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ABSTRACT

Ionic motion in the bulk solution away from the mouth of a biological ion channel, and inside the channel, is
analyzed using Poisson-Nernst-Planck (PNP) equation. The one-dimensional method allows us to connect in
a self-consistent way ion dynamics in the bulk solution and inside the channel by taking into account access
resistance to the channel. In order to glue the PNP solution in the bulk to that inside the channel, a continuity
condition is used for the concentration and the current near the channel mouth at the surface of the hemisphere.
The resulting one dimensional (1D) current-voltage characteristics are compared with the Kurnikova16 results
which are in good agreement with experimental measurement on the channel, by using a filling factor as the
only fitting parameter. The filling factor compensates the fact that the radial charge distribution is non-uniform
in a real channel as compared to the cylindrically symmetrical channel used in the 1D approximation.

Keywords: ionic channels, Poisson equation, Nernst-Planck equation, access resistance, self-consistent ap-
proach

1. INTRODUCTION

Ion channels in cellular membranes1, 2 control a vast range of biological functions in health and disease. Under-
standing their properties from the physical first principles is a long-standing fundamental and applied scientific
problem of great interdisciplinary importance. Theoretical treatments of ion transport through channel proteins
may be broadly classified as electro-diffusion models,3 stochastic models4 and molecular dynamical models.5

Among these approaches, the first one has the advantage of providing analytic insight into the properties of ionic
channels over a broad range of parameters. Analytic solutions are available for example for the electro-diffusion
in the bulk in cylindrical symmetry, which can be used to estimate the access resistance to the channel mouth.6

Some analytic approximations for the Poisson equation in the pore in one dimension were also derived.7, 8 How-
ever, we are not aware of an analytic solution that will connect in a self-consistent manner the ionic currents and
electrostatic potentials in the bulk in the access resistance region and in the pore. If available, such a solution
will allow one to set up boundary conditions for the Poisson-Nernst-Planck (PNP) equations in the pore in a
self-consistent way and provide further analytic insight into the properties of open ionic channels.

In this paper we present such a self-consistent analytical solution of the access resistance problem, which
is continuous in concentration, electrostatic potential, and electric field at the channel mouth, and satisfies
given Dirichlet boundary conditions for the concentration and potential in the bulk at plus and minus infinity.
This solution is found as follows. The permeation through a narrow cylindrical channel is obtained in one-
dimensional approximation of the PNP theory6, 7 that satisfies given boundary conditions (concentrations and
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electrostatic potential) set in the bulk directly at the channel boundaries. We next obtain solutions of the
Poisson-Boltzmann-Nernst-Planck (PBNP) equation in the linear approximation in the bulk at the left and
right hand side of the channel. We then notice that the boundary conditions for the later solutions are set
at infinity (bulk concentration and electrostatic potential) and the channel mouth at the distance of one pore
radius from the pore. Importantly, at the channel mouth, boundary conditions are set as the gradients of
concentration and the electrostatic potential. It is therefore, possible to find an quasi-analytic solution of the
access resistance problem by method of successive approximations that adjusts boundary conditions for both of
the analytic solutions at the channel mouth in a self-consistent manner.

The paper is organized as follows. We first present the solution of the 1D approximation of the Poisson-
Nernst-Planck (PNP) equation in the cylindrical channel. In the next section, the solution of the Poisson-
Boltzmann and Nernst-Planck (PBNP) equations in the bulk, away from the channel and near the hemisphere
at the channel mouth is obtained. In the following section, the join solution of the two previous self-consistent
solutions of the PNP and PBNP equations inside the channel and in the bulk solutions is obtained. This takes
into account the access resistance to the channel and introduce the correction to the potential inside the channel
and the current. The details of the algorithm for this calculation are also explained. Finally, we present the
summary and conclusions.

