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We propose a DNA sequencing scheme based on silicene nanopores. Using first principles theory,

we compute the electrical properties of such pores in the absence and presence of nucleobases.

Within a two-terminal geometry, we analyze the current-voltage relation in the presence of

nucleobases with various orientations. We demonstrate that when nucleobases pass through a pore,

even after sampling over many orientations, changes in the electrical properties of the ribbon can

be used to discriminate between bases.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4868123]

DNA sequencing (sensing the order of bases in a DNA

strand) is an essential step toward personalized medicine for

improving human health.1 Despite recent developments, con-

ventional DNA sequencing methods are still expensive and

time consuming.2 Therefore, the challenge of developing

accurate, fast, and inexpensive, fourth-generation DNA

sequencing alternatives has attracted huge scientific interest.3

All molecular based biosensors rely on a molecular recogni-

tion layer and a signal transducer, which converts specific

recognition events into optical, mechanical, electrochemical,

or electrical signals.4 Of these, electrical transduction is

potentially the fastest and least expensive, because it is com-

patible with nanoelectronics integration technologies.

However, attempts to realize such sensors based on silicon

platforms, silicon nanowires, or graphene5,6 have not yet

delivered the required level of selectivity. In this paper,

we examine the potential of the recently synthesized

two-dimensional material silicene as a platform for DNA

sequencing and demonstrate that the unique electrical prop-

erties of nanoporous silicene allow direct electrical transduc-

tion and selective sensing of nucleobases.

Silicene (Fig. 1(a)) is a recently observed one-

atom-thick crystalline form of silicon with sp2 bonded atoms
arranged in a slightly buckled honeycomb lattice structure.7–10

The synthesis of silicene nanoribbons has been demonstrated

on silver (111),8,11–13 gold (110),14 iridium (111),15 and the

zirconium diboride (0001)16 substrates. In contrast with gra-

phene, the buckling of silicene17 can open up an energy gap at

the Fermi energy EF of between 300meV
13 and 800meV,10

which can be controlled by an external perpendicular electric

field.9 Silicene12 and silicene nanoribbon edges are also

chemically stable to O2 exposure.
18

Given the compatibility of silicene with existing semi-

conductor techniques, it is natural to ask if this material can

form a platform for DNA sequencing and therefore in what

follows we examine the potential of nanoporous silicene

nanoribbons for direct electrical sensing of nucleobases.

Current technology allows the drilling of nanopores with dif-

ferent diameters down to a few angstroms in graphene,

Al2O3, and TiO2 based membranes.19 Three types of

nanopores have been presented in the literature for DNA

sensing.20 Currently available solid-state nanopore-based

strategies rely on reading the variation of an ionic current

through a surrounding fluid due to the translocation of DNA

strand through a pore in a solid state membrane.21 However,

ionic current leakage in the thin membranes, poor signal to

noise, and difficulties in controlling the speed of transloca-

tion through the pore have so far limited the development of

this technique.22 In a second approach, biological nanopores

(MspA and a-hemolysin) have been employed as recognition
sites inside the pore.23 This method overcomes key technical

problems required for real-time, high-resolution nucleotide

monophosphate detection,24 but several outstanding issues

need to be addressed, including the sensitivity of biological

nanopores to experimental conditions, the difficulty in inte-

grating biological systems into large-scale arrays, the very

small (?pA) ionic currents, and the mechanical instability of
the lipid bilayer that supports the nanopore.6,25 As a third

approach to nanopore-based sequencing, changes in the elec-

trical conductance of single-layer graphene have been used

for DNA sensing.26,27 In general, direct electrical conduct-

ance measurement is more attractive than blockade ionic cur-

rent measurement, since the response of the former is much

faster and the signal to noise is higher. However, monolayer

graphene does not show sufficient selectivity.27

Here, we propose silicene nanopores for DNA sequenc-

ing and demonstrate that the electrical conductance of sili-

cene nanoribbons containing a nanopore is selectively

sensitive to the translocation of DNA bases through the pore.

An example of a silicene nanoribbon containing a nanopore

is shown in Figure 1(b). The electrical conductance G of this
nanopore-containing silicene ribbon is computed using a

first-principles quantum transport method, implemented using

the well-established codes SIESTA28 and SMEAGOL.29 This

involves computing the transmission coefficient T(E) for
electrons of energy E passing from a source on the left to a

drain on the right through the structure shown in Figure 1(b).

