of Damasio and Critchley, 

Beissner, Meissner, Bar, and Napadow (2013) performed a meta-analysis based on 43 

neuroimaging studies that used simultaneous autonomic measures in the fMRI analysis as 

regressors of interest to identify the central autonomic network, which included left amygdala, 

right anterior and left posterior insula, and mid-cingulate cortex, most of which are important 

parts of the salience network (Seeley et al., 2007). Considering the close neuroanatomical and 

functional overlapping between the salience network and the central autonomic network, we 

expect respiratory and cardiac oscillations to co-vary with the neural activity in the central 

autonomic network during reading of emotion-laden texts. Therefore, we did not use 

physiological recordings as regressors of no interest to avoid possible type II errors (false 

negative) due to factoring out activity in the central autonomic network that co-varies with 

autonomic oscillations. On the other hand, the brain-body interaction is not the focus of the 

current study. Therefore, physiological recordings were also not treated as regressors of interest. 

Moreover, by using a block design lasting 14 seconds in each block, the current study seems less 

prone to the type II errors associated with cardiac cycle related BOLD variability (Dagli et al., 

1999) by averaging out BOLD signals across multiple cardiac cycles. However, readers are 
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advised to note that results of the current study may contain type I errors (false positive) due to 

physiological noise, which could not be disentangled from ANS activity associated BOLD signal 

due to the correlational nature of the current study. For further discussion on the balance of type I 

and II error in neuroimaging studies in affective neuroscience in a different context, please see 

Lieberman and Cunningham (2009). 

The fMRI analyses were conducted at the whole brain level. Furthermore, because current meta-

analyses strongly suggested the amygdala to be involved in emotion processing (Costafreda, 

Brammer, David, & Fu, 2008; Lindquist et al., 2012; Murphy, Nimmo-Smith, & Lawrence, 2003; 

Phan, Wager, Taylor, & Liberzon, 2002), especially in emotional discourse comprehension 

(Ferstl et al., 2005), we performed small volume correction (SVC) with a bilateral amygdala 

mask for contrasts showing parametric emotion effects. The bilateral amygdala mask in the MNI 

template was defined by the WFU Pickatlas Tool (Maldjian, Laurienti, Kraft, & Burdette, 2003). 

For the one-sample t-test showing the effect of reading vs. fixation, we used the voxel-level 

family-wise error (FWE) corrected p < 0.05 and cluster threshold of 5 to report only very strong 

activation differences. For the parametric analyses at the whole brain level, we used an initial 

voxel-level threshold of uncorrected p < 0.005, then a cluster-level threshold of false discovery 

rate (FDR) corrected p < 0.05 for the entire image volume, as suggested by Liebermann and 

Cunningham (2009) for studies in cognitive, social and affective neuroscience. For the SVC 

analyses of the amygdala, we used initial voxel-level threshold of uncorrected p < 0.005 for the 

entire image volume, then the threshold of voxel-level FWE corrected p < 0.05 after applying the 

SVC with a bilateral amygdala mask. The labels reported were taken from the ‘TD Labels’ 

(Lancaster et al., 1997; Lancaster et al., 2000) or ‘aal’ labels in the WFU Pickatlas Tool. The 

Brodmann areas (BA) were further checked with the Talairach Client using nearest grey matter 

search after coordinate transformation with the WFU Pickatlas Tool. 
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3. Results and discussion 

As our results involve a large amount of data for different statistical models, we will briefly 

discuss results of each of the following subsections before moving to the next set of results to 

enhance comprehensibility of the entire report. 

 

3.1 Behavioral data 

3.1.1. Task performance 

We randomly inserted four context-specific questions in each run, i.e., 16 questions throughout 

the experiment. All participants correctly responded to questions in the scanner above chance (≥ 

62.5%) with overall mean accuracy of 81.47% ± 13.16% suggesting good comprehension of the 

presented text passages. 

 

3.1.2. Correlations between affective lexical variables and ratings 

Correlations and partial correlations between ratings and lexical parameters are listed in Table 1, 

indicating that mean lexical valence values (taken from Conrad et al., in prep.) accounted for 28% 

of the variance in the valence ratings of text passages, while the mean lexical arousal values 

accounted for about 35% of the variance of arousal ratings. Surprisingly, while lexical arousal-

span showed a significant positive correlation with mean lexical arousal values and lexical 

valence-span, it accounted for even more of the variance of the arousal ratings (r2 = 0.44) than 

did mean lexical arousal values (r2 = 0.35) and valence-span (r2 = 0.27). Because of the high 

intercorrelations of the affective lexical variables, we calculated partial correlations to remove 

joint variance. These showed significant correlations between mean lexical valence and valence 

ratings (r = 0.34, p < 0.001), between mean lexical arousal and arousal ratings (r = 0.36, p < 

0.001), and between lexical arousal-span and arousal ratings (r = 0.40, p < 0.001). 
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Taken together, these results partially support the hypothesis that a lexical measure of single 

words’ mean emotion potential – as estimated by standard databases – significantly contributes to 

the subjective emotional reading experience (cf. Bestgen, 1994; Jacobs, 2014). Importantly, our 

data also show that, at the behavioral level, lexical mean values alone are not sufficient to predict 

all aspects of affective impact at the text level: lexical means neglect the emotion potential of 

dynamic changes of lexical values across a text – as assessed by our valence- and arousal-span 

measures. More specifically, the latter ones explained additional variance of passage arousal 

ratings as hypothesized by the neurocognitive poetics model of literary reading (Jacobs, 2014). 

 

3.2. fMRI data 

3.2.1 reading (German) vs. fixation 

Results are summarized in Table A.1 and shown in Figure 2. Clusters more active in the reading 

condition included bilateral inferior prefrontal gyrus, dorsolateral prefrontal cortex (dlPFC), 

vmPFC, medial supplementary motor area (SMA), visual cortex, precuneus, superior temporal 

sulcus (STS), temporo-parietal junction (TPJ), thalamus, amygdala, pons, and cerebellum. 

The simple contrast between reading German passages vs. fixation showed extensive activation 

of the ELN (Ferstl et al., 2008), in line with previous studies of text comprehension. Bilateral 

STS, IFG, and medial supplementary motor area are associated with language processing (Price, 

2012); dlPFC, TPJ, anterior temporal lobe (aTL), precuneus, and amygdala are associated with 

ToM or affective empathy processing (Mar, 2011; Walter, 2012), whereas aTL and vmPFC are 

associated with multimodal (semantic) integration and emotional conceptualization (Binder & 

Desai, 2011; Binder, Desai, Graves, & Conant, 2009; Lindquist et al., 2012). Finally, significant 

activation peaks in bilateral amygdala, vmPFC, and pons are in line with previous findings from 

Ferstl et al. (2005), during presentation of emotion-laden texts. The results clearly suggest that 

our participants read the texts by connecting sentences, producing inferences and keeping 
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previously-read information in the working memory, rather than just picking up emotion-laden 

words, as if those were presented in isolation. Note that such elaborate, comprehension 

processing is further supported by different analyses of our data showing activation differences 

for passages describing events that violate participants’ world knowledge (Hsu, Jacobs, Altmann, 

& Conrad, accepted). 

