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Abstract

Different than the conventional queueing systems, in spatial queueing systems (SQS) the service rate for each customer-server
pairs differs and the server that intervenes for a specific customer is not known a priori, depending on the availability of servers
at the moment a request was made. These features make the SQS computationally expensive (almost intractable for large scale)
but at the same time more suitable for real-life problems with high reliability expectations. Emergency response and on-demand
transportation systems are two similar systems that can be modeled with the SQS.

In this research, we aim to solve facility location problems as SQS with stochastic demand and service time. The stochasticity
concerned here is temporal and spatial, that emerges from the uncertainty in the demand and service time. In order to tackle
this problem Larson (1974)’s 2n hypercube queueing model (HQM) is extended to 3n HQM. In this model, there are two different
possible service types for each server: (i) service for locations in the proximity of a server (area of responsibility) and (ii) service for
other locations where the first responsible server is busy during this event. In addition, to decrease the dimension of the problem,
which is intractable due to their size, a new 3n aggregate hypercube queueing model (AHQM) is developed that treats group of
servers (bins) in a similar manner by considering interactions among bins. An efficient graph partitioning algorithm is proposed
to cluster servers in groups with an objective to minimize the interactions among groups. Both exact and approximate approaches
are integrated inside two optimization methods (i.e. variable neighborhood search and simulated annealing) to find server locations
that improve system performance. Computational experiments showed that both models are applicable to use inside optimization
algorithms to find good server locations and to improve system performance measures of SQS.
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1. Introduction

Location-allocation of emergency response systems is one of
the oldest problems in the operations research literature. Lo-
cating ambulances, fire brigades and police-beats were the pio-
neer problems mathematically modeled and solved. Although
there are quite a few number of works on the subject, many of
them disregards the stochastic nature of the problem and find
solutions with deterministic assumptions. However, this spe-
cific property is the one that differs emergency response system
location-allocation problems from the other types of location-
allocation problems. This randomness (in demand rates, service
times and servers’ intervention) creates unexpected congestion
and eventually causes losses. While stochasticity in demand
and service rates have been included in many researches, the
choice of the server based on the state of the system (location
of request and availability of other servers) has been addressed
in only a few instances for small-scale systems.

There are different methods in the literature dealing with lo-
cating emergency response systems. One of the models that
was proposed by Larson (1974) models this problem as a spatial
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queueing model which is also known as 2n hypercube queueing
model (HQM). In 2n HQM, each emergency response unit is
regarded as a server on an Euclidean space and each of them
has two states, available and busy generating 2n possible states
for the system (where n is the number of servers); these are the
vertices of a hypercube.

Larson (1974) assumed that since the time spent on the way
to scene is negligible compared to the service time on scene,
the region that is served has no effect on the service time, i.e.
for a specific server, service time is the same for any region.
This may be acceptable for some systems like fire brigades but
not for ambulances. In this research, our aim is to alter Larson
(1974)’s 2n HQM in such a way that enables the model to use
different service rates for different server-region pairs. For this
purpose a new type of 3n HQM is proposed. In this 3n HQM,
each server has three states: available, busy inside primary ser-
vice area (intradistrict) and busy outside primary service area
(interdistrict), which creates an intractable hypercube for even
medium size problems (with more than 8 servers). In order to
tackle larger problems an aggregate method, namely 3n aggre-
gate HQM (AHQM) is also developed. Instead of estimating
each server state separately, 3n AHQM keeps the number of
servers at each of the 3 states (i.e. available, busy with intradis-
trict, busy with interdistrict) at each bin (i.e. set of servers).
To identify bins, AHQM is integrated inside mix aggregate hy-
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percube queueing algorithm (MHQA). In a nutshell, MHQA
has three steps. First, the whole problem area is bi-partitioned
to have solvable subproblems. Then, performance measures for
each of these partitions are calculated with 3n HQM. Then these
partitions are merged and performance measures are calculated
with 3n AHQM. Both methods are used to find better locations
for emergency vehicles to improve a real and an experimental
regions with the help of two optimization algorithms: variable
neighborhood search (VNS) and simulated annealing (SA).

The remainder of the paper is organized as follows: In the
next section, Section 2, we describe significant literature about
locating emergency response systems. We start with the early
location-allocation models and extend it to very recent emer-
gency response systems literature. Section 3 describes the two
models, i.e. 3n HQM and 3n AHQM, and their comparison with
Larson (1974)’s 2n HQM. Section 4 contains the definition and
steps of MHQA with the mathematical model of the partition-
ing algorithm. In Section 5, we share the computational results
of our two algorithms, 3n HQM and MHQA. This part contains
both the accuracy of the two models compared to the simula-
tion of the real system and the results from the optimization
algorithms, VNS and SA. In the last section, we discuss the
conclusions and the future research directions. Appendices A1-
A3 describe in details the application of the methodologies of
sections 3 and 4 in a numerical example.

2. Literature Survey

The earliest models dealing with the location of emergency
response systems assume deterministic demand and service.
They disregard the stochastic nature of the problem and model
the problem by median and coverage models.

The first median problem was created by Fermat in the 17th
Century: Given a triangle, find the median point in the plane
such that the sum of the distance from each point of the points
to the median point is minimized. Weber (1909) extended the
problem with more than three points with weights and objective
minimizing total weighted distance. Both Weiszfeld (1937) and
Hakimi (1964) proposed methods to solve the Fermat-Weber
problem optimally, the former gives the optimal location in
the Euclidean space whereas the later for networks. Cooper
(1963, 1964, 1972) modeled the existing Fermat-Weber prob-
lem with more than one facilities and proposed efficient heuris-
tic methods. Calvo and Marks (1973) grouped the population
into groups and introduced facilities of these groups. Weaver
and Church (1985) proposed the vector assignment p-median
problem which aims to minimize total transportation cost while
forcing the demand nodes to have service from k closest facili-
ties with predefined ratios.

Recently, p-median models dealing with facility disruptions
have started to gain attention (Qi et al., 2010). Cui et al. (2010)
proposed a continuum approximation model with custom de-
signed Lagrangean relaxation algorithm. Li and Ouyang (2010)
deals with the case of correlated demand with a similar model.
Wang and Ouyang (2013) considers the effect of facility dis-
ruption risk under competition. A leader-follower Stackelberg
competition model is developed to find optimal facility location

design. An et al. (2014) propsed a two-stage robust optimiza-
tion model for the same problem. They applied two different
approaches and observed that column-and-constraint genera-
tion method outperformed Bender decomposition drastically.

Coverage models are used to locate facilities (i.e. emergency
response systems) in such a way to maximize coverage and/or
minimize number of facilities. The first two models, the lo-
cation set covering problem (LSCP) aims to minimize number
of facilities to cover all demand (Toregas et al., 1971) and the
maximal location set covering problem (MCLP) aims to max-
imize total coverage with limited number of facilities (Church
and ReVelle, 1974). Schilling et al. (1979) proposed a model
that aims to have multiple coverages with different types of fa-
cilities. Daskin and Stern (1981) promoted the multiple cov-
erage as a secondary objective. Aly and White (1978), Hogan
and Revelle (1986), ReVelle and Hogan (1989), Marianov and
ReVelle (1992), Ball and Lin (1993), Gendreau et al. (1997)
have extended the works given above in different aspects.

In addition to the two main types of models given above,
there are also dynamic models proposed in the literature. The
main idea in these models is to relocate the facilities (e.g. ambu-
lances, fire brigades) when one or more of the facilities are dis-
patched for an incident. Kolesar and Walker (1974) proposed a
model for the fire brigades. Recently, with the increase in com-
putational power, relocation model applications for ambulances
have also emerged. Gendreau et al. (2001) proposed a paral-
lel tabu search heuristic to solve relocation model efficiently.
Gendreau et al. (2006) and Schmid and Doerner (2010) are the
two recent models on dynamic facility location problems for
emergency response systems where the latter is the multistage
approach of the former one. Andersson and Värbrand (2007)
proposed a decision support tool for a similar aim. Rajagopalan
et al. (2008) extended the queueing set covering problem (Mar-
ianov and ReVelle, 1996) with the help of Jarvis (1985)’s gen-
eralized approximation for loss systems. Schmid (2012) solved
relocation and dispatching problem with approximate dynamic
programming. Alanis et al. (2013) proposed a model which
utilizes a compliance table. A Markov chain is modeled with
two state variables: the number of busy servers and a Boolean
variable showing if the system is in compliance or not.

Larson (1974) proposed a hypercube queueing model (HQM)
which is the first model that embeds the queueing theory in fa-
cility location-allocation literature. This model analyzes sys-
tems such as emergency services, door-to-door pickup and de-
livery services, neighborhood service centers and transporta-
tion services which has response district design and service-to-
customer mode (Larson and Odoni, 1981). The solution of the
model provides state probabilities and other related system per-
formance measures (e.g. workload, average service rate, loss
rate) for any given server locations. Nevertheless, it is a de-
scriptive model that only allows to analyze scenarios (Galvão
and Morabito, 2008). HQM models the current configuration
as a continuous-time Markov chain and does not determine the
optimal configuration.

The first model proposed by Larson (1974) assumed that the
service time is not a function of the locations of the calls for
service and the dispatched unit. This argument was supported
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with the claim that the time spent on the way to scene is negligi-
ble compared to the service time on scene. Since, even with this
simplification, as the number of servers (n) is increased, num-
ber of states grows exponentially; Larson (1975) proposed a
heuristic method to deal with the above problem. Jarvis (1985)
altered this heuristic for the systems with both server and cus-
tomer dependent service times. Larson and McKnew (1982)
proposed a 3n model for patrol cars with three states: (1) busy
with a call for service, (2) busy with a patrol activity and (3)
free on a patrol. They implement exact method for small in-
stances with not more than 5 servers. Larson and McKnew
(1982) also developed an approximate approach similar to Lar-
son (1975) for instances with more servers. Atkinson et al.
(2008) and Iannoni et al. (2009) proposed partial 3n models in
which each region takes service from two servers with different
service rates. Budge et al. (2009) proposed an approximation
algorithm which works on systems with multiple vehicles at
stations that computes station (i.e. set of servers at the same
location) specific steady state probabilities.

Takeda et al. (2007) showed the benefits of decentraliza-
tion of emergency response systems with the help of hyper-
cube models in Brazil. Iannoni and Morabito (2007), Iannoni
et al. (2008) embedded hypercube in a genetic algorithm frame-
work to locate emergency vehicles along a highway for small
instances (only 5 servers). They extended the problem to enable
multiple dispatch (i.e. more than one server may be needed for
an incident). Iannoni et al. (2009) developed a hybrid genetic
algorithm approach which adds facility locations to districting
decisions with a local search on a genetic algorithm. Iannoni
et al. (2011) replaced the exact method with a hypercube ap-
proximation algorithm which enables them to solve instances
with 100 servers. Geroliminis et al. (2009) extended the hyper-
cube model and developed the spatial queueing model (SQM)
to optimize locations emergency response vehicles for systems
with up to 10 servers. This model explicitly considers that (i)
service rates are not identical and vary between servers (non-
homogeneous servers of this type are also analyzed in Mora-
bito et al., 2008) and (ii) for a given server the service rates
depend on the incidents characteristics (interdistrict or intradis-
trict response). Thus, this model links districting and dispatch-
ing to the location problem and proposes a hybrid formulation
for coverage and mean response time to locate servers and si-
multaneously identify their areas of responsibilities (rather than
analyzing performance measures for a given system configura-
tion). Despite its theoretical elegance and flexibility, the model
is computationally difficult to solve for large instances. Later,
Geroliminis et al. (2011) extended this work to deal with larger
instances of the problem. They propose an approximate solu-
tion to the symmetric hypercube model with spatially homo-
geneous demand. In the first step, the service area is parti-
tioned into sub-areas (called superdistricts) while, in parallel,
necessary number of units is determined for each superdistrict.
A genetic algorithm is combined with the approximate hyper-
cube model for obtaining the number of servers that should be
located at each superdistrict (similar to a bin) of the system.
While this approach can deal with larger instances, interactions
(interdistrict responses between regions) are not considered. As

we will show later in the paper, these interactions are significant
in accurately estimating the performance of the system and the
AHQM formulation integrates these aspects.

As it is stated before, there is an extensive literature on loca-
tion and coverage literature. The more interested readers should
see Hale and Moberg (2003), Owen and Daskin (1998), Brot-
corne et al. (2003) and Laporte et al. (2009) for broader survey
for the related topic. The former two are surveys generally on
location and coverage literature whereas the latter two focus
more on the ambulance location-relocation models.

3. Hypercube Queueing Models

This section provides a description of the existing 2n hyper-
cube model of Larson (1974) and formulates two new models to
deal more accurately with interactions of servers, (i) a general
3n HQM, where each server has three possible states: available,
busy inside primary service area (intradistrict) and busy out-
side primary service area (interdistrict), and (ii) a new 3n ag-
gregate hypercube queueing model (AHQM) that treats group
of servers (bins) in a similar manner by considering interactions
among bins.

3.1. A Note on 2n Hypercube Queueing Model

The HQM proposed by Larson (1974) includes hypercube
in the name since the transition graph of the continuous time
Markov chain representing this queueing structure has a hyper-
cube structure when the number of servers is more than three.
The state variables contain n binary variables for n servers
showing if server i is available (0) or busy (1). Each state is
a number in base 2 and each digit shows the state of the cor-
responding server. For each region, which is called atom ( j)
in HQM literature, there exists a priority list of servers. Re-
quests at each atom are dispatched to the available server with
the highest priority for this atom. If there does not exist any
available server that can serve the atom, either the call is lost
(i.e. call for ambulance may be dispatched by a backup sys-
tem) or joins a queue to be served (i.e. customers are asked
to wait until there is an available server) depending on the as-
sumptions. Service requests arrive from each atom according
to an independent Poisson process with rate λ j and servers have
exponential service rates of µi for any atom served. The tran-
sition graph of 2n HQM with three servers can be seen in Fig.
1. It is seen on that simple graph that as the system gets con-
gested, the burden on the free server(s) increases. For instance
in state “011” all the servers but the third are busy. That is why
the next incident in any region will be served by the third server
and transition rate from “011” to “111” is λ1 + λ2 + λ3. Such
a model does not consider different service rates for inter and
intradistrict responses.

3.2. 3n Hypercube Queueing Model

In this research, we use a 3n HQM described in the previous
section. If different rates for intra and interdistrict responses
are applied, each server has three possible states: available (0),
busy with intradistrict (1) and busy with interdistrict (2). Fig.
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Figure 1: Larson (1974)’s 2n HQM for three servers with equal intra and in-
terdistrict service rates (µi). State “011”, “111” and the transition connecting
them is shown with different colors.