2. 1D APPROXIMATION FOR THE DISTRIBUTION IN THE CHANNEL

2.1. The 1D solution of the Poisson equation

An analytical solution of Poisson’s equation for the complex structure of a real ion channel is very difficult to
derive. Only a few analytical solutions of Poisson’s equation in three dimensional space for specific ion channel
shapes have been reported in the literature.9 In the particular case of the Gramicidin channel, good insight
on its functions can be obtained from the one dimensional approximation of Poisson equation for the channel
modelled as a tube with cylindrical symmetry. For the present study, we use the one-dimensional approximation
derived by Barcilon7, 8 for a long and narrow channel. In that approximation, the Poisson equation is written
as:

−ε
d2φ̃

dx̃2
= zpep̃(x̃) + e

2∑

j=1

zj c̃j(x̃) + ε̃

[
∆̃

(
1− x̃

d

)
− φ̃

]
, (1)

φ̃(x̃0) = φ0, φ̃(x̃1) = φ1 = Vapp = ∆̃. (2)

We have limited ourselves to only two types of ionic species. This approximation is valid as long as we are inside
the channel. However, this is easily generalized to any number of species as will be seen in the next section when
we consider ionic motion inside the bulk solution. The dielectric coefficient is taken as independent of time and
space, for simplicity. In equation (1), the first term on the right hand side represents the permanent charge on
the atoms of the protein, i.e. the charge that is independent of the electric field. Parameters of the associated
distribution of the permanent charge p̃(x) and scaling factor zp are fitting parameters for experiments. It gives
the proportion of charge carried by the protein wall. The second term is the channel contents, made of free
or mobile charge, carried by ions in the pore as they travel through the channel. The last term is the induced
(sometimes called polarization) charge, in the pore and protein, created by the electric field; it is zero when
the electric field is zero.10 The concentrations c̃j(x) are one-dimensional representations of number of ions
per unit volume. The dielectric properties of the channel protein and its water-filled pore (radius r, length
d) are described by: the permittivity of free space ε0; (the dimensionless) dielectric constants εp and εH2O,
respectively; and the effective dielectric parameter

ε̃ ≡ εp

εH2O
· 2ε0

a2 ln(d/a)
.



The constant ∆̃ is the potential difference across the channel, φ̃ is the electric potential, a is the channel
radius, and e is the electronic charge. The permanent charge is modeled using a narrow Gaussian distribution,
consistent with the fact that the charge is mainly concentrated in the central part of the channel11, 12:

p(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (3)

Here µ = 0.5 is the mean value, taken to be the location of the channel center and σ = 0.1 is the variance. To
solve Poisson’s equation we write it in dimensionless form using the following characteristic length, potential
and concentration:

p̃j = v−1
0 pj , c̃j = v−1

0 cj , φ̃ = ΦUT , x̃ = xd, UT =
kBT

e
. (4)

The volume of the cylindrical (v0 = πa2d) channel is taken as the reference volume for the scaling of ion
concentrations inside the channel. For the scaling of ion concentration in the bulk, we have to use a different
reference volume. The dimensionless Poisson’s equations are therefore given by:

Φ
′′
(x)− βΦ(x) = −β∆(1− x)− zpαp(x)− α

2∑

j=1

zjcj(x), Φ(x0) = Φ0, Φ(x1) = Φ1 = ∆. (5)

After scaling, we are left with two dimensionless coefficients; β = d2ε̃
ε and α = κ2d2 where κ−1 =

√
εv0UT

e is

known as the Debye length. UT = kBT
Ze is called the thermal voltage, and e is the electronic charge. kBT is the

thermal energy, where kB is the Boltzmann’s constant and T the absolute temperature.

By a linear transformation of the potential Φ, the system of Eqs. (5) can be transformed into a zero boundary
value problem. The resulting solution is given by the following equation:

Φ(x) =
(Φ1 − Φ0)
(x1 − x0)

(x− x0) + Φ0 +
∫ x1

x0

G(x, s)f(s)ds, (6)

f(s) = β

[
(Φ1 − Φ0)
(x1 − x0)

(s− x0) + Φ0 −∆(1− s)
]
− αzpp(s)− α

[
z1c1(s) + z2c2(s)

]
,
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{
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√
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√
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A sinh

√
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G(x, s) is the associated Green function and A = 1/
(√

β sinh
√

β(x1 − x0)
)
. Having estimated the solution

of the Poisson’s equation, we now focus on the Nernst-Planck equation for the determination of the current
density as well as the concentrations of the two ion species.

