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We examine the behaviour of the pseudo-marginal random walk Me-
tropolis algorithm, where evaluations of the target density for the ac-
cept/reject probability are estimated rather than computed precisely. Under
relatively general conditions on the target distribution, we obtain limiting for-
mulae for the acceptance rate and for the expected squared jump distance, as
the dimension of the target approaches infinity, under the assumption that the
noise in the estimate of the log-target is additive and is independent of the po-
sition. For targets with independent and identically distributed components,
we also obtain a limiting diffusion for the first component.

We then consider the overall efficiency of the algorithm, in terms of both
speed of mixing and computational time. Assuming the additive noise is
Gaussian and is inversely proportional to the number of unbiased estimates
that are used, we prove that the algorithm is optimally efficient when the vari-
ance of the noise is approximately 3.283 and the acceptance rate is approx-
imately 7.001%. We also find that the optimal scaling is insensitive to the
noise and that the optimal variance of the noise is insensitive to the scaling.
The theory is illustrated with a simulation study using the particle marginal
random walk Metropolis.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms have
proved particularly successful in statistics for investigating posterior distributions
in Bayesian analysis of complex models; see, for example, [11, 34, 35]. Almost
all MCMC methods are based on the Metropolis–Hastings (MH) algorithm which
owes much of its success to its tremendous flexibility. However, in order to use
the classical MH algorithm, it must be possible to evaluate the target density up to
a fixed constant of proportionality. While this is often possible, it is increasingly
common for exact pointwise likelihood evaluation to be prohibitively expensive,
perhaps due to the sheer size of the data set being analysed. In these situations,
classical MH is rendered inapplicable.

The pseudo-marginal Metropolis–Hastings algorithm (PsMMH) [2, 4] provides
a general recipe for circumventing the need for target density evaluation. Instead
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it is required only to be able to unbiasedly estimate this density. The target den-
sities in the numerator and denominator of the MH accept/reject ratio are then
replaced by their unbiased estimates. Remarkably, this yields an algorithm which
still has the target as its invariant distribution. One possible choice of algorithm,
the pseudo-marginal random walk Metropolis (PsMRWM), is popular in practice
(e.g., [17, 19]) because it requires no further information about the target, such as
the local gradient or Hessian, which are generally more computationally expensive
to approximate than the target itself [25].

Broadly speaking, the mixing rate of any PsMMH algorithm decreases as the
dispersion in the estimation of the target density increases [2]. In particular, if
the target density happens to be substantially over-estimated, then the chain will
be overly reluctant to move from that state leading to a long run of successive
rejections (a sticky patch). Now, in PsMMH algorithms, the target estimate is usu-
ally computed using an average of some number, m, of approximations; see Sec-
tions 1.1 and 3. This leads to a trade off, with increasing m leading to better mixing
of the chain, but also to larger computational expense. We shall consider the prob-
lem of optimising m.

It is well known (e.g., [28, 32]) that the efficiency of the random-walk Metropo-
lis (RWM) algorithm varies enormously with the scale of the proposed jumps.
Small proposed jumps lead to high acceptance rates but little movement across the
state space, whereas large proposed jumps lead to low acceptance rates and again
to inefficient exploration of the state space. The problem of choosing the optimal
scale of the RWM proposal has been tackled for various shapes of target (e.g., [5,
6, 8, 10, 26, 28, 31, 33]) and has led to the following rule of thumb: choose the
scale so that the acceptance rate is approximately 0.234. Although nearly all of the
theoretical results are based upon limiting arguments in high dimension, the rule
of thumb appears to be applicable even in relatively low dimensions (e.g., [32]).

This article focusses on the efficiency of the PsMRWM as the dimension of the
target density diverges to infinity. For relatively general forms of the target distri-
bution, under the assumption of additive independent noise in the log-target, we
obtain (Theorem 1) expressions for the limiting expected squared jump distance
(ESJD) and asymptotic acceptance rate. ESJD is now well established as a prag-
matic and useful measure of mixing for MCMC algorithms in many contexts (see,
e.g., [22]), and is particularly relevant when diffusion limits can be established; see,
for example, the discussion in [29]. We then prove a diffusion limit for a rescaling
of the first component, in the case of a target with independent and identically dis-
tributed components (Theorem 2), the efficiency of the algorithm is then given by
the speed of this limiting diffusion, which is equivalent to the limiting ESJD. We
examine the relationship between efficiency, scaling, and the distributional form of
the noise, and consider the joint optimisation of the efficiency of the PsMRWM al-
gorithm (taking computational time into account) with respect to m, and the RWM
scale parameter. Exact analytical results are obtained (Corollary 1) under an as-
sumption of Gaussian noise in the estimate of the log-target, with a variance that is
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inversely proportional to m. In this case, we prove that the optimal noise variance
is 3.283, and the corresponding optimal asymptotic acceptance rate is 7.001%, thus
extending the previous 23.4% result of [26]. Finally, we illustrate the use of these
theoretical results in a simulation study (Section 4).

1.1. The PsMRWM. Consider a state space X ⊆ R
d , and let π(·) be a dis-

tribution on X , whose density (with respect to Lebesgue measure) will be re-
ferred to as π(x). The MH updating scheme provides a very general class of
algorithms for obtaining an approximate dependent sample from a target distri-
bution, π(·), by constructing a Markov chain with π(·) as its limiting distribu-
tion. Given the current value x, a new value x∗ is proposed from a pre-specified
Lebesgue density q(x,x∗) and is then accepted with probability α(x,x∗) = 1 ∧
[π(x∗)q(x∗,x)]/[π(x)q(x,x∗)]. If the proposed value is accepted, then it becomes
the next current value; otherwise the current value is left unchanged.

The PsMMH algorithm [2] presumes the computational infeasibility of evalu-
ating π(x) and uses an approximation π̂v(x) that depends on some auxiliary vari-
able, v. The auxiliary variable is sampled from some distribution qaux(v|x), and
the approximation π̂v(x) is assumed to satisfy that Eqaux[π̂V(x)] = cπ(x), for some
constant c > 0. The value of the constant is irrelevant to all that follows, and so,
without loss of generality, we assume that c = 1. We also assume that π̂v > 0.

The PsMMH algorithm creates a Markov chain with a stationary density (since
c = 1) of

π̃(x,v) = qaux(x,v)π̂v(x),(1.1)

which has π(x) as its x marginal. When a new value, X∗, is proposed via the MH
algorithm, a new auxiliary variable, V∗, is proposed from the density qaux(x∗,v∗).
The pair (x∗,v∗) are then jointly accepted or rejected. The acceptance probability
for this MH algorithm on (x,v) is

1 ∧ π̂v∗(x∗)q(x∗,x)

π̂v(x)q(x,x∗)
.

We are thus able to substitute the estimated density for the true density, and still
obtain the desired stationary distribution for x. Note that for symmetric proposals,
this simplifies to 1 ∧ [π̂v∗(x∗)/π̂v(x)].

Different strategies exist for producing unbiased estimators, for instance, using
importance sampling or latent variable representations, as in [16], or using particle
filters [13, 18] as in [1]. We shall illustrate our theory in the context of Bayesian
analysis of a partially observed Markov jump process.

1.2. Previous related literature. Pitt et al. [24] and Doucet et al. [14] examine
the efficiency of pseudo-marginal algorithms using bounds on the integrated auto-
correlation time (IACT) and under the assumptions that the chain is stationary and
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the distribution of the additive noise in the log-target is independent of x (our As-
sumption 1). Under the further assumption that this additive noise is Gaussian and
the computing time inversely proportional to its variance (our Assumption 4), both
articles then seek information on the optimal variance of this additive noise. Pitt
et al. [24] consider the (unrealistic) case where the Metropolis–Hastings algorithm
is an independence sampler which proposes from the desired target distribution
for x, and obtain an optimal variance of 0.922. Doucet et al. [14] consider a gen-
eral Metropolis–Hastings algorithm and define a parallel hypothetical kernel Q∗
with the same proposal mechanism as the original kernel, Q, but where the accep-
tance rate separates into the product of that of the idealised marginal algorithm (if
the true target were known) and that of an independence sampler which proposes
from the assumed distribution for the noise. This kernel can never be more efficient
than the true kernel. Upper and lower bounds are obtained for the IACT for Q∗ in
terms of the of IACT of the exact chain and the IACT and a particular lag-1 auto-
correlation of the independence sampler on the noise. These bounds are examined
under the assumption that the additive noise is Gaussian and the optimal variance
for the noise is estimated to lie between 0.922 and 1.682.

Other theoretical properties of pseudo-marginal algorithms are considered
in [3], which gives qualitative (geometric and polynomial ergodicity) results for
the method and some results concerning the loss in efficiency caused by having to
estimate the target density.

1.3. Notation. In this paper, we follow the standard convention whereby cap-
ital letters denote random variables, and lower case letters denote their actual val-
ues. Bold characters are used to denote vectors or matrices.

2. Studying the pseudo marginal random walk Metropolis in high dimen-
sions.

2.1. Proposal distribution. We focus on the case where the proposal, x∗, for
an update to x is assumed to arise from a random walk Metropolis algorithm with
an isotropic Gaussian proposal

X∗ = x + λZ where Z
D∼ N(0, I),(2.1)

and I is the d × d identity matrix, and λ > 0 is the scaling parameter for the
proposal. The results presented in this article extend easily to a more general
correlation matrix by simply considering the linear co-ordinate transformation
which maps this correlation matrix to the identity matrix and examining the tar-
get in this transformed space. In proving the limiting results we consider a se-
quence of d-dimensional target probabilities π(d). In dimension d the proposal is

X(d)∗ D∼ N(x(d), λ(d)2I(d)).
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2.2. Noise in the estimate of the log-target. We will work throughout with
the log-density of the target, and it will be convenient to consider the difference
between the estimated log-target [log π̂V (x)] and the true log-target [logπ(x)] at
both the proposed values (x∗,V ∗) and the current values (x,V ), as well as the
difference between these two differences,⎧⎪⎨⎪⎩

W := log π̂V (x) − logπ(x),

W ∗ := log π̂V ∗
(
x∗)− logπ

(
x∗),

B := W ∗ − W.

(2.2)

Throughout this article we assume the following.

ASSUMPTION 1. The Markov chain (X,W) = {(Xk,Wk)}k≥0 is stationary,
and the distribution of the additive noise in the estimated log-target at the pro-
posal, W ∗, is independent of the proposal itself, X∗.

REMARK 1. It is unrealistic to believe that the second part of Assumption 1
should hold in practice. Pragmatically, this assumption is necessary in order to
make progress with the theory presented herein; however, in our simulation study
in Section 4 we provide evidence that, in the scenarios considered, the variation in
the noise distribution is relatively small.

Note that the noise term within the Markov chain, W , does not have the same
distribution as the noise in the proposal, W ∗, since, for example, moves away from
positive values of W will be more likely to be rejected than moves away from
negative values of W . In the notation of Section 1.1, since W ∗ is a function of V,
qaux(x∗,v) now gives rise to g∗(w∗), the density of the noise in the estimate of the
log-target, which is independent of x∗. Integrating (1.1) gives the joint stationary
density of the Markov chain (X,W) as

g∗(w)ewπ(x).(2.3)

This is Lemma 1 of [24]. Under Assumption 1, W and X are therefore independent,
and the stationary density of W is g∗(w)ew .

2.3. High-dimensional target distribution. We describe in this section con-
ditions on the sequence of target densities π(d) that ensure that the quantity
log[π(d)(X∗)/π(d)(X)] behaves asymptotically as a Gaussian distribution under
an appropriate choice of jump scaling λ(d). The main assumption is that there exist
sequences of scalings s

(d)
g > 0 and s

(d)
L > 0 for the gradient and the Laplacian of

the log-likelihood logπ(d) such that the following two limits hold in probability:

lim
d→∞

‖∇ logπ(d)(X(d))‖
s
(d)
g

= 1 and lim
d→∞

� logπ(d)(X(d))

s
(d)
L

= −1,(2.4)
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for X(d) D∼ π(d). In the rest of this article we assume that the sequence of densities
π(d) is such that for each index i ≥ 1, with all components of x fixed except the
ith, the ith component satisfies

∂π(d)

∂xi

→ 0 as |xi | → ∞.(2.5)

Under this regularity condition, an integration by parts shows that

E
[∥∥∇ logπ(d)(X(d))∥∥2]= −E

[
� logπ(d)(X(d))].