2 is a transition graph of a system of the same type with three
servers. Given the large number of transitions and states the
illustration for a system with more servers would be difficult
to visualize. For instance “210” represents the state in which
first server is available, the second intervenes an incident inside
its own region and the third intervenes an incident outside its
own region (state reads from right to left). Since there are three
possibilities for each server, the number of states also increases
to 3n.

Note that, the server has always priority for the requests in-
side its own intradistrict area. When the system is empty, the
first assignment should be an intradistrict assignment. How-
ever, this does not prevent having states such as “222”. Al-
though, practically rare for lightly congested systems, it has a
non-negative probability in all systems.

The general transition equation for the states of 3n HQM can
be seen in Eq. 2. In this equation, q and r are states which can
be regarded as numbers in base 3 (e.g. 120 in which first server
(0) is available, second server is busy with interdistrict response
and third (1) server is busy with intradistrict response), Pq is the
steady-state probability of state q. i and j represent servers and
atoms respectively, T (q, i) is the condition of server i in state q
(i.e. ith digit of q, e.g. T (120, 1) = 0,T (120, 2) = 2,T (120, 3) =

1), Ri is the set of atoms in the intradistrict area of server i,
S (q, i) is the set of atoms that have interdistrict response from
server i if there is an incident during state q which is generated
by priority lists. 1 (∗) is an indicator function. It is equal to 1,
if ∗ is true and 0 otherwise.

D(q, r, i) is another function defined as:

D(q, r, i) =

c, if d(q, r) = 1,T (r, i) = 0,T (q, i) = c
0, otherwise.

(1)

where d(q, r) is the Hamming distance between states q and

r (i.e. minimum number of transitions to reach from q to r).
D(q, r, i) simply shows state pairs with the same server condi-
tions except server i (e.g. D(120, 100, 2) = 2). If server i is
available in state r and busy in state q, condition of the server
in state q is the output of the function. Memoryless arrivals
and service rates are simplifying the size of transitions as only
states with Hamming distance equal to 1 are connected. Such
an approximation is reasonable for different types of queueing
systems. Real data can further investigate this assumption.

Pr


arrival︷                         ︸︸                         ︷

1 (∃i : T (r, i) = 0)
∑

j

λ j +

departure︷                     ︸︸                     ︷∑
i:T (r,i)=1

µi +
∑

i:T (r,i)=2

µ′i


=

upper transitions︷                                    ︸︸                                    ︷∑
q,i:D(q,r,i)=1

Pqµi +
∑

q,i:D(q,r,i)=2

Pqµ
′
i

+
∑

q,i:D(r,q,i)=1

Pq

∑
j∈Ri

λ j +
∑

q,i:D(r,q,i)=2

Pq

∑
j∈S (r,i)

λ j︸                                                   ︷︷                                                   ︸
lower transitions

(2)

In building Eq. 2, LHS is equal to the rate of leaving state r
whereas RHS is equal to the rate of entering state r. To keep the
formulation simpler, we assume that, every atom is reachable
by any server. In addition, we are formulating a system without
queue, i.e. request from any atom is lost if the system is full.

On the LHS of Eq. 2, the total rate leaving state r is mul-
tiplied with the steady state probability of r (i.e. Pr). State
r can be left either by an arrival (if all servers are not un-
der service and there exists an available server) or a depar-
ture (from a server giving either intra or interdistrict service).
First term on the LHS stands for arrivals to state r. The term
1 (∃i : T (r, i) = 0) exists in front of the term

∑
j λ j to show that

arrival is possible only if an available server exists. Since every
atom is reachable by any server, every arrival changes the sys-
tem state, if there is an available server. This is the reason that
there is no condition on j in the first summation. Summation
on the first term is equal to the total arrival rate to the system.

The second and third summations multiplied with Pr in the
LHS of Eq. 2 are for departures from state r. The transition rate
differs if a server is in intradistrict (first term) (T (r, i) = 1) or
interdistrict (second term) (T (r, i) = 2) response.

The RHS of Eq. 2 is composed of transitions to state r from
the states that are one Hamming distance away. The first two
summation terms are from upper transitions (i.e. transitions to
a state with one less busy server). They show transitions from
an upper state q after an intradistrict (first term) or interdistrict
(second term) service. The former is multiplied with µi and the
latter is with µ′i .

The last two summations on the RHS of Eq. 2 are from lower
transitions (i.e. transitions to a state with one more busy server)
to state r. If the condition of server i in state r is intradistrict
service (D(r, q, i) = 1), then there exists a state q that forms
a transition to state r. Note that in state q and r, all servers
have the same condition except state i. Server i is available
in state q and busy with intradistrict in state r. The rate of the
transition is the total arrival rate for the atoms in the intradistrict
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Figure 2: 3n HQM model for two servers with different intra (µi) and interdistrict (µ′i ) service rates. State “210”, states directly connected to it and transitions are
colored differently.

area of server i. This is formulated with the third summation
on the RHS of Eq. 2. Similarly, if the condition of server i
in state r is interdistrict service, then we can state there is a
transition between state q and r in which the only difference is
the condition of server i (i.e. available in state q and busy with
interdistrict in state r). The fourth summation deals with the
cases in which server i is the available server with the highest
priority for atom j in state q and atom j is not in the intradistrict
area of server i.

To give an illustrative example, the transition equation for red
painted state “210” in Fig. 2 can be written as:

P210

(
λ1 + λ2 + λ3 + µ′3 + µ2

)
= µ1P211 + µ′1P212 + λ2P200 + λ2P010

(3)

Appendix A provides a more detailed description of 3n HQM
through a numerical example with each step of the approach.

3.3. 3n Aggregate Hypercube Queueing Model
Although 3n HQM is more accurate than 2n, the increase in

the number of states is more and not applicable for real life
cases. For instance a system with 20 servers needs more than
three billion states in 3n HQM. In order to cope with that, we
develop a 3n aggregate HQM (AHQM). In this new model, a
new concept called bin is used to represent servers. It is as-
sumed that, each bin (b) has a capacity as it consists of a group
of servers and each state consists of 2 values for each bin, which
show the number of busy servers with intra and interdistrict re-
sponses at each bin. For intra and interdistrict service rates µb

and µ′b for bin b and demand rate λ j for atom j, transition dia-
gram for two bins with two servers in each bin can be depicted

as seen in Fig. 3. Note that, each row of the state name shows
condition of each bin. Given that the number of servers per
bin (capacity) is known, the state of each bin is described with
only two values. The values on the left and right are number
of servers occupied by intra and interdistrict responses respec-
tively.

The general transition equation for 3n AHQM can be seen in
Eq. 5. In this equation, in addition to the definitions used in Eq.
2, b is an index for bins. T̃ (r, b, ∗) shows number of servers in
bin b in the condition of ∗ (i.e. “inter”, “intra”, “free”) in state
r and D̃ (q, r, b, ∗) can be defined as:

D̃ (q, r, b, ∗) =

1, if d(q, r) = 1, T̃ (q, b, ∗) = T̃ (r, b, ∗) + 1
0, otherwise.

(4)
where ∗ stand for conditions “inter” and “intra”.

Eq. 5 has similar assumptions and formulations as Eq. 2. The
sum between square brackets is the rate of leaving state r. The
first summation is for arrivals to state r. Since it is assumed that
every atom is reachable by any server, every arrival will change
the state if there is an available server in state r.

The second and third summation on the LHS are for intradis-
trict and interdistrict dispatches (i.e. departures) from state r
to other states respectively. The rate of leaving state r to an-
other state by departure is directly proportional to the sum of the
products of intra and interdistrict service rates and their counts
under dispatching respectively. Since each bin may have more
than one servers, in Eq. 5, we need to write equations with the
number of servers in intra and interdistrict responses. This is
one of the main differences of Eq. 5 from Eq. 2.
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Figure 3: 3n AHQM for two bins containing two servers in each bin with different intra (µb) and interdistrict (µ′b) service rates, and primary demand areas (λ j).
State “10|01” and states connected to it are filled with different colors to show an example of transition equations.

6



Pr


arrival︷                                  ︸︸                                  ︷

1

(
∃n : T̃ (r, b, free) , 0

)∑
j

λ j +

departure︷                                              ︸︸                                              ︷∑
b

T̃ (r, b, intra)µb +
∑

b

T̃ (r, b, inter)µ′b


=

upper transitions︷                                                                            ︸︸                                                                            ︷∑
q,b:

D̃(q,r,b,intra)=1

PqT̃ (q, b, intra)µb +
∑
q,b:

D̃(q,r,b,inter)=1

PqT̃ (q, b, inter)µ′b

+
∑
q,b:

D̃(r,q,b,intra)=1

Pb

∑
j∈Rb

λ j +
∑
q,b:

D̃(r,q,b,inter)=1

Pb

∑
j∈S (r,b)

λ j

︸                                                        ︷︷                                                        ︸
lower transitions

(5)

The RHS of Eq. 5 is equal to the sum of the products of the
probability of the states one hamming distance away from state
r and their entering rates to the same state. The first two summa-
tions are from upper transitions and the last two are from lower
transitions to state r. Each of these summations are formed in a
similar fashion that they are formed in Eq. 2. The only differ-
ence is that they are multiplied with the number of servers in in-
tra and interdistrict responses in the same bin. Also note that the
difference in the definition of intradistrict responses for a server
(3n HQM) and a bin (3n AHQM). Intradistrict response of a
server is an intervention outside its area of responsibility, while
the intradistrict response for a bin is considered only when a
server intervenes in an atom outside the whole bin.

We can see how transition equations are generated on a spe-
cific state. In Fig. 3, in state “10|01”, there is a busy server in
bin 1 with intradistrict response which is shown with the first
line of the state name. In bin 2 there is also a busy server which
is in interdistrict response. The transition equation for this state
can be written as Eq. 6. Note that, in Fig. 3, state “10|01” and
its neighbor states are colored with red and blue respectively:

P10
01

(
λ1 + λ2 + µ1 + µ′2

)
= 2µ1P20

01
+ µ2P10

11
+ µ′1P11

01
+ 2µ′2P10

02
+ λ1P00

01

(6)

As for the case of 3n HQM, a visualization of all states in
a figure for a large number of servers is difficult. To further
clarify with a more complex example, in Fig. 4, some specific
states of a 3n AHQM with two bins of 6 servers each can be
seen. The complete transition diagram of the system in Fig.
4 has 784 states. We just depict two states “32|41” (green),
“42|41” (red) and their neighbor states (blue) to show how tran-
sition equations are calculated. For states “32|41” and “42|41”,
transition equations can be written as follows:

P32
41

(
λ1 + λ2 + 3µ1 + 4µ2 + 2µ′1 + µ′2

)
= 4µ1P42

41
+ 5µ2P32

51
+ 3µ′1P33

41
+ 2µ′2P32

42
+ λ1P22

41
+ λ2P32

31

(7)
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Figure 4: Part of the transition diagram of a 3n AHQM for two bins containing
six servers in each bin with different intra (µb) and interdistrict (µ′b) service
rates, and primary demand areas (λ j). States “32|41” (green), “42|41” (red) and
their neighbor states (blue) are depicted to help to visualize transition equations
of the former two states.

P42
41

(
λ1 + λ2 + 4µ1 + 4µ2 + 2µ′1 + µ′2

)
= 5µ2P42

51
+ 2µ′2P42

42
+ λ1P32

41
+ λ2P42

31

(8)

For a 3n AHQM, if Cb is the maximum number of servers
in bin b, total number of states equals

∏
b

(Cb+2)(Cb+1)
2 . For this

estimation, each bin can be regarded independently in this cal-
culation. The number of servers at each bin is separated into
three groups: available, busy with intradistrict, busy with inter-
district. Since the number of states each bin is independent, the
total number of states of each bin can be multiplied with each
other.

As described above, 3n AHQM is a solution for larger spatial
systems. It applies different service rates for intra and interdis-
trict responses. We can define 3n HQM as a special case of 3n

AHQM with one server at each bin only. 3n AHQM with two
bins has less number of states than any 3n and almost all 2n

HQM (i.e. for the cases with at least 8 servers). For instance,
the system with 16 servers has 65536 states in 2n and over 43
million states in 3n HQM whereas a 3n AHQM of two bins with
8 servers each has only 2025 states. Appendix B provides a
more detailed description of 3n AHQM through a numerical
example with each step of the approach. In the next section, we
describe the MHQA that utilizes the two new 3n models, i.e. 3n

HQM and 3n AHQM, defined in the current section.

4. Mix Aggregate Hypercube Queueing Algorithm

The exponential increase in the number of states makes 3n

HQM not applicable to real life instances. For this purpose, we
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propose 3n AHQM which has less states. However, the way 3n

AHQM is applied, is also important for the efficiency of the
method and accuracy of the results. In this section, the de-
tails of this procedure will be described. Simply, the method
we propose contains an iterative approach that partitions the
whole problem area into subregions which is followed by an it-
erative solve for each partition and merge scheme for the pairs
of partitions. In our approach during the different steps of parti-
tioning and merging, we consider interactions between groups
of servers, i.e. “bins”, that are important especially in systems
with many busy servers. In the following two subsections firstly
the iterative solution procedure and then the partitioning algo-
rithm are described. An illustration of the procedure is provided
in Fig. 5. Fig. 5a shows the whole region with the location of all
servers (red dots). Dark color represents atoms of high demand
and lighter color the ones of lower demand. Fig. 5b shows the
primary areas of responsibilities of each server estimated with
a Voronoi (Aurenhammer, 1991, Okabe et al., 2000) approach
based on Euclidean distance. Figs. 5b-d shows the results of
the sequential partitioning method which is described later in
more details.

After sequential partitioning we end up with a number of core
subregions, see for example the outcome of Fig. 5e. These sub-
regions are modeled as 3n HQMs. With 3n HQMs, any needed
performance measures can be calculated. Service rate for the
number of servers, availability of each server, loss rate of each
atom and percentage of time each server spends at intra or in-
terdistrict responses are found for the algorithm. Then, in the
sequence of merging, an inverse process of partitioning is fol-
lowed to estimate performance measures for the whole area of
study (moving from Fig. 5e to Fig. 5a now).

The core subregions are merged to larger compounds subre-
gions, which are modeled as 3n AHQM. Compound subregions
are also merged to larger compound subregions with 3n AHQM
until the whole area is covered. Note that at each merging step,
only two subregions (core or compound) are merged to a larger
compound region. For intradistrict service rate of each bin, the
service rate calculated from the previous step is used. Loss rate
of each atom in sibling subregion (i.e. subregions which are the
pairs of each other in sequential partitioning) and availability of
each servers are used to calculate interdistrict service rates. We
assume that servers are busy most of the time within their core
region responses. The availability of a server can be assumed to
be proportional to one minus the occupancy in its core region.
Since, in the next steps, all servers are merged and regarded as
servers inside bins, we use the availability of each server in a bin
to calculate the probability if an interdistrict call can be served
or not. The formulation we have conducted for this purpose can
be seen in the next subsection.