2.2. Quasi-analytical solution of the Nernst-Planck equation in the channel

The problem to be discussed is the one described by Schuss.13 The local concentration of ions of species
j is denoted as c̃j(x), in the reaction region located on the axis between x̃0 = 0 and x̃1 = d, satisfies the
Nernst-Planck equation in the Stratonovich form14

d

dx̃
zjFDj(x̃)

[
dc̃j(x̃)

dx̃
+

zje

kBT
c̃j(x̃)

dφ̃

dx̃

]
= 0 for x̃0 ≤ x̃ ≤ x̃1. (7)

The Nernst-Planck equation is the sum of the molar fluxes due to local concentration and potential multiplied
by zjF (the charge on a mole of atom of valence zj). F = NAe is the Faraday constant, where NA and e are
respectively the Avogadro number and the elementary charge. The channel length is given by d. For simplicity,



the diffusion coefficient Dj(x̃) is taken to be a function of the position of the ion on the channel axis. The
concentration is assumed to be constant in the bath regions on both sides of the channel to avoid having to
solve the Nernst-Planck equation in all three domains. Therefore, the boundary conditions for Eq. (7) are given
by:

c̃j(x̃ = x̃0) = c̃jL c̃j(x̃ = x̃1) = c̃jR (8)

Integrating Eq. (7) once, we obtain:

J̃j = −zjFDj(x̃)
[
dc̃j(x̃)

dx̃
+

zje

kBT
c̃j(x̃)

dφ̃

dx̃

]
, (9)

where J̃j is the current density carried by ions j (current per unit area; corresponding to the flux of ions j
through the channel). We can now write this equation in dimensionless variables. Using the scaling factors
from Eq. (4), the dimensionless Nernst-Planck equation is therefore given by:

Jj =
J̃jv0d

zjF
= −Dj(x)

[
dcj(x)

dx
+ cj(x)

dzjΦ
dx

]
, cj(x = x0) = cjL cj(x = x1) = cjR. (10)

Integrating the system of Eq. (10), the analytical flux and concentration can be calculated as follows:

J =
cjL exp(zjΦ(x0))− cjR exp(zjΦ(x1))∫ x1

x0
exp(zjΦ(s)) ds

D(s)

, cj(x) = exp(−zjΦ(x))
[
cjL exp(zjΦ(x0))− Jj

∫ x

x0

exp(zjΦ(s))
ds

D(s)

]
. (11)

Solution of the Poisson equation and the current density coupled to the ionic concentrations may now be
calculated simultaneously in a self-consistent manner.

2.3. Self-consistent solution of Poisson-Nernst-Plank (PNP) equations in the channel

A self-consistent solution of the PNP equation means that the potential used to determine the flux is calculated
from the solution of Poisson equation and not assumed. The solution is obtained by combining equations (6)
and (11). The potential in Eq. (6) depends on the concentration cj and the concentration in Eq. (11) also
depend on the potential Φ. The well known Gummel iteration of semiconductor physics is used to solve the 1D
PNP equation, ensuring that Poisson’s equation and far field boundary conditions are always satisfied.2 The
current is therefore calculated by using an initial guess for the potential. The linear part of the potential

Φ(x; initial guess) =
(Φ1 − Φ0)
(x1 − x0)

(x− x0) + Φ0, (12)

can be seen as a reasonable initial guess. It is used to determine the concentration and then use the estimated
concentration to calculate the potential. This procedure can be repeated to obtain higher order accuracy of
the solution. This numerical procedure was used earlier by Eisenberg.15 The only difference from the present
calculation is that we included permanent charges on the wall with a Gaussian distribution and solved Poisson’s
equation analytically.

In Fig. 1(a), we present the calculation of the resulting current voltage characteristic for an uncharged
channel. It can be seen that, in the absence of a net charge on the wall, the current voltage characteristic is
linear. The effect of a net charge on the current is analyzed in Fig. 1(b) where we compare the current voltage
characteristic for an uncharged and a charged channel. The net negative charge used for this calculation is equal
to −0.02e. As was already stressed by Kurnikova,16 the large difference between the current for the charged and
uncharged channel demonstrates that the embedded charge distribution in the channel significantly influences
current through the channel.