 

3.2.2. Overall (unspecific) effects at the lexical, intra-lexical and supra-lexical levels: first 

order effects in different models 

3.2.2.1. Model 1: unspecific effects of mean lexical arousal  

When lexical arousal was entered as the first predictor into the model, hemodynamic responses in 

the following neural substrates increased significantly when reading passages with higher mean 

lexical arousal (Fig. A.1, panel A-C in red color; Table A.2): bilateral middle superior temporal 

sulcus (STS, BA 21, 22 & 41), bilateral caudate tail, left IPL and supramarginal gyrus (SMG, BA 

40), left primary visual cortex (BA 17) and PCC (BA 30), right cerebellum, and after SVC, 

bilateral amygdala (Fig. A.1, panel D). 

Hemodynamic responses in the following neural substrates decreased significantly when reading 

passages with higher mean lexical arousal (Fig. A.1, panel A-C in green color; Table A.2): 

bilateral parahippocampal cortex (PHC, BA 28 & 36, including left hippocampus), bilateral 

anterior cingulate cortex (ACC, BA 32 & 25) and vmPFC (BA 10 & 11), bilateral dorsolateral 

prefrontal cortex (dlPFC, BA 8), bilateral middle superior temporal gyrus (STG), right anterior 

temporal lobe (aTL, BA 20 & 21), right posterior cingulate cortex (PCC, BA 23, 30 & 31), right 

medial premotor cortex (BA 6), right medial frontopolar cortex (BA 10), right TPJ (BA 19 & 39), 

left precuneus (BA 19), and left cerebellum. 

 

3.2.2.2. Model 1: unspecific effects of mean lexical valence  
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After partialling out variance due to mean lexical arousal, brain activity in the following regions 

significantly increased with more positive mean lexical valence of passages (Fig. A.1, panel E & 

F in red color; Table A.2): bilateral aTL (BA 21, 22 & 38), left premotor cortex (BA 6), left 

dlPFC (BA 8 & 9), left TPJ (BA 39), left PHC (BA 30), left PCC & precuneus (BA 31 & 7), right 

extrastriate visual cortex (BA 18 & 30), and right cerebellum. 

Hemodynamic responses in left posterior middle temporal gyrus (MTG, BA 37) and left IPL (BA 

40) decreased significantly with more positive mean lexical valence (Fig. A.1, panel E & F in 

green color; Table A.2). 

BOLD responses in bilateral caudate tail and right superior parietal lobule increased quadratically 

when reading passages with either positive or negative mean lexical valence (Fig. A.1, panel G in 

red color; Table A.2), while in the following regions the BOLD responses decreased quadratically 

with mean lexical valence (Fig. A.1, panel G & H in green color; Table A.2): right middle STS 

(BA 21 & 22), left posterior temporal cortex (BA 20, 22 & 38), left temporo-occipital junction 

(TOJ, one cluster in BA 39 & 18, another cluster in BA 36, 20 & 19), bilateral PCC and 

precuneus (BA 30 & 31), and left frontopolar cortex (BA 9 & 10).  

 

3.2.2.3. Model 1: unspecific effects of lexical arousal-span  

After partialling out variance due to mean lexical arousal and valence, we found significant 

positive correlation between BOLD responses and arousal-span in the following neural substrates 

(Fig. A.1, panel Q to T in red color; Table A.3): left inferior frontal gyrus (IFG) pars triangularis 

including anterior insula (BA 13, 45 & 46), left IFG pars opercularis including anterior insula 

(BA 9, 13 & 44), right IFG pars triangularis and orbitalis (BA 46 & 47), bilateral pre- and 

postcentral gyrus (BA 2, 4 & 6), bilateral posterior MTG and inferior temporal gyrus (ITG, BA 

37), bilateral extrastriate cortex (BA 18, 19 & 30), left premotor cortex (two clusters, BA 6), left 
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MTG and fusiform gyrus (BA 20 & 37), left middle cingulate gyrus (BA 24), and right middle 

STS (BA 21, 22 & 38). 

On the other hand, there was a significant negative correlation between arousal-span and BOLD 

responses in bilateral PCC (BA 29 & 31) and right SMG (BA 39 & 40; Fig. A.1, panel Q to T in 

green color; Table A.3). 

 

3.2.2.4. Model 1: unspecific effects of lexical valence-span  

After partialling out variance due to affective lexical means and lexical arousal-span, 

hemodynamic responses in left amygdala and globus pallidus and right cerebellum showed 

significant positive correlation with valence-span (Fig. A.1, panel U; Table A.3). No neural 

substrate correlated negatively with valence-span. 

 

3.2.2.5. Model 2: unspecific effects of arousal ratings.  

Right IFG including anterior insula (BA 47 & 13), left posterior MTG (BA 21, 39 & 37), and left 

IPL (BA 40) showed positive correlation with arousal ratings (Fig. A.1, panel I to K in red color; 

Table A.4).  

Bilateral aTL (BA 21), dlPFC, dorsal ACC (BA 32), vmPFC (BA 11), TPJ (BA 39 & 40), peri-

central cortex (BA 3, 4 & 6), and left PCC (BA 23 & 31) showed negative correlation with 

arousal ratings (Fig. A.1, panel I to K in green color; Table A.4).  

 

3.2.2.6. Model 2: unspecific effects of valence ratings  

Right aTL (BA 21), right TPJ (BA 40 & 22), right ACC (BA 32), vmPFC (BA 11), and left PCC 

(BA 23, 29 & 30) showed linear positive correlation with valence ratings (Fig. A.1, panel M & N; 

Table A.4).  
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Left IFG including anterior insula (BA 9 & 13), bilateral precuneus (BA 31 & 7), visual cortex 

(BA 18 & 19; Fig. A.1, panel O & P; Table A.4) and after SVC, bilateral amygdala (Fig. A.1, 

panel L) showed quadratic positive correlation with valence ratings.  

No region showed negative linear or quadratic correlation with valence ratings. 

 

3.2.3. Discussion of overall, unspecific effects at lexical, intra- and supra-lexical levels 

3.2.3.1. Unspecific effects of affective mean lexical variables and inter-lexical variables.  

We obtained robust correlations of the affective lexical variables with the BOLD signal 

intensities (Table A.2 & A.3). Most remarkably, in Model 1, we found a significant positive 

linear correlation in both amygdalae with lexical arousal means as well as with valence-span. The 

amygdala was proposed to be an integral part of the emotion network in general (Costafreda et al., 

2008; Lindquist et al., 2012; Murphy et al., 2003; Phan et al., 2002), and the salience network in 

particular (Seeley et al., 2007), and our result is in line with a previous study on the 

comprehension of texts containing emotional information (Ferstl et al., 2005). Correlated activity 

in ACC, PCC, vmPFC, and PHC is associated with emotion conceptualization (Lindquist et al., 

2012).  

Among other neural correlates associated with lexical means and spans (Table A.1 & A.2), IFG, 

aTL, and TPJ are all associated with the ELN (Ferstl et al., 2008), with ToM or affective empathy 

processing (Altmann et al., 2012, 2014; Mar, 2011; Walter, 2012), and with multi-modal 

semantic integration (Binder & Desai, 2011; Binder et al., 2009). In addition, aTL, vmPFC, and 

PCC have been associated with emotional semantic processing (Binder & Desai, 2011; Bohrn, 

Altmann, Lubrich, Menninghaus, & Jacobs, 2012).  

