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Abstract

We present a novel Bayesian approach to analysing multiple time-series with the aim
of detecting abnormal regions. These are regions where the properties of the data change
from some normal or baseline behaviour. We allow for the possibility that such changes
will only be present in a, potentially small, subset of the time-series. We develop a
general model for this problem, and show how it is possible to accurately and efficiently
perform Bayesian inference, based upon recursions that enable independent sampling
from the posterior distribution. A motivating application for this problem comes from
detecting copy number variation (CNVs), using data from multiple individuals. Pooling
information across individuals can increase the power of detecting CNVs, but often a
specific CNV will only be present in a small subset of the individuals. We evaluate the
Bayesian method on both simulated and real CNV data, and give evidence that this
approach is more accurate than a recently proposed method for analysing such data.

Keywords: BARD, Changepoint Detection, Copy Number Variation, PASS

1 Introduction

In this paper we consider the problem of detecting abnormal (or outlier) segments in mul-
tivariate time series. We assume that the series has some normal or baseline behaviour but
that in certain intervals or segments of time a subset of the dimensions of the series has some
kind of altered or abnormal behaviour. By the term abnormal behaviour we mean some
change in distribution of the data away from the baseline distribution. For example, this
could include a change in mean, variance, auto-correlation structure. In particular our work
is concerned with situations where the size of this subset is only a small proportion of the
total number of dimensions. We attempt to do this in a fully Bayesian framework.

This problem is increasingly common across a range of applications where the detection of
abnormal segments (sometimes known as recurrent signal segments) is of interest (particu-
larly in high dimensional and/or very noisy data). Some example applications include the
analysis of the correlations between sensor data from different vehicles (Spiegel et al., 2011)
or for intrusion detection in large interconnected computer networks (Qu et al., 2005). An-
other related application involves detecting common and potentially more subtle objects in a
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number of images, for example Jin (2004) and the references therein look at this in relation
to multiple images taken of astronomical bodies.

We will focus in particular on one specific example of this type of problem, namely that of
detecting copy number variants (CNV’s) in DNA sequences. A CNV is a type of structural
variation that results in a genome having an abnormal (generally 6= 2) number of copies of
a segment of DNA, such as a gene. Understanding these is important as these variants have
been shown to account for much of the variability within a population. For a more detailed
overview of this topic see Zhang (2010); Jeng et al. (2013) and the references therein.

Data on CNVs for a given cell or individual is often in the form of “log-R ratios” for a range
of probes, each associated with different locations along the genome. These are calculated as
log base 2 of the ratio of the measured probe intensity to the reference intensity for a given
probe. Normal regions of the genome would have log-R ratios with a mean of 0, whereas
CNVs would have log-R ratios with a mean that is away from zero.

Figure 1 gives an example of such data from 6 individuals. We can see that there is substantial
noise in the data, and each CNV may cover only a relatively small region of the genome. Both
these factors mean that it can be difficult to accurately detect CNVs by analysing data from
a single individual or cell. To increase the power to identify CNVs we can pool information
by jointly analysing data from multiple individuals. However this is complicated as a CNV
may be observed for only a subset of the individuals. For example, for the data in Figure 1,
which shows data from a small portion of chromosome 16, we have identified a single CNV
which affects only the first two individuals. This can see by the raised means (indicated by
the red lines) in these two series for a segment of data. By comparison, the other individuals
are unaffected in this segment.

Whilst there has been substantial research into methods for detecting outliers (Tsay et al.,
2000; Galeano et al., 2006) or abrupt changes in data (Olshen et al., 2004; Jandhyala et al.,
2013; Wyse et al., 2011; Frick et al., 2014), the problem of identifying outlier regions in just
a subset of dimensions has received less attention. Exceptions include methods described in
Zhang et al. (2010) and Siegmund et al. (2011). However Jeng et al. (2013) argue that these
methods are only able to detect common variants, that is abnormal segments for which a
large proportion of the dimensions have undergone the change. Jeng et al. (2013) propose a
method, the PASS algorithm, which is also able to detect rare variants.

The methods of Siegmund et al. (2011) and Jeng et al. (2013) are based on defining an
appropriate test-statistic for whether a region is abnormal for a subset of dimensions, and
then recursively using this test-statistic to identify abnormal regions. As such the output of
these methods is a point estimate of the which are the abnormal regions. Here we introduce
a Bayesian approach to detecting abnormal regions. This is able to both give point estimates
of the number and location of the abnormal regions, and also to give measures of uncertainty
about these. We show how it is possible to efficiently simulate from the posterior distribution
of the number and location of abnormal regions, through using recursions similar to those
from multiple changepoint detection (Barry and Hartigan, 1992; Fearnhead, 2006; Fearnhead
and Vasileiou, 2009). We call the resulting algorithm, Bayesian Abnormal Region Detector
(BARD).

The outline of the paper is as follows. In the next section we introduce our model, both for
the general problem of detecting abnormal regions, and also for the specific CNV application.
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Figure 1: Log-R ratios from 6 individuals for a small portion of chromosome 16. We indicate
the baseline level (mean zero) by a horizontal line in blue and the identified CNV (abnormal
region) is highlighted between two vertical black lines with the mean of the affected indi-
viduals in red. For this CNV only the first two individuals (NA10851 and NA12239) are
affected.