A filling factor of 0.155 is used in the calculation of the current-voltage characteristics. The filling factor is
closely related to how ions distribute themselves inside the channel. In particular, the ionic radial distribution
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Figure 1. (a) Current-voltage characteristics for the uncharged Gramicidin A (GA) channel. The stars show the total
current, the squares represent positive ion current, the circles represent negative ion current. Ionic strengths in the lower
(or left) and upper (or right) reservoirs are cL = 500 mMol and cR = 40 mMol, respectively. Diffusion constants are
D+ = D− = 1.27× 10−10 m2/s. To fit the result, we used a channel of radius = 4 Å, length = 30 Åwith a filling factor
of 0.155. (b) the corresponding current-voltage characteristics for charged GA (circles) and uncharged GA (squares).

inside the channel is not uniform. This is due to the fact that the shape of the channel as measured experimen-
tally is not uniform. In the 1D approximation, the channel is assumed to be a cylindrical tube of uniform radius.
Therefore, the filling factor is used to compensate the fact that the radial charge distribution is non-uniform
in the real channel as compared to the cylindrical symmetrical channel used in the 1D approximation. This
adjustment of parameter is necessary since we use an approximation of Poisson’s equation on the channel axis
to determine the potential. This allows us to obtain good agreement with Kurnikova16 whose results fit exper-
iments. It is therefore interesting to notice that even a simple approximation of a one dimensional continuous
theory can fit experiment, provided that fitting parameter is suitably chosen. The filling factor may have broad
physical significance and can also be related to the fact that the dielectric coefficient is spatially inhomogeneous.
Its spatial inhomogeneity is related on one hand to the ions’ passage from water (a high polarizable medium)
into the protein surrounded by lipid bilayer (a low polarity medium). On the other hand, the constant fluc-
tuations of the atoms forming the protein wall may induce changes in the spatial distribution of the dielectric
coefficient of the wall. Moreover, in a real channel experiment, both the protein which is embedded in the lipid
bilayer and the lipid bilayer dielectric coefficients are taken into account.

The PNP solution as presented so far is incomplete. It does not takes into account the bulk solution away from
the channel mouth. Taking into account the concentration and potential variation away from and particularly
near the channel mouth will introduce a correction to the current. This can be done by solving Poisson’s
equation for the determination of the potential coupled to the Nernst-Planck equation for the determination of
ions’ flux and concentration in the bulk.

3. SOLUTION OF THE POISSON-BOLTZMANN AND THE NERNST-PLANCK
(PBNP) EQUATIONS IN THE 3D BULK SOLUTION WITH SPHERICAL

SYMMETRY.

In order to introduce the correction to the current, we now consider the solution of Poisson and Nernst-Planck
equations in the 3D bulk solution with spherical symmetry. The solution in the bulk in both ends of the channel
spans from infinity to an imaginary hemisphere at the channel mouth, with a radius equal to that of the channel.
The flux density of the jth ion J̃j (ions m2s−1) is related to its concentration c̃j (mol m−3), and the potential
φ̃ (V) by the Nernst-Planck equation,



J̃j = −zjFDj(r̃)
[
dc̃j(r̃)

dr̃
+

zje

kBT
c̃j(r̃)

dφ̃

dr̃

]
, (13)

where Dj (m2 s−1) is the diffusion coefficient, zj is the ion valence, F (C/mol) is the Faraday constant and r̃
(m) is the radial distance measured from the center of the hemisphere at the mouth of the channel. Spherical
symmetry is assumed in the bulk; therefore, ion density is independent of the angular coordinate. Ion densities
are known at infinity and are written as follows:

c̃j(r̃ = ∞) = c̃∞j . (14)

The ion density is not known on the surface of the hemisphere. A simple integration of Eq. (13) with the
boundary condition (14) is given by:

c̃j(r̃) =
[
c̃∞j +

∫ ∞

r̃

J̃j

zjFDj(s̃)
exp

(
zjeφ̃(s̃)
kBT

)
ds̃

]
exp

(
− zjeφ̃(r̃)

kBT

)
. (15)

We assume that all ions species are permeable to the channel’s mouth, and we therefore write

J̃j = − qj

2πr̃2
, (16)

where qj is the current of the jth ion entering the channel at the mouth. By substituting Eq. (16) in Eq. (15),
we arrive at the following relation for each ion density:

c̃j(r̃) = c̃∞j

[
1−

∫ ∞

r̃

q̃j

2πzjFDj(s̃)c̃∞j s̃2
exp

(
zjeφ̃(s̃)
kBT

)
ds̃

]
exp

(
− zjeφ̃(r̃)

kBT

)
. (17)

This solution was obtained by assuming that the potential at infinity, far away from the channel mouth is equal
to zero. Near the channel mouth, on the surface of the hemisphere, the gradient of the bulk potential is taken
to be equal to the gradient of the electric potential inside the channel. The electric potential is determined by
solving the Poisson equation in radial coordinates with only radial dependence:

