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Abstract—We consider Content Centric Network (CCN) inter-
est forwarding problem as a Multi-Armed Bandit (MAB) problem
with delays. We investigate the transient behaviour of the ε-
greedy, tuned ε-greedy and Upper Confidence Bound (UCB)
interest forwarding policies. Surprisingly, for all the three policies
very short initial exploratory phase is needed. We demonstrate
that the tuned ε-greedy algorithm is nearly as good as the UCB
algorithm, commonly reported as the best currently available
algorithm. We prove the uniform logarithmic bound for the
tuned ε-greedy algorithm in the presence of delays. In addition
to its immediate application to CCN interest forwarding, the
new theoretical results for MAB problem with delays represent
significant theoretical advances in machine learning discipline.

I. INTRODUCTION

There is a conceptual clash between rapidly expanding
digital information dissemination and the host-based network
architecture of the current Internet. To facilitate the dis-
semination of digital information, several Information-Centric
Network (ICN) architectures have been proposed: TRIAD [9],
DONA [13], CCN/NDN [11]. Since the CCN/NDN (Content-
Centric Networking / Named Data Networking) proposal ap-
pears to be the most elaborate, we develop our contribution in
the framework and within the terminology of CCN/NDN. For
the sake of brevity, we shall refer to CCN/NDN as CCN. The
main features of the ICN paradigm, and the CCN architecture
in particular, are that the content is addressed by a unique
name and can have many identical cached copies in the CCN
routers across the Internet. Any of such copies can be retrieved
independently of its location. The content is typically divided
into several small chunks. A chunk is also uniquely identified.
A chunk of content is located and requested by forwarding so-
called interests. A user or a CCN router can forward interests
to one or more neighbour CCN routers. Clearly, if there is
no bandwidth limitation the most efficient way is to forward
interests to all available neighbour routers. However, if there is
a bandwidth limitation or the interest sender has to pay for the
interest or/and delivered content, there can be better interest
forwarding strategies than simple flooding.

In the present work we suggest to view the problem of
optimal interest forwarding strategy as a variant of the Multi-
Armed Bandit (MAB) problem. The MAB problem is a clas-
sical problem in probability theory in which a decision maker
finds an optimal balance between exploration and exploitation
efforts. Its name originates in the example of a gambler facing

the problem of playing at every slot one of multiple one-armed
bandits (slot machines) that yield random rewards. The optimal
solution is known [8], but depends heavily on the statistical
assumptions of the rewards, and may be computationally
intractable in many cases. Here we adopt three well known
algorithms from the machine learning literature: ε-greedy [17],
tuned ε-greedy and UCB [1], which are considerably simpler
and more robust.

Our study brings advances to both networking and machine
learning disciplines. We show that the MAB algorithms allow
to detect the optimal router (i.e., any router of those with
smallest mean delay) with very small number of interests sent
to sub-optimal routers. The novelty from machine learning
perspective is that we analyze the transient period of the
MAB algorithms with delays. This is a very challenging topic
with hardly any results available in the literature. In fact, we
are only aware of the work [7], [16] and [4] on MAB with
delay. However, the approach in these papers is to partially
characterize the optimal or asymptotical optimal strategy,
which was performed under very restrictive assumptions that
are not realistic for the Internet.

We expect that our MAB-based mechanisms can be inte-
grated in the Interest Control Protocol (ICP) which regulates
the pacing of interests in CCN [5]. Several studies in that
respect have appeared recently, realizing the importance of this
problem by its analogy to the congestion control and routing
in the present Internet. For instance, [15] introduced a hop-by-
hop rate-based mechanism to control the transmission buffer
occupancy. Further, [6] argued that when no (or not useful)
information is available in the forwarding table, then the
neighbourhood need to be explored, but multi-path flooding
might lead to inefficient use of resources such as link capacity
and cache space.