In Section 3 we derive the recursions that enable us to draw iid samples from the posterior, as
well as a simple approximation to these recursions that results in an algorithm, BARD, that
scales linearly with the length of data set. We then evaluate BARD for the CNV application
on both simulated and real data. Our results suggest that BARD is more accurate than
PASS, particularly in terms of having fewer fales positives. Furthermore, we see evidence
that posterior probabilities are well-calibrated and hence are accurately representing the
uncertainty in the inferences. The paper ends with a discussion.

2 The Model

We shall now describe the details of our model. Consider a multiple time series of dimension
d and length n, Y1:n = (Y1,Y2, . . . ,Yn) where Yi = (Yi,1, Yi,2, . . . , Yi,d)

T . We model this
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data through introducing a hidden state process, X1:n. The hidden state process will contain
information about where the abnormal segments of the data are. Our model is defined
through specifying the distribution of the hidden state process, p(x1:n), and the conditional
distribution of the data given the state process, p(y1:n|x1:n). These are defined in Sections
2.1 and 2.2 respectively.

Our interest lies in inference about this hidden state process given the observations. This
involves calculating the posterior distribution for the states

p(x1:n|y1:n) ∝ p(x1:n,y1:n) = p(x1:n)p(y1:n|x1:n). (2.1)

It should be noted that these probabilities will depend on a set of hyper-parameters. These
parameters are initially assumed to be known, however we will later discuss performing
inference for them.

2.1 Hidden State Model

The hidden state process will define the location of the abnormal segments. We will model
the location of these segments through a renewal process. The length of a given segment
is drawn from some distribution which depends on the segment type, and is independent of
all other segment lengths. We assume a normal segment is always followed by an abnormal
segment, but allow for either a normal or abnormal segment to follow an abnormal one. The
latter is because each abnormal segment may be abnormal in a different way, for example
with different subsets of the time-series being affected. This will become clearer when we
discuss the likelihood model in Section 2.2.

To define such a model we need distributions for the lengths of normal and abnormal seg-
ments. We denote the cumulative distribution functions of these lengths by GN(t) and GA(t)
respectively. We also need to specify the probability that an abnormal segment is followed
by either a normal or abnormal segment. We denote these probabilities as πN and πA re-
spectively, with πN = 1− πA.

Note that the first segment for the data will have a different distribution to other segments as
it may have started at some time prior to when we started collecting data. We can define this
distribution in a way that is consistent with our underlying model by assuming the process for
the segments is at stationarity and that we start observing it at an arbitrary time. Renewal
theory (Cox, 1962) then gives the distribution function for the length of the first segment. If
the first segment is normal, then we define its cumulative distribution function as

G0N(t) =
t∑

s=1

1−GN(s)

EN
,

where EN is the expected length of a normal segment. The cumulative distribution function
for the first segment conditional on it being abnormal, G0A(t), is similarly defined.

Formally, we define our hidden state process Xt as Xt = (Ct, Bt) where Ct is the end of
the previous segment prior to time t and Bt is the type of the current segment. So Ct ∈
{0, . . . , t − 1} with Ct = 0 denoting that the current segment is the first segment. We use
the notation that Bt = N if the current segment is normal, and Bt = A if not. This state
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process is Markov, and thus we can write

p(x1:n) = p(c1:n, b1:n)

= Pr(C1 = c1, B1 = b1)
n−1∏
i=1

Pr(Ci+1 = ci+1, Bi+1 = bi+1|Ci = ci, Bi = bi).
(2.2)

The decomposition in (2.2) gives us two aspects of the process to define, namely the transition
probabilities Pr(Ci+1 = ci+1, Bi+1 = bi+1|ci, bi) and the initial distribution, Pr(C1 = c1, B1 =
b1).

Firstly consider the transition probabilities. Now either Ct+1 = Ct or Ct+1 = t depending on
whether a new segment starts between time t and t + 1. The probability of a new segment
starting is just the conditional probability of a segment being of length t − Ct given that is
at least t−Ct. If Ct+1 = Ct, then we must have Bt+1 = Bt, otherwise the distribution of the
type of the new segment depends on the type of the previous segment as described above.

Thus for i = 1, . . . , t− 1 we have

Pr(Ct+1 = j, Bt+1 = k|Ct = i, Bt = N) =


1−GN (t−i)

1−GN (t−i−1) if j = i and k = N ,
GN (t−i)−GN (t−i−1)

1−GN (t−i−1) if j = t and k = A,

0 otherwise,

Pr(Ct+1 = j, Bt+1 = k|Ct = i, Bt = A) =



1−GA(t−i)
1−GA(t−i−1) if j = i and k = A,

πA

(
GA(t−i)−GA(t−i−1)

1−GA(t−i−1)

)
if j = t and k = A,

πN

(
GA(t−i)−GA(t−i−1)

1−GA(t−i−1)

)
if j = t and k = N ,

0 otherwise.

(2.3)

For i = 0, that is when Ct = 0, we replace GN(·) and GA· with G0N(·) and G0A(·) respectively.