To find the optimized geometry and ground state

Hamiltonian of each system, we employed the SIESTA28

implementation of density functional theory (DFT) within

the generalized gradient approximation (GGA) correlation

functional with the Perdew-Burke-Ernzerhof parameteriza-

tion (PBE). Results were found to converge with a double
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zeta polarized basis set, a plane wave cut-off energy of 250

Ry, and a maximum force tolerance of 20meV/Ang. k-point

sampling of the Brillion zone was performed by 1 ? 1 ? 20

Monkhorst–Pack grid. Using the Hamiltonian obtained from

DFT, the Green’s function of the open system (connected to

silicene leads) is constructed and the transport calculation

performed using the SMEAGOL implementation of non-

equilibrium Green’s functions.29

To use the non-equilibrium Green’s function formalism,

the Hamiltonian of the whole pore-containing ribbon is

needed, both in the presence and absence of nucleotides.

The converged profile of charge via the self-consistent DFT

loop for the density matrix implemented by SIESTA is

used to obtain this Hamiltonian. Employing the SMEAGOL

method,29 the transmission coefficient between two

lead in two terminal system is then given by: T Eð Þ
¼ TracefCR Eð ÞGRðEÞCL Eð ÞGR†ðEÞg, where CL;R Eð Þ
¼ iðPL;RðEÞ ?

P
L;R

†ðEÞÞ are the level broadening due to
the coupling between left and right electrodes and the scat-

ter,
P

L;RðEÞ are the retarded self-energies of the left and
right leads, and GR ¼ ðES? H ?PL ?

P
RÞ?1 is retarded

Green’s function, where H and S are Hamiltonian (obtained
from the DFT self-consistent loop implemented by

SIESTA) and overlap matrices, respectively.

For a perfect nanoribbon (i.e., in the absence of a nano-

pore), Figure 1(c) shows the variation of T(E) with energy.
In this case, the de Broglie waves of electrons travelling

from left to right are not scattered and T(E) is an integer
equal to the number of open scattering channels available to

right-moving electrons. The presence of a sharp feature near

the (un-gated) Fermi energy (which we define to be EF¼0) is
a consequence of the unique band structure of silicene nano-

ribbons and is associated with edge states. In the presence of

a nanopore, the resulting T(E) is shown in Figure 1(d). In

this case, electrons are scattered by the nanopore and T(E) is
reduced compared to that of the perfect ribbon. Nevertheless,

the feature near E¼0 survives.
In what follows, we compute T(E) in the presence of

each of the four bases X¼[A, C, G, T]. Of course, the result
depends on the orientation of the base within the pore and

therefore for each base X, we also consider a number (mmax)
of distinct orientations labeled m ¼1,…, mmax. The resulting
transmission coefficients are denoted TX,m(E). To achieve the
required selectivity, an appropriate signal-processing method

is required. The most appropriate method will depend on the

precise experimental setup but inevitably will involve inter-

rogating TX,m(E) over a range of energies. An example of
such a signal processing method, we examine the following

quantity, which can be measured using two-probe geome-

tries, such as that shown in Figure 1(b)

bX;m Vð Þ ¼ log10 IX;m Vð Þ? ?
? log10 Ibare Vð Þð Þ; (1)

where IX,m(V) is the current through the device at voltage
V, in the presence of nucleobase X, with orientation m,
defined by

IX;m Vð Þ ¼ 2e

h

ðEFþeV
2

EF?eV
2

dE TX;mðEÞ: (2)

In Eq. (1), the quantity Ibare(V) is the current through the
“bare” device in the absence of any nucleobase. The proba-

bility distribution of the set {bX,m(V)} for a given base X is
then defined by

PX bð Þ ¼ 1

mmax eVmax ? eVminð Þ
Xmmax

n¼1

ðeVmax
eVmin

dV dðb ? bX;mðVÞÞ:

(3)

FIG. 1. (a) Silicene molecular structure (b) Molecular structure of monolayer Silicene Nanopore with hydrogen termination in the edges, (c) Transmission

coefficient Tbare(E) from left lead to the right lead in the absence of a pore (perfect silicene nanoribbon). (d) Transmission coefficient Tbare(E) from left lead to

the right lead in the presence of a pore. (e) For comparison with Figure 2(b), this figure shows a graph of log10 Tbare(E), obtained by plotting Figure 1(d) on a

log scale.
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Alternative discriminators (i.e., three-terminal device) can