The paper is organized as follows. In Section II we present
a formal model of the problem and describe three algorithms
that we propose for CCN interest forwarding. We analyze the
initial exploratory phase of these algorithms in Section III,
both numerically and mathematically, providing a bound and
an approximation of its duration. In Section IV we study the
exploitation phase of the tuned ε-greedy algorithm and prove a
logarithmic bound on the probability of choosing a suboptimal
router. Section V concludes. Because of the lack of space, we
omit all the proofs which can be found in the accompanying
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research report available online [2].

II. MODEL AND INTEREST FORWARDING STRATEGIES

We suppose that a CCN router or a user can forward inter-
ests to K CCN neighbour routers. We consider a discrete time
model. The slot duration can be chosen equal to the minimal
duration of packet generation at the MAC layer. Therefore,
we assume that at each time slot t ∈ T := {0, 1, 2, . . . } the
user can send only one interest to one of K CCN neighbour
routers.

CCN routers reply with delays distributed according to dis-
crete distribution functions Fk(x), k = 1, ..., K, x = 1, 2, ...
with mean denoted by µk. Specifically, we assume that a chunk
corresponding to the interest generated at the present slot and
forwarded to the neighbour router k is delivered by router k
after a random number of slots distributed according to the
distribution function Fk(x). Thus, we shall know the effect of
the action taken at the time slot t only at the future time slot
t+ Xk(t), where Xk(t) is an i.i.d. random variable generated
according to Fk(x). This delay may be a consequence of
several aspects, including the number of hops necessary to
pass in order to find the chunk, caching algorithms, network
conditions, etc.

We are interested in minimizing the expected number of
interests sent to sub-optimal routers, or to sub-optimal arms
in terminology of the multi-armed bandit framework [17].
The challenging novelty of our setting with respect to the
classical multi-armed bandit problem formulation is that the
cost becomes known to the decision maker with delays. In
fact, the costs are the delays.

The optimal policy in the classical setting without delay
is obtained by the Gittins index rule [8], which breaks the
combinatorial complexity of the problem by computing the
Gittins index (a history-dependent function) for each router in
isolation and then simply sending the interest at every slot
to the router whose current Gittins index value is lowest.
This result significantly reduces the dimensionality of the
problem, but the evaluation of the Gittins index may still be
computationally tedious, especially if the index depends on the
whole history, not only on the last observed state. Moreover,
the Gittins optimality result requires that the evolution of costs
from routers be mutually independent, while the algorithms
described below are efficient even for dependent arms [1].

Since strictly speaking optimal policy is very likely to
be very complex even in the classical setting without delay,
many researchers have proposed sensible policies and shown
desirable properties of such policies [12], [1]. One desirable
property of the multi-armed bandit problem policy is the
uniform logarithmic bound on the number of sub-optimal arms
chosen by the decision maker. We shall establish the uniform
logarithmic bound for the tuned ε-greedy policy in the case
of delayed information in Section IV.

In the present work we consider the following three al-
gorithms: ε-greedy algorithm, tuned ε-greedy algorithm, and
UCB (Upper Confidence Bound) algorithm. These are the
most popular multi-armed bandit algorithms, and in this paper

1) Initialization: Choose t0 ∈ T and ε ∈ (0, 1). During the
first t0 slots keep sending interests to routers in round
robin fashion or randomly to routers chosen according
to the uniform distribution.

2) at each time slot t ≥ t0 do
3) For each router k, compute the average delay:

Xk,Tk(t) =
1

Tk(t)

t−1∑
τ=0

Ak(τ, t)Xk(τ)

4) For each router k, set the index:

νk(t) = Xk,Tk(t).

5) With probability 1 − ε send new interest to the router
with the smallest index or with probability ε send new
interest to a uniformly randomly chosen router.

6) end for

Fig. 1. Algorithm ε-greedy

1) Initialization: Choose t0 ∈ T and ε0 ∈ (0, t0). During
the first t0 slots keep sending interests to routers in round
robin fashion or randomly to routers chosen according
to the uniform distribution.

2) at each time slot t ≥ t0 do
3) For each router k, compute the average delay:

Xk,Tk(t) =
1

Tk(t)

t−1∑
τ=0

Ak(τ, t)Xk(τ)

4) For each router k, set the index:

νk(t) = Xk,Tk(t).