The fact that affective lexical values correlated with activity in many emotion-related brain areas 

provides strong evidence for the assumption that lexical surface features play an important role 

for the overall affective reading experience (see Bestgen, 1994; Jacobs, 2014; Whissell, 2003). 
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The comparison of these effects with those of subjective passage ratings may further inform us 

about how adequate the estimation of a text’s emotion potential from lexical affective surface 

features is at the neuronal level. 

 

3.2.3.2. Unspecific effects of subjective passage ratings  

Among first order effects for subjective passage ratings, it is most noteworthy that the 

hemodynamic responses in bilateral amygdala correlated significantly in a quadratic fashion with 

passages valence ratings. We also found significant correlations among neural substrates 

associated with the ELN (Ferstl et al., 2008), ToM or affective empathy processing (Altmann et 

al., 2012, 2014; Mar, 2011; Walter, 2012), and multi-modal semantic integration (Binder & Desai, 

2011; Binder et al., 2009) like IFG, dlPFC, aTL, TPJ, PCC, dorsal ACC, vmPFC as discussed in 

the previous section. 

 

3.2.3.3. Shared variance between unspecific effects of affective lexical variables and subjective 

passage ratings.  

All results presented so far cannot be attributed exclusively to either of the relevant text levels: 

they potentially represent unspecific effects of variance shared by passage ratings and affective 

lexical variables. Indeed, we found several neural substrates for which correlations between 

neural activity and emotional variables are consistent concerning both affective lexical variables 

and subjective passage ratings. Most importantly, amygdala activity correlated with valence 

ratings in a quadratic fashion, and with mean lexical arousal values and valence-span in a linear 

fashion. This corresponds well with the classical U-shaped distribution of valence and arousal 

(Bradley & Lang, 1999; Lewis et al., 2007; Võ et al., 2009). Moreover, in the two-dimensional 

affective space described by valence and arousal (Russell, 1980, 2003), both arousal and 

quadratic valence are measures of emotional salience (Lewis et al., 2007). The linear correlation 
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of activation with lexical arousal and the quadratic correlation with valence ratings support the 

notion that it is emotional intensity and attention to (emotionally) salient stimuli – rather than a 

specific type of emotion, i.e., positive vs. negative – that is crucial for amygdala activation 

(Anderson & Sobel, 2003; Costafreda et al., 2008; Small et al., 2003; Wallentin et al., 2011). 

Other neural substrates showing consistent correlations with BOLD responses for both affective 

lexical variables and subjective passage ratings include ACC (BA 32), PCC (BA 31), vmPFC 

(BA 11), PHC (BA 36 & 28), bilateral precuneus (BA 7), left IPL including SMG (BA 40 & 39), 

right middle temporal cortex (BA 21), and right dlPFC (BA 8). 

Despite the problem of unambiguously attributing unspecific effects to the lexical or supralexical 

level in particular – due to shared variance between the two – the fact that affective lexical 

variables and passage ratings could account in parallel for such a big range of effects concerning 

activity in emotion-related brain area is additional strong evidence for the general assumption that 

the emotional impact of texts can be adequately predicted by merely averaging affective values 

for constituting words at the lexical surface level. Unlike in Bestgen (1994), our computation of 

lexical affective means was not even based on an exhaustive sample of values for all words, but 

rather on valence and arousal values for 54% of content words as provided by a recent large scale 

normative German lexical database featuring valence and arousal ratings for 6,600 words. 

However, these matches probably involve a very high percentage of emotionally relevant words 

comprised in the texts, because attempting to include as many emotionally relevant words as 

possible was a main construction principle of this database. Our data thus show for the first time 

that emotional brain responses to complex texts can be directly predicted by text surface features 

at lexical level as provided by large scale normative databases – in much the same way as using 

individual affective evaluations of the complete passages. 
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3.2.4. Results of differential effects, specific to either lexical, inter-lexical, or supra-lexical 

levels in fMRI analyses 

3.2.4.1. Model 1: differential effects of arousal ratings  

After partialling out the variance due to affective lexical mean and span variables, the 

hemodynamic response in left temporo-occipital junction (BA 19 & 39) showed a significant 

negative correlation with passage arousal ratings (Table 3).  

 

3.2.4.2. Model 1: differential effects of valence ratings  

We found the hemodynamic response in left posterior MTG (BA 21) to be negatively correlated 

with valence ratings in a quadratic fashion (Table 3), i.e. this region gets more active when the 

passage is more neutral. 

 

3.2.4.3. Model 2: differential effects of mean lexical arousal 

We found no neural substrate in which the hemodynamic response is specifically correlated with 

mean lexical arousal values. 

 

3.2.4.4. Model 2: differential effects of mean lexical valence  

After partialling out the variance due to subjective passage ratings, lexical arousal- and valence-

span, and mean lexical arousal, hemodynamic responses in right lower TOJ, including PHC, 

fusiform and lingual gyrus (BA 19), right STS (BA 22), and left amygdala after SVC, correlated 

positively with mean lexical valence (Table 3, Fig. 3A). No neural substrate showed significant 

negative linear correlation or quadratic correlation with mean lexical valence. 

 

3.2.4.5. Model 3: differential effects of lexical arousal-span  
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After partialling out the variance due to the subjective passage ratings and mean lexical valence 

and arousal values, the hemodynamic response of the following neural substrates correlated 

positively with arousal-span (Fig. 3, panel B to D): left IFG pars triangularis including anterior 

insula (Fig. 3C; BA 13, 45 & 46), left premotor cortex (BA 6), bilateral posterior MTG and ITG 

(BA 37), left MTG and fusiform gyrus (BA 20 & 37), left middle cingulate gyrus (BA 24), right 

occipital pole (BA 17, 19 & 30), right globus pallidus and thalamus (ventral lateral nucleus and 

pulvinar; Fig. 3D, Table 4) and, after SVC, the left amygdala.  

The hemodynamic response of the right PCC (BA 23 & 31) and precuneus (BA 7; Table 4) 

showed a significant negative correlation with arousal-span.  

 

3.2.4.6. Model 3: differential effects of lexical valence-span 

After partialling out the variance due to the subjective passage ratings, lexical means, and lexical 

arousal-span, the hemodynamic response in right occipital base (BA 19) and two clusters in right 

cerebellum correlated positively with valence-span (Table 4). No neural substrate correlated 

negatively with valence-span. 

 

3.2.5. Discussion of differential effects of affective lexical variables on neural activity 

3.2.5.1. Differential effects of mean lexical valence values  

Our second parametric model revealed neural correlates representing effects of the emotion 

potential of words that go beyond 1) the holistic reading experience (as consciously expressed in 

passage ratings) and 2) effects due to inter-lexical affective variables (i.e., span). Our present 

finding of increasing lexical valence triggering amygdala activation after partialling out rating 

and arousal effects seems well in line with a recent EEG study that showed that early attention 

shifts to emotional words are restricted to the positive valence domain, once arousal is held 

constant (Recio et al., 2014). While amygdala activity has been often correlated with arousal, 
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recent evidence has demonstrated that also valence manipulations can engage this substrate of 

salience detection (Garvert, Friston, Dolan, & Garrido, 2014; Redondo et al., 2014; Stillman, Van 

Bavel, & Cunningham, 2014) – emerging as additional explanation of variance due to mean 

lexical valence in our statistical approach. 

