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ABSTRACT
In this paper we present a generic Markov decision process
model of optimal single resource allocation to a collection of
stochastic dynamic competitors. The main goal is to identify
sufficient conditions under which this problem is optimally
solved by an index rule. The main focus is on the frozen-
if-not-allocated assumption, which is notoriously found in
problems including the multi-armed bandit problem, tax
problem, Klimov network, job sequencing, object search and
detection. The problem is approached by a Lagrangian re-
laxation and decomposed into a collection of normalized
parametric single-competitor subproblems, which are then
optimally solved by the well-known Gittins index. We show
that the problem is equivalent to solving a time sequence of
its Lagrangian relaxations. We further show that our ap-
proach gives insights on sufficient conditions for optimality
of index rules in restless problems (in which the frozen-if-
not-allocated assumption is dropped) with single resource;
this paper is the first to prove such conditions.
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1. INTRODUCTION
In this paper we present a generic Markov decision pro-

cess (MDP) model of optimal single resource allocation to a
collection of stochastic dynamic competitors. This is a con-
strained MDP with special structure, which belongs to the
family of weakly-coupled MDPs (Meuleau et al., 1998). We
first discuss this problem under the frozen-if-not-allocated
assumption, which is notoriously found in problems opti-
mally solvable by an index rule, which include the multi-
armed bandit problem, tax problem, Klimov network, job
sequencing, object search and detection (see subsection 2.4).
Under such an assumption, our model can be seen as a
generalization of the multi-armed bandit problem by allow-
ing non-zero rewards and/or costs for both played and not
played arms of the bandit (slot) machine. Then we present
new conditions sufficient for solving the problem optimally
by an index rule if the frozen-if-not-allocated assumption is
dropped, i.e., when competitors are restless.

An index is a function that assigns a value to each state of
a given competitor. The index value can be a real number
or −∞ or +∞, and in this paper we restrict our attention
to indices that depend on the parameters of the given com-
petitor alone. This is the most interesting case from the
implementation point of view in that the computation of in-
dex values is usually less demanding, and the index values,
for instance, do not depend on the number of competitors
considered.

An index rule is a policy that decides at every moment to
which competitor the resource is allocated based on the rel-
ative ordering of the competitors’ current state index values.
As a convention, in this paper we consider that the index
rule allocates the resource to the competitor of greatest cur-
rent index value; in case of a tie, it allocates the resource
to the same competitor as in the previous period if possible,
otherwise chooses arbitrarily. (Alternatively in case of a tie,
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the resource could be allocated to the oldest non-allocated
competitor in order to increase fairness, but at the expense
of an increased frequency of switching.) An index rule is an
adaptive greedy rule: it is adaptive because it depends on the
index values that in turn depend on the actual competitors’
states, and it is greedy, because it chooses the competitor of
greatest index value (Jacko, 2009).

Although for the above-mentioned problems indices were
obtained and optimality of the resulting index rule was proved
in a variety of ways, we will focus in this paper on the La-
grangian approach proposed by Whittle (1988) for the rest-
less bandit problem. In the restless bandit problem, M out
of K ≥M competitors must be chosen at every moment to
be allocated M copies of a resource. Whittle (1988) pro-
posed to use a multi-index rule of allocating the resources
to the M competitors of greatest index values that appear
as particular values of Lagrangian multiplier. However, the
existence of such an index is not guaranteed, and so it must
be established for every competitor. Moreover, as he noted,

It may be too much to expect the index policy
to be optimal in the restless case we have formu-
lated.

He showed that under the frozen-if-not-allocated assump-
tion and M = 1, the index exists and the Whittle index
rule is equivalent to the Gittins index rule, and therefore
optimal, and it is also trivially optimal if M = K. Whit-
tle (1988) conjectured that under fairly general conditions
the proposed multi-index rule is asymptotically optimal if
both M and K grow to infinity converging to a fixed pro-
portion. Up to the moment, the conjecture was proved valid
only under a list of conditions that are rather restrictive and
difficult to check in Weber and Weiss (1990).

Even if such an asymptotic optimality were true, it gives
no guarantee about the performance of the Whittle index
rule in problems with a single resource, which is often of in-
terest in applications. The mean or median performance of
the Whittle index rule in problems with a single resource is
typically reported to be very close to optimal. Nevertheless,
it is often the case that some (small) number of problem
instances show an extremely bad performance of the pol-
icy (see, e.g., Niño-Mora, 2007b; Adelman and Mersereau,
2008). It therefore seems important and reasonable to study
optimality of the Whittle index rule in single resource prob-
lems, which is the focus of this paper.

Section 2 presents and MDP formulation of the problem.
In Section 3, we approach the problem of single resource
allocation to stochastic dynamic competitors by describing
its several step-wise relaxations, including the Whittle re-
laxation. That is further approached by the Lagrangian re-
laxation in order to decompose the problem into a collection
of parametric single-competitor subproblems.

