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There are two disjointed problems in cosmology within General Relativity (GR), which can be
addressed simultaneously by studying the nature of geodesics around t → 0, where t is the physical
time. One is related to the past geodesic completeness of the inflationary trajectory due to the
presence of a cosmological singularity, and the other one is related to the homogeneity condition
required to inflate a local space-time patch of the universe. We will show that both the problems
have a common origin, arising from how the causal structure of null and timelike geodesics are
structured within GR. In particular, we will show how a non-local extension of GR can address
both problems, while satisfying the null energy condition for the matter sources.

Primordial inflation is extremely successful in explain-
ing the current observed universe [1]. However, there
are many fundamental issues with inflation. Two of the
most important ones are related to its embedding within
General Relativity (GR) 1.

• Geodesic incompleteness: Due to the inevitabil-
ity of a cosmological singularity within GR, infla-
tionary trajectories are past-incomplete [4]. One
can see that this warrants a better theory of grav-
ity in the ultraviolet (UV), which would amelio-
rate the UV divergences as well as make the the-
ory singularity-free in the UV, for instance [5–
8]. Such a singularity-free universe would yield a
non-singular bouncing cosmology, and possibly this
would leave some falsifiable imprints in the sky [9].

• Homogeneity condition: Slow roll inflation requires
a patch of the universe to be sufficiently homo-
geneous on super-Hubble scales, see [10, 11], see
also [12, 13]. In this respect, inflation within GR
does not solve the homogeneity problem - it as-
sumes homogeneity to begin with. Even if inflation
begins at the Planckian epoch, one requires the spa-
tial gradient terms in the action of the inflaton field
(whose slow roll leads to inflation) to be sufficiently
negligible compared to the homogeneous, time de-
pendent terms.

A priori, these two problems seem to be unrelated.
However, they have a common origin and if the first one
is addressed, then the second one can also be understood,
which would lead to a better understanding of inflation
within a UV complete theory of gravity [14]. They are
both related to the causal structure of the spacetime
within GR, assuming the weak energy condition (WEC)
for the matter field, i.e. ρ ≥ 0 and ρ+p ≥ 0, which neces-
sarily implies the null energy condition (NEC), ρ+p ≥ 0,

1 Inflation has many other challenges, see [2, 3].

where ρ is the energy density and p is the pressure com-
ponent.

The main aim of this paper is to build this connec-
tion and show how a geodesically past-complete universe
would naturally evade the constraints of the homogene-
ity condition for slow roll models of inflation. We will
illustrate this problem by modifying the UV aspects of
gravity and therefore modifying the causal structure of
the spacetime. In particular, we will invoke a non-local
modification of GR, which can be made ghost-free in the
UV, while also recovering GR and its predictions in the
infrared (IR) [5, 6].
Causal structure of spacetime and the Ray-

chaudhuri Equation: The structure of a singularity
can be understood in a model independent way by study-
ing the Raychaudhuri Equation (RE) for timelike and/or
null geodesic congruences. For simplicity, we consider
only null geodesic congruences such that kµkµ = 0,
where kµ is a four vector tangential to the null geodesic
congruence, defined by mostly positive convention, i.e.
(−,+,+,+), and the expansion parameter, θ, defined by
θ = ∇µkµ. Let us concentrate on the simplest possible
scenario where the twist tensors vanish, which is true if
we take the congruence of null rays to be orthogonal to
the hypersurface. Furthermore, the shear tensor is purely
spatial and thus makes a positive contribution. Taking
all of this into account the RE can be simplified greatly,
see [15]

dθ

dτ
+

1

2
θ2 ≤ −Rµνkµkν (1)

where τ is the affine parameter, and Rµν is the Ricci
tensor.