5) With probability 1−ε0/t send new interest to the router
with the smallest index and with probability ε0/t send
new interest to a uniformly randomly chosen router.

6) end for

Fig. 2. Algorithm tuned ε-greedy

1) Initialization: Choose t0 ∈ T and L > 0. During the
first t0 slots keep sending interests to routers in round
robin fashion or randomly to routers chosen according
to the uniform distribution.

2) at each time slot t ≥ t0 do
3) For each router k, compute the average delay:

Xk,Tk(t) =
1

Tk(t)

t−1∑
τ=0

Ak(τ, t)Xk(τ)

4) For each router k, set the index:

νk(t) = Xk,Tk(t) −
√

L ln(t)
Tk(t)

where L is so-called exploration parameter.
5) Send new interest to the CCN router with the smallest

index.
6) end for

Fig. 3. Algorithm Upper Confidence Bound (UCB)



Parameters Router 1 Router 2 Router 3
propagation delay 2 2 2

p parameter 0.8 0.7 0.6
r parameter 10 10 10
mean delay 4.5 6.29 8.67

std 1.77 2.47 3.33

TABLE I
THE VALUES OF PARAMETERS IN THE NUMERICAL EXAMPLE.
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Fig. 4. Negative binomial distributions in example.

we propose their generalizations to the setting with delayed
information.

Denote by Tk(t) the total number of interests sent to router
k and answered up to the end of slot t− 1, and

Ak(τ, t) := 1{interest sent to k at τ

and answered up to the end of slot t− 1}.
Let us formally describe each algorithm. The ε-greedy

algorithm presented in Figure 1 is the simplest algorithm. Its
main drawback is that the expected number of sub-optimal
arms grows linearly in time. A variant of ε-greedy algorithm
was proposed in [17] for Markov Decision Process models
without delay.

The tuned ε-greedy algorithm and UCB algorithm for
models without delays have been proposed and analysed in [1].
Both the tuned ε-greedy and UCB algorithms have logarithmic
bounds on the number of sub-optimal arms in the case of
no delays [1]. The respective variants of these algorithms are
presented in Figure 2 and Figure 3.

In our case, since we minimize the cost, we should more
appropriately call this algorithm the lower confidence bound
algorithm. However, to make an explicit connection with
[1] we shall continue to call it the UCB algorithm. In the
previous works the UCB algorithm has shown slightly better
performance than the tuned ε-greedy algorithm.

To get an idea of the performance of the above algorithms
in the presence of delay, we provide a numerical example. We
have taken the negative binomial distribution with determinis-
tic shift as the distribution of delay Fk(x) in our numerical ex-
amples. There are several reasons for this choice. The negative
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Fig. 5. The time evolution of the probability of sending the interest to an
optimal router by the three MAB algorithms.

binomial distribution is quite versatile. With two parameters,
we can easily choose any mean and variance, which have
simple explicit expressions. The distribution shape can take
diverse forms such as the shape of geometric distribution and
the shape close to that of the normal distribution. The negative
binomial distribution represents the distribution of a sum of
geometrically distributed random variables. Since the waiting
time distribution in many queueing systems is exponential
or close to exponential, the negative binomial distribution
represents well the response time of queueing systems in
cascade. We introduce the deterministic shift to model the
propagation delay. In Table I we present the parameters of
our numerical example and in Figure 4 we plot the negative
binomial distributions with the chosen parameters.

In Figure 5 we plot the fraction of interests sent to the
optimal arm as a function of time for the three algorithms
with Round Robin strategy employed in the initial phase. This
numerical example demonstrates that despite the presence of
delays, the three algorithms perform well. In particular, as
in the case of no delay, the performances of the UCB and
tuned ε-greedy algorithms are comparable and the ε-greedy
algorithm performs not too badly. In the following sections
we will provide a detailed analysis of these three algorithms.

III. ANALYSIS OF INITIAL EXPLORATORY PHASE

Let us now investigate the effect of the duration of the ini-
tial, purely exploratory, phase on the algorithm performance.
We shall consider two possible initial strategies: the Round
Robin (RR) strategy and the strategy when the arm chosen
randomly with uniform probability (Uni). Note that in the
Round Robin strategy the initial arm and the order are chosen
randomly with uniform distribution.