Under the frozen-if-not-allocated assumption, in Section 4
we normalize these subproblems into equivalent problems
with zero rewards when not allocated, which are then op-
timally solved by the well-known Gittins index. We show
that the original problem is equivalent to a time sequence of
problems which are in fact its Lagrangian relaxations with
particular values of the Lagrangian multiplier. The prob-
lems in the sequence are infinite-horizon, but branching, i.e.
they differ by the initial time period and initial competi-
tors’ states that both depend on the evolution of the previ-
ous problem of the sequence. Interestingly, every problem in

this sequence can be optimally solved in a straightforward
manner. Furthermore, the Gittins index rule (which is op-
timal) can be recovered by simultaneously applying optimal
policies to all these problems in the sequence. To provide an
economic insight, the prevailing charge from Weber (1992) is
the value of the Lagrangian multiplier in the corresponding
Lagrangian relaxation in this sequence. Similar ideas ap-
peared also in Whittle (1981), dealing with a multi-armed
bandit problem with arrivals of new bandits. However, to
the best of author’s knowledge, no earlier work related that
interpretation to Lagrangian relaxations as we do in this
paper.

Section 5 deals with the general case (when the frozen-
if-not-allocated assumption is dropped), where we give new
sufficient conditions under which the Whittle index rule is
optimal. These conditions are the main new results of this
paper, but we believe that our main contribution is to survey
and clarify a mathematical approach which recovers many
known index rules (obtained by different methods), and is
capable to give insights about optimality of index rules in
more general settings, including the restless bandit problem.

2. MDP FORMULATION
In this section we present a discrete-time MDP formula-

tion of the problem of resource allocation to stochastic dy-
namic competitors. We follow the framework introduced in
Jacko (2009) restricted here to an undivisible resource with
unit capacity.

Consider the time slotted into time epochs t ∈ T :=
{0, 1, 2, . . . } at which decisions can be made. Time epoch t
corresponds to the beginning of time period t. We consider
the problem over an infinite horizon. Suppose that there
are K ≥ 1 (integer) competitors, labeled by k ∈ K, com-
peting for a resource (decision-maker) that decides at every
time epoch which competitor should it be allocated to dur-
ing that period. The resource can and must be allocated to
one competitor at a time.

2.1 Competitors
Since the capacity of the resource is one unit (undivisible),

every competitor can be allocated either zero or one resource
capacity units. We denote by A := {0, 1} the action space,
i.e., the set of allowable levels of capacity allocation. This
action space is the same for every competitor k.

Each competitor k is defined independently of other com-
petitors as the tuple`

Nk, (W a
k)a∈A , (R

a
k)a∈A , (P

a
k)a∈A

´
,

where

• Nk is the state space, i.e., a finite set of possible states
competitor k can occupy;

• W a
k :=

`
W a
k,n

´
n∈Nk

, where W a
k,n is the expected one-

period capacity consumption, or work required by com-
petitor k at state n if action a is decided at the begin-
ning of a period;

• Ra
k :=

`
Rak,n

´
n∈Nk

, where Rak,n is the expected one-

period reward earned by competitor k at state n if
action a is decided at the beginning of a period;

• P a
k :=

`
pak,n,m

´
n,m∈Nk

is the competitor-k stationary

one-period state-transition probability matrix if action



a is decided at the beginning of a period, i.e., the
(n,m)-element of the matrix, pak,n,m, is the probability
of moving to state m from state n under action a.

The dynamics of competitor k is thus captured by the state
process Xk(·) and the action process ak(·), which correspond
to state Xk(t) ∈ Nk and action ak(t) ∈ A at all time epochs
t ∈ T . As a result of deciding action ak(t) in state Xk(t)
at time epoch t, the competitor k consumes the allocated
capacity, earns the reward, and evolves its state for the time
epoch t + 1. To avoid technical difficulties we will assume
that Rak,n is bounded.

2.2 A Unified Optimization Criterion
Before describing the problem we define an averaging op-

erator that will allow us to discuss the infinite-horizon prob-
lem under the traditional myopic criterion, β-discounted cri-
terion and time-average criterion in parallel. Let ΠX,a be the
set of all the policies that for each time epoch t decide (possi-
bly randomized) action a(t) based only on the state-process
history X(0), X(1), . . . , X(t) and on the action-process his-
tory a(0), a(1), . . . , a(t − 1) (i.e., non-anticipative). Let Eπτ
denote the expectation over the state process X(·) and over
the action process a(·), conditioned on the state-process his-
tory X(0), X(1), . . . , X(τ) and on policy π.

Consider any expected one-period quantity Q
a(t)

X(t) that de-

pends on state X(t) and on action a(t) at any time epoch t.
For any policy π ∈ ΠX,a, any initial time epoch τ ∈ T , and
any discount factor 0 ≤ β ≤ 1 we define the infinite-horizon
β-average quantity as1

Bπτ
h
Q
a(·)
X(·), β,∞

i
:= lim

T→∞

T−1X
t=τ

βt−τ Eπτ
h
Q
a(t)

X(t)

i
T−1X
t=τ

βt−τ
. (1)

The β-average quantity recovers the traditionally consid-
ered quantities in the following three cases:

• expected time-average quantity when β = 1.