Finally we need to define the initial distribution for X1 = (B1, C1). Firstly note that C1 = 0
so we need only the distribution of B1. We define this as the stationary distribution of the
Bt process. This is (see for example Theorem 5.6 of Kulkarni, 2012)

Pr(B1 = N) =
πNEN

πNEN + EA
, Pr(B1 = A) = 1− Pr(B1 = N),

where EN and EA are the expected lengths of normal and abnormal segments respectively.

2.2 Likelihood model

The hidden process X1:n described above partitions the time interval into contiguous non-
overlapping segments each of which is either normal, N , or abnormal, A. Now conditional
on this process we want to define a likelihood for the observations, p(y1:n|x1:n).

To make this model tractable we assume a conditional independence property between seg-
ments, this means that if we knew the locations of segments and their types then data from
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different segments are independent. Thus when we condition on Ct and Bt the likelihood for
the first t observations factorises as follows

p(y1:t|Ct = j, Bt) = p(y1:j|Ct = j, Bt)p(yj+1:t|Ct = j, Bt). (2.4)

The second term in equation (2.4) is the marginal likelihood of the data, Yj+1:t, given it
comes from a segment that has type Bt. We introduce the following notation for these
segment marginal likelihoods, where for s ≥ t,

PN(t, s) = Pr(yt:s|Cs = t− 1, Bs = N),

PA(t, s) = Pr(yt:s|Cs = t− 1, Bs = A),
(2.5)

and define PN(t, s) = 1 and PA(t, s) = 1 if s < t.

Now using the above factorisation we can write down the likelihood conditional on the hidden
process. Note that we can condition on Xt rather than the full history X1:n in each of the
factors in (2.6) due to the conditional independence assumption on the segments

p(y1:n|x1:n) =
n∏
t=1

p(yt|x1:n,y1:(t−1))

=
n∏
t=1

p(yt|Ct, Bt,y(Ct+1):(t−1)).

(2.6)

The terms on the right-hand side of equation (2.6) can then be written in terms of the
segment marginal likelihoods

p(yt|Ct, Bt,y(Ct+1):(t−1)) =
PBt(Ct + 1, t)

PBt(Ct + 1, t− 1)
. (2.7)

Thus our likelihood is specified through defining appropriate forms for the marginal likeli-
hoods for normal and abnormal segments.

2.2.1 Model for data in normal segments

For a normal segment we model that the data for all dimensions of the series are realisations
from some known distribution, D, and these realisations are independent over both time and
dimension. Denote the density function of the distribution D as fD(·). We can write down
the segment marginal likelihood as

PN(t, s) =
d∏

k=1

s∏
i=t

fD(yi,k). (2.8)

2.2.2 Model for data in abnormal segments

For abnormal segments our model is that data for a subset of the dimensions are drawn
from D, with the data for the remaining dimensions being independent realisations from a
different distribution, Pθ, which depends on a segment specific parameter θ. We denote the
density function for this distribution as fP(·|θ).
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Our model for which dimensions have data drawn from Pθ is that this occurs for dimension
k with probability pk, independently of the other dimensions. Thus if we have an abnormal
segment with data Yt:s, with segment parameter θ, the likelihood of the data associated with
the kth dimension is

pk

s∏
i=t

fP(yi,k|θ) + (1− pk)
s∏
i=t

fD(yi,k).

Thus by independence over dimension

p(yt:s|θ) =
d∏

k=1

(
pk

s∏
i=t

fP(yi,k|θ) + (1− pk)
s∏
i=t

fD(yi,k)

)
.

Our model is completed by a prior for θ, π(θ). To find the marginal likelihood PA(t, s) we
need to integrate out θ from p(yt:s|θ)

PA(t, s) =

∫
p(yt:s|θ)π(θ) dθ. (2.9)

In practice this integral will need to be calculated numerically, which is feasible if θ is low-
dimensional.

2.2.3 CNV example

In Section 1 we discussed the copy number variant (CNV) application and showed some real
data in Figure 1. From the framework described above we now need to specify a model for
normal and abnormal segments. Following Jeng et al. (2013) we model the data as being
normally distributed with constant variance but differing means either zero or µ depending on
whether we are in a normal or abnormal segment. This model also underpins the simulation
studies that we present in Section 4.

Using the notation from the more general framework discussed above the two distributions
for normal and abnormal segments are

D ∼ N(0, σ2)

Pµ ∼ N(µ, σ2).

We assume that the variance σ2 is constant and known (in practice we would be able to
estimate it from the data).

Having specified these two distributions we then need to calculate marginal likelihoods for
normal and abnormal segments given by equations (2.8) and (2.9) respectively. Calculating
the marginal likelihood for a normal segment is simple because of independence over time and
dimension as shown in equation (2.8). However calculating PA(·, ·) is more challenging, as
there is no conjugacy between p(y|µ) and π(µ) so we can only numerically approximate the
integral. Calculating the numerical approximation is fast as it is a one-dimensional integral.

In the simulation studies and results we take the prior for µ to be uniform on a region that
excludes values of µ close to zero. For CNV data such a prior seems reasonable empirically
(see Figure 2c) and also because we expect CNV’s to correspond to a change in mean level
of at least log(3/2) and can be both positive or negative.
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3 Inference

We now consider performing inference for the model described in Section 2. Firstly a set of re-
cursions to perform this task exactly are introduced and then an approximation is considered
to make this procedure computationally more efficient.