Equation (2.4) thus yields limd→∞(s
(d)
g )2/s

(d)
L = 1. We will suppose from now on,

without loss of generality, that s
(d)
g =

√
s
(d)
L =: s(d). We also require that no single

component of the local Hessian H(d)(x) := [∂2
ij logπ(d)(x)]0≤i,j≤d dominate the

others in the sense that the limit

lim
d→∞

Trace[(H (d))2(X(d))]
(s(d))4 = 0(2.6)

holds in probability. We also assume that the Hessian matrix is sufficiently regular

so that for any σ 2, ε > 0 and Z(d) D∼ N(0, I(d))

lim
d→∞P

(
sup

t∈(0,1)

∣∣∣∣〈Z(d), [H(d)(X(d) + tσZ(d)/s(d)) − H(d)(X(d))]Z(d)〉
(s(d))2

∣∣∣∣> ε

)
(2.7)

= 0.

These conditions are discussed in detail in [31] where they are shown to hold, for
example, when the target is the joint distribution of successive elements of a class
of finite-order multivariate Markov processes. The targets considered in [26, 28]
and Section 2.5 all satisfy the conditions with s(d) ∝ d1/2. We record the conditions
formally as:

ASSUMPTION 2. The sequence of densities π(d) satisfies equations (2.4),
(2.6), (2.7), and the regularity condition (2.5).

We shall show in next section that under these assumptions the choice of jump
size

λ(d) := 	

s(d)
(2.8)

for a parameter 	 > 0 leads to a Gaussian asymptotic behaviour for log[π(d)(X∗)/
π(d)(X)]. This ensures that for high dimensions, the mean acceptance probability
α(d)(	) of the MCMC algorithm,

α(d)(	) := E

[
1 ∧ π(d)(X(d) + λ(d)Z(d))eW ∗

π(d)(X(d))eW

]
,

stays bounded away from zero and one.
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2.4. Expected squared jump distance. A standard measure of efficiency for
local algorithms is the Euclidian expected squared jumping distance (e.g., [8, 31,
33]) usually defined as E‖Xk+1 − Xk‖2. Consider, for example, a target with ellip-
tical contours, or one which has components which are independent and identically
distributed up to a scale parameter. In such situations the Euclidean ESJD is dom-
inated by those components with a larger scale. We would prefer an efficiency
criterion which weights components at least approximately equally, so that moves
along each component are considered relative to the scale of variability of that
component. A squared Mahalanobis distance is the natural extension of Euclidean
ESJD, and in the case of the two example targets mentioned above, it is exactly
the correct generalisation of Euclidean ESJD. We therefore define a generalised
potential squared jump distance for a single iteration with respect to some d × d

positive definite symmetric matrix T(d), E[‖X(d)
k+1 − X(d)

k ‖2
T(d)], where the Markov

chain {X(d)
k }k≥0 is assumed to evolve at stationarity and ‖z‖2

T(d) := 〈z,T(d)z〉. We

will require that, in the limit as d → ∞, no one principal component of T(d) dom-
inates the others in the sense that

Trace
[(

T(d))2]/Trace
[
T(d)]2 → 0.(2.9)

Clearly, (2.9) is satisfied when T(d) = Id (i.e., Euclidian ESJD).

THEOREM 1. Consider a PsMRWM algorithm. Assume that the additive noise
satisfies Assumption 1, the sequence of densities π(d) satisfy Assumption 2, and the
sequence of jump distance matrices T(d) satisfy (2.9). Assume further that the jump
size λ(d) is given by (2.8) for some fixed 	 > 0.

(1) Acceptance probability. The mean acceptance probabilities α(d)(	) con-
verge as d → ∞ to a nontrivial value α(	),

lim
d→∞α(d)(	) = 2 ×E

[



(
B

	
− 	

2

)]
=: α(	),(2.10)

with B as in (2.2), where 
 is the cumulative distribution of a standard Gaussian
distribution.

(2) Expected squared jump distance. A rescaled expected squared jump dis-
tance converges as d → ∞ to a related limit,

lim
d→∞

(s(d))2

Trace[T(d)] ×E
∥∥X(d)

k+1 − X(d)
k

∥∥2
T(d) = 	2 × α(	) =: J (	).(2.11)

Theorem 1 is proved in Section 5.1. It establishes limiting values for the accep-
tance probability and expected squared jump distance, and more importantly for
the relationship between them, which is crucial to establishing optimality results
as we shall see. Further, (2.11) shows that, as is common in scaling problems for
MCMC algorithms (e.g., in [26, 27]), the ESJD decomposes into the product of
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the acceptance probability α(	) and the expected squared proposed jumping dis-
tance 	2, implying an asymptotic independence between the size of the proposed
move and the acceptance event. As in the RWM case, we wish to be able to con-
sider J (	) to be a function of the asymptotic acceptance rate α(	). Our next result,
which is proved in Section 5.2, shows that this is indeed possible.

PROPOSITION 1. For a PsMRWM algorithm with noise difference B as
in (2.2), with jump size determined by 	 > 0 as in (2.8), and with limiting asymp-
totic acceptance rate α(	) as in (2.10), the mapping 	 �→ α(	) is a continuous
decreasing bijection from (0,+∞) to (0, αmax], where

αmax := lim
	→0

α(	) = 2 × P[B > 0].

Proposition 1 yields that αmax = sup	>0 α(	). When there is no noise in the
estimate of the target, as already proved in [26], the acceptance rate simplifies
to α0(	) := 2
(−	/2), and the associated expected squared jump distance reads
J0(	) = 	2α0(	). Thus we may also consider the asymptotic efficiency of a pseudo-
marginal algorithm relative to the idealised algorithm if the target were known
precisely by defining Jrel(	) = J (	)/J0(	), which also reads

Jrel(	) = 1


(−	/2)
E

[



(
B

	
− 	

2

)]
.(2.12)

The following proposition, which is proved in Section 5.3, shows that the rela-
tive efficiency can never exceed unity and that it is bounded below by the accep-
tance rate in the limit as 	 → 0.

PROPOSITION 2. With α(	) and Jrel(	) as defined in (2.10) and (2.12) respec-
tively,

αmax ≤ Jrel(	) ≤ 1.

The quantities α(	), J (	) and Jrel(	) depend upon the distribution of B , and
hence on the distribution of the additive noise W from (2.2). Figure 1 considers
two particular cases: where the distribution of the additive noise is Gaussian, that
is, W ∗ ∼ N(−σ 2/2, σ 2) (which we shall consider further in Section 3), and where
the distribution of the additive noise is Laplace (i.e., double-exponential), with
mean log(1 − σ 2/2) and scale parameter σ/

√
2. For each of these two cases, it

shows a contour plot of J (	) as a function of the proposal scaling parameter 	 and
of the standard deviation of the additive noise, σ . Figure 2 shows the equivalent
plots for Jrel(	).

Our ultimate goal is often to choose 	 to maximise J (	), and thus obtain an op-
timal limiting diffusion (and hence an approximately optimal algorithm for finite d

too). We shall use Theorem 1 to establish an optimal acceptance rate in a particular
limiting regime, in Section 3.2 below.
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FIG. 1. Contour plots of the asymptotic expected squared jump distance J (	) from (2.11) plotted
as a function of the scaling parameter 	 and of the standard deviation, σ , of the additive noise. In
the left-hand panel the additive noise in the log-target is assumed to be Gaussian, and in right-hand
panel it is assumed to have a Laplace distribution.

Figure 2 illustrates that, except for small values of the scaling, the relative effi-
ciency for a given noise distribution is relatively insensitive to the scaling. Related
to this, from Figure 1 it appears that the optimal scaling [i.e., the value 	 which
maximises J (	)] is relatively insensitive to the variance of the additive noise.
When there is no noise, the optimum is 	̂0 ≈ 2.38 as first noted in [26]; however,

FIG. 2. Contour plots of Jrel(	) from (2.12), the asymptotic expected squared jump distance rela-
tive to the idealised algorithm, plotted as a function of the scaling parameter 	 and of the standard
deviation, σ , of the additive noise. In the left-hand panel the additive noise in the log-target is as-
sumed to be Gaussian, and in the right-hand panel it is assumed to have a Laplace distribution.
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the optimum remains close to 2.5 across a range of variances for both choices of
noise distribution.

For these two examples, as might be expected, for any given scaling of the
random walk proposal, the efficiency relative to the idealised algorithm decreases
as the standard deviation of the noise increases, a phenomenon that is investigated
more generally in [3]. Thus there is an implicit cost of having to estimate the target
density. As a result of this, we should not expect the optimal acceptance probability
for RWM of 0.234 to hold here.

2.5. Diffusion limit. We next prove that PsMRWM in high dimensions can be
well-approximated by an appropriate diffusion limit (obtained as d → ∞). This
provides further justification for measuring efficiency by the ESJD, as discussed in
detail in [29]. Briefly, the limiting ESJD (suitably scaled) is equal to the square of
the limiting process’s diffusion coefficient, h say. By a simple time change argu-
ment, the asymptotic variance of any Monte Carlo estimate of interest is inversely
proportional to h. Minimising variance is thus equivalent to maximising h; that is,
h becomes (at least in the limit) unambiguously the right quantity to optimise. By
constrast, MCMC algorithms which have nondiffusion limits can behave in very
different ways, and ESJD may not be an appropriate way to compare algorithms
in such cases.

We shall consider in this section the PsMRWM algorithm applied to a sequence
of simple i.i.d. target densities

π(d)(x1, . . . , xd) =
d∏

i=1

f (xi),

where f is a one-dimensional probability density. We assume throughout this sec-
tion that the following regularity assumptions hold.

ASSUMPTION 3. The first four moments of the distribution with density f are
finite. The log-likelihood mapping x �→ logf (x) is smooth with second, third, and
fourth derivatives globally bounded.

One can verify that under Assumption 3, the target π(d) satisfies Assumption 2.
It is important to stress that the ESJD analysis of Section 2.4 only relies on the
weaker Assumption 2, and as discussed at the end of the previous section, is
valid for much more general target distributions than the ones with i.i.d. coor-
dinates considered in this section. The stronger Assumption 3 are standard in the
diffusion-limit literature and are, perhaps, the simplest from which a diffusion limit
is expected to result [26]. However, these i.i.d. assumptions have been relaxed in
various directions [5, 6, 8, 9, 23], and we believe that our diffusion limit Theo-
rem 2 could also be extended to similar settings at the cost of considerably less
transparent proofs.
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In the remainder of this article we consider the sequences of scaling functions√
s
(d)
L = s

(d)
g := √

I × d , with

I := E
[{(

logf (X)
)′}2]= −E

[(
logf (X)

)′′](2.13)

and X
D∼ f (x) dx. Indeed, equation (2.4) is satisfied; consequently, for a tuning

parameter 	 > 0, we consider d-dimensional RWM proposals with scaling

λ(d) := 	I−1/2δ1/2 with δ = 1/d(2.14)

as in (2.8). The quantity I , which quantifies the roughness and the scale of the
marginal density f (x) dx, has been introduced in the definition of the RWM jump-
size (2.14) so that all our limiting results on the optimal choice of parameter 	 are
independent of f (x) dx. The main result of this section is a diffusion limit for a
rescaled version V (d) of the first coordinate process. For time t ≥ 0 we define the
piecewise-constant continuous-time process

V (d)(t) := X
(d)
�dt�,1

with the notation X(d)
k = (X

(d)
k,1, . . . ,X

(d)
k,d) ∈ R

d so that V (d)(t) is the first coordi-

nate of X(d)
�dt�. Note that in general the process V (d) is not Markovian. The next

theorem shows that nevertheless, in the limit d → ∞, the process V (d) converges
weakly to an explicit Langevin diffusion. This result thus generalises the original
RWM diffusion limit proved in [26].

THEOREM 2. Let T > 0 be a finite time horizon. For all d ≥ 1 let each Markov
chain and the additive noise satisfy Assumption 1, let the sequence of product form
densities π(d) satisfy the regularity Assumption 3 and set the scale of the jump
proposals as in equation (2.14). Then, as d → ∞,

V (d) ⇒ V

in the Skorokhod topology on D([0, T ]), where V satisfies the Langevin SDE

dVt = h1/2(	) dBt + 1
2h(	)∇ logf (Vt ) dt(2.15)

with initial distribution V0
D∼ f and Bt a standard Brownian motion. The speed

function h is proportional to the asymptotic rescaled ESJD function J ,

h(	) = J (	)/I,

with the constant of proportionality I defined by equation (2.13).