 

3.2.5.2. Differential effects of lexical arousal-span  

We found significant correlations between lexical arousal-span and hemodynamic responses in 

many neural substrates, representing the emotion potential of dynamics and contrasts of arousal 

across the words constituting the text – beyond passage ratings and mean lexical values, effects of 

which had been partialled out. The neural correlates included striate and extrastriate visual cortex, 

amygdala, left anterior insula (extending from IFG), and thalamus. The latter three belong to the 

core affect regions in the psychological constructionist hypothesis of emotion (Lindquist et al., 

2012), and the salience network (Seeley et al., 2007).  

The anterior insula (BA 13), in which the activity is correlated with arousal-span, has been 

associated with awareness of bodily sensations and affective feelings (Craig, 2002, 2003, 2009), 

and the integration of autonomic and visceral information with emotional and motivational 

functions (Jones, Ward, & Critchley, 2010). Insula activation has also been shown to reflect 

interactive effects of emotional valence and arousal on lexical processing of emotional words 

(Citron et al., 2014), and to be responsive to discrete emotion information in words, in particular 

disgust (Ponz et al., 2013). 

The activity in the striate and extrastriate visual cortices correlated with arousal-span probably 

represents enhanced visual processing via an attention gain control mechanism exerted by the 

amygdala through the direct connection with the visual cortex (Herbert et al., 2009), and the 

indirect modulation through a fronto-parietal network as proposed in the Multiple Attention Gain 

Control (MAGiC) Model (Pourtois, Schettino, & Vuilleumier, 2013).  
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Furthermore, arousal-span correlated positively with activation in bilateral premotor cortex (BA 6) 

and right middle globus pallidus. Respective activity in neural substrates associated with motor 

function, especially the premotor cortex, could reflect elicitation of action tendencies or 

preparation for action – implicitly associated with arousal in the component process model of 

emotion (Scherer, 2005). Motion-associated neural substrates have also been shown to be 

associated with embodied processing of abstract emotional meaning (Moseley et al., 2012). 

Lesions in globus pallidus have been associated with poor motivation, poor reward sensitivity, 

and apathy (Adam et al., 2013; Rochat et al., 2013; Vijayaraghavan, Vaidya, Humphreys, 

Beglinger, & Paradiso, 2008), while functional connectivity between right nucleus accumbens 

and right globus pallidus seems to be weaker in apathetic depressed patients than healthy controls 

(Alexopoulos et al., 2013). The meta-analysis of Hattingh et al. (2012) showed that patients with 

social anxiety disorder have stronger activation in right globus pallidus when perceiving socially 

emotive cues than healthy controls. Thus, apart from the association with motoric embodied 

emotion processing, activity in right globus pallidus may possibly be associated with the 

processing of reward or fear/anxiety – correlated with the increase of arousal-span in our data. 

The robust correlation between lexical arousal-span of texts and emotion-related neural correlates 

supports the idea that this variable is a promising predictor of emotional experience related to 

suspense and immersion in reading (Jacobs, 2011, 2014).  

 

3.2.5.3. Differential effects of subjective passage ratings  

After partialling out variance accounted for by affective lexical variables, we found no emotion-

associated neural activation to be correlated in particular with valence or arousal ratings. Instead, 

we found negative correlation with arousal ratings and the quadratic term of valence ratings in 

left posterior temporal cortex and higher-level visual cortex. These negative correlations may best 

be explained assuming that the default network (Buckner, Andrews-Hanna, & Schacter, 2008; 
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Spreng, Mar, & Kim, 2009) activity decreases with increasing perceived emotionality at the 

supra-lexical level. This seems reasonable assuming that supralexical effects may be very 

heterogeneous in nature and, accordingly, not relate to single brain regions but rather cause wide 

spread activity that becomes evident in our data as deactivation of the default network. 

Furthermore, note that “Null effects” concerning residual variance for ratings also suggest that 

when reading our stimulus material (i.e., selected Harry Potter passages with rather unambiguous 

and passage-wise consistent specific emotional contents), the emotional salience and connotations 

of the constituting words and the dynamics/contrasts among them can – alone – account for the 

overall pattern of activity in emotion-related neural networks. 

 

4. General discussion, limitation and conclusion 

In this study, we investigated to what extent the affective impact of larger text units on the reader 

is a function of the emotional values of the words constituting them. We therefore considered the 

intercorrelations between three sources of data: 1) affective lexical variables provided by existing 

affective word databases (Conrad et al., in prep., see also BAWL-R and ANGST), representing 

lexical surface features; 2) subjective passage ratings of valence and arousal, representing the 

‘holistic’ evaluation of the emotional reading experience by the readers; and 3) BOLD responses 

representing neural activity during reading 

Intuitively, emotions we experience are generally considered a most individual, intimate and 

private issue – especially when, for instance, reading a book. Therefore, one can assume that 

participants’ individual affective evaluations should be the best predictors of their brain activity 

in emotion-related areas when reading a text. Besides robust parametric (unspecific) effects for 

such ratings given in our data, the results show that brain activity can be predicted with at least 

comparable efficiency via normative affective values of lexical surface features, as provided by 

large scale databases providing affective ratings of words – that is via quasi objective, 
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quantifiable patterns of basic elements, completely visible to everybody at the surface of a text. 

Our study, thus, builds upon previous behavioral approaches (Bestgen, 1994; Whissell, 2003) in 

trying to predict the emotional impact of text via the mean affective values of constituting words; 

the considerable overlap between parametric effects of individual passage ratings on the one hand 

and those for lexical valence and arousal means on the other – concerning their correlations with 

brain activity – in principle corroborates this view. In addition, our data also go a step further in 

providing evidence for genuine lexical effects beyond those of whole text ratings: mean lexical 

valence of words in a text still correlated significantly with amygdala activation after all 

alternative predictors’ effects had been partialled out. We propose that these effects might reflect 

the special power of words to evoke affect in the following ways: Emotion-laden words have the 

potential to capture attention (Kissler et al., 2006) – and they do so in at least a partially context-

independent manner (Delaney-Busch & Kuperberg, 2013; Wang et al., 2013); in addition, when 

we read a text, specific words reverberate in our minds beyond the more complex message 

conveyed by the text; and finally, the art of choosing the right words with the appropriate 

affective impact is part of what defines the skill of good writers or speakers. Moreover, while a 

text is clearly more than (or different from) the sum or average of its constituting words, single 

words also have a meaning beyond the specific context we find them embedded in: we have 

encountered these words in many other contexts before and our semantic representation of these 

words potentially contains traces of all these different contexts – giving words potentially 

complex emotional connotations. Superficially, these may not have much to do with the specific 

text we read, but rather the automatic activation of complex emotional connotations in our 

memory may add the lexical grain of affective salt that flavors text processing, therefore enabling 

us to joyfully read between the lines. 

Furthermore, our data revealed the obvious limitations of the “lexical mean approach” by 

providing evidence for the importance of dynamic shifts concerning emotional content of words 
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across a text for affective reading experience: These shifts and their relevance cannot be captured 

via lexical means, because increasing shifts would always make means drift towards the neutral 

mean of the respective scale. 

Accordingly, after partialling out the influence of alternative predictors including lexical means, 

the span of lexical arousal values of words encountered in a text passage proved to be the most 

fruitful differential predictor of activation in emotion-related brain area in our study. Respective 

findings involved the salience and emotion processing network and it seems plausible that sharp 

affective contrasts that we encounter between different elements of a text are particularly salient 

and trigger a range of emotional responses – in particular those involving preparation of 

immediate reactions of the organism to unexpected emotionally relevant events (Lang, Bradley, 

& Cuthbert, 1998; Scherer, 2005). 