3.1 Exact On-line inference

We follow the method of Fearnhead and Vasileiou (2009) in developing a set of recursions for
the posterior distribution of the hidden state, the location of the start of the current segment
and its type, at time t given that we have observed data upto time t, p(xt|y1:t) = p(ct, bt|y1:t),
for t ∈ {1, 2, . . . , n}. These are known as the filtering distributions. Eventually we will be
able to use these to simulate from the full posterior, p(x1:n|y1:n).

To find these filtering distribution we develop a set of recursions that enable us to calculate
p(ct+1, bt+1|y(1:t+1)) in terms of p(ct, bt|y1:t). These recursions are analogous to the forward-
backward equations widely used in analysing Hidden Markov models.

There are two forms of these recursions depending on whether Ct+1 = j for j < t or Ct+1 = t.
We derive the two forms separately. Consider the first case. For j < t and k ∈ {N,A},

p(Ct+1 = j, Bt+1 = k|y1:(t+1)) ∝ p(yt+1|y1:t, Ct+1 = j, Bt+1 = k)p(Ct+1 = j, Bt+1 = k|y1:t)

=

(
Pk(j + 1, t+ 1)

Pk(j + 1, t)

)
Pr(Ct+1 = j, Bt+1 = k|Ct = j, Bt = k)p(Ct = j, Bt = k|y1:t),

where the first term in the last expression is the conditional likelihood from equation (2.7).
The second two terms use the fact that there has not been a new segment and hence Ct+1 = Ct
and Bt+1 = Bt.

Now for the second case, when Ct+1 = t,

p(Ct+1 = t, Bt+1 = k|y1:t)

=
t−1∑
i=0

∑
l∈{N,A}

p(Ct = i, Bt = l|y1:t) Pr(Ct+1 = t, Bt+1 = k|Ct = i, Bt = l).

Thus, as p(yt+1|Ct+1 = t, Bt+1 = k,y1:t) = Pk(t+ 1, t+ 1), the filtering recursion is;

p(Ct+1 = t, Bt+1 = k|y1:(t+1)) ∝

Pk(t+ 1, t+ 1)
t−1∑
i=0

∑
l∈{N,A}

p(Ct = i, Bt = l|y1:t) Pr(Ct+1 = t, Bt+1 = k|Ct = i, Bt = l).

These recursions are initialised by p(C1 = 0, B1 = k|y1) ∝ Pr(B1 = k)Pk(1, 1) for k ∈ {N,A}.

3.2 Approximate Inference

The support of the filtering distribution p(ct, bt|y1:t) has 2t points. Hence, calculating
p(ct, bt|y1:t) exactly is of order t both in terms of computational and storage costs. The
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cost of calculating and storing the full set of filtering distributions t = 1, 2, . . . , n is thus of
order n2. For larger data sets this exact calculation can be prohibitive. A natural way to
make this more efficient is to approximate each of the filtering distributions by distributions
with a fewer number of support points. In practice such an approximation is feasible as many
of the support points of each filtering distribution have negligible probability. If we removed
these points then we could greatly increase the speed of our algorithm without sacrificing too
much accuracy.

We use the stratified rejection control (SRC) algorithm (Fearnhead and Liu, 2007) to produce
an approximation to the filtering distribution with potentially fewer support points at each
time-point. This algorithm requires the choice of a threshold, α ≥ 0. At each iteration the
SRC algorithm keeps all support points which have a probability greater than α. For the
remaining particles the probability of them being removed is proportional to their associated
probability and the resampling is done in a stratified manner. This algorithm has good
theoretical properties in terms of the error introduced at each resampling step, measured by
the Kolmogorov Smirnov distance, being bounded by α.

3.3 Simulation

Having calculated and stored the filtering distributions, either exactly or approximately, sim-
ulating from the posterior is straightforward. This is performed by simulating the hidden
process backwards in time. First we simulate Xn = (Cn, Bn) from the final filtering distribu-
tion p(cn, bn|y1:n). Assume we simulate Cn = t. Then, by definition of the hidden process,
we have Cs = t and Bs = Bn for s = t + 1, . . . , n − 1, as these time-points are all part of
the same segment. Thus we next need to simulate Ct, from its conditional distribution given
Ct+1, Bt+1 and Y1:n,

p(ct, bt|Ct+1 = t, Bt+1,y1:n)

∝ p(ct, bt, Ct+1 = t, Bt+1,y1:n)

= p(ct, bt) Pr(Ct+1 = t, Bt+1|Ct, Bt)p(y1:n|Ct, Bt, Ct+1 = t, Bt+1)

∝ p(ct, bt) Pr(Ct+1 = t, Bt+1|Ct, Bt)p(y1:t|Ct, Bt)

∝ p(ct, bt|y1:t) Pr(Ct+1 = t, Bt+1|Ct, Bt).

We then repeat this process, going backwards in time until we simulate Ct = 0. From the
simulated values we can extract the location and type of each segment.