The time change argument discussed before Theorem 2 shows that the quantity
Jrel exactly measure the loss of mixing efficiency (computational time not taken
into consideration) when exact evaluations of the target density are replaced by
unbiased estimates; as already mentioned, the pseudo-marginal algorithm always
has worse mixing properties than the idealised algorithm.
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3. Optimising the PsMRWM. We next consider the question of optimising
the PsMRWM. Now, when examining the efficiency of a standard RWM, the ex-
pected computation (CPU) time is usually not taken into account since it is im-
plicitly assumed to be independent of the choice of tuning parameter(s). This may
indeed be approximately true for the RWM. However, for the PsMRWM the ex-
pected CPU time for a single iteration of the algorithm is usually approximately
inversely proportional to the variance of the estimator π̂ (x). For this reason, we
measure the efficiency of the PsMRWM through a rescaled version of the ESJD,

(Efficiency) := (Expected Square Jump Distance)

(Expected one-step computing time)
.(3.1)

Of course, for any increasing function F , the quantity F (ESJD)/(Expected one-
step computing time) is a possible measure of efficiency. However, the discussion
at the start of Section 2.5 indicates that (3.1) is the appropriate measure of effi-
ciency in the high-dimensional asymptotic regime considered in this article.

In the remainder of this section, we implicitly assume that the target distribu-
tions satisfy Assumption 2.

3.1. Standard (Gaussian) regime. We shall restrict attention to the case in
which the additive noise follows a Gaussian distribution. More precisely, we shall
assume the following, which we shall refer to for brevity as “the standard asymp-
totic regime” (SAR):

ASSUMPTION 4. For each x ∈ X and σ 2 > 0, we have an unbiased estimator
π̂(x) of π(x), such that log π̂(x) follows a Gaussian distribution with variance σ 2.
Furthermore, the expected one-step computing time is inversely proportional to σ 2.

Intuitively, Assumption 4 are designed to model the situation where π(x) is
estimated as a product of n averages of m i.i.d. samples in the limit as n → ∞ and
with m ∝ n. For a fixed large n, approximate normality follows from the central
limit theorem; moreover σ 2 ≈ c/m for some c > 0, and the computational time
is proportional to m and hence to 1/σ 2. Assumption 4 have recently been shown
to hold more generally, in the context of particle filtering for a hidden Markov
model; see [7]. There are other natural situations where multiplicative forms for the
importance sampling estimator of the likelihood might make the estimator well-
approximated as a log-Gaussian, for example, in correcting for a PAC likelihood
approximation; see [20].

Under the SAR of Assumption 4, we will prove an optimality result in Sec-
tion 3.2 which specifies a particular optimal variance for the estimate of the log-
target.
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FIG. 3. Contour plots of the theoretical relative efficiency Effσ 2(	)/Eff
σ 2

opt
(lopt), and of the

base-10 logarithm of the asymptotic acceptance probability α(	), and a plot of the profile relative
efficiency Eff

σ 2
opt(	)

(	)/Eff
σ 2

opt
(lopt), all for the scenario where the additive noise arises from the

SAR.

3.2. Optimisation under the standard asymptotic regime. In this section we
consider a sequence π(d) of target distributions satisfying Assumption 2 and as-
sume that each unbiased estimator satisfies the independence in Assumption 1.
Under these assumptions, the rescaled ESJD of the PsMRWM algorithm with
jump size (2.8) is described by Theorem 1. Under the SAR, that is, Assumption 4,

and with Var[log π̂(x)] = σ 2, the noise difference is B
D∼ N(−σ 2,2σ 2). Since the

mean one-step computing time is assumed to be inversely proportional to the vari-
ance, σ 2, the asymptotic efficiency, as d → ∞, is proportional to

σ 2 × Jσ 2(	) =: Effσ 2(	),(3.2)

where Jσ 2(	) stands for the asymptotic rescaled ESJD identified in Theorem 1,

that is, J (	), in the special case where B
D∼ N(−σ 2,2σ 2).

Figure 3 provides a contour plot of this efficiency Effσ 2(	), relative to the high-
est achievable efficiency, and of the logarithm of the asymptotic acceptance rate
α(	), both as functions of the scaling parameter 	 and of the standard deviation, σ .
It also provides a plot of the profile Effσ 2

opt(	)
(	) as a function of 	, again relative

to the highest achievable value.
As previously suggested by Figure 1, we see that the conditional optimal value

of 	 is relatively insensitive to the value of σ .
The point at which the maximal efficiency is achieved is detailed precisely in

Corollary 1 below.

COROLLARY 1. The efficiency Effσ 2(	) is maximised (to three decimal
places) when the variance σ 2 of the log-noise is

σ 2
opt = 3.283,

and the scaling parameter 	 is

	opt = 2.562,
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at which point the corresponding asymptotic acceptance rate is

αopt = 7.001%.

As σ 2 → ∞ the optimal scaling satisfies 	opt(σ ) → 2
√

2, and as 	 → ∞ the opti-
mal variance satisfies σ 2

opt(	) → 4.

PROOF. For convenience, write τ 2 := 2σ 2, and introduce three independent

standard Gaussian random variables U,V,Z
D∼ N(0,1). Notice that B

D∼ −τ 2/2 +
τU and

Effσ 2(	) = τ 2	2
E
[

(B/	 − 	/2)

]
= τ 2	2

P
[
V <

(−τ 2/2 + τU
)
/	 − 	/2

]
= τ 2	2

P
(
	V − τU < −(τ 2 + 	2)/2

]
(3.3)

= τ 2	2
P
[√

	2 + τ 2Z < −(τ 2 + 	2)/2
]

= τ 2	2

(−1

2

√
τ 2 + 	2

)
.

For fixed τ 2 + 	2, the quantity τ 2	2 is maximised when τ 2 = 	2, at which point
the efficiency is τ 4
(−τ/

√
2) ∝ σ 4
(−σ). This is maximised numerically when

σ 2 = σ 2
opt = 3.283 (to three decimal places), and at this point 	opt = σopt

√
2 and

αopt = 2
(−σopt) with the corresponding numerical values as stated.
Differentiating (3.3) with respect to 	 we find that the optimal scaling satisfies



(−1

2

√
	2 + τ 2

)= 1
4	2ϕ

(−1
2

√
	2 + τ 2

)
/

√
	2 + τ 2.

The result for large τ 2 follows from the relationship 
(−x) ∼ ϕ(x)/x as x → ∞.
The symmetry of the function (	2, τ 2) �→ Effσ 2(	) in τ and 	 then provides the
result for large 	. �

REMARKS. (1) This leads to a new optimal scaling for standard Gaussian tar-
gets of λ ≈ 	opt/

√
d with 	opt ≈ 2.562, and contrasts with the corresponding for-

mula 	̂0/
√

d , with 	̂0 ≈ 2.38, for the usual random walk Metropolis algorithm
[26]; recall that 	̂0 satisfies 	̂0 = argmin	>0	

2
(−	/2).
(2) In the discussion of Figure 1 it was noted that for a Gaussian or Laplace

noise regime the optimal scaling at a particular noise variance, σ 2, is insensitive
to the value of σ 2. From Figure 3 and from the symmetry of expression (3.3),
the optimal variance at a particular scaling 	 is also insensitive to the value of 	.
Moreover as 	 → 0 the optimal variance is 	̂2

0/2 ≈ 2.83, which corresponds (at
least to 2 decimal places) with the value obtained in [14].

(3) In practice, σ 2 might be a function of a discrete number m of samples or
particles and hence only take a discrete set of values. In particular, if the variance
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in the noise using m = 1 is already lower than 3.283, then there can be little gain
in increasing m.

(4) In many problems the computational cost of obtaining an unbiased estimate
of the target is much larger than the cost of the remainder of the algorithm, but
this is not always the case. Consider therefore the more general problem where the
cost of obtaining a single unbiased estimate is trat times the cost of the remain-
der of the algorithm. In this case the efficiency functional should be expressed as
(Efficiency) = Jσ 2(	)/(1 + tratσ

−2) and the optimal acceptance rate is a function
of trat which varies between 7.0% (as trat → ∞) and 23.4% (as trat → 0).

Figure 3 shows that in contrast to the insensitivity of the optimal scaling to the
variance of the noise, the acceptance rate at this optimum could potentially vary by
a factor of 3 or more. Thus if a particular scaling of the jump proposals maximises
J (	) for some particular noise distribution and variance, then that scaling should
be close to optimal across a wide range of noise distributions and variances. How-
ever, tuning to a particular acceptance rate, whilst more straightforward in practice,
could lead to a sub-optimal scaling if the noise distributions encountered in the tun-
ing runs are not entirely representative of the distributions that will be encountered
during the main run.

Our theory applies in the limit when the dimension d of the (marginal) target
X goes to infinity. However, using a similar argument to that in [33], when X ∼
N(0, Id), it can be shown that under the SAR with the proposal as in (2.1) the ESJD
and acceptance rate are

ESJD(λ, d) = 2λ2
E

[
‖Z‖2


(
−λ

2
‖Z‖ + B

λ‖Z‖
)]

and

α(λ, d) = E

[



(
−λ

2
‖Z‖ + B

λ‖Z‖
)]

,

where Z
D∼ N(0, Id) and B

D∼ N(−σ 2,2σ 2). Numerical optimisation of the effi-
ciency function, σ 2 × ESJD(λ, d) for d = 1,2,3,5, and 10 produces a steady
decrease in 	̂ = λ̂

√
d from 2.59 to 2.57 and in α̂ from 11.5% to 7.7%, and a sim-

ilarly steady increase in σ̂ 2 from 3.23 to 3.27. Thus, at least for Gaussian targets
and with efficiency measured by ESJD, the asymptotic results for the optimal scal-
ing and optimal variance are applicable in any dimension but there may be a small
increase in the optimal acceptance rate, as is found for the nonpseudo-marginal
RWM (e.g., [28, 33]).

In the simulation study of Section 4 below, we find that Corollary 1 and its
associated formulae provide a good description of the optimal settings for a particle
filter with T = 50 and d = 5.
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4. Simulation study. In this section we restrict attention to the SAR of Sec-
tion 3.1. Corollary 1 suggests that the optimal efficiency should be obtained by
choosing the number of unbiased estimates, m, such that the variance in the log-
target is approximately 3.3. The scale parameter, λ, should be set so that the ac-
ceptance rate is approximately 7%. Since the constant of proportionality relating
λ and 	 is unknown in practice, we cannot simply set 	 ≈ 2.56.

In practice the assumptions underlying this result may not hold: the dimension
of the parameter space is finite, the distribution of the noise, W ∗, may not be Gaus-
sian, and it is likely to also vary with position, x∗. We conduct a simulation study
to provide an indication of both the extent of and the effect of such deviations.

We use the Particle Marginal RWM algorithm (PMRWM) of [1] to perform
exact inference for the Lotka–Volterra predator-prey model; see [17] for a more
detailed description of the PMRWM which focusses on this particular class of ap-
plications. Starting from an initial value, which is, for simplicity, assumed known,
the two-dimensional latent variable U evolves according to a Markov jump process
(MJP). Each component is observed at regular intervals with Gaussian error of an
unknown variance. Appendix B provides details of the observation regime and of
the transitions of the MJP and their associated rates. It also provides the parameter
values, the priors and the lengths of the MCMC runs.

An initial run provided an estimate of a central value, x̂ (the vector of posterior
medians), and the posterior variance matrix, V̂ar(X). Since the shape of the target
distribution, and hence the optimal shape of the proposal, is unknown, we follow
the frequently used strategy for the RWM (e.g., [32]) of setting the proposal covari-
ance matrix to be proportional to V̂ar(X). From Remark 1 following Corollary 1,
we set Vprop = γ 2 × (2.562/d) × V̂ar(X) with γ = 1 corresponding to an optimal
tuning for a Gaussian target.

Let M := {50,80,100,150,200,300,400} define the set of choices for the
number of particles, m, and let G := {0.4,0.6,0.8,1.0,1.2,1.4,1.6} define the
set of choices for the relative scaling, γ . For each (m,γ ) in M × G an MCMC
run of at least 2.5 × 105 iterations was performed starting from x̂. For diagnostic
purposes runs of at least 104 iterations were performed with m ∈ M and γ = 0 (so
x = x̂ throughout).