In sum, our data show that  

1) affective evaluation of texts is strongly associated with mean and spread of lexical 

affective values,  

2) means of lexical affective values and mean affective text evaluations both predict a 

widely shared pattern of brain activation in emotion-related brain area. 

3) arousal-span represents a fruitful operationalization for the prediction of the emotion 

potential of texts at the inter-lexical level. 

 

The absence of differential effects specific to the individual affective ratings of passages remains 

a particular finding that cannot necessarily be generalized. We would certainly not claim that the 

emotional impact of all literary productions could always be predicted in similar, sufficient ways 

via lexical and inter-lexical surface features as in our study. Rather, some aspects of our approach 

(concerning stimulus length and selection, questions of literary genre and stylistics) may have 

particularly favored effects specific to lexical features to arise; other types of stimuli such as 
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entire poems (Lüdtke et al., 2014) may instead be more appropriate to show that the whole is 

more than the sum of its parts when it comes to neural emotional correlates of literary reading. 

For instance, one may argue that short text samples of only four lines (like our stimuli) may 

simply not provide enough context to evoke specific supra-lexical effects. On one hand, the 

respective probability of detecting unique supra-lexical effects may indeed increase with text 

length. But notice that in the present case of a parametric approach, a rather large number of 

stimuli involving a sufficient spread of manipulated variables are necessary – which constrains 

possible individual stimulus length for reasons of maximum experiment duration. On the other 

hand, however, many different factors may account for supra-lexical  emotional effects, e.g., 

figurativeness, context, event/situational change, affective empathy, or suspense, and not all of 

them necessarily require particularly long texts. In fact, metaphors, idioms, and irony/sarcasm can 

evoke emotional effects already at the sentential level (Bohrn, Altmann, & Jacobs, 2012; Citron 

& Goldberg, 2014). 

Additional evidence comes from Gernsbacher et al. (Gernsbacher, Goldsmith, & Robertson, 1992; 

Gernsbacher, Hallada, & Robertson, 1998; Gernsbacher & Robertson, 1992), who used short 

stories of 5 to 6 lines that led participants to correctly identify the emotional status of the 

protagonist, without explicitly using emotion-laden words. Furthermore, the current study follows 

the design of Altmann et al. (2012), who presented stories of five lines, line by line, in the 

scanner. The authors showed the effective connectivity from the medial prefrontal cortex to other 

regions involving affective empathy and ToM processing, including left amygdala and bilateral 

insula, when reading negatively vs. neutrally-valenced short stories. Specifically, the medial 

prefrontal cortex is associated with moral judgement when negative stories are liked by the reader. 

All these results clearly seem to reflect supra-lexical effects. In the current study, all our 

participants were sufficiently familiar with the novel-specific contents, hence contextual   
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knowledge, which is necessary for supra-lexical emotional effects to arise, was present even if 

participants read only short passages. 

However, stylistic elements usually relax or untie the relation between affective features of 

lexical elements and the possible affective impact of a text. Therefore, a possible explanation of 

why our study failed to obtain specific supra-lexical effects – beyond an apparent deactivation of 

the default network by increasing emotion intensity expressed in supra-lexical ratings – may lie in 

the specific choice of literature. Harry Potter books are aimed to reach a broad population of 

readers, and their content might be relatively straightforward to comprehend in comparison with 

other literary materials, e.g., works by Proust, Chekhov, or Tolstoy. For example, in other literary 

works, authors may deliberately provide ambiguous information for the closure of meaning 

gestalts (Iser, 1976), so that readers would constantly consider new interpretations and possible 

outcomes upon reflection (Jacobs, 2011). In contrast, in our selected passages emotional content 

was rather straightforward, lacking more sophisticated stylistic elements that may have 

specifically contributed to the supra-lexical emotional reading experience (Jacobs, 2014). Finally, 

methodological constraints of fMRI, in particular the low temporal resolution of the BOLD 

response, let us choose text passages in which the emotional content evolved over the entire text 

passage in rather consistent ways. Clearly, such (consistent) stimulus characteristics are at odds 

with specific literary phenomena of sharply disrupting previously cheerfully nourished 

expectations that presumably evoke strong supralexical emotional effects as, for example, in the 

poems of Heinrich Heine (see deVega, Diaz, & Leon, 1997; deVega, Leon, & Diaz, 1996; Speer, 

Reynolds, Swallow, & Zacks, 2009; Speer et al., 2007 for psychological accounts of pertinent 

(rapid) updates of situation models).  

To conclude, our data make a strong case for the prevailing importance of basic features 

concerning the emotional impact of overall very complex samples of human communication: the 

mean and spread of affective features of single words encountered in texts. Future studies will 
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hopefully extend and differentiate these findings to different literary genres and styles tapping 

into more specific peculiarities of literary reading at the supra-lexical level.  
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Figure 1. The Design Matrices of Three Models of Parametric Analyses  

Each model contains the regressors of the German Reading condition, six parametric modulators 

and their polynomial expansions, English Reading, and Question conditions, followed by six 

motion parameters. All regressors are serially orthogonalized. Three models differ in their 

sequence of entry of the parametric modulators. L. Arousal = lexical arousal mean; L. Val. 1st = 

first order lexical valence mean; L. Val 2nd = second order lexical valence mean; Aro.-span = 

arousal-span; Val.-span = valence-span; Arousal R. = arousal ratings; Val. R. 1st = first order 

valence ratings; Val. R. 2nd = second order valence ratings. 

 

Figure 2. Results of Reading (German) vs. Fixation 

Regions showing significantly stronger BOLD response in the German reading condition than 

fixation. The voxel-level threshold is FWE corrected p < 0.05, the size threshold 5. 

A: left hemisphere render image. 

B: right hemisphere render image. 

C: sagittal section at x = 0 showing activation in medial supplementary motor cortex, visual 

cortex, and pons.  

D: transverse section at z = -18. The crosshair highlights ventromedial prefrontal cortex (0 48 -

18). The section also shows activation in bilateral anterior temporal lobe and parahippocampal 

cortex including amygdala. 

 

Figure 3. Specific Effects of Affective Lexical Variables 

A: transverse section at z = -15 showing significant linear positive correlation between BOLD 

responses in the left amygdala (crosshair, -28 -4 -15, after SVC) and lexical valence means after 

partialling out variance due to ratings, spans, and lexical arousal means in Model 2.  

B to D: results of significant positive correlation between BOLD responses and arousal-span after 

partialling out variance due to ratings, lexical means in Model 3. 



B: left hemisphere render showing significant clusters in left IFG including insula, premotor area, 

and temporo-occipital junction. 

C: sagittal section at x = -40 highlighting the significant cluster in left IFG and insula (crosshair, -

40 29 12). 

D: sagittal section at x = 16 highlighting the significant cluster in right globus pallidus and 

thalamus (crosshair, 16 -7 3). 

The initial voxel-level threshold is uncorrected p < 0.005, the size threshold is according to the 

cluster-level FDR correction in each analysis. 

 

Figure A.1 Unspecific Effects of Affective Lexical Variables 

Render images were produced with xjview, in which red color indicates significant positive 

correlations; green indicate significant negative correlations.  

Panel A to D show unspecific effects of mean lexical arousal in Model 1. Panel D shows 

significant positive correlation in bilateral amygdala (crosshair -26 -6 -23) after SVC. 