• expected total β-discounted quantity, scaled by constant
1− β, when 0 < β < 1;

• myopic quantity when β = 0.

Thus, when β = 1, the problem is formulated under the
time-average criterion, whereas when 0 < β < 1 the prob-
lem is considered under the β-discounted criterion. The re-
maining case when β = 0 reduces to a static problem and
hence is considered in order to define a myopic policy. In
the following we consider the discount factor β to be fixed
and the horizon to be infinite, therefore we omit them in the

notation and write briefly Bπτ
h
Q
a(·)
X(·)

i
.

2.3 Optimization Problem
Now we are ready to formulate the optimization problem.

Let ΠX,a be the space of randomized and non-anticipative
policies depending on the joint state-processX(·) := (Xk(·))k∈K
and deciding the joint action-process a(·) := (ak(·))k∈K, i.e.,
ΠX,a is the joint policy space.

1For definiteness, we consider β0 = 1 for β = 0.

For any discount factor β, the problem is to find a joint
policy π maximizing the objective given by the β-average ag-
gregate reward starting from the initial time epoch 0 subject
to the family of sample path allocation constraints, i.e.,

max
π∈ΠX,a

Bπ0

"X
k∈K

R
ak(·)
k,Xk(·)

#
(P)

subject to Eπt

"X
k∈K

ak(t)

#
= 1, for all t ∈ T

Note that the constraint could equivalently be expressed
as X

k∈K

ak(t) = 1

for all t ∈ T under policy π and for any possible joint state-
process history X(0),X(1), . . . ,X(t).

2.4 Known Special Cases
Optimal index rules can be found in the literature for a

variety of models satisfying both of the following two distin-
guishing features:

1. [binary work ] W a
k,n := a, i.e., the competitor consumes

all the capacity allocated, and

2. [frozen if not allocated ] P 0
k := I (an identity ma-

trix), i.e., if no capacity is allocated to the competitor
(a = 0), then the competitor does not change its state
(p0
k,n,n = 1 for all n).

The following selected problems have these two features
and can be cast as special cases of our model.

Job Sequencing (Cox and Smith, 1961).
Competitors are jobs and resource is a server that must

decide an order in which to serve the waiting jobs. If the
job sizes are geometrically distributed with means 1/µk and
the waiting costs are ck per period, then we have states
Nk := {0, 1} representing that the job k is “completed” and
“waiting”, reward R0

k,1 = −ck, R1
k,1 = −ck(1−µk), and tran-

sition probabilities p1
k,1,0 = µk, p

1
k,1,1 = 1 − µk. State 0 is

absorbing with no rewards. In the case of job sizes with
general distribution, the state space must be enlarged to
represent known information, such as the attained service
or remaining service.

Multi-armed Bandit Problem (Robbins, 1952; Gittins
and Jones, 1974).

Competitors are arms of a bandit machine and resource is
a gambler who wants to choose an arm to pull in every time
epoch. There are no rewards when an arm is not played,
i.e., R0

k,n = 0.

Tax Problem (Varaiya et al., 1985; Whittle, 2005).
Competitors are machines and only one of them can be

operated at a time. Each idle machine incurs a waiting cost
ck,n which depends on its current state. There is no reward
when a machine is operated, i.e., R1

k,n = 0, and a nega-

tive reward when it is idle, i.e., R0
k,n = −ck,n. Under the

discounted criterion, the tax problem is equivalent to the
multi-armed bandit problem.



Klimov Network (Klimov, 1974).
Competitors are jobs queued on machines (incurring a

waiting cost) and resource is a system maintenance man-
ager that wants to choose at every moment a machine to
serve one of the waiting jobs in its queue. When the service
of a job is completed, the job is routed to another machine
according to a given probabilistic routing scheme (or possi-
bly leave the system). State of a machine represents how
many jobs are waiting: one of the states yields no reward,
meaning that there are no jobs waiting.

Object Search and Detection (Bertsekas, 2001, Exam-
ple 1.5.1).

Competitors are boxes or sites that may include objects
which we want to find or detect, and resource is an imperfect
sensor that can be focused on one of the boxes/sites at a
time. A reward is received every time an object is found,
but focusing the sensor is costly. The task is to decide at
every moment where the sensor should be focused.

The binary work assumption is supposed to hold through-
out the paper; the author is not aware of any model violat-
ing such a condition for which an index rule is optimal. The
frozen-if-not-allocated assumption will be assumed in Sec-
tion 4.

In Section 5 we will discuss Whittle index definition and
optimality of index rules in general models, in which the
frozen-if-not-allocated assumption is dropped. Dropping this
assumption drastically expands modeling possibilities. For
instance with respect to the above examples, it is possible
to incorporate time-varying service rate for every job; out-
of-control gamblers that can pull unused arms; new jobs
arrivals; switching of jobs to another machine due to im-
patience even before completing the job; smart or moving
objects.

In the following section we take an advantage of the bi-
nary work assumption in order to relax and decompose the
problem into single-competitor parametric subproblems.