We know from the Einstein equation that Gµν = κTµν ,
where κ = 8πG = M−2p , which in turn implies Rµν =

κ(Tµν − 1
2gµνT ). Now, contracting with the vector field

kµ, we find Rµνk
µkν = κTµνk

µkν . Finally, imposing
the NEC, Tµνk

µkν ≥ 0, we obtain the null convergence
condition (null CC) expressed in two equivalent ways:

Rµνk
µkν ≥ 0,

dθ

dτ
+

1

2
θ2 ≤ 0 (2)
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This suggests that the converging null geodesics cannot
start to diverge before meeting the origin of coordinates
or, in other words, the converging null geodesic must
meet the space-like singularity in a finite time within GR,
where the NEC is satisfied [16, 17].

Trapped, antitrapped and normal surfaces: In
an asymptotically flat spacetime, trapped surfaces and an
apparent horizon are formed when when both the ingoing
and outgoing expansions are negative, i.e. θIN,OUT < 0.
A period of cosmic acceleration with positive ingoing
and outgoing expansion, θIN,OUT > 0, gives rise to
antitrapped surfaces and normal regions are defined by
the behaviour θIN < 0 and θOUT > 0. Any surface
with physical size greater or equal to the minimally an-
titrapped surface (MAS) has vanishing expansion and
is, by definition, antitrapped. Within the Friedmann-
Robertson-Walker (FRW) metric, ds2 = dt2 − a2(t)dr2,
where a(t) is the scale factor and r is the coordinate
of 3 spatial directions, xMAS = H−1(t), where H(t) ≡
ȧ(t)/a(t) and the physical size of the MAS is represented
by xMAS . The inner boundary of such a surface is known
as the cosmological apparent horizon and is defined as the
inverse of the physical distance of the MAS of the back-
ground cosmology such that

xFRW = xMAS = H−1FRW (3)

Similarly, in Fig.1 the line OQ denotes the inflation-
ary patch, with the segment OP equal to the inverse
of the inflationary apparent horizon which is necessarily
of smaller physical size to the MAS. Now, in the usual
FRW universe - complete with an initial singularity by
virtue of the NEC condition within GR, see Eq. (2) - the
ingoing null ray cannot go from a normal region to an
antitrapped region, as depicted by the arrow. As argued
in [11], the inflationary patch must be embedded already
within an antitrapped region of spacetime in order to
trigger inflation without violating the null CC. The con-
clusion was that late inflation requires a prior phase of
inflation. However with an impending singularity in the
past, one would be left with inflation occurring already
at the Planckian epoch [10, 11].

Non-singular bouncing cosmology: As we shall
see below, a non-singular bouncing cosmology naturally
leads to an accelerated expansion near the bounce, ä(t) >
0. The challenge is to realise a non-singular bounce which
requires modification to GR. In particular, a reversal of
the inequality in the null CC without violating the NEC,
would allow the converging null rays to be made past
complete, thus resolving not only the cosmological sin-
gularity problem, but also allowing the arrow shown in
Fig.1 to go from a normal region of spacetime to an anti-
trapped region of spacetime. Therefore, the homogeneity
condition for inflation is ameliorated, especially at later
stages.

In a word, a non-singular bouncing cosmology natu-
rally provides all the necessary conditions for successful
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FIG. 1: A conformal diagram depicting a bouncing cosmol-
ogy in an isotropic and homogenous FRW metric. Shaded
regions are antitrapped and unshaded regions are normal. A
patch begins to inflate at later times, t, from O to Q with in-
flationary size xinf , where the line OP borders the apparent
inflationary horizon. The arrow, pictured, describes an ingo-
ing null ray entering an antitrapped surface from a normal
surface. All notations are as in [11].

inflation, which must occur at later stages in order to pro-
duce the large scale structures present in the universe.

Modifying GR in the UV: We may now ask the
question: what modification of GR would yield a reversal
of the inequality contained within the null CC, such that

Rµνk
µkν ≤ 0,

dθ

dτ
+

1

2
θ2 ≥ 0 (4)

and thus describe a singularity-free theory of gravity,
whilst retaining the NEC? There are two generic ways
in which this may be satisfied.