4.1. Bin Interactions
If a 3n HQM is applied for each partition of Fig. 5d without

considering any interactions, the system performance measures
would be consistently less accurate. In our experiments, we
see that the interaction between bins is 5-50% (see Fig. 11).
However, this relationship also needs a correction, we cannot
assume every atom can be served by any bin. Since, bins are
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Figure 5: An illustration of the partitioning approach.
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not physically at the same location, it is not possible to assign
a single location for them. There is no straightforward way to
calculate distance between an atom and a bin. However, we
need the distance between the bin and the atom to decide if the
atom can be served by this bin or not. In order to cope with
that, we assume, with some probability, some atoms might lack
service even though there is at least some servers available in a
bin of the neighbor subregion.4
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Figure 6: An illustration for bin interactions. Dark and light blue squares rep-
resent demand requests and red circles show the server locations in two subre-
gions 2 and 4. Larger circles centering servers show their accessibility area. If
there is no available server in region 2, for an incident happening in light and
dark blue atoms, we need to use servers in subregion 4.

It is easy to illustrate how we apply methodology on a toy
example before a formal mathematical notation is introduced,
shown in Fig. 6. Assume that, all servers in region 2 are busy.
Consider now 3 servers from region 4 (servers 14, 16 and 17)
and the areas within their accessibility distance, i.e. the maxi-
mum amount of time (equivalently distance if speed is constant)
that a server can travel to serve an atom, (shown with the 3 cir-
cles). Let us assume that a new request for service arrives from
an atom located in the dark or light blue squares, close to the
boundary of the two regions. In such a state, if an incident oc-
curs in light and dark blue atoms, these incidents can either be
served with servers in region 4 or they are lost. There is only
one server (i.e. server 14) that can serve the light blue atom
and three servers (servers 14, 16 and 17) that can serve the dark
blue atom from region 4. In the AHQM, servers from the same
bin cannot be differentiated after merging. We can only cal-
culate number of servers available or busy with either intra or
interdistrict responses at each state. So, in order to approximate
the probability of being served, we use the formulation given in
Eq. 9. For instance, if all 6 servers available in region 4, we
can assume that both light and dark blue atoms can be served
by the servers in region 4, as there is always a server available
that can reach both atoms. If there are only 4 servers available
in region 4, we can still assume dark blue atom is served with
probability 1 because in the worst case, one of the three servers
that can reach dark blue atom should be available. Nevertheless,

if there are not more than 3 servers available, then with some
probability both light and dark blue regions cannot be served.
But, we can state that, dark blue region can be served with a
higher probability because light blue atom can be reached by
only server 14, whereas dark blue atom is reachable by servers
16 and 17 in addition to 14.

Let us assume there are n servers in a bin, first m of them
can reach to the atom of the sibling subregion and k servers are
busy. When m = 0, the probability of serving the atom by a
server from this bin equals 0. When k < m the request of this
atom is served with probability 1, since even in the worst case,
there has to be a server available to serve it. However if k ≥ m,
the probability that none of the available servers can reach the
atom is approximated as:

P(not served) =

m∏
i=1

Pi

 ∑
∀L∈P(Nn

m+1):
|L|=k−m

( ∏
∀i∈L

Pi

)
∑

∀L∈P(Nn
1):

|L|=k

( ∏
∀i∈L

Pi

) (9)

where P (∗) represents the power set of ∗ (i.e. set of all subsets
of ∗ including the empty set and ∗ itself), Nb

a is an inclusive se-
quence of integers starting from a to b and Pi is the probability
that server i is busy. In Eq. 9, the denominator is equal to the
sum of the all cases’ probabilities with k busy servers. The nu-
merator is equal to the sum of the probability of cases where all
servers that can reach the atom are busy. As a result Eq. 9 gives
conditional probability that, there does not exist any available
server which can reach the atom given k busy servers. Note
that, the same combination term (Cm

k ) canceled out each other
both in the numerator and the denominator.

Eq. 9 is an approximate value for the probability of an inci-
dent happening in the selected atom does not get an interdistrict
service even though there is an available server in the bin. In
order to calculate loss rate caused by this phenomena, the de-
mand that is not served in the previous steps of the algorithm
is multiplied with the probability in Eq. 9 and assumed to be
lost. Total demand of the atom minus calculated loss rate is as-
signed as the demand of the atom. This is done for each atom
and the new 3n AHQM is modeled with these demand values.
After solving the model, loss rate calculated by 3n AHQM and
assumed loss rates are summed up and assigned as total loss
rates of each atom.

An informal pseudocode for our algorithm is given in Fig. 7
where T̄ ∗l (n) and R̄∗l (n) stands for average service time and rate
for bin composed of servers of subregion l for the intra and in-
terdistrict responses. T (i, j) is the total service time needed for
a response to atom j by server i. Jl are the atoms in subregion
l and, intrai and interi are atoms in intra- (i.e. atoms closest to
server i) and interdistrict (i.e. atoms serviceable but not clos-
est to server i) area of server i. If a 3n HQM was solved for
each partition without considering any interactions, the system
performance measures would be consistently less accurate for
semi-congested systems (medium to high demand).
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1

1. Partition the whole problem area into regions. A binary tree structure is created with partitioning. Leaves of the binary tree
are core subregions, and the rest of the nodes are compound subregions composed of two (core or compound) subregions.

2

3

2. Iterate each node with depth first search /*if a subregion is composed of two smaller subregions, smaller subregions perfor-
mance measures are needed to have performance measures for the bigger subregion*/

4

5

• If selected subregion l is core subregion /*core subregions are not composed of smaller subregions*/6

(a) Calculate average intra and interdistrict service time
(
T̄ intra

i , T̄ intra
i

)
, and calculate average service rates

(
R̄intra

i , R̄intra
i

)
for each server i in the selected core subregion:

T̄ intra
i ←

∑
j∈intra(i)

diT (i, j)∑
j∈Jl∩intra(i)

di
, T̄ inter

i ←

∑
j∈Jl∩inter(i)

diT (i, j)∑
j∈inter(i)

di
, R̄intra

i ← 1
T̄ intra

i
, R̄inter

i ← 1
T̄ inter

i

7

8

9

(b) Solve 3n HQM with R̄intra
i , R̄inter

i and d j where the former two stand for inter and intradistrict response rates for each
server i and latter for demand rate of each atom j in the selected core subregion l.

10

11

(c) Calculate probability of server i busy (Pi), loss rate of atom j (loss j), and average service rate for the number of
servers busy S̄ intra

l (n) where n ∈ N.
12

13

• If selected subregion l is a compound subregion with children regions l1 and l2 /*Assume bins b1 and b2 are composed
of servers of subregions l1 and l2 respectively.*/

14

15

(a) Calculate average interdistrict service times (S̄ inter
l ) of bins in child subregions of l: /*use loss rates not demand*/

S̄ inter
l1
←

∑
i∈Il1

∑
j∈Jl2

∩inter(i)
loss jT (i, j)∑

i∈Il1

∑
j∈Jl2

∩inter(i)
loss j

, S̄ inter
l2
←

∑
i∈Il2

∑
j∈Jl1

∩inter(i)
loss jT (i, j)∑

i∈Il2

∑
j∈Jl1

∩inter(i)
loss j

16

17

18

(b) Calculate average interdistrict service rates of each child subregion l: /*service rate = 1 / service time*/

R̄inter
l (n)← 1

S̄ inter
l
∀l = {l1, l2} and n ∈ N.

19

20

(c) Generate a 3n AHQM with given intra and interdistrict service rates of each subregion (or equivalently bin) R̄intra
l (n)

and R̄inter
l (n) respectively for l = {l1, l2}.

21

22

(d) For each state, find the loss rate because of server unavailability
(
loss′j

)
by multiplying loss j and Eq. 9. Update

demand of each atom with
(
di − loss′j

)
for corresponding states.

23

24

(e) Solve generated 3n AHQM.25

(f) Calculate loss rate of each atom j with the equation: loss j ← lossAHQM
j + loss′j.26

(g) Calculate average service rate for the number of servers busy S̄ intra
l (n) for n ∈ N27

3. Return the values calculated for the subregion in the root node (which is equivalent to the whole problem area).28

Figure 7: Pseudocode for mix aggregate hypercube queueing algorithm

4.2. Partitioning Model

As stated before, the size of 3n HQM grows exponentially
with the number of servers and is applicable only for problems
with limited number of servers. In order to cope with that, we
develop an aggregate approach that devices both 3n HQM and
3n AHQM. In order to have accurate results in efficient time we
need a partitioning algorithm that partitions the whole problem
area to subregions with an objective that minimizes the total de-
mand that is served by more than one bins. Even if in Section
4.1 we develop a framework to deal with interactions, given that
AHQM does not keep track of individual servers, this estima-
tion contains some level of error. For fixed server locations, by
minimizing interaction between subregions’ (i.e. minimizing
services provided by servers of other subregions), we decrease
the error of the approximation algorithm. The partitioning al-
gorithm will also determine if for some instances of specific

problems (e.g. with no common regions), HQMs can be solved
independently. We should also fulfill the following properties:

1. The number of servers in each partition should be the pa-
rameter of the partitioning algorithm. We need to set the
number of servers in each subregion. There is a maximum
size that is efficiently solvable with both hypercube mod-
els and over-partitioning (i.e. using more partitions than
needed) decreases the accuracy of the final result.

2. Servers in the same partition should be adjacent to each
other. This prevents disconnected atoms and helps to
have connected subregions which improves accuracy of
the method.

3. Partitioning should be sequential in order to apply the ap-
proximation algorithm.
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4. Partitioning should be efficient. Our aim in developing an
approximation algorithm is to evaluate instances in an op-
timization framework. To do that, we need efficient algo-
rithms in all steps of the evaluation.

For this purpose, we have developed an algorithm that gen-
erates “cuts” on the problem area and creates subregions. This
algorithm first utilizes a Voronoi diagram for server locations.
Afterwards, one or more network flow problems are solved on
the line segments of the Voronoi diagram. Flows in these prob-
lems start from and end at the vertices on the borders and flows
on the inner edges of Voronoi diagram. The set of flows are
regarded as the cuts we need to create subregions. To obtain a
partitioning with the objectives stated above, for the following
indices and sets:

1 i ∈ I : servers
2 j ∈ J : atoms
3 l ∈ L : partitions
4 v ∈ V : vertices on Voronoi diagram
5 e ∈ E : edges on Voronoi diagram
6 k ∈ K : paths on Voronoi diagram

parameters:
7 V/V̄ : all/outer vertices on Voronoi diagram
8 Ev : edges connected to vertex v
9 I1

e /I
2
e : servers that are separated by edge e

10 Ji : atoms that are accessible by server i
11 d j weight of atom j

12 Gkl


1 if partition l is on the arbitrarily selected side

of path k
0 otherwise

13 Ve : vertices connected to edge e
14 S l : number of servers in partition l

and variables:
15 sk

v : number of edges of path k touching vertex v

16 zk
e

{
1 if edge e exists in path k
0 otherwise

17 xk
i


1 if server i is on the arbitrarily selected side

of path k
0 otherwise

18 ql
i

{
1 if server i belongs to partition l
0 otherwise

19 yl
j


1 if atom j is accessible by one of the servers

that belongs to partition l
0 otherwise

20 tk
v

{
1 if vertex v exists in path k
0 otherwise

we develop a binary integer programming problem (BIPP):

min
∑

l

∑
j

d jyl
j (10)

s.t.
∑
v∈V̄

sk
v = 2 ∀k ∈ K (11)

sk
v = 2tk

v ∀k ∈ K;∀v ∈ V\V̄ (12)∑
e∈Ev

zk
e = sk

v ∀k ∈ K;∀v ∈ V (13)∑
i

xk
i =

∑
l: if Gkl=1

S l ∀k ∈ K (14)

xk
I1
e
− xk

I2
e
≤ zk

e ∀k ∈ K;∀e ∈ E (15)

xk
I2
e
− xk

I1
e
≤ zk

e ∀k ∈ K;∀e ∈ E (16)

xk
I2
e

+ xk
I1
e
≥ zk

e ∀k ∈ K;∀e ∈ E (17)

2 −
(
xk

I2
e

+ xk
I1
e

)
≥ zk

e ∀k ∈ K;∀e ∈ E (18)

xk
i ≤

∑
l: if Gkl=1

ql
i ∀k ∈ K;∀i ∈ I (19)

1 − xk
i ≤

∑
l: if Gkl=0

ql
i ∀k ∈ K;∀i ∈ I (20)∑

i

ql
i = S l ∀l ∈ L (21)

yl
j ≥ ql

i ∀l ∈ L;∀ j ∈ J;∀i ∈ Ji (22)∑
l

ql
i = 1 ∀i ∈ I (23)

tk
v ∈ {0, 1} sk

v ∈ {0, 1, 2} ∀v ∈ V\V̄; k ∈ K (24)

sk
v ∈ {0, 1} ∀v ∈ V̄; k ∈ K (25)

zk
e ∈ {0, 1} xk

i ∈ {0, 1} ∀k ∈ K;∀e ∈ E;∀i ∈ I (26)

ql
i ∈ {0, 1} yl

j ∈ {0, 1} ∀l ∈ L;∀i ∈ I;∀ j ∈ J (27)

In this BIPP, Eq. 10 minimizes the total demand that is cov-
ered by servers of each partition. As a result, with this objective,
for fixed locations of servers, the total demand that is served by
multiple partitions’ servers is minimized. The physical reason-
ing of this objective is to have partitions that minimizes the per-
centage of interdistrict services for given server locations. Since
merging subregions uses some approximation algorithms, if the
percentage of interdistrict services can be decreased, more ac-
curate results can be calculated.

Constraints 11 force each path to touch only two different
outer vertices with constraints 25. With these constraints, we
are creating paths which start and end in the borders of the
Voronoi diagram, similar to cuts dividing the whole Voronoi
diagram into two pieces. Constraints 12 require that if a path is
passing through an inner vertex, two edges from the same path
should be touching the vertex with the help of the second part
of constraints 24. Note that, the mathematical model selects
both edges and vertices, and if an edge is selected, two vertices
that belongs to this edge should also be selected. Different than
outer vertices, inner vertices should be selected twice, to have a
(continuous) path made of edges.

Constraints 13 work for inner and outer vertices differently
because of constraints 11 and 12: If an inner vertex v is selected
(i.e. sk

v = 2), two of the edges that are adjacent to vertex v have
to be selected as well. However if v is an outer vertex, if it is
selected (i.e. sk

v = 1) only one of the adjacent edges has to be
selected.