3. RELAXATIONS AND DECOMPOSITION

3.1 Relaxations
We will use the fact that W

ak(t)

k,Xk(t) = ak(t) (cf. binary

work assumption) and instead of the constraints in (P) we
will consider the sample path consumption constraints

Eπt

"X
k∈K

W
ak(t)

k,Xk(t)

#
= 1, for all t ∈ T

These constraints imply the epoch-t expected consumption
constraints,

Eπ0

"X
k∈K

W
ak(t)

k,Xk(t)

#
= 1, for all t ∈ T (2)

requiring that the capacity be fully allocated at every time
epoch if conditioned on X(0) only. Finally, we may require
this constraint to hold only on β-average, as the β-average
capacity consumption constraint

Bπ0

"X
k∈K

W
ak(·)
k,Xk(·)

#
= Bπ0 [1] . (3)

We remark that this relaxation allows to allocate any
number of resource units per period; only the β-average
consumption over the entire horizon is constrained. Us-
ing Bπ0 [1] = 1, we obtain the following Whittle relaxation
(Whittle, 1988) of problem (P),

max
π∈ΠX,a

Bπ0

"X
k∈K

R
ak(·)
k,Xk(·)

#
(PW)

subject to Bπ0

"X
k∈K

W
ak(·)
k,Xk(·)

#
= 1.

The above arguments thus provide a proof of the following
result.

Proposition 3.1 (Whittle (1988)). Problem (PW) is
a relaxation of problem (P).

The Whittle relaxation (PW) can be approached by tradi-
tional Lagrangian methods, introducing a Lagrangian mul-
tiplier, say ν, to dualize the constraint, obtaining thus the
following Lagrangian relaxation,

max
π∈ΠX,a

Bπ0

"X
k∈K

R
ak(·)
k,Xk(·)

#
+ ν

(
1− Bπ0

"X
k∈K

W
ak(·)
k,Xk(·)

#)
,

which can be stated equivalently as

max
π∈ΠX,a

Bπ0

"X
k∈K

R
ak(·)
k,Xk(·) − ν

X
k∈K

W
ak(·)
k,Xk(·)

#
+ ν. (PL

ν )

The classic Lagrangian result, as already observed by Whit-
tle (1988), says the following:

Proposition 3.2 (Whittle (1988)). For any ν, prob-
lem (PL

ν ) is a relaxation of problem (PW), and further a
relaxation of problem (P).

Note finally that by the definition of relaxation, (PL
ν ) for

every real-valued ν provides an upper bound for the optimal
value of both problem (PW) and problem (P).

3.2 Decomposition into Single-Competitor Sub-
problems

We now set out to decompose the optimization problem
(PL

ν ) as it is standard for Lagrangian relaxations, consid-
ering ν as a parameter. Notice that any joint policy π ∈
ΠX,a defines a set of single-competitor policies eπk for all
k ∈ K, where eπk is a randomized and non-anticipative pol-
icy depending on the joint state-process X(·) and decid-
ing the competitor-k action-process ak(·). We will writeeπk ∈ ΠX,ak . We will therefore study the competitor-k sub-
problem

maxeπk∈ΠX,ak

Beπk
0

h
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

i
. (4)

4. SOLUTION
In this section we will identify a set of optimal policies eπ∗k

to (4) for all competitors k under the frozen-if-not-allocated
assumption, and using them we will construct a joint policy
π feasible and optimal for problem (P).

Notice that for any fixed ν, (4) is a standard MDP prob-
lem with finite state space, finite action space and bounded



immediate reward/cost. The MDP theory assures (Puter-
man, 2005) that such a problem is optimally solved by a
stationary Markov and deterministic policy (convenient ad-
ditional conditions may be necessary under the time-average
criterion). We will denote the set of all stationary Markov
deterministic policies by ΠSMD

X,ak
. Randomized policies will

be of special importance at the end of the section.
The goal is now to reduce the problem to the one solv-

able by the Gittins index, so we assume the frozen-if-not-
allocated assumption throughout this section. The cele-
brated result of Gittins and Jones (1974) of solving the
multi-armed bandit problem optimally under the discounted
criterion via the now-called Gittins index rule has become
classic due to its novelty, importance in applications, and
due to the hardness of the problem which had been a known
challenge even before its first statement in Robbins (1952).
While the original approach developed from the Gittins’ in-
tuition relied on a technical interchange argument and was
not appreciated quickly, Whittle (1980) provided a simpler
proof using dynamic programming. Weber (1992) further
provided almost verbal proof based on economic intuition,
which was coined to be from “The Book” (cf. Whittle, 2002).

Since the Gittins index was obtained for bandits with zero
rewards if not played, we will be interested in the problem
with rewards normalized under action 0.

4.1 Normalization under Discounted Criterion
and Myopic Criterion

If 0 ≤ β < 1 (i.e., under the myopic and discounted crite-
rion), let us consider the normalized (under action 0) variant
of problem (4), which is obtained by defining the normalized
reward vectors by

bR1

k := R1
k −

(I − βP 1
k)R0

k

1− β , bR0

k := 0.

Note that the work vectors are already normalized due to the
binary-work assumption; an analogous normalization would
otherwise have to be applied.