3.4 Hyper-parameters

As mentioned earlier in Section 2 the posterior of interest (2.1) depends upon a vector of
hyper-parameters which we now label as Ψ. Specifically Ψ contains the parameters for the
LOS distributions for the two differing types of segments which determine the cdf’s GN(·)
and GA(·).
We use two approaches to estimating these hyper-parameters. The first is to maximise
the marginal-likelihood for the hyper-parameters, which we can do using Monte Carlo EM
(MCEM). For general details on MCEM see Levine and Casella (2001).Although convergence
of the hyper-parameters is quite rapid in the examples we look at in Section 4, for very large
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data sets a cruder but faster alternative is to initially segment the data using a different
method to ours and then use information from this segmentation to inform the choice of
hyper-parameter values. The alternative method we use is the PASS method of Jeng et al.
(2013) and discussed in detail in Section 4.

3.5 Estimating a Segmentation

We have described how to calculate the posterior density p(x1:n|y1:n) from which we can
easily draw a large number of samples. However we often want to report a single estimated
“best” segmentation of the data. We can define such a segmentation using Bayesian decision
theory (Berger, 1985). This involves defining a loss function which determines the cost of
us making a mistake in our estimate of the true quantity which we then seek to minimise.
There are various choices of loss function we could use (see Yau and Holmes, 2010), but we
use a loss that is a sum of a loss for estimating whether each location is abnormal or not. If
L(b̃t|bt) gives the cost of making the decision that the state at time t is b̃t when in fact it is
bt, then:

L(b̃t|bt) =


1 if b̃t = A and bt = N

γ if b̃t = N and bt = A

0 otherwise

(3.1)

The inclusion of γ allows us to vary the relative penalty for false positives as compared to
false negatives. Under this loss we estimate b̂t = N if π(bt = A) < 1/(1 + γ) or b̂t = A
otherwise.

4 Results

We call the method introduced in Sections 2 and 3 BARD: Bayesian Abnormal Region
Detector. We now evaluate BARD on both simulated and real CNV data. Our aim is to
both investigate its robustness to different types of model mis-specification, and to compare
its performance with a recently proposed method for analysing such CNV data.

The simulation studies we present are based on the concrete example in Section 2.2.3, namely
the change in mean model for Normally distributed data. For inference we assume that
the LOS distributions, SN and SA, to be Negative binomial and the prior probability of
a particular dimension k being abnormal pk as the same for all k = {1, 2, . . . , d}. For all
the simulation studies we present we used MCEM on a single replicate of the simulated
data set to get estimates for the hyper-parameters for the LOS distribution, but fixed pk.
Data for normal segments are IID standard Gaussian, and for abnormal segments data from
dimensions that are abnormal are Gaussian with variance 1 but mean µ drawn from some
prior π(µ). Below we consider the effect of varying the choice of prior used for simulating the
data and that assumed within BARD. In implementing BARD we used the SRC method of
resampling described in Section 3.2 with a value of α = 10−4, we found this value of α gave
a good trade off between accuracy and computational cost.

To get an explicit segmentation from BARD we use the asymmetric loss function (3.1) with
a value of γ = 1/3.
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As a benchmark for comparison we also analyse all data sets using the Proportion Adap-
tive Segment Selection procedure (PASS) from Jeng et al. (2013). This was implemented
using an R package called PASS which we obtained from the authors website. At its most
basic level the PASS method involves evaluating a test statistic for different segments of the
data. After these evaluations the values of the statistic that exceed a certain pre-specified
threshold are said to be significant and the segments that correspond to these values are the
identified abnormal segments. This threshold is typically found by simulating data sets with
no abnormal segments and then choosing the threshold which gives a desired type 1 error,
here we take this error to be 0.05 in the simulation studies. The PASS algorithm considers
all segments that are shorter than a pre-defined length. To avoid excessive computational
costs this length should be as small as possible, but at least as large as the longest abnormal
segment we wish to detect (or believe exists in the data).

We found that a run of PASS was about twice as fast as one run of BARD. In order to
estimate the hyper-parameters using MCEM took between 5 and 20 runs of BARD.

Evaluating a segmentation

To form a comparison between the two methods we must have some way of evaluating the
quality of a particular segmentation with respect to the ground truth. We consider the three
most important criteria to be the number of true and false positives and the accuracy in
detecting the true positives.

We define a segment to be correctly identified or a true positive if it intersects with the
true segment. With this definition in mind then finding the true/false positives is simple.
To define the accuracy of an estimated segment compared to the truth it is most intuitive
to measure the amount of “overlap” of the segments, this is captured by the dissimilarity
measure Dk (4.1) defined in Jeng et al. (2013).

Let Î be the collection of estimated intervals, the accuracy of estimating the kth true segment
Ik is given by Dk

Dk = min
Îj∈Î

1− |Îj ∩ Ik|√
|Îj||Ik|

 (4.1)

Dk ∈ [0, 1], if Dk = 0 then an estimated interval overlaps exactly with segment Ik however if
Dk = 1 then no estimated intervals overlap with the kth segment, i.e. it hasn’t been detected.
Smaller values of D indicate a greater overlap.

4.1 Simulated Data from the Model

Firstly we analysed data simulated from the model assumed by BARD. A soft maximum on
the length of the simulated data of n = 1000 was imposed and the number of dimensions
fixed at d = 200. The LOS distributions were

SN ∼ NBinom(10, 0.1) and SA ∼ NBinom(15, 0.3).