Constraints 14 satisfy that the partition sizes that are in the
arbitrarily selected side of path k should sum up to the number
of servers in the same selected side of path k. Note that when
the model is generated, each S l is calculated in a way that each
partition has a predetermined number of servers. For instance,
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for the partitioning in Fig. 5, we set S l = 6 where l = 1, ..., 4.
Binary variables Gkl are set in a way that each path has equal
number of partitions in both of their sides: G1,1 = G1,3 = G2,1 =

G2,2 = 1 and the rest of the Gkl = 0, which means that path
k = 1 (the vertical path) creates partitions l = 1 and l = 3,
and path k = 2 (the horizontal path) creates partition l = 1 and
l = 2 in their selected sides. As a result, we end up with 4
partitions with 6 servers that are formed by two paths. If for
example, we prefer to make 3 partitions composed of 8 servers
for the same example, we again need 2 paths but with three
partitions. In this case, we should set S l = 8 for l = 1, 2, 3 and
G1,1 = G1,2 = G2,1 = 1 and the rest of the Gkl = 0. This way, we
will make two paths in a way that, path k = 1 has two partitions
(l = 1 and (l = 2) and path k = 2 has one partition (l = 1) on
their selected sides.

If the edge between two servers does not belong to path k
(i.e. zk

e = 0), constraints 15 and 16 ensure that the servers on
the opposite side of edge e belongs to the same side of path
k. Similarly, if the edge between two servers belongs to path k
(i.e. zk

e = 1), constraints 17 and 18 forces the servers to be at
the opposite side of path k.

Constraints 19 and 20 assign each server into their groups by
checking in which side of the paths they belong. In the case
depicted in Fig. 5, partition l = 1 is in the selected side of both
paths. If a server is at the same side, it is assigned to partition
l = 1. On the other hand, if a server belongs to not selected
sides of both paths, it is assigned to partition l = 4 because this
partition is selected as such by setting G1,4 = G2,4 = 0. In a
similar way, the rest of the partitions’ servers are assigned.

Constraints 21 sets the number of servers in each partition to
the partition’s size. Constraints 22 associates atoms with parti-
tions: If an atom can be accessed by a server, one of the servers
that belongs to this partition can access to the atom. Constraints
23 place each server into one and only one partition.

Constraints 24-27 sets variables as binary variables except
for the variables sk

v in which v represents an inner vertex of the
Voronoi diagram. The reason of this assignment is, as stated
above, to satisfy that inner vertices should be selected twice in
a continuous path starting from and ending at the outer vertices
of the Voronoi diagram. Physical topological boundaries (e.g.
rivers, mountains etc.) that do not allow interactions between
specific servers and atoms, can be easily integrated in the above
formulation as further constraints.

In experiments, we have observed that adding cuts iteratively
is much more efficient than solving the whole BIPP at once. As
a result, we develop and use a heuristic that generates a single
cut at each step. This is also consistent with the step of merging,
which will follow inverse iterations of the partitioning. Steps of
this heuristic for an instance can be seen in Fig. 5. Fig. 5a
shows the problem area: demand intensity (darker color repre-
sents higher demand) and locations of servers (red circles). The
first step of the algorithm is to generate a Voronoi diagram (Fig.
5b). The steps afterwards are iteratively adding cuts to whole
problem area. In our case, first a vertical then a horizontal cut
is added (Fig. 5c-d).

Appendix C provides a more detailed description of MHQA
through a numerical example to highlight each methodological

and algorithmical step of the approach.

5. Computational Results

In this section, we first evaluate the accuracy of the mod-
els described in Section 3 and 4 (i.e. 3n HQM and MHQA)
by comparing them with the results of a discrete event simu-
lation. Then, we utilize our models to evaluate instances in
two optimization methods with an objective to identify close-to-
optimum locations that optimize specific performance measures
(loss rates and service times): variable neighborhood search
(VNS) (Mladenović and Hansen, 1997) and simulated anneal-
ing (SA) (Kirkpatrick et al., 1983). Finally, we provide different
performance measures of the optimization results that highlight
the importance of the developed models. All of the algorithms
in this work are developed under C# .NET environment. For
partitioning algorithm IBM ILOG Cplex 12.4 is used through
Concert user interface. MATLAB 7.9 through MATLAB Au-
tomation Server interface is used for matrix operations. All ex-
periments are conducted on a PC with Intel Core2 Quad 3.00
Ghz processor.

In order to test the method, we use two different networks
for demand distribution: Central Athens network with demand
for tow-away services for bus operations (taken by Gerolimi-
nis et al., 2011) (top) and an experimental network (bottom)
which are given in Fig. 8. The model is demonstrated for the
case of the Athens (Greece) surface public transportation net-
work which is also utilized in Geroliminis et al. (2011). The
network consists of over 3000 buses of different sizes and types
with a daily passenger demand of 1.7 million passengers. In an
effort to provide high level services, The Athens Public Trans-
port Organization (OASA) uses response units to provide rapid
repair services in cases of bus accidents and/or malfunctions,
tow-away of illegally parked vehicles, and so on. In order to
apply the model to the examined network, we follow the ap-
proach of Karlaftis et al. (2004) which divides the network ac-
cording to a grid of 1km2 square cells (with each cell corre-
sponding to a hypercube atom). Incident rates per cell are then
derived as a function of the total length of bus lines within the
cell and 10-year statistics on the average number of incidents
per line type and vehicle size within the network. In both fig-
ures, each square shows a 1km2 area. The value inside each
square shows 10000 times the ratio of arrival rate to total ar-
rival rate. Euclidean norm is used to calculate distance. Total
service time is the sum of on-scene service time and the total
travel time to reach incident atom and coming back. We did not
test networks with physical boundaries but it can be easily inte-
grated to our hypercube models (by applying exact travel times
for each atom-server pairs) and partitioning algorithm (by gen-
erating an additional edge in the Voronoi diagram). Different
distance metrics (e.g. rectilinear, squared Euclidean) can also
be applied to them. The only difference may be in the partition-
ing algorithm. Voronoi diagrams work for Euclidean distance
metric. For another metric, we need different set of vertices
and edges but the mathematical model used in the partitioning
algorithm is still applicable.
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Figure 8: The demand distribution of the two networks used in our experiments: Central Athens (left) and experimental (right).

5.1. Accuracy of 3n HQM

In this part, the loss rate computed by MHQA is compared
with the solution of the discrete event simulation for a case with
12 servers. We tested following instances with three demand (5,
15, 45 requests/hour), average on-scene service time (5, 10, 20
min) and accessibility distance (10, 15, 20 kms) for each de-
mand distribution which makes 27 scenarios in total for each
instance. It is assumed that each server travels with a speed
of 60 km/h. On-scene service time and inter-arrival times are
distributed exponentially. In simulation, a random value is gen-
erated whereas in approximation method it is assumed that total
service time is exponentially distributed with the sum of travel
time and on scene service time. We need such an assumption for
the Markovian property. We generated 500 random instances
with 12 facilities. In approximation algorithm, the whole prob-
lem area is partitioned into two core subregions with 6 servers
each. Then the algorithm described in Fig. 7 is applied. Both
simulation and our method are run over these networks. The
percentage of error in loss rates are reported in Fig. 9. We
calculate the errors by comparing the values of MHQA with
simulation values.

To ensure that simulations have reached steady states, 25 par-
allel simulation instances were created with 11 batches simu-
lating length of 50 days each. The first batch of each run was
discarded and mean of the rest of the batches of all 25 parallel
simulations are reported. Length of the simulations are selected
in a way that calculated values have tight enough confidence
intervals to guarantee steady state.

For each instance, simulation took around 25 s for both net-
works whereas our method took around 3 s for Athens network
and 7 s for the experimental network on average. The com-
parison showed that compared to simulation, our method gives
results with acceptable error (less than 5% error on average and
10% in the worst case) in less run time (12-28% of simulation
run time). This error gets even less for increased server range,
for the scenarios with the range of 20 km, average error is less
than 1% and in 95% of the cases error is less than 2%. Further-
more, simulation might need longer run times to have accurate
results if more detailed performance measures (e.g. loss rate
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Figure 9: The ratio of difference between the loss rates calculated by simulation
and the MHQA.

per number of busy servers) for larger instances of the problem
should be calculated.

5.2. Heuristics for Better Location of Servers
In this part, we have tested our exact 3n HQM (for cases

with less than or equal to 8 servers) and mix aggregate hy-
percube (for cases with more than 8 servers) algorithms inside
two heuristic approaches to identify close-to-optimum locations
of servers: variable neighborhood search (VNS) (Mladenović
and Hansen, 1997) and simulated annealing (SA) (Kirkpatrick
et al., 1983). Both methods are initialized with the maximum
expected coverage location model (MEXCLP) (Daskin, 1983).
MEXCLP is selected because it is fast and suitable to compare
with our model. In VNS algorithm, we assume that if two in-
stances’ all but one servers are in different locations, they are
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neighbors. In other words, in every iteration, a randomly se-
lected server’s location is changed. We use the same neighbor-
hood structure in SA algorithm. We set the starting “tempera-
ture” coefficient to 1 and increase it by 10% in every 20 itera-
tions. Temperature is assumed to be the division of temperature
coefficient with the average loss rate in every iteration. We have
applied 3n HQM for cases with 6,7 and 8 servers for total arrival
rates of 5, 8, 10, 15 and 20 requests/hour. For cases with 12, 16,
20 and 24 servers, arrival rates are increased (i.e. 10, 16, 20, 30,
40, 60, 80 requests/hour), and the problems are solved by ap-
proximation algorithm with two (for instances with 12 and 16
servers) and four (for instances with 20 and 24 servers) parti-
tions of equal size. Run times for the former three (i.e. 6, 7 and
8-server) cases are set to one hour, whereas the latter two (i.e.
12, 16, 20 and 24-server) cases are run for four hours. We have
applied two different on scene service times: 5 and 20 minutes.
For all cases, maximum accessibility distance is set to 30 km.
Found minimum loss rate and percent loss rate improvements
after MEXCLP for Athens and experimental networks (Fig. 8)
by both heuristics (i.e. VNS and SA) for cases with realistic
loss ratios (ratio of loss rate to the total arrival rate) can be seen
in tables 1 and 2 respectively.

For both Athens and experimental networks, it is observed
that there is an improvement of more than 35% on average for
the loss rates over MEXCLP. Average loss rate improvement
gets around 45% for the Athens network with short on scene
service times (i.e. 5 minutes). We have not observed any sig-
nificant difference between VNS and SA. We have observed
that VNS performs better in larger instances (e.g. experimental
network with 24 servers) than SA. Besides that, they perform
very close to each other. Since our primary goal in this research
is to test the applicability of hypercube models inside search
algorithms, we have not searched for parameters that may give
better final results for both VNS and SA.

From the results in tables 1 and 2 one can also observe that
the loss rates dramatically increase with the increase of on scene
service time. Small increase in demand has also considerable
influence on the loss rate. Queueing systems are unpredictably
complex and need custom-built algorithms to be tested. Last but
not least, careful readers might realize that for the same value
we have calculated different percent improvements. This is the
consequence of showing results with limited precision. We also
noticed (not shown here) that even after 30 minutes (instead of 4
hours) the VNS and SA methods provide similar improvement
with a 4 hour run.

5.3. Performance Measures of Hypercube Models

In this subsection, we conduct further analysis to some lo-
cation instances improved by the optimization heuristics. In
the first analysis we investigate the effect of accessibility range
and demand on servers’ workload (fraction of time a server is
busy) and intradistrict service ratio for fixed locations, with the
3n HQM for 8 servers. These fixed locations are estimated
through the optimization heuristics for some level of demand
and they are not recalculated when demand changes. In the
second analysis, the effect of demand increase on the number of
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value % impr. value % impr.

6

5
5 0.007 0.004 38.75 0.004 38.75
8 0.129 0.080 38.28 0.080 37.95
10 0.422 0.266 37.07 0.268 36.50

20
5 0.174 0.138 20.61 0.138 20.52
8 1.197 0.989 17.36 0.989 17.34
10 2.403 2.048 14.76 2.048 14.76

7

5
5 0.001 0.001 42.5 0.001 41.13
8 0.031 0.018 41.98 0.018 42.48
10 0.136 0.079 42.32 0.081 40.78

20
5 0.059 0.046 22.30 0.045 23.18
8 0.653 0.521 20.19 0.528 19.12
10 1.564 1.283 17.95 1.295 17.17

8

5
8 0.008 0.004 53.68 0.005 41.29
10 0.044 0.021 52.53 0.023 46.62
15 0.651 0.335 48.60 0.393 39.60

20
5 0.019 0.013 29.13 0.014 27.18
8 0.340 0.248 26.87 0.260 23.46
10 0.987 0.745 24.54 0.795 19.51

12

5
16 0.005 0.002 70.05 0.001 71.86
20 0.077 0.016 79.45 0.018 76.40
30 1.824 0.690 62.17 0.692 62.05

20
10 0.039 0.020 49.23 0.020 48.62
16 0.993 0.726 26.86 0.691 30.43
20 3.118 2.307 26.02 2.305 26.07

16

5
20 0.001 <1E-3 42.19 <1E-4 89.56
30 0.121 0.058 51.88 0.025 79.35
40 1.666 1.113 33.20 0.412 75.27

20
16 0.102 0.059 41.74 0.045 55.40
20 0.645 0.374 42.00 0.368 43.00
30 5.761 4.359 24.33 4.271 25.86

20

5
30 0.001 <1E-4 95.52 <1E-4 93.33
40 0.044 0.003 93.71 0.003 92.88
60 3.362 0.726 78.42 0.741 77.97

20
20 0.038 0.012 68.57 0.013 65.75
30 1.68 0.909 45.89 0.927 44.80
40 7.745 5.801 25.11 5.814 24.94

24

5
40 0.001 <1E-4 96.32 <1E-4 91.69
60 0.274 0.024 91.23 0.053 80.65
80 5.574 1.504 73.02 2.183 60.84

20
30 0.243 0.103 57.43 0.115 52.51
40 3.024 1.817 39.92 2.129 29.58
60 18.676 15.81 15.35 16.277 12.84

Table 1: The best loss rate found by MEXCLP, VNS and SA algorithms for the
Athens network given in Fig. 8a.

busy servers and the ratio of the time spend on intradistrict ser-
vice in bin level is analyzed. A larger instance with 12 servers
solved by 3n AHQM is considered (2 bins of 6 servers each).