• Local modification of GR: Higher order corrections
such as L ∼ c2R

2 + c3R
3 + · · · + d2R

2
µν , · · · +

e2R
2
µνλσ, · · · , with appropriate coefficients would

modify the UV behaviour of gravity. The higher
derivatives help to ameliorate the UV aspects of
gravity in 4 dimensions but they typically contain
ghosts. This has been known from the days of
Stelle’s theory of 4th order gravity, which is renor-
malizable but contains massive ghosts [18].

• Non-local modification of GR: The ghost problem
can be addressed in the case of infinite higher or-
der derivatives. Let us concentrate on quadratic
curvature with L ∼ RF(�)R + RµνG(�)Rµν ,
where F(�), G(�) are analytic functions contain-
ing higher derivatives up to infinite order, where
� = gµν∇µ∇ν is the d’Alembertian operator.
In the Minkowski background, these comprise the
most generalised action of gravity with non-local
contributions, yielding a ghost-free condition for
certain analytic choices of F , G, constructed, nec-
essarily, from an entire function [5–8].
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Explicit Example: In order to illustrate and for the
remainder of the paper, let us concentrate on a non-local
generalisation of GR in the UV, up to quadratic order in
curvature,

S =

∫
d4x
√
−g
(
M2
P

2
R+

RF(�)R

2

)
(5)

where F(�) ≡
∞∑
n=0

fn
M2n

p
�n and, without loss of general-

ity, we have assumed that non-renormalisable operators
are suppressed by the 4 dimensional scale of gravity, i.e.
Mp.

It is important to add, that the RE and its conver-
gence conditions hold independently of the background
action. However, we must introduce an action in order
to compute the Ricci tensor. We compute the equations
of motion as in [19], and impose the FRW metric.

In order to understand the nature of these null geodesic
congruences, let us concentrate on the simplest regime
with a homogeneous metric near t = 0. To this end, we
may describe the scale factor expanding around t = 0, as
follows

a(t) = 1 + a2t
2 +O(t4) + · · · . (6)

Note that we may consider even powers of t to under-
stand the solution around t = 0, with coefficient a2 > 0
as a consequence of ä(t) > 0 at the bounce point, since
we are interested in seeking a non-singular solution. This
implies that H(t) is an odd function of physical time t,
while R(t) = 12H2(t) + 6Ḣ(t) is an even function of t
such that

R(t) = R0 +R2t
2 +O(t4) + · · · . (7)

with R0 > 0 at the bounce, as limt→0R(t) = 12a2 and,
as we have already stated, ä > 0 implies a2 > 0 at the
bounce point.

By solving for the equations of motion of the action
given by Eq. (5) (for details, see [19]), one can extract
the Ricci tensor Rµν and contract with the vector field
kµ to find, at the bounce point t = 0:

Rµνk
µkν = (k0)2

(ρ+ p) + 2∂2t (F(�)R)

M2
p + 2F(�)R

. (8)

Next, we must compute the non-local terms F(�)R and
∂2tF(�)R, Eqs. (15,16). For detailed steps, see Ap-
pendix.

Crucially, we are now in a position to deduce that,
in order for the l.h.s. of Eq. (8) to be negative, i.e.
Rµνk

µkν ≤ 0, thus determining the conditions for which
null geodesics can be made past-complete, the following
inequalities must hold for either upper or lower signs,

(ρ+ p)

2R0
≶ yF(y),

M2
p

2R0
≷ −F(y), (9)

where y ≡ −2R2/R0 is defined in the Appendix, and we
have assumed the NEC to hold true always.

Ghost-Free choice: Following Ref. [5, 6], a particular
class of F(�) can be chosen in order to make a non-local
theory of gravity ghost-free without violating general co-
variance. Here, we choose [5, 6]:

F(�) =
e−�/M

2
p − 1

�/M2
p

(10)

Note that due to the particular nature of Eq. (10), we
have F(y < 0) < −1, and −1 ≤ F(y ≥ 0) < 0.