0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

t

 

 

RR t
0
=3

RR t
0
=9

RR t
0
=30

Uni t
0
=3

Uni t
0
=9

Uni t
0
=30

Fig. 6. The effect of the initial phase duration and initial strategy of the
ε-greedy algorithm on the probability of sending the interest to an optimal
router.
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Fig. 7. The effect of the initial phase duration and initial strategy of the tuned
ε-greedy algorithm on the probability of sending the interest to an optimal
router.

In Figures 6-8 for our numerical example we plot the
fraction of interests sent to the optimal arm for different
durations (t0 = 3, 9, 30) of the initial phase for different
algorithms with different initial phase strategies.

A bit surprisingly, it turns out that it is better to set up
very short duration of the initial phase. Another important
observation is that it is better to use the Round Robin initial
strategy rather than the uniformly random strategy. This is
intuitively expected as by using the Round Robin strategy
we reduce the randomness. Below we provide theoretical
explanation of these phenomena.

The initial phase [0, t0− 1] is characterized by large explo-
ration effort. Here we would like to provide an estimate for
the period after which we can with high certainty rely on the
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Fig. 8. The effect of the initial phase duration and initial strategy of the
UCB algorithm on the probability of sending the interest to an optimal router.

choice of the best performing arm based on evaluated averages.
Specifically, let us estimate the probability of choosing the best
arm (denoted by ∗) given the arms are chosen independently
before the end of the initialization phase.

Denote by It the arm chosen at time slot t. Assume first that
arms are chosen randomly and independently during the initial
phase with probability pj := E[1{It = j}], j = 1, ..., K. In
the case of uniformly random strategy we have pj = 1/K. Let
further D be the maximum possible delay between choosing
the arm and observing the realization (D = 1 corresponds to
no delay, i.e., receiving the chunk always before the end of
the slot when an interest was sent) and

cj := D2 +
∆j

2
D +

∆j

2
p∗D,

where ∆j = µj − µ∗. Then, we have the following result.
Theorem 1: If during the exploration phase we choose the

arms randomly and independently with uniform distribution
(pj = 1/K), and at the end of the exploration period, at slot
t0, we choose the arm according to the estimated average,
the probability of choosing the best arm is lower bounded as
follows:

P[X∗,T∗(t0) < min
j 6=∗

Xj,Tj(t0)]

≥
∏

j 6=∗

(
1− exp

(
−∆2

j (t0 −D)2

8K2c2
j t0

))2

(1)

A strong point of the above result is that the derived lower
bound is given in terms of exponential function, which means
that starting from some value of t0 the probability of success
will be very high. However, the bound (1) can be loose.
Therefore, next we suggest an approximation of the success
probability based on the central limit theorem.

Also, it turns out that if the maximal delay is not too large,
we do not introduce a large error by considering only interests
sent by the time t0−D. Then, by the time t0 we observe reply
from all sent interests.
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Fig. 9. Approximations for the probability of sending the interest to an
optimal router in the first slot after the the end of the initial phase.

Theorem 2: If during the exploration phase we choose the
arms randomly and independently with uniform distribution
(pj = p∗ = 1/K), and if at the end of the exploration period,
at slot t0, we choose the arm according to the estimated
average, the probability of choosing the best arm can be
approximated as follows:

P[X∗,T∗(t0−D) < min
j 6=∗

Xj,Tj(t0−D)]

≈
∏

j 6=∗
Φ

(
∆j

√
pj(t0 −D)

4V ar(Xj) + ∆2
j (1− pj)

)

Φ

(
∆j

√
p∗(t0 −D)

4V ar(X∗) + ∆2
j (1− p∗)

)
, (2)

where Φ(·) is the cumulative distribution function of the
standard normal random variable.

In the case when the Round Robin strategy is used in the
initial phase, we can provide even sharper approximation.