In order to see the effect of accessibility range and demand
on servers’ utilities, ten instances (5 demand levels and 2 acces-
sibility ranges) with 8 servers on the experimental network are
analyzed. To have a better insight, the location of the servers
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6

5
5 0.076 0.055 26.72 0.055 26.67
8 0.725 0.594 18.09 0.594 18.09
10 1.691 1.452 14.1 1.452 14.1

20
5 0.432 0.377 12.63 0.377 12.67
8 2.074 1.926 7.11 1.926 7.11
10 3.626 3.439 5.16 3.439 5.16

7

5
5 0.022 0.013 39.27 0.013 39.27
8 0.343 0.252 26.29 0.252 26.29
10 0.994 0.775 22 0.775 22

20
5 0.207 0.167 19.34 0.168 19.15
8 1.436 1.267 11.81 1.27 11.62
10 2.813 2.566 8.78 2.569 8.69

8

5
5 0.005 0.003 47.51 0.003 47.51
8 0.129 0.098 23.94 0.098 23.94
10 0.483 0.387 19.82 0.387 19.82

20
5 0.084 0.065 22.77 0.068 19.71
8 0.894 0.776 13.21 0.798 10.73
10 2.035 1.826 10.28 1.848 9.21

12

5
10 0.003 <1E-3 84.54 <1E-3 84.54
16 0.263 0.054 79.36 0.054 79.36
20 1.272 0.472 62.90 0.472 62.9

20
10 0.200 0.095 52.49 0.099 50.18
16 2.680 2.062 23.03 2.064 22.99
20 5.714 5.004 12.42 4.989 12.68

16

5
16 0.004 0.001 87.32 0.001 87.32
20 0.068 0.008 87.92 0.008 87.92
30 2.423 0.786 67.58 0.786 67.58

20
16 0.551 0.282 48.85 0.290 47.37
20 2.203 1.458 33.84 1.448 34.29
30 9.947 9.058 8.94 9.172 7.80

20

5
30 0.141 0.064 54.95 0.082 41.92
40 1.139 0.700 38.49 0.741 34.95
60 10.199 8.085 20.73 8.258 19.03

20
20 0.41 0.299 27.04 0.325 20.81
30 3.767 3.192 15.26 3.351 11.03
40 10.787 9.218 14.54 10.126 6.12

24

5
40 0.149 0.089 40.35 0.139 6.36
60 3.652 2.721 25.51 3.576 2.10
80 16.228 13.868 14.54 16.184 0.27

20
20 0.064 0.044 30.84 0.064 -
30 1.304 1.084 16.83 1.304 -
40 6.098 5.443 10.74 6.027 1.16

Table 2: The best loss rate found by MEXCLP, VNS and SA algorithms for the
experimental network given in Fig. 8b.

are fixed in all instances. We set the best locations found by the
heuristic for demand 5 requests/hour and on scene service time
equal to 20 minutes (see Table 2). The fraction of time each
server is busy (lines) and the fraction of busy time each server
is in intradistrict response (columns) are reported in Fig. 10a
and b. Demand levels (5, 8, 10, 15 and 20 requests/hour) are
shown with different colors. Two different accessibility ranges

(15 and 30 minutes) are used in two separate graphs, 10a and
b respectively. The loss rate for different demand levels are re-
ported in the legends of each figure inside the parenthesis. The
fraction of the total demand each server has in their intra and
interdistrict area are also reported under the x-axis. Note that
the first line of percentages sum up to 1, which means that all
atoms are reachable by at least one server. The second line has
much higher values because it considers the accessibility of in-
terdistrict responses. The locations of each server (#1 to #8 are
shown in the x axis of the graphs) can also be seen in the map
reported in Fig. 10c. Note that, the intensity of the blue color
shows the level of demand; darker the blue, higher the demand.

One of the striking outcomes of these graphs is the ratio of
the time spend in intradistrict responses. Although, the proba-
bility of being busy fluctuates a little among servers (5-10%),
the ratio of intradistrict responses is quite variant for differ-
ent servers (5-95%). This fact shows the importance of using
a model, which differentiates intra and interdistrict responses.
The main reason to have such fluctuations in intradistrict re-
sponse ratios is the difference between the responsibility areas
of each server. Servers with more intradistrict demand spend
more on intradistrict service. This is expected. However, see-
ing such a huge difference between time spent on intradistrict
service among servers is an interesting observation. This high
intradistrict fraction motivates to investigate the effect of the
accessibility distance in the results.

In addition, by comparing Figs. 10a and b, we can see the
effect of accessibility range and the importance of dispatching
policy. In this research, advanced dispatching policies are not
investigated. In every state, the available server with the min-
imum service time is dispatched at all times. For low demand
levels, higher accessibility range works better than the low one.
For demand 5 requests/hour, we get a loss rate of 0.06 /hour
with a 30 km accessibility range whereas this value is 0.33 /hour
for an accessibility range of 15 km. With the increase in de-
mand, lower accessibility range improves more and gives better
results. For demand level 20 requests/hour, lower accessibil-
ity range has a smaller loss rate than the higher accessibility
range because requesting from a server to intervene in a request
far from his responsibility area under high demand conditions,
might result in loss demand for intradistrict requests.

There is something more to add to the analysis. Although,
compared to high accessibility range, low accessibility range
always provides a higher intradistrict ratio for all instances and
servers, for low demand levels, it does not give better loss rates.
This is probably because of the congestion in the system. By
lowering accessibility range, although we encourage the model
to have more intradistrict responses, we are also decreasing the
secondary service areas of each server. In other words, we are
lowering the number of servers that can be dispatched at each
incident and obviously specific to our instance, this declines
the performance of the system for lower demand and amelio-
rates for higher demand. Note that, even for small accessibility
range, all demand is accessible by at least one server.

In our second analysis, we investigate performance measures
from a larger instance with 12 servers solved by the MHQA (2
bins with 6 servers each). We take best instances we have found

15



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#1
4%

96%

#2
5.2%

94.8%

#3
7%

93%

#4
9%

91%

#5
8.4%

91.6%

#6
12.4%
87.5%

#7
23.9%
58.9%

#8
30.2%
53.2%

Fr
ac

ti
o

n
 o

f 
Ti

m
e

 S
e

rv
e

r 
is

 in
 

In
tr

ad
is

tr
ic

t 
(c

o
lu

m
n

s)
 

Fr
ac

ti
o

n
 o

f 
Ti

m
e

 S
e

rv
e

r 
is

 B
u

sy
 (

lin
e

s)
 

Servers (top), Ratio of Intra (middle) and Interdistrict (bottom) Demand  to Total Demand 

Fixed Locations (8 Servers / 30km Range) 

5 (0.06) 8 (0.79) 10 (1.88) 15 (5.83) 20 (10.45)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#1
4%

59.3%

#2
5.2%

59.6%

#3
7%

53.2%

#4
9%

52.5%

#5
8.4%

51.8%

#6
12.4%
45.1%

#7
23.9%
23%

#8
30.2%
17.5%

Fr
ac

ti
o

n
 o

f 
Ti

m
e

 S
e

rv
e

r 
is

 in
 

In
tr

ad
is

tr
ic

t 
(c

o
lu

m
n

) 

Fr
ac

ti
o

n
 o

f 
Ti

m
e

 S
e

rv
e

r 
is

 B
u

sy
 (

lin
e

) 

Servers (top), Ratio of Intra (middle) and Interdistrict (bottom) Demand to Total Demand 

Fixed Locations (8 Servers / 15km Range) 

5 (0.33) 8 (1.1) 10 (1.98) 15 (5.24) 20 (9.37)

22.2 17.7 20.5 20.9 22.0 20.5 19.7 18.8 15.9 20.9 10.1 9.4 11.4 10.7 9.5 9.1 11.3 8.4 8.3 10.4 10.7 8.9 9.7 8.6 11.8 11.4 8.0 9.7 9.3 9.9 8.2 8.2 11.9 11.5 8.8 11.1 10.3 9.5 10.5 11.6

20.0 22.7 16.7 22.3 17.8 17.0 16.6 19.7 23.7 16.6 11.2 8.3 10.7 10.3 8.0 11.6 10.3 9.8 10.4 11.7 11.8 9.5 11.4 10.2 8.2 8.5 11.2 9.1 11.4 11.8 10.7 9.1 11.9 11.4 9.7 9.2 9.2 11.1 8.2 11.8

22.1 18.0 20.3 22.0 15.9 23.3 22.3 17.5 17.8 21.0 9.1 10.1 8.9 11.0 10.5 11.6 8.6 8.3 11.9 10.4 10.7 10.1 11.4 10.9 10.0 9.0 10.6 8.2 9.8 10.5 10.1 11.7 11.1 9.5 10.5 11.9 8.9 11.6 8.0 10.1

22.0 17.0 16.6 23.2 16.6 23.8 23.3 21.8 20.4 21.0 8.7 8.1 8.0 9.5 8.8 10.3 8.1 11.5 8.6 10.8 8.0 11.7 11.8 10.7 11.2 10.9 11.2 11.1 11.8 11.5 9.4 9.1 10.5 11.0 10.5 11.9 10.7 9.2 8.8 11.2

19.2 22.8 17.5 18.2 21.5 22.1 21.6 22.1 17.2 23.0 8.8 9.1 8.9 11.1 11.7 9.3 10.1 10.8 11.9 10.1 11.2 8.1 9.4 11.4 8.7 10.3 9.0 10.8 9.6 8.5 8.5 9.5 9.1 10.3 8.0 11.1 10.9 10.4 9.0 8.4

20.8 17.6 17.5 17.0 23.2 18.0 20.9 22.5 23.4 19.8 11.7 11.0 10.6 9.4 11.4 10.1 10.5 9.0 11.1 8.1 11.4 8.0 8.1 10.2 10.6 10.6 8.8 8.4 9.2 9.1 8.3 8.0 8.5 8.9 9.7 9.0 9.5 11.1 11.4 8.4

22.6 22.6 19.0 22.4 20.5 23.3 19.2 19.1 20.3 22.2 11.0 10.9 10.1 10.7 11.6 10.0 8.0 10.0 8.8 9.6 11.2 11.3 11.8 11.4 10.5 9.3 9.9 9.4 9.0 11.0 8.4 9.6 9.4 10.1 11.0 9.0 11.5 9.8 11.8 10.7

22.4 20.7 19.2 21.3 18.1 19.4 23.2 16.6 20.8 17.7 8.8 11.7 8.7 8.2 9.4 9.7 8.6 9.5 11.3 10.4 8.5 11.4 10.8 11.1 11.9 10.2 8.4 11.1 11.3 10.4 11.5 8.2 11.5 10.7 8.8 8.9 10.2 10.9 9.0 9.6

18.4 22.0 19.2 23.1 16.4 21.7 21.3 18.2 18.3 19.0 11.8 9.0 8.1 11.4 9.4 11.1 8.1 8.9 8.4 8.7 11.6 11.0 11.9 9.9 11.6 9.1 11.7 11.1 11.3 9.6 8.9 9.4 11.0 9.1 11.8 9.8 10.3 10.6 8.1 10.8

17.2 19.6 21.1 19.7 18.1 17.1 21.6 18.1 19.1 16.5 11.0 10.3 8.5 9.2 11.1 9.6 10.8 10.0 11.5 11.8 10.9 11.1 10.0 10.9 11.1 10.3 10.2 10.4 11.2 8.5 9.7 8.2 9.6 10.5 11.6 10.1 10.1 11.8 11.5 9.8

9.6 10.6 11.4 9.1 8.9 10.7 10.2 9.0 9.4 11.8 9.0 11.3 10.1 8.5 11.5 8.7 8.2 8.8 10.0 9.6 9.9 11.9 8.7 10.1 11.8 9.6 9.2 9.2 8.7 11.9 18.3 19.5 21.9 17.6 17.4 16.5 19.1 18.5 21.2 19.0

11.7 10.8 9.1 8.8 11.8 9.6 8.7 9.2 8.8 10.4 10.8 8.0 11.4 11.5 9.3 11.4 9.9 8.9 8.2 9.8 11.0 8.3 8.0 8.0 11.3 10.5 10.2 11.3 9.2 9.4 21.6 16.3 17.5 16.8 21.0 22.6 20.5 18.2 23.4 18.8

9.1 8.7 8.6 9.9 10.7 11.2 11.4 11.7 11.6 10.7 8.3 8.1 8.3 9.1 11.7 9.8 10.2 9.3 11.3 11.0 11.8 11.7 10.2 8.3 10.4 11.0 9.3 8.6 11.0 10.4 21.9 22.6 21.8 16.5 16.2 21.8 17.5 17.1 22.3 21.8

8.7 10.1 9.0 10.6 11.1 11.6 9.2 8.0 10.7 10.0 9.2 10.6 10.5 10.0 11.6 10.0 8.1 11.2 9.5 11.7 11.7 11.3 8.8 10.2 11.0 11.7 9.1 10.0 9.0 8.3 21.5 23.3 20.7 19.1 19.5 23.5 18.6 23.6 19.5 19.8

8.5 8.0 10.1 11.8 9.8 11.0 9.6 8.7 9.9 9.4 8.7 10.7 8.4 8.7 11.0 8.6 8.2 10.3 9.2 8.4 11.7 10.2 8.2 10.1 11.3 8.0 9.7 8.6 8.8 9.8 20.9 23.8 19.9 22.8 18.1 22.6 18.4 19.8 18.5 23.2

11.7 11.1 8.0 8.0 8.1 9.0 11.2 11.1 10.1 8.9 9.1 8.5 8.3 10.4 9.7 10.0 11.9 8.8 11.8 10.0 11.9 8.8 10.1 10.1 8.6 9.0 10.7 11.9 11.4 8.7 16.2 22.7 18.4 20.9 21.5 23.4 20.6 22.0 18.9 17.3

9.5 9.0 10.5 8.4 11.3 9.4 8.4 10.6 11.0 9.6 11.7 11.9 10.9 11.5 8.6 10.6 11.0 11.0 11.8 11.8 9.5 10.9 10.7 8.1 10.2 9.3 9.8 11.5 11.7 11.4 16.0 16.0 21.2 17.2 23.5 23.4 20.4 20.2 21.3 23.0

11.6 9.6 8.9 8.0 9.1 10.0 11.8 8.0 8.8 11.6 8.9 9.8 9.4 11.0 10.6 11.9 10.1 11.0 11.8 9.5 11.1 9.7 8.2 11.2 8.1 8.7 10.8 11.8 10.3 9.0 21.7 16.2 19.7 17.2 22.5 21.7 21.5 20.1 22.4 18.9

8.7 9.0 10.6 8.0 11.6 9.4 9.8 10.8 10.1 8.7 9.0 9.1 8.5 9.6 8.0 9.0 10.7 10.9 9.8 9.7 11.6 11.6 9.6 10.1 9.0 11.3 8.1 10.5 11.3 9.3 20.4 17.0 17.0 21.9 20.2 20.1 16.6 18.2 18.4 18.2

8.6 9.7 9.1 9.2 9.8 11.8 8.1 11.3 9.5 8.8 9.6 11.6 11.4 11.4 9.8 11.0 11.8 8.1 8.9 8.7 11.5 10.3 8.1 10.4 11.3 10.5 8.3 9.1 10.6 11.6 21.7 18.9 19.8 19.3 17.7 18.4 23.9 17.9 19.2 18.1

1 
2 

3 
4 

5 
6 

7 

8 

Figure 10: In the top two graphs (a and b), the effect of increased demand and
accessibility range is shown for instances of 8 servers (with 3n HQM). The
same server locations are selected in all instances, which can be seen in the
map given below the two graphs (c). Both the fraction of time each server is
busy (line) and the fraction on intradistrict response (column) are shown in a
and b. The total demand at each servers’ primary and secondary service area
are shown under the x-axis respectively. Note that the values in parenthesis in
the legend are the loss rates.

with our heuristics for 12 servers and 20 minutes on scene ser-
vice time in the experimental network. Different than the pre-
vious analysis, we investigate the probability of having specific
number of servers busy in the system all of which can be seen in
Fig. 11. These values are shown with columns. With lines, the
percentage of time servers busy with bin instradistrict responses
(i.e. dispatching inside bin) are depicted. We use 5 different de-
mand levels and each of which are shown with a different color.
Again, loss rates are shown inside parenthesis in the legend next
to the related demand level.