Panel E and F show unspecific linear effects, and panel G and H show unspecific quadratic 

effects of mean lexical valence in Model 1.  

Panel I to K show unspecific effects of arousal ratings in Model 1.  

Panel M and N show unspecific linear effects, and panel L, O and P show unspecific quadratic 

effects of valence ratings in Model 2. Panel L shows significant positive quadratic correlation 

with valence ratings in bilateral amygdala (crosshair 27 -6 -14) after SVC. 

Panel Q to T: unspecific effects of arousal-span in Model 1. 

Panel U: unspecific effects valence-span in Model 1 highlighting significant positive correlation 

in the left amygdala (crosshair -24 -7 -17). 

The initial voxel-level threshold is uncorrected p < 0.005, the size threshold is according to the 

cluster-level FDR correction in each analysis.  
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Table 2. Examples of Passages with High Mean Lexical Valence/Arousal and Valence-

/Arousal-span values 

Passages 

 

Highly positive mean lexical valence  

But James merely laughed, permitted his 

mother to kiss him, gave his father a fleeting 

hug, then leapt on to the rapidly filling train. 

They saw him wave, then sprint away up the 

corridor to find his friends. (Book 7) 

Highly negative mean lexical valence  

'You disgusting little Squib, you filthy little 

blood traitor!' roared Gaunt, losing control, 

and his hands closed around his daughter's 

throat. Both Harry and Ogden yelled 'No!' at 

the same time. (Book 6) 

High mean lexical arousal  

Wormtail screamed, screamed as though 

every nerve in his body was on fire, the 

screaming filled Harry's ears as the scar on his 

forehead seared with pain; he was yelling, too. 

(Book 4) 
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Large valence-span  

When the Dementors approached him, he 

heard the last moments of his mother's life, 

her attempts to protect him, Harry, from Lord 

Voldemort, and Voldemort's laughter before 

he murdered her.... Harry dozed fitfully, 

sinking into dreams full of clammy, rotted 

hands and petrified pleading. (Book 3) 

Large arousal-span  

And then a silence fell over the crowd, from 

the front first, so that a chill seemed to spread 

down the corridor. The Fat Lady had vanished 

from the portrait, which had been slashed so 

viciously that strips of canvas littered the 

floor; great chunks of it had been torn away 

completely. (Book 3) 

 

0.11 

 

 

 

 

 

 

 

-0.015 

 

2.95 

 

 

 

 

 

 

 

2.76 

 

4.60 

 

 

 

 

 

 

 

3.40 

 

2.35 

 

 

 

 

 

 

 

2.83 



Table 3.  Differential Effects of Affective Lexical Variables and Subjective Passage Ratings  

H Regions   Cluster size p* T B.A.  [x, y, z] 

Model 1: Negative linear Correlation with Arousal Ratings  

L TOJ (MOG, MTG & IOG)  642 0.007 4.49 19/39  -45 -84   0 

Model 1: Negative quadratic Correlation with Valence Ratings 

L Posterior MTG   1723 0.000 5.71 21  -63 -48   3 

Model 2: Positive linear Correlation with mean Lexical Valence 

R PHC, fusiform and lingual gyrus 933 0.000 5.32 19  27 -57  -8 

R STS (STG & MTG)   519 0.010 4.36 22  46 -27  -2 

L Amygdala (SVC)   19 0.007 4.79   -28  -4 -15 

Model 3: Positive linear Correlation with Arousal-span 

L IFG pars triangularis, insula & MFG 459 0.027 6.04 13/45/46 -40  29  12 

R Occipital pole (lingual & cuneus) 2543 0.000 5.88 19/30/17 15 -69  -8 

L Posterior MTG & ITG  1923 0.000 5.65 37/19  -57 -64  -3 

R Middle globus pallidus, thalamus  500 0.024 5.48   16  -7   3 

 (ventral lateral nucleus & pulvinar)      

L Cerebellum, MTG, fusiform gyrus 362 0.042 5.19 20/37  -38 -45 -27 

R TOJ (MTG, MOG & ITG)  443 0.027 5.10 37  51 -61   3 

L Premotor cortex   392 0.036 4.72 6  -26  -4  64 

 (MFG, SFG, med. FG) 

L+R Cingulate gyrus   387 0.036 4.70 24  -4  -1  46 

L Amygdala (SVC)   21 0.021 4.24   -22  -1 -26 

Model 3: Negative linear Correlation with Arousal-span 

R PCC & Precuneus   780 0.001 4.79 31/23/7 0 -57  24 

Model 3: Positive linear Correlation with Valence-span 

R Lingual gyrus & Cerebellum  622 0.009 4.70 18  16 -85 -15 



R Cerebellum    562 0.009 3.91   39 -76 -35 

 

* Cluster level false-discovery-rate-corrected p-values 

Abbreviations: FG = frontal gyrus; IFG = inferior frontal gyrus; IOG = inferior occipital gyrus; ITG = inferior temporal gyrus; MFG = middle 

frontal gyrus; MOG = middle occipital gyrus; MTG = middle temporal gyrus; PCC = posterior cingulate cortex; PHC = parahippocampal cortex; 

SFG = superior frontal gyrus; STG = superior temporal gyrus; STS = superior temporal sulcus; SVC = small volume correction; TOJ = temporo-

occipital junction; H = hemisphere; L = left; R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates 

 

 

  



Table A.1 Main Effects of Reading (German) vs. Fixation 

H Regions   Cluster size p* T B.A.  [x, y, z] 