We perform three checks on our assumptions. The diagnostic runs provide a
sample from the distribution of W ∗, the estimate of the log-target at a proposed
value; this allows us to investigate the second part of Assumption 1 and both parts
of Assumption 4. We first examine the SAR Assumption 4. Figure 4 shows QQ-
plots for m = 50, m = 100 and m = 400 against a Gaussian distribution; it is clear
that at m = 50 the right-hand tail is slightly too light and the left-hand tail is much
heavier than that of a Gaussian. Similar but much smaller discrepancies are present
at m = 100, whilst at m = 400 the noise distribution is almost indistinguishable
from that of a Gaussian. The left-hand panel in Figure 5 plots log Var[W ∗] against
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FIG. 4. Normal QQplots of the noise in the estimate of the log-target at the a proposed value of the
posterior median, x̂, when m = 50 (left panel), m = 100 (centre), and m = 400 (right).

logm and includes a line with the theoretical slope of −1 and passing through
an additional point at m = 1600. The heavy left-hand tail at m = 50 leads to a con-
siderably higher variance than that which would arise under the SAR; however,
even by m = 80 the fit is reasonably close.

We assess the degree of dependence of the distribution of W ∗ on the position x
by considering the joint distribution of W ∗ and L := (logπ)(X), the true log-target
evaluated at X, where X is distributed according to the target. For a particular
m, all of the runs with γ > 0 provide a combined sample of size n1 from the
distribution of the estimate of the log-target at the current value, L̂ = L + W ,
whereas (after scaling so that 1

n2

∑n2
i=1 expw∗(i) = 1) each run with γ = 0 provides

a sample of size n2 from the distribution of W ∗ at x = x̂. Equation (2.3) shows that
subject to Assumption 1, W and L are independent and that the density of W is
an exponentially tilted version of the density of W ∗. These two properties lead
directly to the following.

FIG. 5. In the left panel the logarithm of the empirical variance of the noise in the estimate of
the log-proposal sampled at x = x̂ is plotted against the logarithm of the number of particles used;
the centre and right panels are plots of the logarithms of the empirical estimates of the moment
generating functions of L̂ and L (M1(t) and M2(t), resp.) against t . The additional lowest curve
in the centre panel ∗ and in the right-hand panel is the logarithm of M2(t) with m = 1600, and
constitutes our best estimate of “truth.”



EFFICIENCY OF PSEUDO-MARGINAL RWM ALGORITHMS 255

PROPOSITION 3. If Assumption 1 hold, the identity

E
[
exp(tL̂)

]
/E
[
exp
{
(t + 1)W ∗}]= E

[
exp(tL)

]
(4.1)

holds for any t ∈ R such that all the above three expectations are well defined.

The right-hand side of (4.1) is independent of the noise distribution, or equiv-
alently of the number of particles, m. Moreover, if the noise is small enough then
the ratio on the left-hand side should provide a good estimator of the true moment
generating function (MGF) of L even if there is dependence (since the impact of
any dependence will be small).

In our scenario, realisations of L are typically between −385 and −375 with
a mode at approximately −379, so the MGFs of L and L̂ are dominated by the
term e−379t , whatever the noise distribution. To be able to discern any differences
we therefore consider for each value of m, shifted estimators of the MGFs of L̂

and of L

M1(t) := 1

n1

n1∑
i=1

exp
[
t
(
L̂(i) + 379

)]
and

M2(t) := M1(t)

(
1

n2

n∑
i=1

exp
[
(t + 1)W ∗(i)])−1

.

The central panel of Figure 5 shows M1(t) with a separate curve for each value
of m; the lowest curve is our best estimate of the true MGF of L (M2(t) from m =
1600). The right-hand panel shows M2(t) for each value of m. Clearly the curves
in the right-hand panel do not coincide, and so the assumption of independence
does not hold precisely. However, it is clear from the very different vertical scales
of the two figures that most of the difference between the distribution of L̂ for any
given m and the distribution of L can be explained by Assumption 1.

We now consider an empirical measure of efficiency êff, the quotient of the
minimum (over the parameters) effective sample size and the CPU time. The left-
hand panel of Figure 6 shows êff plotted against γ for different values of m, whilst
the right-hand panel shows êff plotted against m for different values of γ . The
optimal (over G) value for γ is either 0.8 or 1.0 whatever the value of m, which is
consistent with the expected insensitivity of the optimal scaling and suggests that
the target is at least approximately Gaussian. The optimal (over M) value for m is
either m = 200, m = 150, or m = 100, corresponding to an optimal σ 2 (estimated
from the sample for W ∗) of either 1.0, 1.3 or 2.1, again (as far as can be discerned)
showing no strong sensitivity to γ . Finally the overall optimum occurs at σ 2 = 2.1
and γ = 0.8 with an acceptance rate of 15.39%. The optimal σ 2 is slightly lower
than the theoretically optimal value of 3.3. Further theoretical investigations (using
numerical integration) for a true 5-dimensional Gaussian target corrupted by noise
subject to the SAR show that ESJD per second is still optimised at σ 2 ≈ 3.3;
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FIG. 6. Empirical efficiency, êff, measured in terms of minimum effective sample size per CPU
second, plotted against (left panel) γ for different values of m and (right panel) σ 2 (estimated from
the sample of W∗ at the posterior median, x̂) for different values of γ .

however empirical investigations show that the ESS/sec for this target is optimised
at a value of σ 2 ≈ 2. The discrepancy between the theory and our simulation study
is therefore likely to be attributable to this discrepancy between ESS and ESJD in
low-dimensional settings. The relatively high acceptance rate is a consequence of
this lower variance and fits with our theory since from (3.3) the acceptance rate

should be 2
(−1
2

√
2σ 2 + γ 2 × 2.562) = 14.7%.

5. Proofs of results. Equation (2.3) yields that B = W ∗ − W has density ρ

satisfying

ρ(b) :=
∫
w∈R

g∗(w)g∗(w + b)ew dw

=
∫
w∗∈R

g∗(w∗ − b
)
g∗(w∗)ew∗−b dw∗ = e−bρ(−b).

Thus

ρ(b) = e−b/2h(b) where h is a symmetric function, h(b) = h(−b).(5.1)

This fact will be used in the proofs of Theorem 1 and Proposition 1.

5.1. Proof of Theorem 1. For notational convenience, we drop the index [·](d)

when the context is clear. As in Section 2.3, the Hessian matrix of the log-
likelihood L(x) := logπ(d)(x) at x ∈ Rd is denoted by H(x) = [∂2

ijL(x)]1≤i,j≤d .

• Proof of equation (2.10). The mean acceptance probability equals

α(d)(	) := E
[
1 ∧ exp

(
L
(
X + λ(d)Z

)− L(X) + B
)]

= E
[
F
(
L
(
X + λ(d)Z

)− L(X) + B
)]
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with X
D∼ π(d), jump scale λ(d) := 	/s(d), random variable Z

D∼ N(0, Id) in-
dependent from X, and accept-reject function F(u) := 1 ∧ exp(u). Algebra

shows that for any b ∈ R and V
D∼ N(−	2/2, 	2), we have E[1 ∧ exp(V + b)] =


(−	/2 + b/	) + eb
(−	/2 − b/	). By (5.1)

E
[
1 ∧ exp(V + B)

]
=
∫ ∞
−∞

h(b)
(
e−b/2
(−	/2 + b/	) + eb/2
(−	/2 − b/	)

)
db

= 2
∫ ∞
−∞

h(b)e−b/2
(−	/2 + b/	) db = 2E
[

(−	/2 + B/	)

]
.

Since F is continuous and bounded, in order to prove equation (2.10), it there-
fore suffices to show that L(X + λ(d)Z) − L(X) converges in law to a Gaussian
distribution with mean −	2/2 and variance 	2. A second-order expansion yields

L
(
X + λ(d)Z

)−L(X) = λ(d)〈∇L(X),Z
〉+ 1

2

(
λ(d))2〈Z,H(X)Z

〉+R
(
X,Z, λ(d))

with remainder R(X,Z, λ(d)) := (λ(d))2 ∫ 1
0 (1 − t)〈Z, [H(X + tλ(d)Z) −

H(X)]Z〉dt . Slutsky’s lemma shows that to finish the proof of (2.10) it suffices
to verify that λ(d)〈∇L(X),Z〉 converges in law to a centred Gaussian distribu-
tion with variance 	2 and that

lim
d→∞

1
2

(
λ(d))2〈Z,H(X)Z

〉= −	2/2 and lim
d→∞R

(
X,Z, λ(d))= 0

in probability.
– Note that conditionally upon X = x ∈ Rd the quantity λ(d)〈∇L(X),Z〉 has

a centred Gaussian distribution with variance 	2‖∇L(x)‖2/(s
(d)
G )2. Equation

(2.4) shows that λ(d)〈∇L(X),Z〉 converges in law to a Gaussian distribution
with variance 	2.

– Conditionally upon X = x the quantity (λ(d))2〈Z,H(X)Z〉 has the same dis-
tribution as 	2(

∑d
i=1 βi(x)Z2

i )/s
(d)
L where (β1(x), . . . , βd(x)) is the spectrum

of the Hessian matrix H(x). The conditional mean thus equals the rescaled
Laplacian 	2�L(x)/s

(d)
L , and the conditional variance is

2	4
d∑

i=1

βi(x)2/
(
s
(d)
L

)2 = 2	4 Trace
[
H 2(x)

]
/
(
s
(d)
L

)2
.

Markov’s inequality, equations (2.4) and (2.6), and the hypothesis s
(d)
L =

(s
(d)
g )2 yield that 1

2(λ(d))2〈Z,H(X),Z〉 converges in probability to −	2/2.
– Equation (2.7) shows that the remainder R(X,Z, λ(d)) converges to zero in

probability.
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• Proof of equation (2.11). The proof of equation (2.11) follows from equa-
tion (2.10). Note that we have

(s(d))2

Trace[T(d)] ×E
∥∥X(d)

k+1 − X(d)
k

∥∥2
T(d)

:= 	2
E

[ ‖Z‖2
T(d)

Trace[T(d)] × F
(
L
(
X + λ(d)Z

)− L(X) + B
)]

.

Since limd→∞E[F(L(X + λ(d)Z) − L(X) + B)] = α(	), to prove equa-
tion (2.11) it suffices to verify that

E

[{ ‖Z‖2
T(d)

Trace[T(d)] − 1
}

× F
(
L
(
X + λ(d)Z

)− L(X) + B
)]

converges to zero as d → ∞. Since the function F is bounded, the conclu-
sion follows once we have proved that E[(‖Z‖2

T(d)/Trace[T(d)]−1)2] converges

to zero. Diagonalisation of the symmetric matrix T(d) in an orthonormal basis
shows that this last quantity equals 2 × Trace[(T(d))2]/Trace[T(d)]2 so that the
conclusion directly follows from equation (2.9).

5.2. Proof of Proposition 1. The dominated convergence theorem shows that
	 �→ α(	) = 2 × E[
(B/	 − 	/2)] is continuous and converges to zero as 	 tends
to infinity. Since the limiting acceptance probability can also be expressed as

α(	) = 2P(	ξ + 	2/2 < B) for ξ
D∼ N(0,1) independent from all other sources

of randomness, it also follows that the limiting acceptance probability α(	) con-
verges to 2P(B > 0) as 	 converges to zero. To finish the proof of Proposition 1,
it remains to verify that the function 	 → α(	) is strictly decreasing. To this end,
we will establish that the derivative d

d	
α(	) is strictly negative. Applying (5.1), the

derivative of 	 �→ α(	) is

dα

d	
(	) = d

d	

∫
b∈R

2
[−	/2 + b/	]e−b/2h(b) db

= −
∫
b∈R

ϕ[−	/2 + b/	]
{

1 + 2b

	2

}
e−b/2h(b) db

with ϕ(x) = 
′(x) = e−x2/2/
√

2π the density of a standard Gaussian distribution.
Algebra shows that the function b �→ be−b/2ϕ[−	/2 + b/	] is odd so that the
derivative simplifies,

dα

d	
(	) = −

∫
b∈R

ϕ[−	/2 + b/	]e−b/2h(b) db.

This quantity is clearly strictly negative, completing the proof of Proposition 1.
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5.3. Proof of Proposition 2. The upper bound follows from a similar argument

to that in [3]. Let W̃ be an independent copy of W ∗, and let V
D∼ N(−	2/2, 	2) be

independent from any other source of randomness. Relating W̃ to W through (2.3)
yields

E
[
1 ∧ exp(V + B)

]= E
[
exp(W̃ ) ∧ exp(V ) exp

(
W ∗)]

≤ E
[
1 ∧ exp(V )

]= 2 × 
(−	/2);
we have applied Jensen’s inequality twice to the function (x, y) �→ x ∧ exp(V )y

which is concave in both x and y. Since J (	) = E[1 ∧ exp(V + B)], the upper
bound follows.