The first interesting result that can be observed from this fig-
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Best Locations (12 Servers) 

10 (0.09) 16 (2.06) 20 (4.99) 30 (14.11) 40 (23.85)

Figure 11: The effect of increased demand on 5 best instances of different de-
mand levels. In all instances, the number of servers is 12, on scene service time
is 20 minutes and accessibility range is 30 km. The fraction of time for differ-
ent busy servers’ count (line) and the ratio of servers in intradistrict response
(columns) can be seen in the figure. Loss rates for each demand level is given
in parenthesis in the legend, next to the related demand level.

ure is the effect of increased demand on the system efficiency.
The increase in demand results in less time spend in intradis-
trict (equivalently more time in interdistrict) responses. The in-
crease in the number of busy servers has a similar effect. With
the increase in busy server count, intradistrict response ratio de-
creases.

One of the other important findings observed in graphs in Fig.
11 is the interaction between subregions. In a simpler approach,
we could consider each core subregion as a separate problem
and do calculations regarding this assumption (e.g. sum loss
rate of each subregions to find total loss rate). However, results
in Fig. 11 show that the amount of time spent for interdistrict re-
sponses is significant. Because of this, disregarding interdistrict
responses between subregions and estimate performance mea-
sures with 3n HQM without the step of merging two compound
regions, might create inaccurate results and does not seem to be
a right approach.

6. Concluding Remarks

In this research, spatial queueing systems (SQS) are consid-
ered where the service rate for each customer-server pairs dif-
fers and the server that intervenes for a specific customer is
not known a priori. While SQS are computationally expen-
sive (but more appropriate for real-life problems), in this paper,
we extend hypercube queueing models that can accurately esti-
mate various performance measures for medium to large scale
networks and consider the probability that the nearest server
might be unavailable to intervene. To decrease the dimension
of the problem, a new 3n aggregate hypercube queueing model
(AHQM) together with a partitioning algorithm are developed
that treat group of servers (bins) in a similar manner and also
considering interactions among bins. We first compare our ap-
proach with the system with real service time and show the ac-
curacy of our approach for different parameters on two differ-
ent networks: one real (central Athens) and one experimental
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Figure 12: Illustration of a system with three servers and three service range
belts for each server

with different spatial distribution of demand. In order to show
the applicability of our two algorithms inside an optimization
framework, the two methods are implemented with the vari-
able neighborhood search and simulated annealing to identify
near optimal server locations that improve system performance.
From these experiments, it is seen that, although hypercube
queueing models are not initially developed as optimization
models, they can be integrated in such a framework. Then, we
have investigated different performance measures such as the
percentage of time the servers spend on intra and interdistrict
responses. The percentage of interdistrict responses is not neg-
ligible and should not be omitted from the analysis of location
models where fast and reliable response are required.

As future research, our aim is to change the way we define
intra and interdistrict response areas. In hypercube queueing
models, service rate and service priority are different param-
eters. We can still define intra and interdistrict areas with ser-
vice priority, where instances can be served by the closest avail-
able server. However, we can arrange different service rates for
different distance ranges from the servers. We can create two
or more service range belts and we can apply different service
rates for each belt (see Fig. 12). Another direction to further
investigate is the partitioning algorithm. With some additional
cuts, we might create a tighter convex hull which in the end
might give a more efficient partitioning algorithm. We are also
interested in some efficient heuristic methods to replace the par-
titioning algorithm. Last but not least, different dispatching al-
gorithms are also worth investigating. For the same server loca-
tions, intelligent dispatching schemes may give better results.
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Appendix A. Application of a 3n HQM

In this section, the approach to calculate the steady state
probabilities of an instance of 3n HQM is shown. The con-
figuration shown in Fig. 10 is used with total demand 10 re-
quests/hour, 10 km service range and 20 minutes on scene ser-
vice time.

First, primary and secondary service areas of each server are
found. In Fig. A.13A-D servers 5-8’s (both primary and sec-
ondary) service areas can be seen separately in different maps
(first 4 maps). The intensity of colour blue shows the arrival rate
magnitude to this atom. Server location at each map is marked
with a red circle around. Primary service area of each server
is the area that is bounded by red borders. Fig. A.13E shows
all servers’ locations (dark red circles) with their reachable area
(light red circles) and the atoms that cannot be served by any of
the atoms (blue).
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Figure A.13: Primary (area with red border) and secondary (rest of the atoms
colored with blue) service area of servers 5-8 in order (A-D) and the atoms that
cannot be reached by any server (E). Values on each atom shows 10000 times
the ratio of the demand on that specific atom to whole demand.

With the help of these partitioned maps for each server, av-
erage intra and interdistrict service times and service rates are
calculated. In Table A.3, the values used in calculation and av-
erage service rates can be seen. Note that, service duration is
the sum of on scene service time (20 minutes) and travel time to
and from the service scene. In distance calculation, Euclidean
distance is used. Each square represents atom with 1km2 area
and service vehicles travel with a speed of 60 km/hour.

Next step is creating transition diagram which is composed of
generating states and calculating transition rates between states.
In this step, incoming and outgoing transition rates are calcu-
lated for every state (see Eq. 2). Fig. A.14 contains transi-
tion diagram for a state of the system given in Fig. 10. 0000

1221
shows, the first and fourth servers are busy with intradistrict
(represented with “1”s), second and third servers are busy with
interdistrict (represented with “2”s) responses whereas the rest
of the servers are available for service (represented with “0”s).

For most of the states, specific arrival rates for different busy
servers should be calculated. These calculations can only be
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#
primary secondary∑

demand ∑
demand av. ser. av. ser.

∑
demand ∑

demand av. ser. av. ser.
x time time rate x time time rate

1 10.76 0.40 26.73 2.24 103.44 2.99 34.6 1.73
2 13.45 0.52 26.08 2.30 105.56 3.03 34.88 1.72
3 19.48 0.70 27.97 2.15 76.37 2.21 34.59 1.73
4 26.00 0.86 30.08 1.99 75.17 2.18 34.42 1.74
5 23.71 0.84 28.39 2.11 68.89 1.98 34.72 1.73
6 32.70 1.11 29.55 2.03 62.22 1.76 35.26 1.70
7 67.42 2.36 28.62 2.10 27.75 0.77 36.16 1.66
8 84.37 2.81 29.99 2.00 21.02 0.57 36.85 1.63

Table A.3: Sum of demand (columns 2 and 6) sum of products of service dura-
tion and demand of each atom (columns 3 and 7), average service time (columns
4 and 8) and average service rate (columns 5 and 9) for each servers’ primary
(columns 2-5) and secondary (columns 6-9) secondary service areas.
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Figure A.14: Part of the transition diagrams of a 3n HQM for 8 servers for state
00001221. Each server has different intra (µi) and interdistrict (µ′i ) service rates

for different primary (λi) and secondary (e.g. λ′i , λ
{i1 ,i2 ,i3}
i ) service areas.

done at the atom level. In other words, for different busy server
sets, each atom’s preferred available server is different. If in
addition to µi and µ′i are intra and interdistrict service rates and
λi and λ′i are demand arrival rates from primary and secondary
service areas of server i, λI

i is the arrival rate of atoms, which
are dispatched to server i in first place in case of servers in set I
are busy, the transition equation for state 0000

1221 (see Fig.A.14) is:

P0000
1221


∗︷                                                                        ︸︸                                                                        ︷

λ5 + λ{1,2,3,4}5 + λ6 + λ{1,2,3,4}6 + λ7 + λ{1,2,3,4}7 + λ8 + λ{1,2,3,4}8

µ1 + µ′2 + µ′3 + µ4

]
= P0000

1220
λ1 + P0000

1201
λ{1,3,4}2 + P0000

1021
λ{1,2,4}3

+P0000
0221

λ4 + P0001
1221

µ5 + P0002
1221

µ′5 + P0010
1221

µ6 + P0020
1221

µ′6 + P0100
1221

µ7

+P0200
1221

µ′7 + P1000
1221

µ8 + P2000
1221

µ′8

(A.1)

∗ in Eq. A.1 is equal to the arrival rate that can be served
by the servers that are available in the system during the state
0000
1221. When some servers are not available, the service area of
each server should be updated as seen in Fig. A.15A-D. With
the help of Fig. A.15, the atoms that are served by the last
four servers when the first four are busy can be seen. See also
in Fig. A.15E that when some servers are not available, there
are more atoms that cannot be reached by any of the available
servers. Note that, the service rate to that atom still depends on

the server-atom service rate (primary or secondary area).
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 11.3 10.1 8.5 11.5 8.7 8.2 8.8 10.0 9.6 9.9 11.9 8.7 10.1 11.8 9.6 9.2 9.2 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 11.4 11.5 9.3 11.4 9.9 8.9 8.2 9.8 11.0 8.3 8.0 8.0 11.3 10.5 10.2 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 8.3 9.1 11.7 9.8 10.2 9.3 11.3 11.0 11.8 11.7 10.2 8.3 10.4 11.0 9.3 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 10.0 11.6 10.0 8.1 11.2 9.5 11.7 11.7 11.3 8.8 10.2 11.0 11.7 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 11.0 8.6 8.2 10.3 9.2 8.4 11.7 10.2 8.2 10.1 11.3 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.9 8.8 11.8 10.0 11.9 8.8 10.1 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A 
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 10.7 8.9 9.7 8.6 11.8 11.4 8.0 9.7 9.3 9.9 8.2 8.2 11.9 11.5 8.8 11.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 11.7 11.8 9.5 11.4 10.2 8.2 8.5 11.2 9.1 11.4 11.8 10.7 9.1 11.9 11.4 9.7 9.2 9.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 10.4 10.7 10.1 11.4 10.9 10.0 9.0 10.6 8.2 9.8 10.5 10.1 11.7 11.1 9.5 10.5 11.9 8.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 10.8 8.0 11.7 11.8 10.7 11.2 10.9 11.2 11.1 11.8 11.5 9.4 9.1 10.5 11.0 10.5 11.9 10.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 10.1 11.2 8.1 9.4 11.4 8.7 10.3 9.0 10.8 9.6 8.5 8.5 9.5 9.1 10.3 8.0 11.1 10.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 11.1 8.1 11.4 8.0 8.1 10.2 10.6 10.6 8.8 8.4 9.2 9.1 8.3 8.0 8.5 8.9 9.7 9.0 9.5 11.1 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 9.6 11.2 11.3 11.8 11.4 10.5 9.3 9.9 9.4 9.0 11.0 8.4 9.6 9.4 10.1 11.0 9.0 11.5 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 10.4 8.5 11.4 10.8 11.1 11.9 10.2 8.4 11.1 11.3 10.4 11.5 8.2 11.5 10.7 8.8 8.9 10.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 8.7 11.6 11.0 11.9 9.9 11.6 9.1 11.7 11.1 11.3 9.6 8.9 9.4 11.0 9.1 11.8 9.8 10.3 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.8 10.9 11.1 10.0 10.9 11.1 10.3 10.2 10.4 11.2 8.5 9.7 8.2 9.6 10.5 11.6 10.1 10.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 9.9 11.9 8.7 10.1 11.8 9.6 9.2 9.2 8.7 11.9 18.3 19.5 21.9 17.6 17.4 16.5 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 11.0 8.3 8.0 8.0 11.3 10.5 10.2 11.3 9.2 9.4 21.6 16.3 17.5 16.8 21.0 22.6 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.8 11.7 10.2 8.3 10.4 11.0 9.3 8.6 11.0 10.4 21.9 22.6 21.8 16.5 16.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 8.8 10.2 11.0 11.7 9.1 10.0 9.0 8.3 21.5 23.3 20.7 19.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 11.3 8.0 9.7 8.6 8.8 9.8 20.9 23.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 8.0 8.5 8.9 9.7 9.0 9.5 11.1 11.4 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 11.3 10.4 11.5 8.2 11.5 10.7 8.8 8.9 10.2 10.9 9.0 9.6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.7 11.1 11.3 9.6 8.9 9.4 11.0 9.1 11.8 9.8 10.3 10.6 8.1 10.8
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.7 9.1 10.0 9.0 8.3 21.5 23.3 20.7 19.1 19.5 23.5 18.6 23.6 19.5 19.8
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 10.8 11.8 10.3 9.0 21.7 16.2 19.7 17.2 22.5 21.7 21.5 20.1 22.4 18.9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 8.1 10.5 11.3 9.3 20.4 17.0 17.0 21.9 20.2 20.1 16.6 18.2 18.4 18.2
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22.2 17.7 20.5 20.9 22.0 20.5 19.7 18.8 15.9 20.9 10.1 9.4 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.0 22.7 16.7 22.3 17.8 17.0 16.6 19.7 23.7 16.6 11.2 8.3 10.7 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.1 18.0 20.3 22.0 15.9 23.3 22.3 17.5 17.8 21.0 9.1 10.1 8.9 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.0 17.0 16.6 23.2 16.6 23.8 23.3 21.8 20.4 21.0 8.7 8.1 8.0 9.5 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19.2 22.8 17.5 18.2 21.5 22.1 21.6 22.1 17.2 23.0 8.8 9.1 8.9 11.1 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.8 17.6 17.5 17.0 23.2 18.0 20.9 22.5 23.4 19.8 11.7 11.0 10.6 9.4 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.6 22.6 19.0 22.4 20.5 23.3 19.2 19.1 20.3 22.2 11.0 10.9 10.1 10.7 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.4 20.7 19.2 21.3 18.1 19.4 23.2 16.6 20.8 17.7 8.8 11.7 8.7 8.2 9.4 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18.4 22.0 19.2 23.1 16.4 21.7 21.3 18.2 18.3 19.0 11.8 9.0 8.1 11.4 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17.2 19.6 21.1 19.7 18.1 17.1 21.6 18.1 19.1 16.5 11.0 10.3 8.5 9.2 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.6 10.6 11.4 9.1 8.9 10.7 10.2 9.0 9.4 11.8 9.0 11.3 10.1 8.5 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.7 10.8 9.1 8.8 11.8 9.6 8.7 9.2 8.8 10.4 10.8 8.0 11.4 11.5 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.1 8.7 8.6 9.9 10.7 11.2 11.4 11.7 11.6 10.7 8.3 8.1 8.3 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.7 10.1 9.0 10.6 11.1 11.6 9.2 8.0 10.7 10.0 9.2 10.6 10.5 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.5 8.0 10.1 11.8 9.8 11.0 9.6 8.7 9.9 9.4 8.7 10.7 8.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Figure A.15: Service area (with red and black borders) of each available server
(5,6,7,8) in order (A-D) and the atoms that cannot be reached by any available
server (E) for the state 00001221. Values on each atom shows 10000 times the
ratio of the demand on that specific atom to whole demand.