Let us denote the expected one-period net reward by

V ak,n := Rak,n − νW a
k,n,

where the Lagrangian multiplier ν can be interpreted as a
cost per unit of resource utilization. For any stationary
Markov deterministic policy eπk ∈ ΠSMD

X,ak
, let us denote by

Veπk
k,n the β-average value function for competitor-k problem

(4) if the state is n = Xk(t) at some time t,

Veπk
k,n := Beπk

t

h
V
ak(·)
k,Xk(·)|Xk(t) = n

i
.

This is independent of t and thus well defined due to station-
arity (i.e., time-homogeneity) and due to Markovian nature

of the policy. Analogously is defined bVeπk
k,n, the value function

for the normalized problem. In the following proposition
we apply direct dynamic programming arguments to prove
equivalence of the two problems.

Proposition 4.1. Suppose that the frozen-if-not-allocated
assumption holds. If 0 ≤ β < 1, then for any stationary

Markov deterministic policy eπk ∈ ΠSMD
X,ak

, we have Veπk
k,n =bVeπk

k,n +R0
k,n for all n.

Further, the optimal objective value (4) equals the optimal
objective value of the normalized problem summed to the ad-
ditive constant R0

k,Xk(0).

Proof. Let eπk be stationary Markov deterministic, and
such that it decides action an for state n. The value function
satisfies the following balance equation due to the properties
of the β-average operator,

Veπk
k,n = (1− β)V an

k,n + β
X
m∈Nk

pan
k,n,mVeπk

k,m.

Notice that, by adding and subtracting net rewards V 0
k,n and

V 0
k,m, this is equivalent to

Veπk
k,n − V

0
k,n| {z }bVeπk

k,n

= (1− β)V an
k,n −

0@V 0
k,n − β

X
m∈Nk

pan
k,n,mV

0
k,m

1A
| {z }

(1− β)bV an
k,n

+ β
X
m∈Nk

pan
k,n,m

“
Veπk
k,m − V

0
k,m

”
| {z }bVeπk

k,m

.

As indicated by the underbraces, this can be seen as the
balance equation for the problem normalized under action 0
(the necessary normalization of the net reward is given by
the first underbrace on the right-hand side). Such a nor-
malization gives zero action-0 net rewards, as it is straight-

forward to check that bV 0
k,n = bR0

k,n = 0 due to the frozen-
if-not-allocated assumption. For action-1 net rewards, the
necessary normalization can be written in the vector form
as

bR1

k − ν = R1
k − ν −

(I − βP 1
k)R0

k

1− β .

Due to the binary-work assumption, we further have V 0
k,n =

R0
k,n, therefore the underbrace on the left-hand side of the

equation gives Veπk
k,n −R

0
k,n = bVeπk

k,n.
Finally, the same relationship holds between the optimal

objective values.

Such an equivalence of the single-competitor subproblem
(for the optimal policy only) was proved in Niño-Mora (2001,
Section 4) and (for all stopping policies) in Niño-Mora (2007a,
Lemma 2.1) using linear programming arguments. For the
tax problem, in which by definition R0

k,n = 0 for all k and
for all n, the equivalence with the multi-armed bandit prob-
lem was established in Varaiya et al. (1985, Section II.C)
and the equivalence of single-armed subproblems in semi-
Markov setting was intuitively explained in Gittins (1989,
Section 2.10) (under the name of ongoing bandit processes).

We finally remark that after expanding the geometric se-
ries, the normalization formula for state n can be rewritten
asbR1

k,n =
`
R1
k,n −R0

k,n

´
+
`
β + β2 + β3 + . . .

´ X
m∈Nk

p1
k,n,m

`
R0
k,m −R0

k,n

´
.

Therefore, under the myopic criterion (β = 0) or in case that
R0
k,m = R0

k,n for all m,n ∈ Nk, the normalization under

action 0 is simply bR1

k := R1
k −R0

k and bR0

k := 0.

4.2 Normalization under Time-Average Cri-
terion



Note that reward normalization under the time-average
criterion (β = 1) in Niño-Mora (2001, Section 5) does not
apply here because the frozen-if-not-allocated assumption
violates the ergodicity assumption of the transition matrix
under any stationary policy required there. Moreover the
approach in Niño-Mora (2007a) seems to directly require
zero action-0 rewards.

However, we could consider the vanishing discount limit
β → 1 of the normalization introduced in the previous sub-
section for the discounted criterion. Such a limit gives a

finite value to bR1
k,n if R0

k,m = R0
k,n for all m,n ∈ Nk. The

normalization is then bR1

k := R1
k −R0

k and bR0

k := 0.
The remaining cases require a more careful normalization

or must be treated as they are; such an analysis is left out
of this paper.

4.3 Gittins Index and Optimal Solution to
Single-Competitor Subproblem

In the remainder of this section we thus assume that com-
petitor rewards are normalized (hat is suppressed).

Gittins and Jones (1974) showed that we can attach to
each competitor k ∈ K a set of now-called Gittins index val-
ues νk,n, independent of other competitors, and defined for
each state n ∈ Nk. The Gittins index value of a given state
is equivalent to the objective value of an optimal stopping
problem starting from that state, see Gittins (1979); Niño-
Mora (2007a). The latter paper also gives the state-of-the-
art algorithm that requires O(|Nk|3) arithmetic operations
to compute all the index values.