Theorem 3: If during the exploration phase we choose the
arms according to the Round Robin strategy with the first arm
and the order chosen randomly with the uniform distribution,
and if at the end of the exploration period, at slot t0, we choose
the arm according to the estimated average, the probability of
choosing the best arm can be approximated as follows:

P[X∗,T∗(t0−D) < min
j 6=∗

Xj,Tj(t0−D)]

≈
∏

j 6=∗
Φ

(
∆j

√
t0 −D

3(V ar(X∗) + V ar(Xj))

)
. (3)

We consider now our numerical example with truncated
negative binomial distributions with D = 15. In Figure 9 we
plot the approximations (2) and (3) as functions of the duration
of the initial exploratory phase t0, which firstly support our
numerical finding that it is enough to have a very short initial
phase and secondly confirm our intuition that the Round Robin
strategy is better than the random strategy.

One may be interested in rough estimation of the number
of time slots after which using estimated averages the optimal
arm will be selected with high probability. We can provide
recommendation for such value based on (3) and 2-sigma rule.
If the arguments of the standard normal distribution function
are equal to two, then respective probabilities are greater than
0.977. Thus, we conclude that after the time

T ≥ D + 12
V ar(X∗) + maxj V ar(Xj)

minj ∆2
j

, (4)

using the estimated averages and the RR strategy, we select
the optimal arm with probability at least 0.977K−1. In our
numerical example, after 68 time slots the probability of
choosing correctly the optimal arm is estimated to be more
than 0.95. This is a conservative estimation and in reality we
need even shorter exploratory period.

IV. LOGARITHMIC BOUND FOR THE TUNED ε-GREEDY
ALGORITHM

In this section we finally prove that the regret (cumulative
suboptimality) of employing the tuned ε-greedy algorithm is
bounded logarithmically in t, which is the same result as for
the case without delay (and known to be the best achievable)
[1].

Theorem 4: Let a > 0 and 0 < d ≤ mink:µk>µ∗ ∆k, and
let initial phase be run with the uniformly random strategy.
For all K > 1 and for all delay distributions F1, . . . , FK with
support in [1, D], if algorithm tuned ε-greedy is run with input
parameters t0 > ε0 := aK/d2, then the probability that the
algorithm chooses in slot t ≥ t0 a suboptimal arm j is at most

2D
a

d2

(
ln

td2e1/2

aK

) (
aK

td2e1/2

) 3a
14d2

+
16D3

d2
exp

{
D + 1

8

}(
aK

td2e1/2

) a
8D2

+
a

d2t
.

This bound says that the cumulative probability of subop-
timal decisions is logarithmic for a large enough (surely if
a > max{14d2/3, 8D2}), because the instantaneous subopti-
mality at any slot t ≥ t0 is of the order (K−1)a/d2t+o(1/t)
for t → ∞. We conclude that the smaller the number of
arms (CCN neighbour routers) and the larger d, the difference
between the mean delays of the best and the strictly second-
best arm, the better the performance of the tuned ε-greedy
algorithm.

V. CONCLUSION

The contribution of this paper is twofold. First, we have
proposed tractable and well-performing interest forwarding
algorithms for CCN networks. We have demonstrated that the
algorithms work fast and logarithmically few interests are send
suboptimally, which means that the resources of the user and
CCN routers are efficiently managed. Theoretical bounds show
that the learning process is best achievable.

Second, we have also contributed to the theory of the multi-
armed bandit problem with delayed information. This is an
important and challenging topic with few existing results. We



have provided finite-time analysis of algorithms extended to
this setting and showed that the deterioration of their perfor-
mance due to delays is not significant. Perhaps surprisingly,
there is no need to include a long exploratory phase, just
a single datum from each arm is sufficient for an efficient
performance of the algorithms.

The CCN interest forwarding model presented here is very
simple in order to be able to perform its mathematical analysis.
From the practical point of view, it would be desirable to study
the performance of the proposed algorithms in more realistic
systems, for instance taking into account interest forwarding
strategies at subsequent routers, caching parameters, correla-
tion in the stream of interests (it is likely that the optimal CCN
router changes over time), packet losses and timeouts, etc.
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