ε
1
r̃

d2

dr̃2
(r̃φ̃) = −e

∑

j

zj c̃j , (18)

φ̃(r̃ = ∞) = 0, ∇φ̃(r̃ = a) = ∇φ̃PNP (r̃ = 0). (19)

where ε = εH2Oε0 is the product of the water dielectric constant and the dielectric constant of empty space. a
is the channel radius and φ̃PNP is the PNP solution obtained inside the channel as calculated in section 2. The
solution of Poisson’s equation require knowledge of the ion density. Substituting the ion density from Eq. (17)
into Poisson’s equation gives the following integro-differential equation:

ε
1
r̃
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dr̃2
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)
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∞
j
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(
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kBT

)
ds̃ exp

(
− zjeφ̃(r̃)

kBT

)
. (20)



Before solving the coupled Nernst-Planck equations in the bulk, we write them in dimensionless form. We
use the following scaling factors for the electric potential, the radial coordinate and the ion density

φ̃ = φUT , r̃ = xa, c̃j = cj c̃
∞
2 , UT =

kBT

e
, (21)

For simplicity, we choose three ion species and scale the ion densities relative to the bulk value of the density
of the second ion type taken away from the channel mouth. The problem can be generalized to any number
of ion species. At infinity, away from the channel mouth, the solution is assumed to be charge neutral. A
straightforward solution of Poisson’s equation is obtained if the charge neutral condition applies to the whole
space by setting the right hand side of Eq. (18) equal to zero. Using the charge neutrality condition away from
the channel mouth (

∑
j zj c̃

∞
j = 0), we obtained the following dimensionless ion densities and Poisson equation:

cj(x) =
c̃∞j
c̃∞2

[
1− 2βj

∫ ∞

x

exp(zjφ(s))
s2

ds

]
exp(−zjφ(x)), (22)

1
α2x

d2

dx2
(xφ) =

sinhφ(x) +
∑

j

zjcjβj exp(−zjφ(x))
∫ ∞

x

exp(zjφ(s))
s2

ds. (23)

The following parameters have also been introduced for simplicity:

βj =
δj

2a
, δj =

qj

2πzj c̃∞j FDj
. (24)

The parameter δj have the dimensions of distance. Therefore, βj is a dimensionless constant. We have assumed
that the diffusion coefficients are not space dependent. The Debye length is given by:

λ =
(

εkBT

2c̃∞2 e2

)1/2

, (25)

and the dimensionless length:

α =
a

λ
. (26)

The solution of the integrodifferential equation is not trivial. It can be solved numerically to determine the
electrostatic potential. However, it was shown by Peskoff6 that the linear approximation agrees well with the
exact solution under most physiological conditions. Therefore, we linearized the Poisson equation when the
potential decreases across the bulk. For small values of the electrostatic potential, Equations (22) and (23) are
reduced respectively to:

cj(x) =
c̃∞j
c̃∞2

[
1− 2βj

x

]
, (27)



1
α2x

d2

dx2
(xφ) = φ +

β

x
. (28)

In the case of the linear approximation, The charge density is identical to that obtained for an electro-neutral
solution in the absence of any external field. The corresponding current for each ion species at the hemisphere
near the channel mouth can be deduced by considering the hemisphere as a sink. Therefore, the ionic concen-
tration at the surface of the hemisphere is equal to zero. This condition leads to the current qj = 2πzj c̃

∞
j FDja.

In the presence of the electric field, this value of the current is increased.6

The special feature of this approach is that the linearized Poisson equation is given in terms of the total current
through β =

∑
j cjβj and the ion density is also a function of the electrostatic potential. The integration of

Eq. (28) yields the following expression for the electrostatic potential:

φ(x) =

(
β
xa
−∇φPNP (x0)

)
x2

a exp(α(xa − x))

(1 + αxa)x
− β

x
. (29)

Where x0 and xa are respectively the origin at the channel mouth and a point on the semi-sphere at the channel’s
mouth.