also be envisaged, depending on the precise experimental

configuration of source, drain, and possibly gate electrodes,

as discussed in the supplementary material.30

The nanopore of Figure 1(b) has a diameter of 1.7 nm

and is created in a zigzag silicene nanoribbon of width

3.2 nm. The edges of the ribbon and the pore are terminated

by hydrogen and the structure relaxed to achieve its ground

state energy as explained above. We now consider the trans-

mission coefficient of the nanopore upon translocation of

nucleotides inside the pore. For each nucleobase, results are

presented for mmax¼4 different orientations. Figure 2(a)

shows four orientations of the nucleobase adenine (X¼A),
inside a silicene pore. The positions and orientations within

the pore are obtained by starting from an initial position and

orientation and then relaxing the whole structure using the

SIESTA implementation of density functional theory. The

local geometry of both the surrounding silicene and hydro-

gen terminations are also relaxed. The resulting structures

reveal that all bases are attracted to the surface of the pore,

rather than residing near the centre. Once the local energy

minima are achieved, the underlying mean field Hamiltonian

is used to compute the scattering matrix for de Broglie waves

travelling from left to right and from the scattering matrix,

the transmission coefficient TAm(E) is obtained. For each of
the adenine-containing pores shown in Figure 2(a), Figure

2(b) shows the corresponding plots of TAm(E). These are
used to obtain IAm(V) via Eq. (2) and are combined with
Ibare(V) (obtained from Tbare(E) of Figures 1(d) or 1(e)) to
yield bX,m(V) for X¼A.

Figure 2(b) shows that there are slight differences in the

transmissions coefficients for different orientations. When

combined together, these lead to the probability distribution

PA(b) shown in Figure 2(c). The changes in transmission
coefficients shown in Figure 2(b) (compared with Fig 1(d))

arise from both pi-pi interactions between the adenine and

the pore surface states and through electrostatic interactions

with the inhomogeneous charge distribution of the nucleo-

base. These interactions are different for the four bases and

ultimately underpin the selectivity demonstrated below.

Results for the remaining three bases thymine (X¼T), gua-
nine (X¼G) and cytosine (X¼C) are shown in Figures
S1–S3 of the supplementary material.30

Clearly, the transmission coefficients depend on the

position and orientation of the nucleobase and therefore the

key issue is whether or not this dependency restricts the abil-

ity to selectively sense nucleobases within the pore. Figure 3

demonstrates that despite the sensitivity to position and ori-

entation, selective sensing is preserved. For each of the

nucleobases, Figure 3 shows plots of the quantity Px(b)
defined in Eq. (3). Clearly, the presence of well-separated

peaks demonstrates that through an appropriate signal proc-

essing method, the bases can be selectively detected. The

heights and positions of the peaks are different for a given

base and either of them could be used to select and recognize

the base type. This figure demonstrates the excellent poten-

tial of silicene nanopores for DNA sequencing.

In summary, silicene is a material, whose potential

applications are only now beginning to be explored.

Compared with other two-dimensional materials, it has the

immediate advantage of being compatible with existing sili-

con CMOS technologies. We have performed first principles

calculations combined with quantum scattering theory to

demonstrate that with appropriate signal processing,

silicene-based nanopore sensing offers a potential route to

selective sensing of DNA nucleobases. Such a sensing plat-

form is a direct electrical sensor and opens the avenues

towards fast, cheap, and portable DNA sequencing. In prac-

tice, there is likely to be variability in pore sizes and shapes

and each pore would need to be calibrated prior to use. In

this regard, CMOS compatibility is again advantageous,

since the potential to create millions of sensors on a single

chip, integrated into the necessary control electronics will

allow this process can be automated. Furthermore, the avail-

ability of arrays of nanopores will potentially allow addi-

tional refinements in signal processing, leading to further

increases in sensitivity and selectivity.

FIG. 2. (a) shows four relaxed geome-

tries and orientations labeled m¼ 1, 2,
3, 4 of adenine (X¼A) within a sili-
cene nanopore. Figs (b) and (c) show

the corresponding plots of TA,m(E) and
the probability distribution PX(b). The
insets in Fig. 2(b) show magnifications

of the band-edge structure. The maxi-

mum voltage employed in the calcula-

tion is 0.55V; meaning that the voltage

window is [?0.55 0.55] V.

FIG. 3. The probability distribution PX(b) of the set {bX,m} is shown for a
given base X, where X¼A in black, C in red, G in blue, and T in green. The
maximum voltage employed in the calculation is 0.55V; meaning that the

voltage window is [?0.55 0.55] V.
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