Appendix B. Application of a 3n AHQM

In this section, the approach to calculate the steady state
probabilities of an instance of 3n AHQM is described. The
same characteristics as in Appendix A are utilized. In addi-
tion, 8 servers are replaced with 3 bins with 3 servers each. The
locations of each bin with their primary and secondary service
areas (A-C), and the atoms that cannot be served (D) can be
seen in Fig. B.16.

A 

Bin 1 

B 

Bin 2 

C 

Bin 3 

D 

Figure B.16: Bin locations with primary (area with red border) and secondary
(rest of the atoms colored with blue) service area of each server in order A-C)
and the atoms that cannot be reached by any available server (D) for a system
with 3 bins. Values on each atom shows 10000 times the ratio of the demand
on that specific atom to whole demand.

Each of the bins’ maps can be used to calculate their primary
and secondary service rates. The values calculated are aver-
age service rates and service times for each server of the bins
and in service duration calculation on scene service time and
travel time to and from service scene are taken into considera-
tion. These values can be seen in Table B.4.
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#
primary secondary∑

demand ∑
demand av. ser. av. ser.

∑
demand ∑

demand av. ser. av. ser.
x time time rate x time time rate

1 103.94 3.33 31.18 1.92 13.37 0.36 37.50 1.60
2 100.44 3.23 31.07 1.93 17.33 0.47 37.04 1.62
3 78.17 2.43 32.13 1.87 28.60 0.77 37.30 1.61

Table B.4: Sum of demand (columns 2 and 6) sum of products of service dura-
tion and demand of each atom (columns 3 and 7), average service time (columns
4 and 8) and average service rate (columns 5 and 9) for each bins’ primary
(columns 2-5) and secondary (columns 6-9) secondary service areas.

Generating transition diagrams starts with the generation of
all states. There are 1000 states when there are 3 bins with 3
servers each. Then for each state, all positive transition rates
are calculated. Eq. 5 is used to calculate transition equations
with the help of the calculated transition rates.
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Figure B.17: Part of the transition diagrams of a 3n AHQM for 3 bins with 3
servers each for state 20|11|21. Servers of each bin (b) has different intra (µb)
and interdistrict (µ′b) service rates for different primary (λb) and secondary (e.g.

λ′b, λ{b1}
b ) service areas. Values on each atom shows 10000 times the ratio of the

demand on that specific atom to whole demand.

If all servers are available in the system (i.e. 00|00|00), if
there is a demand from an area that is reachable by one of the
bins, this demand has to be in one of the available bins primary
service area. When there is no available server (e.g. 30|21|12),
there are no upper transitions. Since we model a system without
queue, any arrival of demand during states with no available
server is a lost.

When the system is partially full, as it is given in state
20|11|21 (see Fig. B.17), there are both upper (e.g. transitions
from/to 21|11|21) and lower (e.g. transitions from/to 20|01|21)
transitions to be taken care of. In state 20|11|21, bin 1’s two
servers are busy with intradistrict, bin 2’s one server busy with
intra and one server busy with interdistrict, and bin 3’s two
servers are busy with intra and one with interdistrict services.
For µb and µ′b are intra and interdistrict service rates for each
server, λb and λ′b are primary and secondary service areas of
bin b and λB

b is the arrival rate of atoms that are served by one
of the servers of bin b in first place in case bins in set B have no
available servers, the transition equation for state 20|11|21 is:

P20
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[
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]
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(B.1)

If some bins do not have available servers, the service area
of each bin with available server(s) should be updated as it is

done in Appendix A. Since the third bin has no available server
during state 20|11|21, its load should be shared by the first two
bins’ servers. In Fig. B.18A-B, the service area of the first two
bins when the third bin has no available server can be seen. In
addition, there are some more atoms that are not reachable by
any of the available servers of the bins which can also be seen
in Fig. B.18. Similar to the previous section, the service rate to
that atom still depends on the bin-atom service rate. If the atom
is in the primary service are of the bin, it is served with the
primary area service rate, if not it is served with the secondary
area service rate of the same bin.
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Figure B.18: Service area (with red and black borders) of each available bins
(1,2) in order (A-B) and the atoms that cannot be reached by any available
server (C) for the state 20|11|21.

Appendix C. Application of an MHQA

In this section, the steps of the MHQA algorithm in Fig. 7 are
described on an instance. The configuration shown in Fig. 10 is
used with total demand 20 requests/hour, 10 km service range
and 20 minutes on scene service time with 12 servers located as
shown in Fig. C.19A.

The first step in solving an instance of MHQA is partitioning
the problem into subregions (see Fig. 7 Step 1). This partition-
ing algorithm works with binary steps to create not only core
subregions but also compound regions that are different than
the whole problem. As described in Subsection 4.2. Partition
size is selected as 3. In the runs shown in tables 1 and 2 bins
with 5,6 and 8 servers are used since larger partition size in-
creases accuracy of the algorithm. Here, 3 is selected as the
bin size to scale down the problem and to show the steps of the
algorithm with all of its details without confusing the reader.

The solution of the partitioning algorithm gives the following
core and compound regions given in Fig. C.19. In Fig. C.19A,
each servers primary service areas are shown. Note also that,
straight lines separate core regions whereas dashed lines are for
primary service areas of each server within core regions. Fig.
C.19B-E shows the service area of each core regions’ servers.
By merging core regions pairwise we end up with two com-
pound regions shown in Fig. C.19F-G. Compound region 1
is composed of core regions 1 and 2. Compound region 2 is
composed of the rest of the core regions, 3 and 4. The whole
problem area is also a compound region composed of two com-
pound regions 1 and 2. In Fig. C.19H, the demand in the area
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of intersection of at least two partitions’ servers service area is
shown. Fig. C.19I shows how many times these atoms exist in
the service area of partitions’ servers. Yellow stands for areas
that are covered by only two partitions’ servers whereas orange
shows the atoms that are covered by the servers’ of three differ-
ent partitions.
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22.4 20.7 19.2 21.3 18.1 19.4 23.2 16.6 20.8 17.7 8.8 11.7 8.7 8.2 9.4 9.7 8.6 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18.4 22.0 19.2 23.1 16.4 21.7 21.3 18.2 18.3 19.0 11.8 9.0 8.1 11.4 9.4 11.1 8.1 8.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17.2 19.6 21.1 19.7 18.1 17.1 21.6 18.1 19.1 16.5 11.0 10.3 8.5 9.2 11.1 9.6 10.8 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.6 10.6 11.4 9.1 8.9 10.7 10.2 9.0 9.4 11.8 9.0 11.3 10.1 8.5 11.5 8.7 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.7 10.8 9.1 8.8 11.8 9.6 8.7 9.2 8.8 10.4 10.8 8.0 11.4 11.5 9.3 11.4 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.1 8.7 8.6 9.9 10.7 11.2 11.4 11.7 11.6 10.7 8.3 8.1 8.3 9.1 11.7 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.7 10.1 9.0 10.6 11.1 11.6 9.2 8.0 10.7 10.0 9.2 10.6 10.5 10.0 11.6 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.5 8.0 10.1 11.8 9.8 11.0 9.6 8.7 9.9 9.4 8.7 10.7 8.4 8.7 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.7 11.1 8.0 8.0 8.1 9.0 11.2 11.1 10.1 8.9 9.1 8.5 8.3 10.4 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.5 9.0 10.5 8.4 11.3 9.4 8.4 10.6 11.0 9.6 11.7 11.9 10.9 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.6 9.6 8.9 8.0 9.1 10.0 11.8 8.0 8.8 11.6 8.9 9.8 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 10.6 8.0 11.6 9.4 9.8 10.8 10.1 8.7 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D 

Core 3 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.0 0.0 0.0 0.0 0.0 0.0 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.1 0.0 20.3 22.0 15.9 23.3 22.3 17.5 17.8 21.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.0 17.0 16.6 23.2 16.6 23.8 23.3 21.8 20.4 21.0 8.7 8.1 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19.2 22.8 17.5 18.2 21.5 22.1 21.6 22.1 17.2 23.0 8.8 9.1 8.9 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.8 17.6 17.5 17.0 23.2 18.0 20.9 22.5 23.4 19.8 11.7 11.0 10.6 9.4 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.6 22.6 19.0 22.4 20.5 23.3 19.2 19.1 20.3 22.2 11.0 10.9 10.1 10.7 11.6 0.0 0.0 0.0 8.8 9.6 11.2 11.3 11.8 11.4 10.5 9.3 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.4 20.7 19.2 21.3 18.1 19.4 23.2 16.6 20.8 17.7 8.8 11.7 8.7 8.2 9.4 9.7 8.6 9.5 11.3 10.4 8.5 11.4 10.8 11.1 11.9 10.2 8.4 11.1 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18.4 22.0 19.2 23.1 16.4 21.7 21.3 18.2 18.3 19.0 11.8 9.0 8.1 11.4 9.4 11.1 8.1 8.9 8.4 8.7 11.6 11.0 11.9 9.9 11.6 9.1 11.7 11.1 11.3 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17.2 19.6 21.1 19.7 18.1 17.1 21.6 18.1 19.1 16.5 11.0 10.3 8.5 9.2 11.1 9.6 10.8 10.0 11.5 11.8 10.9 11.1 10.0 10.9 11.1 10.3 10.2 10.4 11.2 8.5 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.6 10.6 11.4 9.1 8.9 10.7 10.2 9.0 9.4 11.8 9.0 11.3 10.1 8.5 11.5 8.7 8.2 8.8 10.0 9.6 9.9 11.9 8.7 10.1 11.8 9.6 9.2 9.2 8.7 11.9 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.7 10.8 9.1 8.8 11.8 9.6 8.7 9.2 8.8 10.4 10.8 8.0 11.4 11.5 9.3 11.4 9.9 8.9 8.2 9.8 11.0 8.3 8.0 8.0 11.3 10.5 10.2 11.3 9.2 9.4 21.6 16.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.1 8.7 8.6 9.9 10.7 11.2 11.4 11.7 11.6 10.7 8.3 8.1 8.3 9.1 11.7 9.8 10.2 9.3 11.3 11.0 11.8 11.7 10.2 8.3 10.4 11.0 9.3 8.6 11.0 10.4 21.9 22.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.7 10.1 9.0 10.6 11.1 11.6 9.2 8.0 10.7 10.0 9.2 10.6 10.5 10.0 11.6 10.0 8.1 11.2 9.5 11.7 11.7 11.3 8.8 10.2 11.0 11.7 9.1 10.0 9.0 8.3 21.5 23.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.5 8.0 10.1 11.8 9.8 11.0 9.6 8.7 9.9 9.4 8.7 10.7 8.4 8.7 11.0 8.6 8.2 10.3 9.2 8.4 11.7 10.2 8.2 10.1 11.3 8.0 9.7 8.6 8.8 9.8 20.9 23.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.7 11.1 8.0 8.0 8.1 9.0 11.2 11.1 10.1 8.9 9.1 8.5 8.3 10.4 9.7 10.0 11.9 8.8 11.8 10.0 11.9 8.8 10.1 10.1 8.6 9.0 10.7 11.9 11.4 8.7 16.2 22.7 18.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.5 9.0 10.5 8.4 11.3 9.4 8.4 10.6 11.0 9.6 11.7 11.9 10.9 11.5 8.6 10.6 11.0 11.0 11.8 11.8 9.5 10.9 10.7 8.1 10.2 9.3 9.8 11.5 11.7 11.4 16.0 16.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.6 9.6 8.9 8.0 9.1 10.0 11.8 8.0 8.8 11.6 8.9 9.8 9.4 11.0 10.6 11.9 10.1 11.0 11.8 9.5 11.1 9.7 8.2 11.2 8.1 8.7 10.8 11.8 10.3 9.0 21.7 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.7 9.0 10.6 8.0 11.6 9.4 9.8 10.8 10.1 8.7 9.0 9.1 8.5 9.6 8.0 9.0 10.7 10.9 9.8 9.7 11.6 11.6 9.6 10.1 9.0 11.3 8.1 10.5 11.3 9.3 20.4 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.6 9.7 9.1 9.2 9.8 11.8 8.1 11.3 9.5 8.8 9.6 11.6 11.4 11.4 9.8 11.0 11.8 8.1 8.9 8.7 11.5 10.3 8.1 10.4 11.3 10.5 8.3 9.1 10.6 11.6 21.7 18.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E 

Core 4 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 9.1 11.3 8.4 8.3 10.4 10.7 8.9 9.7 8.6 11.8 11.4 8.0 9.7 9.3 9.9 8.2 8.2 11.9 11.5 8.8 11.1 10.3 9.5 10.5 11.6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 11.6 10.3 9.8 10.4 11.7 11.8 9.5 11.4 10.2 8.2 8.5 11.2 9.1 11.4 11.8 10.7 9.1 11.9 11.4 9.7 9.2 9.2 11.1 8.2 11.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 10.5 11.6 8.6 8.3 11.9 10.4 10.7 10.1 11.4 10.9 10.0 9.0 10.6 8.2 9.8 10.5 10.1 11.7 11.1 9.5 10.5 11.9 8.9 11.6 8.0 10.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 8.8 10.3 8.1 11.5 8.6 10.8 8.0 11.7 11.8 10.7 11.2 10.9 11.2 11.1 11.8 11.5 9.4 9.1 10.5 11.0 10.5 11.9 10.7 9.2 8.8 11.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 11.7 9.3 10.1 10.8 11.9 10.1 11.2 8.1 9.4 11.4 8.7 10.3 9.0 10.8 9.6 8.5 8.5 9.5 9.1 10.3 8.0 11.1 10.9 10.4 9.0 8.4

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.4 11.4 10.1 10.5 9.0 11.1 8.1 11.4 8.0 8.1 10.2 10.6 10.6 8.8 8.4 9.2 9.1 8.3 8.0 8.5 8.9 9.7 9.0 9.5 11.1 11.4 8.4