Two different distributions were used to generate the altered means for the affected dimen-
sions and we also varied πN (see Table 1), and for each scenario we implemented the Bayesian
method with the correct prior for the abnormal mean, and the correct chocie of πN . The
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number of affected dimensions for each abnormal segment was fixed at 4% and we fixed pk
to this value. For each scenario we considered we generated 200 data sets.

µ πN Method Proportion detected Accuracy False positives

PASS (0.66,0.70) (0.11,0.13) (0.68,0.93)
U(0.3, 0.7) 0.5

BARD (0.87,0.89) (0.070,0.084) (0.04,0.12)

PASS (0.66,0.71) (0.12,0.14) (0.90,1.19)
0.8

BARD (0.75,0.78) (0.081,0.093) (0.03,0.09)

PASS (0.91,0.93) (0.070,0.077) (0.93,1.22)
U(0.5, 0.9) 0.5

BARD (0.98,0.99) (0.035,0.042) (0.01,0.06)

PASS (0.93,0.95) (0.069,0.076) (0.88,1.17)
0.8

BARD (0.95,0.97) (0.040,0.045) (0.00,0.04)

Table 1: Scenarios differed in the prior for µ and the value of πN used to simulate the data.
In BARD these same priors were used for the analysis of the data. The results are based on
200 simulated data sets for each scenario and the intervals given are 95% confidence intervals
calculated using 1000 bootstrap replicates.

Results summarising the accuracy of the segmentations obtained by the two methods are
shown in Table 1. BARD performed substantially better than PASS here especially with
regards to the number of false positives each method found, though this is in part because
all the modelling assumptions within BARD are correct for these simulated data sets. It is
worth noting that both methods do much better when µ ∼ U(0.5, 0.9) due to the stronger
signal present.

pk Proportion detected Accuracy False positives
1

200
(0.63,0.67) (0.086,0.10) (0.005,0.06)

4
200

(0.74,0.78) (0.086,0.10) (0.05,0.12)
8

200
(0.75,0.78) (0.081,0.093) (0.03,0.09)

12
200

(0.74,0.78) (0.083,0.096) (0.03,0.095)
16
200

(0.72,0.76) (0.084,0.098) (0.03,0.09)
20
200

(0.70,0.74) (0.088,0.102) (0.02,0.08)

Table 2: The robustness of BARD under a misspecification of pk taking the prior as µ ∼
U(0.3, 0.7) and πN = 0.8 with the true value of pk being 4%. Values of pk were varied between
0.5% and 10% and we simulated 200 data sets for each pk.

We next investigated how robust the results were to our choice for pk. We just consider
µ ∼ U(0.3, 0.7) and πN = 0.8 and we vary our choice of pk from 0.5% to 10%. These results
are in table 2. Whilst, as expected, if we take pk to be the true value for the data we get
the best segmentation, the results are clearly robust to mis-specification of pk. In all cases
we still achieve much higher accuracy and fewer false positives than PASS. Apart from the
choice pk = 1/200 we also have a higher proportion of correctly detected CNVs than PASS.
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We also investigated the robustness to mis-specification of the model for the LOS distribution,
and for the distribution of the mean of the abnormal segments. We fixed the position of five
abnormal segments at the following time points 200, 300, 500, 600 and 750. Additionally
the segments at 200 and 750 were followed by another abnormal segment. Thus we have
seven abnormal segments in total. The true LOS distribution for the abnormal segments are
in fact Poisson with intensity randomly chosen from the set {20, 25, 30, 35, 40}. For these
abnormal segments the mean value that affected the dimensions was drawn from a Normal
distribution with differing means and a fixed variance shown in Table 3. The number of
affected dimensions for each of the abnormal segments was also varied randomly from 3-6%
of the total number of dimensions (d = 200). For inference, we fixed pk to 4% for all k
and we set the prior for the abnormal mean to be uniform on (−0.7,−0.3) ∪ (0.3, 0.7). Our
model for the LOS distribution were negative binomials, with MCEM used to estimate the
hyper-parameters of these distributions.

µ Method Proportion detected Accuracy False positives

PASS (0.78,0.82) (0.056,0.068) (1.15,1.41)
N(0.8, 0.42)

BARD (0.82,0.86) (0.048,0.059) (0.02,0.07)

PASS (0.74,0.78) (0.069,0.084) (1.05,1.33)
N(0.7, 0.42)

BARD (0.78,0.82) (0.060,0.073) (0.01,0.07)

PASS (0.66,0.71) (0.079,0.095) (1.08,1.37)
N(0.6, 0.42)

BARD (0.70,0.75) (0.061,0.072) (0.03,0.09)

PASS (0.60,0.65) (0.089,0.11) (1.06,1.37)
N(0.5, 0.42)

BARD (0.62,0.68) (0.075,0.093) (0.02,0.08)

PASS (0.51,0.56) (0.10,0.13) (0.92,1.22)
N(0.4, 0.42)

BARD (0.55,0.61) (0.084,0.10) (0.03,0.10)

Table 3: Results based on 200 simulated data sets as we vary the distribution from which µ
was simulated from but keeping the prior π(µ) in BARD uniform. 95% confidence intervals
for the means were calculated using 1000 bootstrap replicates.