We will base all the further development on the following
result.

Proposition 4.2 (Whittle (1980)). Consider sub-
problem (4) for any fixed ν and suppose that the frozen-if-
not-allocated assumption holds. Then, at time epoch t, it is
optimal for competitor to use (and pay for) the resource if
Gittins index value νk,Xk(t) ≥ ν and it is optimal not to use
it if νk,Xk(t) ≤ ν.

As a convention, a competitor does not use the resource
whenever νk,Xk(t) = ν (by the above proposition both using
and not using it is optimal in that situation). We denote
by πνk the policy that at time epoch t uses the resource if
and only if νk,Xk(t) > ν; note that πνk is optimal for the
competitor-k subproblem (4). Then we have the following
auxiliary result.

Lemma 4.1. Consider subproblem (4) for any fixed ν
and suppose that the frozen-if-not-allocated assumption holds.
Under the optimal policy πνk , once the competitor does not
use the resource, it continues not using it forever.

4.4 Gittins Index and Optimal Solution to La-
grangian Relaxation

Since the Lagrangian relaxation is additively composed
of mutually independent single-competitor subproblems and
constant ν, it is straightforward to obtain the following re-
sult.

Proposition 4.3. Consider Lagrangian relaxation (PL
ν )

for any fixed ν and suppose that the frozen-if-not-allocated
assumption holds for all competitors k. Then, at time epoch
t, it is optimal to use the resource for every competitor k
satisfying νk,Xk(t) ≥ ν and it is optimal not to use it for
every competitor k satisfying νk,Xk(t) ≤ ν.

If we can identify a policy optimal for the relaxation and
at the same time feasible for the original problem with the
sample-path constraint of having exactly one competitor us-
ing the resource at every time epoch, then such a policy is
optimal for the original problem. Although Proposition 4.3
is a necessary result in order to proceed to satisfy the sample-
path constraint, it may be far from sufficient.

Indeed, for Lagrangian relaxation (PL
ν ) with a fixed ν it

may be at the same time epoch optimal for all the competi-
tors to use the resource and for none of the competitors to
use it. Such a situation, for instance, appears in the case of
symmetric competitors, if at some time epoch all of them
happen to be in the same state, whose index value moreover
equals the parameter ν. To be even more intriguing, if such
a situation occurs for the state of the smallest index value,
then both “using the resource by all the competitors forever”
and “not using the resource by any competitor anymore” are
optimal.

We will therefore continue by carefully constructing the
following joint policy πν :

1. For each competitor k, follow policy πνk , i.e, at time
epoch t allocate the resource to the competitor if and
only if νk,Xk(t) > ν;

2. If policies πνk result at time epoch t in not using the
resource, and there is at least one competitor satisfying
νk,Xk(t) = ν, then if the competitor that was allocated
the resource in the last period is among those, then
allocate the resource to it, otherwise to one arbitrarily
chosen competitor with such an index value.

We note that it is not necessary for optimality results in
the rest of the section to give preference to the competitor
that was allocated the resource in the last period. How-
ever, it is reasonable from an implementation point of view,
because switching the resource allocation from one competi-
tor to another may require some cost or delay (although we
otherwise neglect them in our model), and moreover, several
appealing properties of such a policy follow.

As an immediate consequence we have the following claim.

Proposition 4.4. Consider Lagrangian relaxation (PL
ν )

for any fixed ν and suppose that the frozen-if-not-allocated
assumption holds for all competitors k. Then, the joint pol-
icy πν is optimal for (PL

ν ), and it results in using a non-
increasing units of resource per period over time.

Of special interest is the following implications of the last
proposition.

Proposition 4.5. Suppose that the frozen-if-not-allocated
assumption holds for all competitors k. Consider Lagrangian
relaxation (RLν0) with ν0 := max

˘
νk,Xk(0) : k ∈ K

¯
, i.e., ν0

equals the greatest Gittins index value at the initial time
epoch. Then, the joint policy πν0 is optimal for (RLν0) and
it results in allocating exactly one unit of resource to com-
petitors for a positive number of time epochs (possibly in-
finite), and not allocating any resource to any competitor
afterwards.

4.5 Gittins Index and Solution to Original Prob-
lem

The following is the main structural result for the problem,
first described in Weber (1992) for the multi-armed bandit



problem, but without linking the result to the fundamental
role of the Lagrangian relaxation.

Proposition 4.6. Suppose that the frozen-if-not-allocated
assumption holds for all competitors k. The problem of re-
source allocation to stochastic dynamic competitors is opti-
mally solved by considering a finite sequence i = 0, 1, 2, . . . , I
of problems (RLνi

) solved by policies πνi , with ν0 being the
greatest Gittins index value at the initial time epoch, and
with νi+1 for i = 0, 1, 2, . . . , I − 1 being the greatest Git-
tins index value at the first time epoch at which the policy
πνi for (RL

νi
) would result in allocating no resource to any

competitor. Moreover, we have I ≤
P
k∈K |Nk| − 1.