The lower bound follows from a similar argument to that used in [14]. We note
that (1 ∧ eV )(1 ∧ eB) ≤ 1 ∧ eV +B . V and B are independent by assumption; as
αmax = E[1 ∧ eB], the result follows on taking expectations with respect to both of
these variables.

5.4. Proof of Theorem 2. In this section we use the following notation. We
write un � vn when the absolute value of the quotient un/vn is bounded above
by a constant which is independent of the index n; we write un � vn if u � vn

and vn � un. For (x,w) ∈ Rd × R we write Ex,w[·] instead of E[·|(X(d)
0 ,W

(d)
0 ) =

(x,w)]. The Metropolis–Hastings accept-reject function is the globally Lipschitz
function F(u) = 1 ∧ eu. The log-likelihood function is denoted by A := logf in
this section. We drop the index (·)(d) when the context is clear.

The proof follows ideas from [5], which itself is an adaptation of the original
paper [26]. It is based on [15], Theorem 8.2, Chapter 4, which gives conditions
under which the finite dimensional distributions of a sequence of processes con-
verge weakly to those of some Markov process. [15], Corollary 8.6, Chapter 8,
provides further conditions for this sequence of processes to be relatively compact
in the appropriate topology and thus establish weak convergence of the stochastic
processes themselves.

The situation is slightly more involved than the one presented in [5, 26]; the
proof needs a homogenisation argument since the processes X(d) and W(d) evolve
on two different time scales. Indeed, it will become apparent from the proof that
the process X(d) takes O(d) steps to mix while the process W(d) takes O(1) steps
to mix. In order to exploit this time-scales separation, we introduce an intermediary
time scale Td = �dγ � where 0 < γ < 1/4 is an exponent whose exact value is not
important to the proof. The intuition is that after O(Td) steps the process W(d) has
mixed while each coordinate of X(d) has only moved by an infinitesimal quantity.
We introduce the subsampled processes X̃(d) and W̃ (d) defined by

X̃(d)
k = X(d)

kTd
and W̃

(d)
k = W

(d)
kTd

.

One step of the process X̃(d) (resp., W̃ (d)) corresponds to Td steps of the process
X(d) (resp., W(d)). We then define an accelerated version Ṽ (d) of the subsampled
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first coordinate process k �→ X̃
(d)
k,1. In order to prove a diffusion limit for the first

coordinate of the process X(d), one needs to accelerate time by a factor of d; con-
sequently, in order to prove a diffusion limit for the process X̃(d), one needs to
accelerate time by a factor d/Td , and thus define Ṽ (d) by

Ṽ (d)(t) := X̃
(d)
�td/Td�,1.

The proof then consists of showing that the sequence Ṽ (d) converges weakly in
the Skorohod topology towards the limiting diffusion (2.15) and verifying that
‖Ṽ (d) − V (d)‖∞,[0,T ] converges to zero in probability; this is enough to prove that
the sequence V (d) converges weakly in the Skorohod topology towards the limiting
diffusion (2.15). The proof is divided into three main steps. First, we show that the
finite dimensional marginals of the process Ṽ (d) converge to those of the limiting
diffusion (2.15). Second, we establish that the sequence Ṽ (d) is weakly relatively
compact. These two steps prove that the sequence Ṽ (d) converges weakly in the
Skorohod topology towards the diffusion (2.15). As a final step, we prove that
the quantity ‖Ṽ (d) − V (d)‖∞,[0,T ] converges to zero in probability, establishing
the weak convergence of the sequence V (d) towards the diffusion (2.15). Before
embarking on the proof we define several quantities that will be needed in the
sequel. We denote by L the generator of the limiting diffusion (2.15). Similarly,
we define L(d) and L̃(d) the approximate generators of the first coordinate process

{X(d)
k,1}k≥0 and its accelerated version {X̃(d)

k,1}k≥0; for any smooth and compactly
supported test function ϕ : R → R, vector x = (x1, . . . , xd) ∈ Rd and scalar w ∈ R,
we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lϕ(x1) = 1
2h(	)

[
ϕ′′(x1) + A(x1)ϕ

′(x1)
]
,

L(d)ϕ(x,w) = EX(d),W

[
ϕ
(
X

(d)
1,1

)− ϕ(x1)
]
/δ,

L̃(d)ϕ(x,w) = EX(d),W

[
ϕ
(
X̃

(d)
1,1

)− ϕ(x1)
]
/(Td × δ)

with δ = 1/d . Note that although ϕ is a scalar function, the functions L(d)ϕ and
L̃(d)ϕ are defined on Rd × R. In the sequel we sometimes write L̃(d)ϕ(x1, . . . ,

xd,w) instead of L̃(d)ϕ(x,w).

5.4.1. Convergence of the finite dimensional distributions of Ṽ (d). In this sec-
tion we prove that the finite dimensional distributions of the sequence of processes
Ṽ (d) converge weakly to those of the diffusion (2.15). Since the limiting process
is a scalar diffusion, the set of smooth and compactly supported functions is a core
for the generator of the limiting diffusion ([15], Theorem 2.1, Chapter 8); in the
sequel, one can thus work with test functions belonging to this core only. To prove
the convergence of the finite dimensional marginals, one can apply [15], Chapter 4,
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Theorem 8.2, Corollary 8.4, to the pair (ξ (d), ϕ(d)) defined by

ξ (d)(t) = 1

δTd

∫ t+δTd

t
ϕ
[
Ṽ (d)(s)

]
ds and

(5.2)
ϕ(d)(t) = L̃(d)ϕ

(
X̃(d)

�td/Td�, W̃
(d)
�td/Td�

)
.

To establish that this result applies, we will concentrate on proving that for any
smooth and compactly supported function ϕ : R → R the following limit holds:

lim
d→∞E

∣∣L̃(d)ϕ(X1, . . . ,Xd,W) −Lϕ(X1)
∣∣= 0,(5.3)

for {Xk}k≥1 an i.i.d. sequence of random variables distributed according to

f (x) dx and W
D∼ ewg∗(w)dw. Equation (5.3) implies equation (8.11) of [15],

Chapter 4, and the stationarity assumption implies equations (8.8) and (8.9) of
[15], Chapter 4. To verify that equation (8.10) of [15], Chapter 4, holds, one can
notice that for any index k ≥ 1 we have E[|ϕ(X

(d)
k,1) − ϕ(X

(d)
0,1)|] � kδ1/2, which

is a direct consequence of the triangle inequality and the fact that ϕ is a Lipschitz
function. The proof of (5.3) is based on an averaging argument that exploits the
following relationship between the generators L(d) and L̃(d),

L̃(d)ϕ(x,w) = Ex,w

[
1

Td

Td−1∑
k=0

L(d)ϕ
(
X(d)

k ,W
(d)
k

)]
.(5.4)

Equation (5.4) follows from the telescoping expansion ϕ(X(d)
Td

) − ϕ(X(d)
0 ) =∑Td−1

k=0 ϕ(X(d)
k+1) − ϕ(X(d)

k ) and the law of iterated conditional expectations. The
following lemma is crucial:

LEMMA 1 (Asymptotic expansion of L(d)ϕ). Let Assumptions 1 and 3 be sat-
isfied. There exist two bounded and continuous functions a, b : R → R satisfying
the following properties:

(1) Let W be a random variable distributed as the stationary distribution of
the log-noise, W

D∼ ewg∗(w)dw, and α(	) be the asymptotic mean acceptance
probability identified in Theorem 1. The following identity holds:

E
[
a(W)

]= E
[
b(W)

]= 1
2α(	).(5.5)

(2) For any smooth and compactly supported function ϕ : R → R the averaged
generator Gϕ defined for any (x1,w) ∈ R2 by

Gϕ(x1,w) := 	2

I

[
a(w)A′(x1)ϕ

′(x1) + b(w)ϕ′′(x1)
]

satisfies

lim
d→∞E

∣∣L(d)ϕ(X1, . . . ,Xd,W) − Gϕ(X1,W)
∣∣2 = 0
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for an i.i.d. sequence {Xk}k≥1 marginally distributed as f (x) dx and constant I

defined by (2.13).

The above lemma thus shows that the approximate generator EX(d),W [ϕ(X
(d)
1,1)−

ϕ(x1)]/δ asymptotically only depends on the first coordinate x1 ∈ R and the log-
noise w ∈ R. The proof is an averaging argument for the (d − 1) coordinates
(x2, . . . , xd); this is mainly technical and details can be found in Appendix A.1.
The next step consists in exploiting the separation of scales between the processes
{X(d)

k }k≥0 and {W(d)
k }k≥0.

LEMMA 2. Let h : R → R be a bounded measurable function. Suppose that
for any d ≥ 1 the Markov chain {(X(d)

k ,W
(d)
k )}k≥0 is started at stationarity. The

following limit holds:

lim
d→∞E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h
(
W

(d)
k

)−E
[
h(W)

]∣∣∣∣∣= 0,

with W distributed according to the stationary distribution W
D∼ ewg∗(w)dw.

The above lemma thus shows that Td = �dγ � steps, with 0 < γ < 1/4, are
enough for the process W(d) to mix. The proof relies on a coupling argument
and the ergodic theorem for Markov chains. Details can be found Appendix A.2.
We now have all the tools in hands to prove equation (5.3). First, with the notation
X(d) = (X1, . . . ,Xd), the telescoping expansion (5.4) and Jensen’s conditional in-
equality yields

E
∣∣L̃(d)ϕ

(
X(d),W

)−Lϕ(X1)
∣∣

= E

∣∣∣∣∣EX(d),W

[
1

Td

Td−1∑
k=0

L(d)ϕ
(
X(d)

k ,W
(d)
k

)−Lϕ
(
X

(d)
0,1

)]∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

L(d)ϕ
(
X(d)

k ,W
(d)
k

)−Lϕ
(
X

(d)
0,1

)∣∣∣∣∣.
One can then use the triangle inequality to obtain the bound

E
∣∣L̃(d)ϕ

(
X(d),W

)−Lϕ(X1)
∣∣

≤ E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

L(d)ϕ
(
X(d)

k ,W
(d)
k

)−Lϕ
(
X

(d)
0,1

)∣∣∣∣∣
≤ 1

Td

Td−1∑
k=0

E
∣∣L(d)ϕ

(
X(d)

k ,W
(d)
k

)− Gϕ
(
X

(d)
k,1,W

(d)
k

)∣∣
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+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

Gϕ
(
X

(d)
k,1,W

(d)
k

)− Gϕ
(
X

(d)
0,1,W

(d)
k

)∣∣∣∣∣
+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

Gϕ
(
X

(d)
0,1,W

(d)
k

)−Lϕ
(
X

(d)
0,1

)∣∣∣∣∣
=: E1(d) + E2(d) + E3(d).

To complete the proof of the convergence of the finite dimensional distributions
of Ṽ (d) towards those of the limiting diffusion (2.15), it remains to prove that
Ei(d) → 0 as d → ∞ for i = 1,2,3:

• Since the Markov chain {(X(d)
k ,Wk,)}k≥0 is assumed to be stationary, the quan-

tity E1(d) also equals E|L(d)ϕ(X1, . . . ,Xd,W)−Gϕ(X1,W)|. Lemma 1 shows
that E1(d) → 0 as d → ∞.

• The formula for the quantity Gϕ(x,w) shows that the expectation E2(d) also
reads

	2

I
×E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

a
(
W

(d)
k

){
A′(X(d)

k,1

)
ϕ′(X(d)

k,1

)− A′(X(d)
0,1

)
ϕ′(X(d)

0,1

)}
(5.6)

+ 1

Td

Td−1∑
k=0

b
(
W

(d)
k

){
ϕ′′(X(d)

k,1

)− ϕ′′(X(d)
0,1

)}∣∣∣∣∣.
Under Assumption 3 the function A′ is globally Lipschitz; since ϕ is smooth
with compact support, the functions x �→ A′(x)ϕ′(x) and x �→ ϕ′′ are both
globally Lipschitz. Using the boundedness of the functions a and b, this
yields that the quantity in equation (5.6) is bounded by a constant multiple of
1
Td

∑Td−1
k=0 E|X(d)

k,1 −X
(d)
0,1|. For any index k ≥ 0 we have E|X(d)

k+1,1 −X
(d)
k,1|� δ1/2

so that E|X(d)
k,1 − X

(d)
0,1|� kδ1/2. Since Td/d1/2 → 0, the conclusion follows.