From Table 3 it can be seen that BARD still outperforms PASS especially in regards to
accuracy and the number of false positives. The performance of BARD also shows that it is
robust to a misspecification of both the LOS distributions and the distribution from which µ
was drawn from as we kept the prior in BARD the same. The performance of both methods
was impacted by the decreasing mean of the Normal distributions from which µ was drawn
as more of them became close to zero and thus abnormal segments became indistinguishable
from normal segments.

4.2 Simulated CNV Data

We now make use of the CNV data presented in the Section 1, to obtain a more realistic model
to simulate data from. We used the PASS method to initially segment one replicate of the
data, and then analysed this segmentation to obtain information about the LOS distributions
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and the distributions that generate the data in both normal and abnormal segments.

In Figure 2 we plot some of the empirical data from the segmentation given by PASS. To
simulate data sets we either fitted distributions to these quantities or sampled from their
empirical distributions. Firstly if we consider the two LOS distributions then for normal
segments, see Figure 2b, we found that a geometric distribution fitted the data well. For
the abnormal LOS distribution we took a discrete uniform distribution on {1, 2, . . . , 200}.
This was partly due to us having specified a maximum abnormal segment length of 200 in
the PASS method but is potentially realistic in practice as abnormal segments longer than
200 time points are unlikely to occur. To support this choice we plot the empirical cdf of
the ordered data and a straight line which are the quantiles of the uniform distribution we
propose. We can see that although the fit is not perfect, this is probably due to the small
sample size.

Now consider the distributions that generate the actual observations, we can think of these
in two parts, one of them being a distribution for the “noise” in normal segments (Figure 2d)
and then the mean shift parameter for the abnormal segments (Figure 2c). Up until now we
have taken this noise distribution to be standard Normal, however the data suggests that in
reality it has heavier tails than the Normal distribution. We found that a t-distribution with
15 degrees of freedom was a better fit to the data so we simulated from this for the noise
distribution. For the mean shift parameter µ we took abnormal segments found by the PASS
method and looked at the means of each of the dimensions and took the affected dimensions
only, this gave the histogram in Figure 2c. In the study we simulated µ from this empirical
distribution.

Each simulated data set has length of approximately n = 20, 000 and dimension d = 50. We
also varied the proportion of affected dimensions between 4% and 6%. We simulated 40 of
these data sets for each of the two scenarios and used both methods to segment them, results
are given in Table 4.

% of affected dimensions Method Proportion detected Accuracy False positives

PASS (0.59,0.66) (0.080,0.10) (7.15,9.23)
4%

BARD (0.61,0.69) (0.055,0.072) (0.08,0.38)

PASS (0.64,0.72) (0.066,0.085) (2.25,3.03)
6%

BARD (0.71,0.78) (0.046,0.060) (0.10,0.43)

Table 4: Results based on 40 simulated data sets for two scenarios where the proportion
of dimensions affected for each abnormal segment varied between 4% and 6% (of the total
number of dimensions d = 50). 95% confidence intervals for the means were calculated using
1000 bootstrap replicates.

We can see that the proportion of correct segments identified is decreased in both meth-
ods, this is most likely due to the non-Normally distributed noise present. However the
two methods report a very different number of false positives. The performance of BARD
is encouraging as it gives many fewer false positives than PASS even with heavier tailed
observations than the standard Gaussian case.

BARD also allows us to get an estimate of the uncertainty in the position of abnormal
segments as from the posterior we can get the probability of each time point belonging to an
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Figure 2: Empirical distribution of features of the optimal segmentation of CNV data ob-
tained using the PASS method. (a) QQ-plot of length (measured in number of observations)
of abnormal segments against a Uniform distribution on {1, 2, . . . , 200}; (b) histogram of
length (measured in number of observations) of normal segments; (c) histogram of estimated
mean for abnormal segments; and (d) histogram of residuals.

abnormal segment. If we bin these probabilities into intervals and then find the proportion
of these points that are actually abnormal we can obtain a calibration plot Figure 3. We can
see from this that the model seems to be well calibrated.
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Figure 3: All the time points t for which the posterior probability lies in a certain interval
plotted against the proportion of times t lies in an abnormal segment.
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4.3 Analysis of CNV Data

We now apply our method to CNV data from Pinto et al. (2011), a subset of which was
presented in Section 1 and was used to construct a model for the simulated data in Section
4.2.

Pinto et al. (2011) undertook a detailed study of the different technologies (platforms) used
to obtain the measurements and many of the algorithms currently used to call CNV’s. We
chose to analyse data from the Nimblegen 2.1M platform and from chromosomes 6 and 16.
For both chromosomes we have three replicate data sets, each consisting of measurements
from from six genomes. We preprocessed the data to remove experimental artifacts, using the
method described in Siegmund et al. (2011), before analysing it. The data from chromosome
16 consisted of 59,590 measurements, and the data from chromosome 6 consisted of 126,695
measurements, for each genome.