Proof. The optimality of considering such a sequence
is a straightforward consequence of Proposition 4.5. The
number of problems in the sequence is finite, because every
change from νi to νi+1 is a decrease and may happen at mostP
k∈K |Nk| − 1 times.

Since policies πνi for the sequence of problems (RL
νi

),
i = 0, 1, 2, . . . , I, result in allocating the resource to one of
the competitors of greatest Gittins index value at each time
epoch, we recover the celebrated result of Gittins and Jones
(1974), originally proved using an interchange argument.

Corollary 4.1. The Gittins index rule is optimal for the
problem of resource allocation to stochastic dynamic com-
petitors.

We can further observe that the above-defined optimal
policy has the stay-on-a-winner property: if a competitor is
allocated the resource in some time epoch and it proves to
be “winning” in that it stays in the same state or moves to
a state with a greater Gittins index value, then it is optimal
to allocate the resource to it in the next time epoch. Note
that if such a competitor is not winning, then we cannot
conclude anything; allocating the resource to the competitor
may remain optimal or it may become strictly suboptimal,
depending on the actual state of the other competitors.

Corollary 4.2. There is an optimal policy for the prob-
lem of resource allocation to stochastic dynamic competitors
which is a stay-on-a-winner policy. In particular, the Gittins
index rule is such a policy.

The stay-on-a-winner property of an optimal policy was
first proved in Bradt et al. (1956) for the one-armed and in
Berry (1972) for the two-armed Bernoulli bandit problem
with finite horizon. The stay-on-a-winner rule was proposed
to be used in two-armed Bayesian bandit problems by Rob-
bins (1952), in spite of its non-optimality in general. How-
ever, in these early papers playing a bandit could only lead
to a success or to a failure and the stay-on-a-winner property
in fact referred to its myopic version: if the resource is allo-
cated to a competitor in some time epoch and it proves be
“winning” in that the outcome is a success, then it is optimal
to allocate the resource to it in the next time epoch.

The following corollary highlights the fact that our prob-
lem is a problem of optimal learning by doing : there is a
phase of exploration that assures to find the competitor
which is the most rewarding in the long run, and a phase of
exploitation of that competitor.

Let us call a competitor k irreducible, if the Markov chain
under transitions P 1

k is irreducible, i.e., consists of a single
closed set (see Puterman, 2005, Chapter A.2).

Corollary 4.3. There is an optimal policy such that af-
ter a finite number of time epochs the resource is allocated to
the same competitor forever. In particular, the Gittins index
rule is such a policy. If all the competitors are irreducible,
then such a competitor being allocated the resource forever
by the Gittins index rule is the competitor whose smallest
Gittins index value is largest out of all the competitors.

Proof. The problem i = I of the finite sequence using
πνI is such that it always results in allocating the resource
to some competitor. This implies that νI is such that there
is at least one competitor whose Gittins index value never
falls strictly below νI . Once the resource is allocated to that
competitor during the problem i = I, the Gittins index rule
allocates the resource to it forever. In the case of irreducible
competitors, νI is the smallest Gittins index value over all
the states of such a competitor, and it must be the greatest
over all the competitors by definition.

Note that if some of the competitors are not irreducible,
then to which competitor is the resource allocated forever
depends on the evolution of the competitors using the re-
source in a finite number of the early time epochs. Once
all the competitors reach any of their irreducible closed sets,
then the same argument applies. In particular, such a com-
petitor using the resource forever by the Gittins index rule
is the competitor whose smallest Gittins index value within
the reached irreducible closed set of the Markov chain under
transitions P 1

k is largest out of all the competitors. A more
involved argument can be used for testing if it is optimal
to allocate the resource to a given competitor forever also
when some or even all the competitors have not yet reached
an irreducible closed set, by carefully comparing the com-
petitors’ Gittins index values of the states accessible from
the current states.

Under the time-average criterion (i.e., when β = 1), if all
the competitors are irreducible, then allocating the resource
forever to the competitor whose smallest Gittins index value
is greatest out of all the competitors is optimal already from
the initial time epoch, since the policy employed during the
finite number of initial time epochs is irrelevant. That index
value further gives the optimal time-average reward for the
problem. An analogous observation for the optimal time-
average reward in case of symmetric (i.e., statistically iden-
tical) competitors was made in Whittle (2005, p. 755).

5. GENERAL COMPETITORS
In this section we consider competitors that do not obey

the frozen-if-not-allocated assumption. Such competitors
are akin to the restless bandits and index rules are in general
not optimal anymore. See Whittle (1988); Jacko (2010a) for
an overview of the Lagrangian relaxation approach to rest-
less bandits.

Following the structure of the previous section, we note
that it is also possible to apply reward normalization (with a
slightly more general formula) to general competitors. How-
ever, the existence of an index is not assured anymore, and
therefore we will focus on indexable competitors. We present
the definition of indexability from Jacko (2010b), which ad-
mits −∞ and +∞ as valid index values, since there are
models with such index values in some states, which seems
to have been overlooked in previous work.