In order to extract the physics, we may entertain the
simplest interesting scenario when the curvature of the
universe is evolving adiabatically near the Planck scale,
in such a way that R2 is small, i.e. R2 � R0 in Eq. (7).
This is justifiable since we are ignoring the higher order
terms in both our expressions, Eqs. (6, 7). We will be
interested then in a limit when y → 0. Note that at this
point R2 could be either positive or negative.

• R2 ≥ 0: when y → 0, the lower signs in Eq. (9)
yield:

(ρ+ p)

2R0
> 0,

M2
p

2R0
< 1 . (11)

This tells us that the NEC must be satisfied, ir-
respective of R0, and R0 > M2

p/2 at the bounce.
Note that one would naturally expect R0 ≤M2

p at
the time of the bounce.
The upper signs do not yield any physically moti-
vated solution when R2 ≥ 0.

• R2 ≤ 0: The first inequality in Eq. (9) holds true
with the lower sign as long as ρ+ p > 0, yielding:

M2
P

2R0
< −F(y) ≤ 1 (12)

which is analogous to Eq. (11)

For either R2 ≥ 0 or R2 ≤ 0, one ensures that the null
geodesics are past-complete and a non-singular bouncing
cosmology can be constructed near t ∼ 0, at the limit of
y → 0, without violating the NEC.

Past-completeness of null geodesics implies the past-
completeness of timelike geodesics, independent of any
choice of F(�), as can be shown by a straightforward
computation.
Discussion: In this paper, we pointed out a neat so-

lution for two disjointed problems of inflationary cosmol-
ogy. We argued that a non-singular bouncing cosmology
is a must for a successful inflationary paradigm, where
one can make the inflationary trajectory past-complete,
while also explaining the pre-requisite homogeneity con-
dition for inflation by modifying the Raychaudhuri equa-
tion. Thus, a reversal of the inequality in the null CC,
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see Eqs. (2, 4), allows both a non-singular bounce and
the movement of null rays from a normal surface to anti-
trapped surface, without violating the NEC in the matter
sector.

We showed that a non-local modification of GR would
modify the Raychaudhuri equation in such a way that a
bouncing non-singular cosmology can be constructed. In
particular, we have shown that for a slowly varying cur-
vature with a scale, at bounce, comparable to the Planck
scale within a homogeneous and isotropic metric, one can
avoid a cosmological singularity. The matter at the same
time enjoys the NEC.

Our results have implications for completing the past
inflationary geodesics and also ameliorating the homo-
geneity conditions for inflation at later epochs. Note that
a non-singular bounce naturally provides a platform for
an inflationary cosmology, by virtue of ä(t) > 0, at the
bounce point, thus providing the initial conditions for
primordial inflation. Similar analyses for avoiding cos-
mological singularity may be performed for a variety of
modifications to GR in the UV.
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APPENDIX

Here we compute the non-local terms F(�)R and
∂2tF(�)R. We do this by first calculating es�, where s
is a constant. Using the diffusion equation method [20],
we find for t→ 0

(es�R)(0) = R0e
sy (13)

where we have defined y ≡ −2R2/R0. We then repre-
sent the operator F(�), using the inverse Laplace inte-
gral transform, with the integration contour such that all
poles are on one side of the contour with α, real

F(�) =
1

2πi

∫ α−i∞

α−i∞
F̃(s)es�ds , (14)

The next step is to solve for the relevant non-local terms
at the bounce. In the first instance, we find F(�)R at

the bounce to be

(F(�)R)(0) = R0F(y) (15)
In order to compute, the second time derivative, we note
that we are effectively computing (−�F(�)R)(0). The
properties of the Laplace transform yield

(∂2tF(�)R)(0) = 2R2F(y). (16)
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