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 10.7 11.6 10.0 8.0 10.0 8.8 9.6 11.2 11.3 11.8 11.4 10.5 9.3 9.9 9.4 9.0 11.0 8.4 9.6 9.4 10.1 11.0 9.0 11.5 9.8 11.8 10.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.2 9.4 9.7 8.6 9.5 11.3 10.4 8.5 11.4 10.8 11.1 11.9 10.2 8.4 11.1 11.3 10.4 11.5 8.2 11.5 10.7 8.8 8.9 10.2 10.9 9.0 9.6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4 9.4 11.1 8.1 8.9 8.4 8.7 11.6 11.0 11.9 9.9 11.6 9.1 11.7 11.1 11.3 9.6 8.9 9.4 11.0 9.1 11.8 9.8 10.3 10.6 8.1 10.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2 11.1 9.6 10.8 10.0 11.5 11.8 10.9 11.1 10.0 10.9 11.1 10.3 10.2 10.4 11.2 8.5 9.7 8.2 9.6 10.5 11.6 10.1 10.1 11.8 11.5 9.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 8.5 11.5 8.7 8.2 8.8 10.0 9.6 9.9 11.9 8.7 10.1 11.8 9.6 9.2 9.2 8.7 11.9 18.3 19.5 21.9 17.6 17.4 16.5 19.1 18.5 21.2 19.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 9.3 11.4 9.9 8.9 8.2 9.8 11.0 8.3 8.0 8.0 11.3 10.5 10.2 11.3 9.2 9.4 21.6 16.3 17.5 16.8 21.0 22.6 20.5 18.2 23.4 18.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 11.7 9.8 10.2 9.3 11.3 11.0 11.8 11.7 10.2 8.3 10.4 11.0 9.3 8.6 11.0 10.4 21.9 22.6 21.8 16.5 16.2 21.8 17.5 17.1 22.3 21.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.6 10.0 8.1 11.2 9.5 11.7 11.7 11.3 8.8 10.2 11.0 11.7 9.1 10.0 9.0 8.3 21.5 23.3 20.7 19.1 19.5 23.5 18.6 23.6 19.5 19.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 11.0 8.6 8.2 10.3 9.2 8.4 11.7 10.2 8.2 10.1 11.3 8.0 9.7 8.6 8.8 9.8 20.9 23.8 19.9 22.8 18.1 22.6 18.4 19.8 18.5 23.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 10.0 11.9 8.8 11.8 10.0 11.9 8.8 10.1 10.1 8.6 9.0 10.7 11.9 11.4 8.7 16.2 22.7 18.4 20.9 21.5 23.4 20.6 22.0 18.9 17.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 10.6 11.0 11.0 11.8 11.8 9.5 10.9 10.7 8.1 10.2 9.3 9.8 11.5 11.7 11.4 16.0 16.0 21.2 17.2 23.5 23.4 20.4 20.2 21.3 23.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 10.1 11.0 11.8 9.5 11.1 9.7 8.2 11.2 8.1 8.7 10.8 11.8 10.3 9.0 21.7 16.2 19.7 17.2 22.5 21.7 21.5 20.1 22.4 18.9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 10.9 9.8 9.7 11.6 11.6 9.6 10.1 9.0 11.3 8.1 10.5 11.3 9.3 20.4 17.0 17.0 21.9 20.2 20.1 16.6 18.2 18.4 18.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 8.7 11.5 10.3 8.1 10.4 11.3 10.5 8.3 9.1 10.6 11.6 21.7 18.9 19.8 19.3 17.7 18.4 23.9 17.9 19.2 18.1

F 

Compound 1 

22.2 17.7 20.5 20.9 22.0 20.5 19.7 18.8 15.9 20.9 10.1 9.4 11.4 10.7 9.5 9.1 11.3 8.4 8.3 10.4 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.0 22.7 16.7 22.3 17.8 17.0 16.6 19.7 23.7 16.6 11.2 8.3 10.7 10.3 8.0 11.6 10.3 9.8 10.4 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.1 18.0 20.3 22.0 15.9 23.3 22.3 17.5 17.8 21.0 9.1 10.1 8.9 11.0 10.5 11.6 8.6 8.3 11.9 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.0 17.0 16.6 23.2 16.6 23.8 23.3 21.8 20.4 21.0 8.7 8.1 8.0 9.5 8.8 10.3 8.1 11.5 8.6 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19.2 22.8 17.5 18.2 21.5 22.1 21.6 22.1 17.2 23.0 8.8 9.1 8.9 11.1 11.7 9.3 10.1 10.8 11.9 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.8 17.6 17.5 17.0 23.2 18.0 20.9 22.5 23.4 19.8 11.7 11.0 10.6 9.4 11.4 10.1 10.5 9.0 11.1 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.6 22.6 19.0 22.4 20.5 23.3 19.2 19.1 20.3 22.2 11.0 10.9 10.1 10.7 11.6 10.0 8.0 10.0 8.8 9.6 11.2 11.3 11.8 11.4 10.5 9.3 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.4 20.7 19.2 21.3 18.1 19.4 23.2 16.6 20.8 17.7 8.8 11.7 8.7 8.2 9.4 9.7 8.6 9.5 11.3 10.4 8.5 11.4 10.8 11.1 11.9 10.2 8.4 11.1 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18.4 22.0 19.2 23.1 16.4 21.7 21.3 18.2 18.3 19.0 11.8 9.0 8.1 11.4 9.4 11.1 8.1 8.9 8.4 8.7 11.6 11.0 11.9 9.9 11.6 9.1 11.7 11.1 11.3 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17.2 19.6 21.1 19.7 18.1 17.1 21.6 18.1 19.1 16.5 11.0 10.3 8.5 9.2 11.1 9.6 10.8 10.0 11.5 11.8 10.9 11.1 10.0 10.9 11.1 10.3 10.2 10.4 11.2 8.5 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.6 10.6 11.4 9.1 8.9 10.7 10.2 9.0 9.4 11.8 9.0 11.3 10.1 8.5 11.5 8.7 8.2 8.8 10.0 9.6 9.9 11.9 8.7 10.1 11.8 9.6 9.2 9.2 8.7 11.9 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.7 10.8 9.1 8.8 11.8 9.6 8.7 9.2 8.8 10.4 10.8 8.0 11.4 11.5 9.3 11.4 9.9 8.9 8.2 9.8 11.0 8.3 8.0 8.0 11.3 10.5 10.2 11.3 9.2 9.4 21.6 16.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Figure C.19: Primary service area of each server (A), primary service area of
each core (B-E) and compound (F-G) regions’ servers (red bordered) with their
coverage areas (blue), the atoms that are covered by at least the servers’ of two
partitions (H) and how many partitions covered each atom (I). Values on each
atom shows 10000 times the ratio of the demand on that specific atom to whole
demand.

The next step in the algorithm is to iterate each region with
depth first search (see Fig. 7 Step 2). We start calculations
from the core regions since they are the leaf nodes. For each
core region, we calculate intra and interdistrict service rates for
the primary service areas of the region’s servers’.

In solving core regions, we apply the 3n HQM for primary
service areas. For instance for the third core region, we will
solve a 3n HQM for the servers 1,3 and 5 and the atoms that
exist in their primary service areas. Note that, we are only taken
care of the primary service areas of the three servers, not all the
service areas that are accessible. The probabilities of each 27
states and their total service rate are given in Table C.5.

states probabilities service rates
S1 S1

S5 S3 0 1 2 0 1 2
0 0 0.093 0.036 0.033 0 2.176 1.737
0 1 0.078 0.033 0.046 2.089 4.265 3.826
0 2 0.025 0.016 0.025 1.893 4.069 3.63
1 0 0.05 0.021 0.023 2.177 4.353 3.914
1 1 0.047 0.026 0.049 4.266 6.442 6.003
1 2 0.026 0.019 0.033 4.07 6.246 5.807
2 0 0.032 0.016 0.025 1.782 3.958 3.518
2 1 0.049 0.035 0.069 3.871 6.047 5.608
2 2 0.027 0.023 0.046 3.675 5.851 5.411

Table C.5: Probabilities (columns 3-5) and service rates (columns 6-8) for all
27 states of the 3n HQM of core region 3.

The results of the 3n HQM are used to calculate the average
service rates for the number of busy servers, percentage of time
the servers are busy and the loss rate of each atom. Average
service rate is calculated by summing the products of the prob-
abilities with the service rate of related states for any number of
busy servers (for this instance: 0, 1, 2, 3). The average service
rates for different bins are given in Table C.6. The average ser-
vice rates for each bin per server count are used as intradistrict
service rates when the related core region becomes one part of
a compound region.

service core region
rates 1 2 3 4

#
se

rv
er

s 1 2.062 2.041 2.015 2.057
2 4.039 4.003 3.955 4.028
3 5.963 5.928 5.846 5.985

Table C.6: Average service rates per number of busy servers for each bin.

The percentage of time each server is available is also calcu-
lated with the help of the probabilities of each state (Table C.5).
See Table C.7 for the availabilities of all servers. Availabilities
of servers are used for correcting interdistrict service rates with
the help of Eq. 9. When two core (or compound) regions are
merged to make a new compound region, we assume that the
servers in each of the core (or compound) regions are servers
located at the same location. We need this assumption to cal-
culate the performance measures of the new compound region.
Further information about this calculation is given below.

core region
1 2 3 4

S2 0.47 S6 0.43 S1 0.427 S9 0.527
S4 0.431 S8 0.345 S3 0.33 S10 0.541
S7 0.507 S11 0.381 S5 0.384 S12 0.459

Table C.7: Availability of each server at each bin.

The loss rates of each atom when they are only served with
the servers from the core regions are also calculated. These
loss rates are used to calculate interdistrict service rates of the
regions when they are used to form a compound region.

After calculating performance measures for the core regions,
we need to continue with the calculation of performance mea-
sures for the compound regions starting from the ones they are
located closest to the leafs. We can demonstrate detailed calcu-
lations on compound region 1, which is composed of two core
regions, 1 and 2.
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In compound region 1, the servers of two core regions are
regarded as servers of the same bin. Compound region 1 has
two bins with three servers: Servers 2, 4 and 7 in bin 1, and 6,
8 and 11 in bin 2. For these bins, we use the service rates per
server, which are calculated in the previous step, as intradistrict
service rates. Note that, the primary service areas of the first
and second bin are the service areas of their servers. Bin 1
takes primary service area of servers 2, 4 and 7 as its primary
service area. Secondary service area of bin 1 is composed of
atoms of bin 2 that are reachable by the servers of bin 1. Similar
assignment applies for bin 2 as well.

This new structure, 2 bins with three servers each, can be for-
mulated as a 3n AHQM. However, since servers are not exactly
at the same location, we need to slightly adjust their service
rates and state probabilities. First of all, the values given in Ta-
ble C.6 are used as intradistrict service rates. For interdistrict
service rates, average service time is calculated with the help of
loss rates of each atom in core region 2. The locations of atoms
of core region 2 and the accessible atoms of core region 2 by
the servers of core region 1 (servers 2, 4 and 7), are shown in
Fig. C.20.
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Figure C.20: The loss demand of the atoms of core region 2 (A) and core region
2’s reachable loss demand by the servers of core region 1 (B-D).

With the help of these figures, average service time and ser-
vice rates for the first two compound regions can be calculated.
The values specific to this instance can be seen in Table C.8.

service compound region
rate 1 2

bin 1 (core 1) 2 (core 2) 1 (core 3) 2 (core 4)

#
se

rv
er

s 1 1.631 1.689 2.751 1.655
2 3.292 3.400 4.494 3.421
3 4.968 5.118 6.292 5.257

Table C.8: Interdistrict service rates of the bins for compound regions 1 and 2.

Note that, these service rates are only applicable when the
atom is reachable by the servers of the bin. However, when the
servers are condensed to a bin (e.g. servers 2, 4 and 7 to bin
1), these servers are regarded identical to each other to make
the model more tractable. However, we use availability of the
servers to implement some correction calculations. To do these
calculations, for each atom, the probability for lack of service
is calculated with the help of Eq. 9. We describe how this
probability is calculated on a subset of selected atoms shown in
Fig. C.21 for different states.
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Figure C.21: Atoms selected to calculate their not having service probability.

• Atom 1 is covered by all three servers 2, 4 and 7. So as
long as there is an available server in bin 1, it takes service
in compound region 1.

• Atom 2 is covered by servers 4 and 7. If there are 2 or 3
available servers in bin 1, there is no doubt it takes service
since at least one of the two servers (or maybe both) is
available. However, if there is only one server available,
with some probability, both 4 and 7 might be unavailable.
We can use Eq. 9 use to calculate this probability:

Pn=2
a=2 =

(1 − 0.507)(1 − 0.431)
0.47 × 0.431 + 0.47 × 0.493 + 0.431 × 0.493

=
0.281
0.780

= 0.360

(C.1)

With probability 0.360, the demand of this atom is not
served when there is only one available server in bin 1 and
zero in bin 2. We consider that, 0.360 of the demand in
atom 2 is not served during states with only one available
server in bin 1 and zero in bin 2.

• Probabilities for atoms 3, 4 and 5 are estimated in a similar
way.

• Atom 6 is not reachable by any of the servers of bin 1 so
all of its demand is lost no matter how many servers exist
in bin 1 if bin 2 has no servers to serve.

We use the loss rate to deduce the demand from each atom
when 3n AHQM is applied for compound regions. Then this
deduced demand is added on top of the loss rates calculated by
3n AHQM.

service compound region 3
rate compound region 1 compound region 2

#
se

rv
er

s

1 2.020 1.608 2.019 1.597
2 3.998 3.283 4.002 3.230
3 5.939 5.000 5.962 4.887
4 7.851 6.742 7.909 6.563
5 9.736 8.499 9.845 8.255
6 11.607 10.271 11.785 9.961

Table C.9: Intra and interdistrict service rates of the bins of compound region
3.

After estimating the performance measures for the first two
compound regions (see Table C.9), we repeat the steps in merg-
ing the two compound regions to make a new region: compound
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region 3. For a compound region of two merged compound re-
gions, the steps are pretty similar. First the intra and interdis-
trict service rates are compared for the number of busy servers
in both bins. For intradistrict service rates, previous compound
regions, in this instance compound regions 1 and 2, service rates
are used. For interdistrict service rates, average service times to
serve each set of atoms is used as it is done for the core regions.

When 3n AHQM is solved for the very final compound re-
gion, we end up with the expected loss rates of each atom from
the results of this queueing model. The loss rate of each atom
can be seen in Fig. C.22. The total loss rate can be found by
summing up these values which is equal to 4.854 requests/hour
in this specific scenario. The loss rate we have calculated would
be 6.478 requests/hour if we did not do all these steps of inter-
actions.
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Figure C.22: Expected loss rates of each atom after applying MHQA to the
whole problem area.
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