Definition 5.1 (Indexability). We say that competi-
tor k is indexable, if there exist unique values −∞ ≤ νk,n ≤



+∞ for all n ∈ Nk such that the following holds for competitor-
k subproblem (4) :

1. if νk,n ≥ ν, then it is optimal for competitor to use
(and pay for) the resource in state n, and

2. if νk,n ≤ ν, then it is optimal for competitor not to use
the resource in state n.

The function n 7→ νk,n is called the (Whittle) index, and
νk,n’s are called the (Whittle) index values.

Clearly, the Gittins index is a special case of the Whittle
index under the frozen-if-not-allocated assumption. How-
ever, unlike the Gittins index, the Whittle index is (in gen-
eral) not equivalent to an optimal stopping problem; not
even a one-way implication holds. Moreover, its existence
and evaluation is a much more cumbersome task which we
will not discuss here (see Niño-Mora, 2007b).

If all the competitors are indexable, then we can approach
the Lagrangian relaxation by considering the same joint pol-
icy πν as in the previous section. Using the same arguments
as before, this policy is optimal for the Lagrangian relax-
ation. However, the monotonicity in the resource usage is
not guaranteed anymore, which also hinders the construc-
tion of a feasible policy for the original problem.

In fact, if we can identify instances of the problem such
that a policy optimal for the relaxation, e.g., πν , is at the
same time feasible for the original problem with the sample-
path constraint of having exactly one competitor using the
resource at every time epoch, then such a policy is optimal
for the original problem.

This straightforward argument leads us to one such in-
stance.

Proposition 5.1 (Dominant Competitor). If all the
competitors are indexable and the smallest index value of one
competitor is greater than or equal to the largest index values
of all the other competitors, then the index rule is optimal.

Proof. Analogously to the previous section, it is possible
to construct a sequence of problems which gives rise to an
index policy.

In fact, in this case the index rule allocates the resource
always to the same competitor. Optimality in instances
with “sufficiently separated indices” was reported in compu-
tational experiments, but to the best of the author’s knowl-
edge, it has never been proved.

Let us next consider competitors obeying the reinitializing-
if-not-allocated assumption: if the resource is not allocated
(a = 0) to competitor k, then the competitor changes its
state to a fixed “initial” state ik ∈ Nk (i.e., p0

k,n,ik
= 1 for

all n). These are briefly called reinitializing competitors.

Proposition 5.2 (Reinitializing Competitors). If
all the competitors satisfy the reinitializing-if-not-allocated
assumption, if all are indexable, if all are initially in their
respective initial states ik, and if the index value of state ik
is the greatest over all the states for each competitor k, then
the index rule is optimal.

Proof. Analogously to the previous section, it is possible
to construct a sequence of problems which gives rise to an
index policy.

In this case the index rule allocates the resource to one of
the competitors (the one with greatest index value of state ik
over all the competitors) as long as its index value is greater
than or equal to the competitor with the second largest index
value. This competitor (or one of these, if there are various)
is then allocated the resource for a single period, after which
the priority is given back to the former. The resource is never
allocated to any of the remaining competitors.

Next we briefly explain what a reinitializing competitor
means in order to suggest its relevance in modeling. In
telecommunication networks, the main feature of the TCP
mechanism is to drastically decrease the sending rate or to
restart by sending a single packet after a packet loss (Jacko
and Sansò, 2007). Reinitializing can model “forgetting” of
the relevant information (i.e., of the actual state of the
competitor) and replacing it with a prior state. In opti-
mal search, reinitializing is well-known to be the worst-case
model for finding an object, as it requires a continuous effort
until the object is found.

In job sequencing in case of geometrically distributed sizes,
if a job is not served, then it reinitializes to state 1. That
means that if the job is in state 1 (waiting) and is not served,
then it remains waiting. On the other hand, if the job is
in state 0 (completed) and is not served, then it moves to
state 1, i.e., as if a new job of the same class arrived. Note
that it is known that the cµ-rule (which can be obtained by
the current approach, (see Jacko, 2010b)) is optimal under
arbitrary arrivals (Buyukkoc et al., 1985).

6. CONCLUSION
We have given a brief account of a powerful Lagrangian

approach to the study of optimality of index rules. We be-
lieve that some of the open questions (not only optimality)
especially in the case of restless models could be approached
in this way. Nevertheless, proofs of optimality of the Whit-
tle index rule are scarce, the author is only aware of such
a result for an opportunistic access model with an infinite
state space in Ahmad et al. (2009), in which the Whittle
index rule (equivalent to the myopic policy) is optimal if the
competitors are symmetric.

As a natural step forward, it would desirable to study op-
timality of (multi-)index rules also in more general models.
Such is the model of Whittle (1988), where several resource
capacity units are available at every moment, but every com-
petitor can only be allocated one of those units. Under the
frozen-if-not-allocated assumption, a sufficient condition of
optimality of the Gittins multi-index rule was given in Pan-
delis and Teneketzis (1999). A model in which multiple re-
source capacity units can be allocated to the same competi-
tor was further proposed in Jacko (2009), but no optimality
results are known at the moment.
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