• Lemma 1 shows that one can express the generator of the limiting diffu-

sion (2.15) as Lϕ(x) = 	2

I
E[a(W)]A′(x)ϕ′(x) + 	2

I
E[b(W)]ϕ′′(x). The expec-

tation E3(d) thus also reads

	2

I
×E

∣∣∣∣∣
{

1

Td

Td−1∑
k=0

a
(
W

(d)
k

)−E
[
a(W)

]}
A′(X(d)

0,1

)
ϕ′(X(d)

0,1

)

+
{

1

Td

Td−1∑
k=0

b
(
W

(d)
k

)−E
[
b(W)

]}
ϕ′′(X(d)

0,1

)∣∣∣∣∣.
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Because the function ϕ is smooth with compact support, it follows (Cauchy–
Schwarz) that this quantity is less than a constant multiple of

E

[{
1

Td

Td−1∑
k=0

a
(
W

(d)
k

)−E
[
a(W)

]}2]1/2

×E
[
A′(X)2]1/2

+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

b
(
W

(d)
k

)−E
[
b(W)

]∣∣∣∣∣.
Lemma 2 shows that E| 1

Td

∑Td−1
k=0 b(W

(d)
k ) − E[b(W)]| → 0, and under As-

sumption 3 the expectation E[A′(X)2] is finite. Therefore, to finish the proof
of the limit E3(d) → 0, one needs to verify that E[{ 1

Td

∑Td−1
k=0 a(W

(d)
k ) −

E[a(W)]}2] → 0. According to Lemma 2, the sequence ( 1
Td

∑Td−1
k=0 a(W

(d)
k ) −

E[a(W)]) converges in L1 to zero. The sequence is also bounded in L∞ since
the function a is bounded. A sequence bounded in L∞ that converges to zero
in L1 also converges to zero in any Lp for 1 ≤ p < ∞. The conclusion follows.

5.4.2. Relative weak compactness of the sequence Ṽ (d). The process Ṽ (d) is
started at stationarity and the space of smooth functions with compact support
is an algebra that strongly separates points. Ethier and Kurtz ([15], Chapter 4,
Corollary 8.6) show that in order to prove that the sequence Ṽ (d) is relatively
weakly compact in the Skorohod topology it suffices to verify that equations (8.33)
and (8.34) of [15], Chapter 4, hold.

• To prove (8.34) it suffices to show that for any smooth and compactly supported
test function ϕ the sequence d �→ E|L̃(d)ϕ(X1, . . . ,Xd,W)|2 is bounded. One
can use the telescoping expansion (5.4), Lemma 1 and the stationarity of the

Markov chain {(X(d)
k ,W

(d)
k )}k≥0 and obtain that

E
∣∣L̃(d)ϕ

(
X(d),W

)∣∣2 � E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

L(d)ϕ
(
X(d)

k ,W
(d)
k

)− Gϕ
(
X

(d)
k,1,W

(d)
k

)∣∣∣∣∣
2

+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

Gϕ
(
X

(d)
k,1,W

(d)
k

)∣∣∣∣∣
2

≤ 1

Td

Td−1∑
k=0

E
∣∣L(d)ϕ

(
X(d),W

(d)
k

)− Gϕ
(
X

(d)
k,1,W

(d)
k

)∣∣2

+ 1

Td

Td−1∑
k=0

E
∣∣Gϕ
(
X

(d)
k,1,W

(d)
k

)∣∣2
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= E
∣∣L(d)ϕ

(
X(d),W

)− Gϕ(X1,W)
∣∣2 +E

∣∣Gϕ(X1,W)
∣∣2

= o(1) +O(1).

This proves equation (8.34).
• To prove (8.33) one needs to show that the expectation of sup{|ξd(t) −

Ṽ (d)(t)| : t ∈ [0, T ]} converges to zero as d → ∞, where the process ξd is de-
fined in equation (5.2). Note that the supremum is less than

‖ϕ‖Lip × sup

{
δ ×

j∑
k=i

∣∣X(d)
j,1 − X

(d)
i,1

∣∣ : 0 ≤ i < j ≤ d × T and |i − j | ≤ Td

}
,(5.7)

where ‖ϕ‖Lip is the Lipschitz constant of ϕ. Therefore, since |X(d)
j,1 − X

(d)
i,1 | �

δ
∑j−1

k=i |Zk| where {Zk}k≥0 are i.i.d. standard Gaussian random variables such

that X
(d),∗
i,1 = X

(d)
i,1 + 	I−1/2δZk , the following lemma gives the conclusion.

LEMMA 3. Let {ξk}k≥1 an i.i.d. sequence of standard Gaussian random vari-
ables N(0,1). We have

lim
d→∞E

[
sup

{
δ ×

j∑
k=i

|ξk| : 0 ≤ i < j ≤ d × T and |i − j | ≤ Td

}]
= 0.

PROOF. Indeed, it suffices to prove that δ times the expectation of the supre-
mum sup{S(i, d) : i ≤ d/Td}, with S(i, d) =∑(i+1)Td

k=iTd
|ξk|, converges to zero; this

follows from Markov’s inequality and standard Gaussian computations. �

This completes the proof of the relative weak compactness in the Skorohod
topology. The sequence of processes Ṽ (d) is weakly compact in the Skorohod
topology, and the finite dimensional distributions of Ṽ (d) converge to the finite
dimensional distribution of the diffusion (2.15). Consequently, the sequence of
processes Ṽ (d) converges weakly in the Skorohod space D([0, T ]) to the diffu-
sion (2.15). The next section shows that the discrepancy between V (d) and Ṽ (d)

is small and thus proves that the sequence of processes V (d) also converges to the
diffusion (2.15).

5.4.3. Discrepancy between V (d) and Ṽ (d). Since supt≤T |V (d)
t − Ṽ

(d)
t | is less

than the supremum of equation (5.7), Lemma 3 yields that ‖Ṽ − V (d)‖∞,[0,T ]
converges to zero in probability. This ends the proof of Theorem 2.

6. Discussion. We have examined the behaviour of the pseudo-marginal ran-
dom walk Metropolis algorithm in the limit as the dimension of the target
approaches infinity, under the assumption that the noise in the estimate of the log-
target at a proposed new value, x, is additive and independent of x.
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Subject to relatively general conditions on the target, limiting forms for the
acceptance rate and for the efficiency, in terms of expected squared jump distance
(ESJD), have been obtained. We examined two different noise distributions (Gaus-
sian and Laplace), and found that the optimal scaling of the proposal is insensitive
to the variance of the noise and to whether the noise has a Gaussian or a Laplace
distribution.

We then examined the behaviour of the Markov chain on the target, x, and the
noise, obtaining a limiting diffusion for the first component of a target with in-
dependent and identically distributed components. The efficiency function in this
case is proportional to the speed of the diffusion, thus further justifying the use of
ESJD in this context.

We identified a “standard asymptotic regime” under which the additive noise is
Gaussian with variance inversely proportional to the number of unbiased estimates
that are used. In this regime the efficiency function is especially tractable, and
we showed that it is maximised when the acceptance rate is approximately 7.0%
and the variance of the Gaussian noise is approximately 3.3. We noted that in this
regime the optimal noise variance is also insensitive to the choice of scaling.

A detailed simulation study on a Lotka–Volterra Markov jump process using a
particle filter suggested that in the scenario considered the assumptions of the stan-
dard asymptotic regime are reasonable provided the number of particles is not too
low. Furthermore, whilst the assumption that the distribution of the noise does not
depend on the current position is not true, variations in the distribution have a small
effect on the distribution of the estimates of the log-target compared with the ef-
fect of the noise itself. The optimal scaling was found to be insensitive to the noise
variance (or equivalently the number of particles), and the optimal noise variance
was relatively insensitive to the choice of scaling. The overall optimal scaling was
consistent with the theoretical value obtained; however the optimal variance was
a little lower than the theoretically optimal value. Investigations showed that this
discrepancy can be explained by the differences between our theoretical measure
of efficiency (ESJD) and empirical measures used in the simulation study (ESS).

The results from the simulation study suggest that in low dimension a safer
option than tuning to a particular variance and acceptance rate might be to take
advantage of the insensitivity of the optimal scaling to the variance and vice versa
and optimise scaling and variance independently.

The diffusion limit provides strong support for the optimisation strategies sug-
gested by the ESJD criterion. However, in an ideal world it would be good to show
that the sequence of algorithms which achieves the minimal optimal integrated au-
tocorrelation time for a given functional might converge to the optimal diffusion.
This is a generic question which is relevant to all diffusion limits for MCMC al-
gorithms, and there are still important open questions regarding the relationships
between ESJD, diffusion limits, and limiting optimal integrated autocorrelation. In
this direction, a recent paper [30] has shown that diffusion limits can be translated
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into complexity results, thus demonstrating that at least the order of magnitude of
the number of iterations to “converge” can be read off from the diffusion limit.

The optimal variance of 3.28 under the standard asymptotic regime is similar to
the value of 2.83 obtained in [14] under the same noise assumptions and for a sce-
nario where the component of the Markov chain on X mixes infinitely more slowly
than the noise component. Indeed, as noted in a remark following Corollary 1, 2.83
is (to two decimal places) the optimal variance that we obtain when 	 = 0. There
are many differences between the approaches in [14] and this article. For exam-
ple, we optimise a limiting efficiency for the random walk Metropolis with respect
to both the scaling and the variance whereas Doucet et al. [14] consider the uni-
variate optimisation of a bound on the efficiency of Metropolis–Hastings kernels
which satisfy a positivity condition. That a similar conclusion may be drawn from
two very different approaches is encouraging.

APPENDIX A: PROOF OF TECHNICAL LEMMAS

Let {Xj }j≥1 be an i.i.d. sequence of random variables distributed as f (x) dx,

W
D∼ ewg∗(w)dw, {Zk,j }k≥0,j≥1 an i.i.d. sequence of N(0,1) random variables,

{Uk}k≥0 an i.i.d. sequence of random variables uniformly distributed on (0,1),
and {W ∗

k }k≥0 an i.i.d. sequence distributed as g∗(w)dw. All these random vari-
ables are assumed to be independent from one another. For all integers 1 ≤ j ≤ d

we set X
(d)
0,j = Xj and W

(d)
0 = W . We introduce the proposals X

(d),∗
k,j = X

(d)
k,j +

	I−1/2d−1/2Zk,j and define (X
(d)
k+1,W

(d)
k+1) = (X

(d),∗
k ,W ∗

k ) if

Uk < F

(
W ∗

k − W
(d)
k +

d∑
j=1

A
(
X

(d),∗
k,j

)− A
(
X

(d)
k,j

))

and (X
(d)
k+1,W

(d)
k+1) = (X

(d)
k ,W

(d)
k ) otherwise. We define X(d) = (X

(d)
k,1, . . . ,X

(d)
k,d).

For any dimension d ≥ 1 the process {X(d)
k ,W

(d)
k )}k≥1 is a Metropolis–Hastings

Markov chain started at stationarity, that is, (X(d)
0 ,W

(d)
0 ) = (X1, . . . ,Xd,W)

D∼
π(d), targeting the distribution π(d).

A.1. Proof of Lemma 1. In this section, for notational convenience, we write
Zj instead of Z0,j and W ∗ instead of W ∗

0 . We set

a(w) := E
[
F ′(� + W ∗ − w

)]
and b(w) := 1

2E
[
F
(
� + W ∗ − w

)]
(A.1)

with F ′(u) = euI{u<0} and �
D∼ N(−	2/2, 	2) independent from all other sources

of randomness. To prove Lemma 1, it suffices to show that the function a and b are
continuous, bounded, satisfy identity (5.5), and that the following two limits hold:⎧⎪⎨⎪⎩

lim
d→∞E

∣∣Ed

[(
X

1,d
1 − X1

)
/δ
]− 	2I−1a(W)A′(X1)

∣∣2 = 0,

lim
d→∞E

∣∣1
2Ed

[(
X

1,d
1 − X1

)2
/δ
]− 	2I−1b(W)

∣∣2 = 0.
(A.2)
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We have used the notation Ed [· · ·] for E[· · · |X1, . . . ,Xd,W ]. The fact that the
functions a and b are bounded and continuous follows from the dominated con-
vergence theorem.