Reading (German) > Fixation       

 L+R Thalamus, PHC incl. L Amygdala 3447 0.000 20.39    22  -27  -0  

       0.000 14.91   -21  -30  -0  

       0.000 11.93   -28   -6 -21 

L STS incl. aTL (STG & MTG)  3992 0.000 17.07 38  -51   11 -14  

       0.000 15.00 22  -57   -3  -9  

       0.000 14.01 22  -54  -39   4  

L+R Cerebellum & Lingual gyrus  13379 0.000 16.83    30  -64 -50  

       0.000 15.15 17  -12  -97  -6  

       0.000 14.90 17   16  -87  -3  

R STS incl. aTL (STG & MTG)  2714 0.000 16.46 41   51  -21  -8  

       0.000 14.58 22  50  -27  -0  

       0.000 14.31 21   54   -9 -14  

L Medial SMA (SFG)   676 0.000 14.99 6   -3    2  67  

       0.000 10.33 6    0    3  60  

       0.002  8.68 6   -4    9  63  

L Cerebellar Nodule & Tonsil  1083 0.000 13.77    -2  -55 -35  

       0.000 12.57   -20  -40 -44  

       0.001  8.92    -9  -49 -41  

R PHC incl. hippocampus & Amygdala 380 0.000 12.69    33   -1 -20  

       0.000 12.11    30  -10 -20  

       0.000  9.49 34   21  -10 -18  

L Precentral gyrus   822 0.000 12.31 6  -51   -1  48  

       0.000 10.68 4  -50  -12  43  



       0.002  8.82 6  -46   -6  37  

R Cerebellar Declive   316 0.000 12.27    42  -66 -24  

       0.000 10.97    33  -61 -26  

L IFG pars triangularis   277 0.000 11.81 47  -50   27  -2  

R Cerebellar Tonsil   107 0.000 10.58    21  -43 -44  

R Precentral & MFG   168 0.000 10.02 6   60   -7  42  

       0.003  8.35 6   51    5  49  

L+R Pons     71 0.000  9.94     0  -36 -39  

L Pons     45 0.000  9.49    -6  -25 -38  

L Putamen    195 0.001  9.15   -20    5   7  

R Postcentral gyrus   18 0.001  9.10 3   51  -18  55  

R IFG pars triangularis & MFG  202 0.001  8.86 46   56   33   9  

       0.012  7.66 45   57   27   3  

L IFG pars triangularis & MFG  191 0.002  8.80 46  -42   17  22  

R Paracentral lobule   45 0.002  8.76 6    9  -33  58  

R Precentral gyrus   27 0.004  8.31 6   30  -19  66  

L Paracentral lobule   24 0.004  8.23 6   -8  -34  57  

R dlPFC (MFG)    129 0.005  8.14 9   41    9  30  

       0.007  7.90 46   41   20  25  

R Precentral gyrus   11 0.005  8.09 6   28  -19  55  

R Caudate tail    7 0.006  7.99    22  -31  21  

L+R vmPFC (Orbital gyrus)  22 0.006  7.98 11   0   48 -18  

L Cuneus    59 0.007  7.95 18  -21  -81  19  

R Cingulate    18 0.007  7.94 31   12  -24  48  

R ITG     13 0.008  7.85 37   50  -49 -12  

R TPJ (MTG)    79 0.008  7.84 39   32  -67  28  



L TPJ (IPL)    37 0.010  7.75 40  -26  -49  52  

R Precentral gyrus   8 0.011  7.70 6   36  -10  63  

R Precuneus    11 0.011  7.70 7   30  -55  51  

R Caudate body    15 0.014  7.54     8    9  10  

R Fusiform    8 0.018  7.40 37   38  -43 -17  

L Fusiform    9 0.021  7.33 20  -39  -12 -30 

 

* Voxel level FWE-corrected 

Abbreviations: aTL = anterior temporal lobe; dlPFC = dorsolateral prefrontal cortex; IFG = inferior frontal gyrus; ITG = inferior temporal gyrus; 

MFG = middle frontal gyrus; MTG = middle temporal gyrus; PHC = parahippocampal cortex; SMA = supplementary motor area; STG = superior 

temporal gyrus; STS = superior temporal sulcus; TPJ = temporo-parietal junction; vmPFC = ventromedial prefrontal cortex; H = hemisphere; L = 

left; R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates 

  



Table A.2 Unspecific Effects of Affective Lexical Variables in Model 1  

H Regions   Cluster size p* T B.A.  [x, y, z] 

Positive linear Correlation with mean lexical Arousal 

L Cuneus & PCC   337 0.033 5.76 17/30  -18 -76   9 

R STS (STG & MTG)   526 0.009 5.34 22  50 -30  -3 

R Cerebellum    614 0.009 5.30   15 -78 -30 

L IPL, supramarginal &   474 0.011 5.06 40/2  -52 -37  34 

 postcentral gyrus 

L Caudate tail, hippocampus &  521 0.009 4.97   -33 -24  -6 

 putamen 

L MTG & STG    520 0.009 4.96 22/41/21 -51 -36   4 

R Caudate tail    372 0.025 4.81   22 -28  21 

R Amygdala (SVC)   35 0.015 4.41   27  -9 -17 

L Amygdala (SVC)   35 0.028 4.09   -26  -6 -23 

Negative linear Correlation with mean lexical Arousal       

L Precuneus, SPL & cerebellum 1827 0.000 7.60 19/7  -42 -79  34 

R+L ACC, vmPFC     1873 0.000 6.94 32  8  38  -9 

 (subcallosal gyrus & med FG)   4.99 25/11  -6  24 -12 

R TPJ (IPL, MTG & AG)  3405 0.000 6.44 19/39  42 -73  37 

R PHC & hippocampus   1000 0.000 6.37 28  30 -34 -12 

R dlPFC (MFG & SFG)   2371 0.000 6.16 8  39  27  49 

L PHC     714 0.001 6.11 36/28  -24 -39 -15 

R PCC     1586 0.000 6.02 23/30  6 -60  18 

R PCC     1575 0.000 5.88 31  9 -42  39 

L STG & postcentral gyrus  562 0.002 4.82 22/42/41 -57  -9   3 

R aTL (MTG & ITG)   477 0.005 4.73 20/21  50  -6 -23 



L dlPFC (MFG)    342 0.019 4.57 8  -28  32  51 

R STG & precentral gyrus  507 0.004 4.41 22/44  53  -1   1 

R+L Medial premotor cortex (medial FG) 327 0.021 4.37 6  15  -3  60 

 & cingulate gyrus     3.35 24  -6  -6  52 

R+L Medial frontopolar cortex  252 0.039 4.15 10  12  59   1 

 (SFG & medial FG)     3.69 10  -6  65   7 

L Cerebellum    272 0.039 4.15   -50 -67 -35 

Positive linear Correlation with mean lexical Valence       

R aTL (MTG & STG)   2088 0.000 5.86 38/22/21 51  10 -18 

L aTL (MTG & STG)   2207 0.000 5.66 21/22  -50   6 -26 

L Premotor cortex (SFG)  423 0.009 5.66 6  -8   6  67 

R Cerebellum    394 0.011 5.23   24 -85 -38 

R Extrastriate visual cortex  1317 0.000 5.06 18/30  21 -85  -9 

 (lingual gyrus & cuneus) 

L dlPFC (SFG)    499 0.004 4.87 9/8  -20  42  43 

L TPJ (MTG, IPL &   767 0.000 4.68 39/13  -44 -60  24 

 supramarginal gyrus) 

L PHC & lingual gyrus   278 0.043 4.49 30/19  -21 -55    1 

L PCC & precuneus   717 0.000 4.14 31/7  -3 -63  24 

Negative linear Correlation with mean lexical Valence       

L MTG     1163 0.000 6.27 37  -54 -57  -2 

L Postcentral gyrus & IPL  661 0.001 5.41 2/40  -60 -33  42 

Positive quadratic Correlation with mean lexical Valence 

R  SPL & caudate tail   994 0.000 4.67 7  34 -57  51 

L Caudate tail    804 0.000 4.58   -14 -39  18 

Negative quadratic Correlation with mean lexical Valence 



R STS (MTG & STG)   1131 0.000 5.71 21/22  51  -1 -15 

L STG, MTG & ITG   1369 0.000 5.59 22/20/38 -63 -25   3 

L TOJ (MTG & cuneus)   4912 0.000 5.53 39/18  -48 -66  25 

L TOJ (PHC, fusiform, lingual gyrus) 863 0.000 5.03 36/20/19 -26 -43 -11 

L+R PCC & precuneus   963 0.000 4.86 30  -12 -63  13 

        4.15 31  8 -63  18 

L Frontopolar cortex (SFG, med. FG) 588 0.003 3.94 10/9  -12  63  10 

 

* Cluster level FDR-corrected for the whole brain; voxel-level FWE-corrected for SVC 