Firstly we ran the PASS method on just the first replicate of the data from chromosome
16 and found the most significant segments. Doing this enables us to get an estimate of
the parameters for the LOS distributions to use in the Bayesian method without having to
do any parameter inference. The maximum length of segment we searched over was 200
(measured in observations not base pairs) as this is greater than the largest CNV we would
expect to find. This gave parameters that suggested a geometric distribution for the length
of normal segments SN ∼ Geom(0.0007) and the following Negative Binomial distribution
for abnormal segments SN ∼ NBinom(2, 0.1). We used the same split uniform prior for µ
as we did in Section 4.2 namely one with equal density on the set (−0.7,−0.3) ∪ (0.3, 0.7)
and zero elsewhere. We justified the use of this form of prior which excludes values close to
zero in Section 2.2.3 and it was shown to perform well on some realistically simulated data
in Section 4.2.

Truth PASS BARD
Start Length Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

2619669 62144 - - - - X X
21422575 76266 X X X X X X
32165010 456897 X X X X X X
34328205 286367 X X X X X X
54351338 28607 X X - X X X
70644511 21083 - X X - X X

Table 5: Known CNV’s from HapMap found by either method when analysing different
replicates of data from chromosome 16. Ticks indicate whether the particular segment was
detected or not.

For both chromosomes we analysed the three replicates separately. Ideally we should infer
exactly the same segmentation for each of the replicate data sets. Due to the large amount
of noise present in the data this does not happen. However we would expect that a “better”
method would be more consistent across the three replicates, and we use the consistency of
the inferred segmentations across the replicates as a measure of accuracy.

We can also use data from the HapMap project to validate some of the CNV’s we found to
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Truth PASS Bayesian
Start Length Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

202353 37484 - - - X X -
243700 80315 X X X X X X

29945167 12079 X X - - - -
31388080 61239 X - - X - -
32562253 117686 X - X - - -
32605094 74845 - X - X X X
32717276 22702 X - - X X X
74648953 9185 X X - X X X
77073620 10881 - X - X X X
77155307 781 - - - X - -
77496587 12936 - - - X X X
78936990 18244 X X X X X X
103844669 24085 X X X X X X
126225385 3084 X X - - - X
139645437 3392 - - - X - -
165647807 4111 - - - X - X

Table 6: Known CNV’s from HapMap found by either method when analysing different
replicates of data from chromosome 6. Ticks indicate whether the particular segment was
detected or not.

Chromosome Method Rep 1 v 2 Rep 1 v 3 Rep 2 v 3

PASS 0.474 0.709 0.522
6

BARD 0.495 0.457 0.416

PASS 0.478 0.507 0.388
16

BARD 0.426 0.467 0.682

Table 7: The average consistency measured using the dissimilarity measure for found CNV’s
between replicates and methods. A lower value indicates the inferred segmentations for the
two replicates were more similar.

those known experimentally or which have been called by other authors. A list containing
these known CNV’s by chromosome and sample can be found at http://hapmap.ncbi.nlm.nih.gov/.
These validated segments suggest that about 1% of chromosome 16 is abnormal.

To make comparisons between BARD and PASS fair we implemented both of these methods
so that they identified the same proportion, 4%, of the chromosome as being abnormal.
For BARD this involved choosing γ in the loss function (3.1) appropriately and for PASS
selecting the most significant segments that give us a total of 4% abnormal time points. We
then tested these against the validated CNV’s.

The results for chromosome 16 are contained in Tables 5 and 7; and those for chromsome 6
in Tables 6 and 7. Tables 5 and 6 list the known CNV regions that were detected by one or
both methods for at least one replicate, whilst Table 7 gives summaries of the consistency of

17



the inferred segmentations across replicates.

The results show that BARD is more successful at detecting known CNV regions than PASS.
In total BARD found 6 CNV regions on chromosome 16 for at least one replicate, and 14 for
chromosome 6, while PASS managed 5 and 11 respectively. For the measures of consistency
across the different replicates, shown in Table 7, BARD performed better for 4 of the 6 pairs.

5 Discussion

In this paper we have developed novel methodology to detect abnormal regions in multiple
time series. Firstly we developed a general model for this type of problem including length
of stay distributions and marginal likelihoods for normal and abnormal segments. We then
derived recursions that could be used to calculate the posterior of interest and showed how
to obtain iid samples from an accurate approximation to this posterior in a way that scales
linearly with the length of series.

The resulting algorithm, BARD, was then compared in several simulation studies and some
real data to another competing method PASS. These results showed that BARD was consis-
tently more accurate than the PASS benchmark on several important criteria for all of the
data sets we considered.

The novelty of our method comes from being able to accurately and efficiently perform
Bayesian inference for large and high dimensional data sets of this type thus allowing us to
quantify uncertainty in the location of abnormal segments. Before this with other methods
such as PASS this quantification of uncertainty has not been possible.

Whilst we have focused on changes in mean from some baseline level, our method could easily
be adapted to any model which specifies some normal behaviour and abnormal behaviour.
The only restrictions we place on this is the ability to calculate marginal likelihoods for both
types of segment. The only potential bottleneck would be in the calculation of the abnormal
marginal likelihoods as this involves integration over a prior for the parameter(s) which
cannot be done analytically, and for higher dimensional parameters would be computationally
intensive.

R code to run the BARD method is available at the first authors website. http://www.

lancaster.ac.uk/pg/bardwell/Work.html. The real CNV data we analysed in Section
4.3 is available publicly and can be downloaded from the GEO accession website http:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25893.
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