• Proof of equation (5.5). Note that E[b(W)] = 1
2E[1 ∧ exp(� + B)] with B :=

W ∗ − W . A standard computation show that for any β ∈ R, we have E[1 ∧
exp(�+β)] = 2
(−	/2 +β/	), so that the identity E[b(W)] = 1

2α(	) directly
follows from the definition of α in Theorem 1.

For proving the identity E[a(W)] = 1
2α(	), note that the expectation E[a(W)]

equals∫ ∫ ∫
(z,w,w∗)∈R3

e−	2/2+	z+w∗−wI{−	2/2+	z+w∗−w<0}ewg∗(w)g∗(w∗)
× e−z2/2

√
2π

dw dw∗ dz

=
∫ ∫ ∫

(z,w,w∗)∈R3
I{−	2/2+	(−z+	)+w−w∗>0}ew∗

g∗(w)g∗(w∗)
× e−(−z+	)2/2

√
2π

dw dw∗ dz

=
∫ ∫ ∫

(z,w,w∗)∈R3
I{−	2/2+	z+w∗−w>0}ew∗

g∗(w)g∗(w∗)
× e−z2/2

√
2π

dw dw∗ dz

= E[I{�+W ∗−W>0}].
We have used the change of variable (z,w∗,w) → (−z + 	,w,w∗) to go
from the second line to the third. This computation shows that E[a(W)] :=
E[e�+W ∗−W I{�+W ∗−W<0}] = E[I{�+W ∗−W>0}]. Since F(u) = 1 ∧ eu = eu ×
I{u<0} + Iu≥0, it follows that

α(	) = E
[
F
(
�+W ∗ −W

)]= E
[
e�+W ∗−W I{�+W ∗−W<0}

]+E[I{�+W ∗−W>0}],
and therefore E[a(W)] = α(	)/2.

• Proof of equation (A.2). We will only verify that the first limit in equation (A.2)
holds. The proof of the second limit is similar but easier. In other words, we
will focus on proving that the sequence Ed [(X1,d

1 − X1)/δ] converges in L2

to 	2I−1a(W)A′(X1). An integration by parts shows that for any continuous
function g : R → R such that g′ has a finite number of discontinuities, if g(Z)

and g′(Z) have a finite first moment for Z
D∼ N(0,1), the identity E[Z×g(Z)] =
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E[g′(Z)] holds. It follows that

Ed

[(
X

1,d
1 − X1

)
/δ
]

= 	I−1/2δ1/2
Ed

[
Z1 × F

(
�(d) + W ∗ − W

)]
= 	2I−1

Ed

[
F ′(�(d) + W ∗ − W

)× A′(x1 + 	I−1/2δ1/2Z1
)]

with �(d) = ∑d
i=1 A(Xi + 	I−1/2δ1/2Zi) − A(Xi). Under Assumption 3 the

function A′ = (logf )′ is globally Lipschitz so that, since the function F ′ is
bounded, one can focus on proving that

Ed

[
F ′(�(d) + W ∗ − W

)]× A′(X1)

converges in L2 to a(W)A′(X1). By the Cauchy–Schwarz inequality, this re-
duces to proving that

lim
d→∞E

[∣∣Ed

[
F ′(�(d) + W ∗ − W

)]−Ed

[
F ′(� + W ∗ − W

)]∣∣4]= 0.

By the Portmanteau’s theorem, the dominated convergence theorem, and the
definition of �(d), this reduces to proving that for almost every realisation
{xi}i≥1 of the i.i.d. sequence {Xi}i≥1 the following limit holds in distribution:

lim
d→∞

d∑
i=1

A
(
xi + 	I−1/2δ1/2Zi

)− A(xi) = �.

Under Assumption 3 the third derivative of A is bounded so that a second order
Taylor expansion yields that the difference A(xi +	I−1/2δ1/2Zi)−A(xi) equals
A′(xi)	I

−1/2δ1/2Zi + (1/2)A′′(xi)	
2I−1δZ2

i +O(d−3/2); consequently,

d∑
i=1

A
(
xi + 	I−1/2δ1/2Zi

)− A(xi)

law= 	2

2I

{∑d
i=1 A′′(xi)

d

}
+ 	I−1/2

{∑d
i=1 A′(xi)

2

d

}1/2

ξ

+ 	2

2I

{∑d
i=1 A′′(xi)(Z

2
i − 1)

d

}
+O
(
d−1/2)

for ξ
D∼ N(0,1) independent from all other sources of randomness. The law of

large numbers shows that for almost every realisation {xi}i≥1 the right-hand side

of the above equation converges in distribution towards �
D∼ N(−	2/2, 	2).

A.2. Proof of Lemma 2. For convenience, we first give a high-level descrip-
tion of the reasoning. We construct processes {Ŵ (d)

k }k≥0, {Ŷ (d)
k }k≥0, and {Yk}k≥

satisfying the following:
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• With high probability Ŵ
(d)
k = W

(d)
k for all k ≤ Td .

• The process {Ŷ (d)
k }k≥0 has the same law as the process {Ŵ (d)

k }k≥0.

• With high probability Ŷ
(d)
k = Yk for all k ≤ Td .

• The process {Yk}k≥0 is a Markov chain that is ergodic with invariant distribution
ewg∗(w)dw.

One can thus use an approximation of the type

E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h
(
W

(d)
k

)−E
[
h(W)

]∣∣∣∣∣≈ E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h(Yk) −E
[
h(W)

]∣∣∣∣∣
and the usual ergodic theorem gives the conclusion. We use at several places the
following elementary lemma.

LEMMA 4. Let Td = �dγ � with 0 < γ < 1
4 . Let {P (d)

k }k,d≥0 and {Q(d)
k }k,d≥0

be two arrays of (0,1)-valued random variables. Let {Uk}k≥0 be a sequence of
random variables uniformly distributed on the interval (0,1). We suppose that for
all dimension d ≥ 1 the random variable Uk is independent from {P (d)

j }k−1
j=0 and

{Q(d)j}k−1
j=0. Consider the event

E
(d)
k := {ω : I{Uj<P

(d)
j } = I{Uj<Q

(d)
j } for all 0 ≤ j ≤ k

}
.

Under the assumption that E[|P (d)
k − Q

(d)
k ||E(d)

k−1]� k/
√

d , we have

lim
d→∞P

(
E

(d)
Td

)= 1.

PROOF. Note that P(E
(d)
k ) = P(E

(d)
0 )
∏k

j=1 P[I{Uj<P
(d)
j } = I{Uj<Q

(d)
j }|E

(d)
j−1].

Since Uj is supposed to be independent from the event E
(d)
j−1, it follows that

P[I{Uj<P
(d)
j } = I{Uj<Q

(d)
j }|E

(d)
j−1] = 1 − E[|P (d)

j − Q
(d)
j ||E(d)

j−1]. The conclusion

then directly follows from the bound E[|P (d)
k −Q

(d)
k ||E(d)

k−1] � k/
√

d and γ < 1/4.
�

We now describe the construction of the processes {Ŵ (d)
k }k≥0, {Ŷ (d)

k }k≥0 and
{Yk}k≥0. To this end, we need an i.i.d. sequence {ξk}k≥0 of standard N(0,1) Gaus-
sian random variables independent from all other sources of randomness. All the
processes start at the same position W

(d)
0 = Ŵ

(d)
0 = Ŷ

(d)
0 = Y0 = W . We define

Ŵ
(d)
k+1 = W ∗

k if

Uk < F

[
	√
dI

d∑
j=1

A′(Xj )Zk,j − 	2/2 + W ∗
k − Ŵ

(d)
k

]
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and Ŵ
(d)
k+1 = Ŵ

(d)
k otherwise. We define Ŷ

(d)
k+1 = W ∗

k if

Uk < F

[
	I−1/2

{
d−1

d∑
j=1

A′(Xj )
2

}1/2

ξk − 	2/2 + W ∗
k − Ŷ

(d)
k

]

and Ŷ
(d)
k+1 = Ŷ

(d)
k otherwise. We define Yk+1 = W ∗

k if

Uk < F
[
	ξk − 	2/2 + W ∗

k − Yk

]
and Yk+1 = Yk otherwise.

• W
(d)
k = Ŵ

(d)
k with high probability. We prove that limd→∞ P[W(d)

k = Ŵ
(d)
k :k =

1, . . . , Td ] = 1. Because the Metropolis–Hastings function F is globally Lips-
chitz, Lemma 4 shows that it suffices to verify that

E

∣∣∣∣∣
d∑

j=1

A
(
X

(d),∗
k,j

)− A
(
X

(d)
k,j

)− A′(Xj )	I
−1/2Zk,j /

√
d + 	2

2

∣∣∣∣∣� k/
√

d.(A.3)

Under Assumption 3 the second and third derivatives of A are bounded so that
bound (A.3) follows from a second-order Taylor expansion,

E

∣∣∣∣∣
d∑

j=1

A
(
X

(d),∗
k,j

)− A
(
X

(d)
k,j

)− A′(Xj )	I
−1/2Zk,j /

√
d + 	2/2

∣∣∣∣∣
� E

∣∣∣∣∣
d∑

j=1

A
(
X

(d),∗
k,j

)− A
(
X

(d)
k,j

)− 	√
dI

A′(X(d)
k,j

)
Zk,j − 	2

2Id
A′′(X(d)

k,j

)
Z2

k,j

∣∣∣∣∣
+ 	√

dI
E

∣∣∣∣∣
d∑

j=1

(
A′(X(d)

k,j

)− A′(Xj )
)
Zk,j

∣∣∣∣∣
+ 	2

2Id
E

∣∣∣∣∣
d∑

j=1

(
A′′(X(d)

k,j

)− A′′(Xj )
)
Z2

k,j

∣∣∣∣∣+ 	2

2I
E

∣∣∣∣∣1d
d∑

j=1

A′′(Xj ) + I

∣∣∣∣∣
� 1√

d
+ 1√

d

{
d∑

j=1

E
∣∣A′(X(d)

k,j

)− A′(Xj )
∣∣2}1/2

+ 1

2d

d∑
j=1

E
∣∣A′′(X(d)

k,j

)− A′′(Xj )
∣∣+E

∣∣∣∣∣d−1
d∑

j=1

A′′(Xj ) + I

∣∣∣∣∣
� 1√

d
+ k√

d
+ k√

d
+ 1√

d
.

We have used the bound E|X(d)
k,j − Xj |2 � k2

d
.



272 SHERLOCK, THIERY, ROBERTS AND ROSENTHAL

• Ŵ (d) and Ŷ (d) have same law. It is straightforward to verify that the processes
{Ŵ (d)

k }k≥0 and {Ŷ (d)
k }k≥0 have the same law.

• Ŷ
(d)
k = Yk with high probability. We prove that limd→∞P[Ŷ (d)

k = Yk :k =
1, . . . , Td ] = 1. Lemma 4 shows that this follows from the elementary bound
E|{d−1∑d

j=1 A′(Xj )
2}1/2 − I 1/2|� 1/

√
d .

We now show that the Markov chain {Yk}k≥0 is a Markov chain that is reversible
with respect to the distribution ewg∗(w)dw,

exg∗(x)g∗(y)E
[
E
[
F(� + y − x)

]]= eyg∗(y)g∗(x)E
[
E
[
F(� + x − y)

]]
for all x, y ∈ R2. This boils down to verifying that the function (x, y) �→
ex
E[F(� + y − x)] is symmetric; Proposition 2.4 of [26] shows that this quan-

tity can be expressed as

ex


(−(1/2)	2 + y − x

	

)
+ ey


(−(1/2)	2 + x − y

	

)
,

which is indeed symmetric. Note that this Markov chain corresponds to the penalty
method of [12]; see also [21] for a discussion of this algorithm. The ergodic
theorem for Markov chains applies; for any bounded and measurable function
h : R → R we have

lim
N→∞E

∣∣∣∣∣ 1

N

N−1∑
k=0

h(Yk) −E
[
h(W)

]∣∣∣∣∣= 0.