4. JOINT SELF-CONSISTENT SOLUTION OF THE 1D PNP IN THE CHANNEL
AND THE 3D PBNP IN THE BULK

In order to complete the calculation of ion density and electrostatic potential everywhere in the space, we
coupled the solutions of the Poisson-Nernst-Planck obtained in the channel and in the bulk spanning from
infinity to the hemisphere near the channel mouth. One particular thing to notice is that neither solution gives
us knowledge of the electrostatic potential and concentrations for all the species involved inside the hemisphere.
The important thing to notice about these boundary conditions is the fact that the given values of the bulk
concentrations and electric potential are set at infinity, while near the channel mouth at the surface of the
hemisphere, the boundary conditions are given by the continuity condition for the electric field and the current.
Therefore, the electrostatic potential and the concentrations obtained by solving PNP equations in the channel
can be used to determine the corresponding electric field and current at the boundary on the hemisphere. The
algorithm can be summarized as follows

1. Initialization: The following boundary conditions cL∞, cR∞, φL∞, φR∞ as defined in Fig. 2 are used both
at infinity for the PBNP in the bulk and at the channel mouth for the PNP inside the channel. The
initial guess for potential (see Eq. 12) as linear function of the position in the channel. The corresponding
concentration is then deduced

2. PNP solution in the channel.

• Choose an initial guess for the potential

• Calculate the corresponding concentration from the analytic formula

• Use the concentration obtained at the zero iteration to calculate the new potential from its analytical
formula.

• Use the second iteration of the potential to deduce the concentration

• Repeat the operation until both potential and concentration converge.

• Determine the current inside the channel for the given applied voltage

3. Substitute the current through the channel into the boundary conditions for the PBNP equation. Solve
the PBNP in the bulk.



4. Calculate new boundary conditions at the channel mouth and go back to item 2 (PNP solution in the
channel)
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x)
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Figure 2. Electrostatic potential obtained with the following boundary conditions: φ(−∞) = 0; φ(∞) = -300 mV;
C(−∞) =500 mMol; C(∞) = 40 mV; Na+ 80%, K+ 20%; fixed charge -0.2e in the middle of the channel normally
distributed with standard deviation σ =0.2. The initial solution for the PNP equations in the channel is shown by the
thin dashed line. The result of the self-consistent calculations of the potential in the bathing solutions and in the pore
is shown by the thick solid line. The vertical thin dashed-dot lines indicate the position of the channel entrances. The
vertical thick dashed lines show the boundaries for the calculations of the access resistance.

The solution obtained in the previous section for the current and potential gradient in the pore is therefore
used to set up boundary conditions for Eqs. (13) and (18) in the bath. In turn, the solutions Eqs. (29) and
(22) can be used to set up the boundary conditions for the Eqs. (1) and (7) in the pore. The convergence of
the successive approximations is guaranteed by the fact that in the zero approximation the current through the
channel and the electric field at the channel mouth have maximum possible values. This leads to the maximum
possible reduction of the concentration and the potential at the channel mouth. In turn this reduces the current
and the electric field in the channel, which leads to a smaller correction. I.e. the scheme is converging and the
resulting solution is shown in the Fig. 2. Note that in the two regions of thickness a (radius of the channel) at
the left and right hand sides of the channel, the gradient of the electric potential is assumed to be constant.

5. SUMMARY AND CONCLUSIONS

We have suggested an analytic self-consistent solution for the problem of calculating the access resistance,
potential and charge distribution in the channel. The obtained solution allows one to set boundary conditions
for the PNP solution in the bulk in a self-consistent way. A particular feature of this approach is that it does
not assume that only one type of ion is permeating the channel’s mouth. It calculates the total current as the
sum of the current produced by each ion species. The current-voltage characteristics of a Gramicidin A channel
is presented using the 1D approximation of the PNP equation. The obtained results are in very good agreement
with the Kurnikova16 3D result with a good fit to experimental results for the Gramicidin A channel. The
agreement with experiment is made in the case of the 1D approximation by using a filling factor as a fitting
parameter.

We have shown that 1D PNP can provide a good tool for ion channels current-voltage characteristics calculation.
Despite its success, it is used under the assumption that water is a continuum, with no ion-ion interaction and
the membrane considered as a rigid structure. Protein flexibility is not taken into account in the Poisson-Nernst-
Planck model which describes water and protein as a continuum by using their average structure. Moreover,



our technique as proposed does not determine the field inside the hemisphere near the channel mouth. Another
correction can be introduced into this model by solving Poisson’s equation numerically in the entire space. This
way, the potential inside the hemisphere will be explicitly calculated numerically and not extrapolated from the
converged tails and heads of the electrostatic solution in the bulk and inside the pore. The solution of Poisson’s
equation will incorporate the dielectric self-energy acting on the ion as it crossed the channel.
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