Abbreviations: ACC = anterior cingulate cortex; AG = angular gyrus; aTL = anterior temporal lobe; dlPFC = dorsolateral prefrontal cortex; FG = 

frontal gyrus; IFG = inferior frontal gyrus; IPL = inferior parietal lobule; ITG = inferior temporal gyrus; MFG = middle frontal gyrus; MTG = 

middle temporal gyrus; PCC = posterior cingulate cortex; PHC = parahippocampal cortex; SFG = superior frontal gyrus; SPL = superior parietal 

lobule; STG = superior temporal gyrus; STS = superior temporal sulcus; SVC = small volume correction; TOJ = temporo-occipital junction; TPJ = 

temporo-parietal junction; vmPFC = ventromedial prefrontal cortex; H = hemisphere; L = left; R = right; p = p-value; T = T-value; B.A. = 

Brodmann area; x, y, z = MNI coordinates 

 

  



Table A.3 Unspecific Effects of Arousal- and Valence-span in Model 1 

H Regions   Cluster size p* T B.A.  [x, y, z] 

Positive linear Correlation with Arousal-span       

L IFG pars triangularis, insula & MFG 1034 0.000 6.97 13/45/46 -40  29  10 

L Posterior MTG & ITG  2175 0.000 5.70 37/19  -56 -63  -3 

R IFG pars triangularis and orbitalis 765 0.001 5.70 46/47  47  36   6 

L+R Cingulate, medial FG   786 0.001 5.58 24  -2  -4  49 

        4.78 6/32  9  -9  60 

L+R Extrastriate visual cortex  4209 0.000 5.32 18/19  10 -69  -3 

 (Cuneus & Lingual gyrus)    4.77 30  -2 -73   7 

R Middle STS (MTG & STG)  430 0.013 5.11 21/22/38 51   2 -14 

L IFG pars opercularis & insula  821 0.001 4.97 44/9/13 -52   8  16 

R Precentral & postcentral gyrus 1265 0.000 4.63 4/6/2  44 -15  60 

L IPL & postcentral gyrus  374 0.020 4.50 40/2  -56 -34  43 

L Cuneus, MOG & precuneus  464 0.010 4.43 18/19  -18 -87  24 

L Premotor cortex   379 0.020 4.29 6/9  -39 -12  51 

(precentral gyrus, MFG & IFG) 

L Premotor cortex   329 0.032 4.24 6  -20   8  60 

(SFG, MFG, med. FG) 

R IFG pars orbitalis   310 0.038 4.13 47  21  29 -12 

R+L Extrastriate visual cortex  659 0.002 4.04 19  16 -91  24 

 (cuneus & precuneus)     3.86 19  -6 -97  22 

Negative linear Correlation with Arousal-span 

L+R PCC     1597 0.000 5.60 31/29  -2 -61  24 

        5.27 31  9 -57  21 

R Supramarginal gyrus   1089 0.000 4.54 40/39  51 -52  22 



Positive linear Correlation with Valence-span       

L Amygdala, subcallosal gyrus & 868 0.000 5.35   -24  -7 -17 

 lateral globus pallidus      

R Cerebellum    1296 0.000 4.91   28 -78 -21 

 

*Cluster level FDR-corrected for the whole brain 

Abbreviations: FG – frontal gyrus; IFG – inferior frontal gyrus; IPL – inferior parietal lobule; ITG – inferior temporal gyrus; MFG – middle 

frontal gyrus; MOG – middle occipital gyrus; MTG – middle temporal gyrus; PCC – posterior cingulate cortex; STG – superior temporal gyrus; 

STS – superior temporal sulcus; H = hemisphere; L = left; R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates 

  



Table A.4 Unspecific Neural Correlates of Subjective Ratings  

H Regions   Cluster size p* T B.A.  [x, y, z] 

Positive linear Correlation with Arousal Ratings       

L+R Caudate body    654 0.002 5.48   0   6  18 

        4.10   -9 -16  22 

R IFG (orbitalis & triangularis) & AI 292 0.039 5.12 47/13  39  33  -8 

L IPL & PI    441 0.011 4.74 40/13  -57 -45  30 

L Posterior MTG   304 0.039 4.05 21/39/37 -60 -54   0 

Negative linear Correlation with Arousal Ratings 

L PCC      4906 0.000 8.20 23/31  -8 -60  16 

R TPJ (AG & IPL)   4592 0.000 7.84 39/40/7 45 -67  31 

R PHC & Cerebellum   946 0.000 7.71 36/28  27 -33 -15 

R dlPFC (SFG & MFG)   2134 0.000 7.08 9/6/8  21  42  45 

R+L ACC & vmPFC (medial FG)  1688 0.000 6.59 11  3  41  -9 

        5.31 11  -10  47 -14 

L Precuneus, AG & IPL   2339 0.000 6.22 19/39/7 -40 -78  37 

L TOJ (MOG, IOG & MTG)  725 0.000 5.91 19/39  -48 -82   4 

L dACC & dlPFC (MFG & SFG) 386 0.008 5.51 32/8  -16  20  42 

R aTL (MTG)    673 0.000 5.43 21  54   0 -23 

L+R Cerebellum    368 0.008 5.12   -6 -52 -50 

        4.09   6 -49 -47 

L aTL (MTG)    376 0.008 5.07 21  -50 -15 -21 

L Cerebellum & PHC   965 0.000 4.97 28  -22 -30 -24 

R Precentral gyrus   353 0.009 4.94 4/6  36 -28  58 

L Postcentral gyrus   223 0.049 4.94 3/4  -48 -18  46 

R Premotor (SFG & MFG) &  244 0.040 4.53 6/4  15 -19  70 



 postcentral gyrus 

R Precentral, postcentral gyrus & 443 0.004 4.21 43  54 -12   9 

 insula      

R dlPFC (MFG)    240 0.040 3.91 46/9  44  29  24 

Positive linear Correlation with Valence Ratings  

R aTL (MTG & ITG)   1184 0.000 5.81 21  57   2 -23 

R TPJ (STG & PI)   536 0.007 5.25 40/13/22 54 -51  19 

L PCC     1544 0.000 4.73 29/23/30 0 -46  13 

R ACC & vmPFC (medial FG)  716 0.001 4.40 32/11  3  32 -11 

Positive quadratic Correlation with Valence Ratings 

L IFG (opercularis), AI & precentral 396 0.026 5.65 9/13/6  -40   3  30 

L+R Precuneus & cuneus   1333 0.000 4.98 31/17  0 -70  15 

L SPL & precuneus   386 0.026 4.77 7  -28 -58  60 

L Precuneus & cuneus   483 0.017 4.28 7/18/19 -14 -75  34 

L Amygdala (SVC)   64 0.010 4.61   -27   0 -21 

R Amygdala (SVC)   31 0.023 4.22   27  -6 -14 

 

* Cluster level FDR-corrected for the whole brain; voxel-level FWE-corrected for SVC 

Abbreviations: ACC = anterior cingulate cortex; AG = angular gyrus; AI = anterior insula; aTL = anterior temporal lobe; dlPFC = dorsolateral 

prefrontal cortex; FG = frontal gyrus; IFG = inferior frontal gyrus; IOG = inferior occipital gyrus; IPL = inferior parietal lobule; ITG = inferior 

temporal gyrus; MFG = middle frontal gyrus; MOG = middle occipital gyrus; MTG = middle temporal gyrus; PCC = posterior cingulate cortex; PI 

= posterior insula; PHC = parahippocampal cortex; SFG = superior frontal gyrus; SPL = superior parietal lobule; STG = superior temporal gyrus; 

SVC = small volume correction; TOJ = temporo-occipital junction; TPJ = temporo-parietal junction; vmPFC = ventromedial prefrontal cortex; H 

= hemisphere; L = left; R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates 