One can thus use the triangle inequality several times to see that for any bounded
and measurable function h : R → R, we have

E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h
(
W

(d)
k

)−E
[
h(W)

]∣∣∣∣∣
≤ 1

Td

Td−1∑
k=0

E
∣∣h(W(d)

k

)− h
(
Ŵ

(d)
k

)∣∣+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h
(
Ŵ

(d)
k

)−E
[
h(W)

]∣∣∣∣∣
�
(
1 − P

[
W

(d)
k = Ŵ

(d)
k :k = 1, . . . , Td

])+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h
(
Ŷ

(d)
k

)−E
[
h(W)

]∣∣∣∣∣
� o(1) + 1

Td

Td−1∑
k=0

E
∣∣h(Ŷ (d)

k

)− h(Yk)
∣∣+E

∣∣∣∣∣ 1

Td

Td−1∑
k=0

h(Yk) −E
[
h(W)

]∣∣∣∣∣
= o(1) + o(1) + o(1),

which completes the proof of Lemma 2.
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APPENDIX B: DETAILS OF THE LOTKA VOLTERRA MODEL

In this Appendix, we present details of the Lotka–Volterra model used in the
simulation study of Section 4. The Lotka–Volterra model is a continuous-time
Markov chain on N

2
0. The transitions and associated rates for this model are

(u1, u2)
x1u1u2−→ (u1 + 1, u2 − 1), (u1, u2)

x2u1−→ (u1 − 1, u2) and

(u1, u2)
x3u2−→ (u1, u2 + 1);

the rate for any other transition is zero. Observations of the Markov chain, when
they occur, are subject to Gaussian error,

Y(t) ∼ N
([

u1(t)

u2(t)

]
,

[
x4 0
0 x5

])
.

Using x = (0.006,0.6,0.3,25,49), a realisation of the stochastic process was sim-
ulated from initial value u(0) = (70,70) for T = 50 time units. The state, per-
turbed with Gaussian noise, y(t), was recorded at t = 1,2, . . . , T . For inference,
X1, . . . ,X5 were assumed to be independent, a priori with logXi ∼ Unif[−8,8],
(i = 1, . . . ,5).

The initial value for each chain was a vector of estimates of the posterior median
for each parameter, obtained from the initial run; hence no “burn-in” was required.
Each algorithm was run for 2.5 × 105 iterations, except with m = 50 and m = 80,
where 106 iterations were used. Output was thinned by a factor of 10 for storage.

Acknowledgements. We are grateful to the Associate Editor and three refer-
ees for their comments, which helped improve both the presentation and the con-
tent of this article. Gareth Roberts and Jeffrey Rosenthal are grateful for financial
support in carrying out this research from, respectively, EPSRC of the UK, through
the CRiSM (EP/D002060/1) and iLike (EP/K014463/1) projects, and NSERC of
Canada.

REFERENCES

[1] ANDRIEU, C., DOUCET, A. and HOLENSTEIN, R. (2010). Particle Markov chain Monte Carlo
methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 269–342. MR2758115

[2] ANDRIEU, C. and ROBERTS, G. O. (2009). The pseudo-marginal approach for efficient Monte
Carlo computations. Ann. Statist. 37 697–725. MR2502648

[3] ANDRIEU, C. and VIHOLA, M. (2014). Convergence properties of pseudo marginal Markov
chain Monte Carlo algorithms. Preprint. Available at arXiv:1210.1484.

[4] BEAUMONT, M. A. (2003). Estimation of population growth or decline in genetically moni-
tored populations. Genetics 164 1139–1160.

[5] BÉDARD, M. (2007). Weak convergence of Metropolis algorithms for non-i.i.d. target distribu-
tions. Ann. Appl. Probab. 17 1222–1244. MR2344305

[6] BÉDARD, M. and ROSENTHAL, J. S. (2008). Optimal scaling of Metropolis algorithms: Head-
ing toward general target distributions. Canad. J. Statist. 36 483–503. MR2532248

http://www.ams.org/mathscinet-getitem?mr=2758115
http://www.ams.org/mathscinet-getitem?mr=2502648
http://arxiv.org/abs/arXiv:1210.1484
http://www.ams.org/mathscinet-getitem?mr=2344305
http://www.ams.org/mathscinet-getitem?mr=2532248


274 SHERLOCK, THIERY, ROBERTS AND ROSENTHAL

[7] BÉRARD, J., DEL-MORAL, P. and DOUCET, A. (2013). A lognormal central limit theorem for
particle approximations of normalizing constants. Preprint. Available at arXiv:1307.0181.

[8] BESKOS, A., ROBERTS, G. and STUART, A. (2009). Optimal scalings for local Metropolis–
Hastings chains on nonproduct targets in high dimensions. Ann. Appl. Probab. 19 863–
898. MR2537193

[9] BREYER, L. A., PICCIONI, M. and SCARLATTI, S. (2004). Optimal scaling of MaLa for
nonlinear regression. Ann. Appl. Probab. 14 1479–1505. MR2071431

[10] BREYER, L. A. and ROBERTS, G. O. (2000). From Metropolis to diffusions: Gibbs states and
optimal scaling. Stochastic Process. Appl. 90 181–206. MR1794535

[11] BROOKS, S., GELMAN, A., JONES, G. L. and MENG, X.-L., eds. (2011). Handbook of
Markov Chain Monte Carlo. CRC Press, Boca Raton, FL. MR2742422

[12] CEPERLEY, D. M. and DEWING, M. (1999). The penalty method for random walks with un-
certain energies. The Journal of Chemical Physics 110 9812.

[13] DEL MORAL, P. (2004). Feynman–Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. Springer, New York. MR2044973

[14] DOUCET, A., PITT, M., DELIGIANNIDIS, G. and KOHN, R. (2014). Efficient implementation
of Markov chain Monte Carlo when using an unbiased likelihood estimator. Preprint.
Available at arXiv:1210.1871v4.

[15] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Conver-
gence. Wiley, New York. MR0838085

[16] FEARNHEAD, P., PAPASPILIOPOULOS, O. and ROBERTS, G. O. (2008). Particle filters for par-
tially observed diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 755–777. MR2523903

[17] GOLIGHTLY, A. and WILKINSON, D. J. (2011). Bayesian parameter inference for stochastic
biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1
807–820.

[18] GORDON, N. J., SALMOND, D. J. and SMITH, A. F. M. (1993). Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE
Proceedings F 140 107–113.

[19] KNAPE, J. and DE VALPINE, P. (2012). Fitting complex population models by combining
particle filters with Markov chain Monte Carlo. Ecology 93 256–263.

[20] LI, N. and STEPHENS, M. (2003). Modeling linkage disequilibrium and identifying recombi-
nation hotspots using single-nucleotide polymorphism data. Genetics 165 2213–2233.

[21] NICHOLLS, G. K., FOX, C. and WATT, A. M. (2012). Coupled MCMC with a randomized
acceptance probability. Preprint. Available at arXiv:1205.6857.

[22] PASARICA, C. and GELMAN, A. (2010). Adaptively scaling the Metropolis algorithm using
expected squared jumped distance. Statist. Sinica 20 343–364. MR2640698

[23] PILLAI, N. S., STUART, A. M. and THIÉRY, A. H. (2012). Optimal scaling and diffusion
limits for the Langevin algorithm in high dimensions. Ann. Appl. Probab. 22 2320–2356.
MR3024970

[24] PITT, M. K., SILVA, R. D. S., GIORDANI, P. and KOHN, R. (2012). On some properties of
Markov chain Monte Carlo simulation methods based on the particle filter. J. Economet-
rics 171 134–151. MR2991856

[25] POYIADJIS, G., DOUCET, A. and SINGH, S. S. (2011). Particle approximations of the score
and observed information matrix in state space models with application to parameter es-
timation. Biometrika 98 65–80. MR2804210

[26] ROBERTS, G. O., GELMAN, A. and GILKS, W. R. (1997). Weak convergence and opti-
mal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110–120.
MR1428751

[27] ROBERTS, G. O. and ROSENTHAL, J. S. (1998). Optimal scaling of discrete approximations
to Langevin diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 255–268. MR1625691

http://arxiv.org/abs/arXiv:1307.0181
http://www.ams.org/mathscinet-getitem?mr=2537193
http://www.ams.org/mathscinet-getitem?mr=2071431
http://www.ams.org/mathscinet-getitem?mr=1794535
http://www.ams.org/mathscinet-getitem?mr=2742422
http://www.ams.org/mathscinet-getitem?mr=2044973
http://arxiv.org/abs/arXiv:1210.1871v4
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=2523903
http://arxiv.org/abs/arXiv:1205.6857
http://www.ams.org/mathscinet-getitem?mr=2640698
http://www.ams.org/mathscinet-getitem?mr=3024970
http://www.ams.org/mathscinet-getitem?mr=2991856
http://www.ams.org/mathscinet-getitem?mr=2804210
http://www.ams.org/mathscinet-getitem?mr=1428751
http://www.ams.org/mathscinet-getitem?mr=1625691


EFFICIENCY OF PSEUDO-MARGINAL RWM ALGORITHMS 275

[28] ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Optimal scaling for various Metropolis–
Hastings algorithms. Statist. Sci. 16 351–367. MR1888450

[29] ROBERTS, G. O. and ROSENTHAL, J. S. (2014). Minimising MCMC variance via diffu-
sion limits, with an application to simulated tempering. Ann. Appl. Probab. 24 131–149.
MR3161644

[30] ROBERTS, G. O. and ROSENTHAL, J. S. (2014). Complexity bounds for MCMC via diffusion
limits. Available at http://arxiv.org/abs/1411.0712.

[31] SHERLOCK, C. (2013). Optimal scaling of the random walk Metropolis: General criteria for
the 0.234 acceptance rule. J. Appl. Probab. 50 1–15. MR3076768

[32] SHERLOCK, C., FEARNHEAD, P. and ROBERTS, G. O. (2010). The random walk Metropolis:
Linking theory and practice through a case study. Statist. Sci. 25 172–190. MR2789988

[33] SHERLOCK, C. and ROBERTS, G. (2009). Optimal scaling of the random walk Metropolis on
elliptically symmetric unimodal targets. Bernoulli 15 774–798. MR2555199

[34] SMITH, A. F. M. and ROBERTS, G. O. (1993). Bayesian computation via the Gibbs sampler
and related Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B
Stat. Methodol. 55 3–23. MR1210421

[35] TIERNEY, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22
1701–1762. MR1329166

C. SHERLOCK

DEPARTMENT OF MATHEMATICS

AND STATISTICS

LANCASTER UNIVERSITY

LANCASTER LA1 4YF
UNITED KINGDOM

E-MAIL: c.sherlock@lancaster.ac.uk

A. H. THIERY

DEPARTMENT OF STATISTICS

AND APPLIED PROBABILITY

FACULTY OF SCIENCE

NATIONAL UNIVERSITY

OF SINGAPORE (NUS)
SINGAPORE 117546
E-MAIL: a.h.thiery@nus.edu.sg

G. O. ROBERTS

DEPARTMENT OF STATISTICS

UNIVERSITY OF WARWICK

COVENTRY CV4 7AL
UNITED KINGDOM

E-MAIL: Gareth.O.Roberts@warwick.ac.uk

J. S. ROSENTHAL

DEPARTMENT OF STATISTICS

UNIVERSITY OF TORONTO

100 ST. GEORGE STREET

TORONTO, ONTARIO M5S 3G3
CANADA

E-MAIL: jeff@math.toronto.edu

http://www.ams.org/mathscinet-getitem?mr=1888450
http://www.ams.org/mathscinet-getitem?mr=3161644
http://arxiv.org/abs/1411.0712
http://www.ams.org/mathscinet-getitem?mr=3076768
http://www.ams.org/mathscinet-getitem?mr=2789988
http://www.ams.org/mathscinet-getitem?mr=2555199
http://www.ams.org/mathscinet-getitem?mr=1210421
http://www.ams.org/mathscinet-getitem?mr=1329166
mailto:c.sherlock@lancaster.ac.uk
mailto:a.h.thiery@nus.edu.sg
mailto:Gareth.O.Roberts@warwick.ac.uk
mailto:jeff@math.toronto.edu

	Introduction
	The PsMRWM
	Previous related literature
	Notation

	Studying the pseudo marginal random walk Metropolis in high dimensions
	Proposal distribution
	Noise in the estimate of the log-target
	High-dimensional target distribution
	Expected squared jump distance
	Diffusion limit

	Optimising the PsMRWM
	Standard (Gaussian) regime
	Optimisation under the standard asymptotic regime

	Simulation study
	Proofs of results
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 2
	Convergence of the ﬁnite dimensional distributions of V(d)
	Relative weak compactness of the sequence V(d)
	Discrepancy between V(d) and V(d)


	Discussion
	Appendix A: Proof of technical lemmas
	Proof of Lemma 1
	Proof of Lemma 2

	Appendix B: Details of the Lotka Volterra model
	Acknowledgements
	References
	Author's Addresses

