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A new family of inflation models is introduced and studied. The models are characterised by a scalar 
potential which, far from the origin, approximates an inflationary plateau, while near the origin becomes 
monomial, as in chaotic inflation. The models are obtained in the context of global supersymmetry 
starting with a superpotential, which interpolates from a generalised monomial to an O’Raifearteagh 
form for small to large values of the inflaton field respectively. It is demonstrated that the observables 
obtained, such as the scalar spectral index and the tensor to scalar ratio, are in excellent agreement with 
the latest observations. Some discussion of initial conditions and eternal inflation is included.
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The latest CMB observations from the Planck satellite have con-
firmed the broad predictions of the inflationary paradigm, in that 
the Universe is found to be spatially flat with a predominantly 
Gaussian curvature perturbation that is almost (but not quite) scale 
invariant [1]. However, the precision of these observations is so 
high that they put tension to (or even exclude) entire classes of 
inflationary models, e.g. chaotic inflation.1

The Planck observations seem to support an inflationary scalar 
potential which asymptotes to a constant, i.e. an inflationary 
plateau is favoured [3]. In view of this fact, in this letter we present 
a new class of inflationary potentials, which we call shaft inflation. 
The idea is that the inflationary plateau is pierced by shafts such 
that, when the inflaton field finds itself close to one of them it 
slow-rolls inside the shaft, until inflation ends and gives away to 
the hot big bang cosmology. Assuming a shaft at the origin, the 
scalar potential approximates a constant at large values of the in-
flaton field, but at small values the potential becomes similar to 
monomial chaotic inflation. In that respect, shaft inflation is sim-
ilar to the so-called T-model inflation [4] but the scalar potential 
in our case features a power-law (in contrast to exponential) de-
pendence on the inflaton field. Although we attempt to design 
the model in the context of global supersymmetry, this is by no 
means restrictive since the phenomenology really stems out from 
the form of the scalar potential, which can be obtained via a dif-
ferent, possibly more realistic (and complicated) setup. Indeed, as 
we discuss, one of the realisations of shaft inflation can be iden-

E-mail address: k.dimopoulos1@lancaster.ac.uk.
1 Unless excited states are assumed instead of the usual Bunch–Davis vacuum [2].
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tified with S-dual superstring inflation [5] or with radion assisted 
gauge inflation [6].

After the first draft of this letter was produced, the first data 
of the BICEP2 experiment were released, which show that infla-
tion may produce substantial gravitational waves. According to the 
findings of BICEP2, the tensor to scalar ratio is r � 0.20 ± 0.07 [7]. 
We show that shaft inflation can accommodate such a large value 
of r.

We use natural units, where c = h̄ = 1 and Newton’s gravita-
tional constant is 8πG = m−2

P , with mP = 2.43 × 1018 GeV being 
the reduced Planck mass.

Let us begin with the following superpotential:

W = M2 |φ|nq+1

(|φ|n + mn)q
(1)

where M, m are mass-scales, n, q are real parameters and φ is a 
real scalar field (corresponding to a superfield made real by suit-
able field redefinitions). Without loss of generality, we assume that 
φ > 0 so we can write |φ| = φ and assume that there is a Z2
symmetry φ → −φ. In the limit φ � m the above superpoten-
tial reduces to an O’Raifearteagh form W � M2φ, which leads to 
de-Sitter expansion. However, in the limit φ � m the superpoten-
tial becomes W � M2φ(φ/m)nq , which leads to monomial chaotic 
inflation. To simplify the potential we may assume q = −1/n, in 
which case the superpotential becomes

W = M2(φn + mn)1/n
. (2)
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Fig. 1. The scalar potential in shaft inflation for n = 2, 4, 8 and 16. The shaft becomes 
sharper as n grows. Far from the origin the potential approximates the inflation-
ary plateau with V ≈ M4. Near the origin the potential becomes monomial, as in 
chaotic inflation.

Thus, in the limit φ � m the above becomes W � M2m +
1
n M2m(φ/m)n , which leads to a monomial F-term potential. 2

For the superpotential in Eq. (2), the corresponding F-term 
scalar potential is:

V (φ) = M4φ2n−2(φn + mn) 2
n −2

. (3)

From the above we see that the scalar potential has the desired 
behaviour for n > 1, i.e. it approaches a constant for φ � m, while 
for φ � m the potential becomes monomial, with V ∝ φ2(n−1) , see 
Fig. 1. When n = 1 the potential is exactly flat and the shaft disap-
pears.

For the slow-roll parameters we find

ε ≡ 1

2
m2

P

(
V ′

V

)2

= 2(n − 1)2
(

mP

φ

)2( mn

φ2 + mn

)2

(4)

η ≡ m2
P

V ′′

V
= 2(n − 1)

(
mP

φ

)2( mn

φ2 + mn

)

× (2n − 3)mn − (n + 1)φn

φn + mm
, (5)

where the prime denotes derivative with respect to the inflaton 
field. Hence, the spectral index of the curvature perturbation is

ns = 1 + 2η − 6ε = 1 − 4(n − 1)

(
mP

φ

)2 mn[(n + 1)φn + nmn]
(φn + mn)2

.

(6)

It is straightforward to see that inflation is terminated when 
|η| � 1 so that, for the end of inflation, we find

φend � mP
[
2
(
n2 − 1

)
αn]1/(n+2)

, (7)

where we assumed that φ > m (so that the potential deviates from 
a chaotic monomial) and we defined

α ≡ m

mP
. (8)

2 The form of the superpotential in Eq. (1) is dictated by the requirement that it 
gives rise to the envisaged scenario. The simplifying relation q = −1/n reduces the 
parameters and can have physical interpretation for specific values of n, e.g. n = 2
(see below). However, the physical meaning of Eq. (2) falls beyond the scope of this 
letter; while in a sense, can be thought as the definition of shaft inflation.
Using this, we obtain φ(N)

N = 1

m2
P

φ∫
φend

V

V ′ dφ

� 1

2(n − 1)(n + 2)αn

[(
φ

mP

)n+2

−
(

φend

mP

)n+2]
(9)

⇒ φ(N) � mP

[
2(n − 1)(n + 2)αn

(
N + n + 1

n + 2

)]1/(n+2)

,

(10)

where N is the remaining e-folds of inflation and we considered 
φ > m again. Inserting the above into Eqs. (4) and (6) respectively 
we obtain the tensor to scalar ratio r and the spectral index ns as 
functions of N:

r = 16ε = 32(n − 1)2α
2n

n+2

×
[

2(n − 1)(n + 2)

(
N + n + 1

n + 2

)]−2( n+1
n+2 )

(11)

ns = 1 − 2
n + 1

n + 2

(
N + n + 1

n + 2

)−1

(12)

An interesting choice is n = 2, in which case the scalar potential 
becomes

V (φ) = M4 φ2

φ2 + m2
. (13)

We see that the above can be thought of as a modification of 
quadratic chaotic inflation, because after the end of inflation, the 
inflaton field oscillates in a quadratic potential. However, for large 
values of the inflaton the potential approaches a constant. This po-
tential has been obtained also in S-dual superstring inflation [5]
with α = 1/4 and also in radion assisted gauge inflation [6] with 
α ∼ 10−3/2. In this case, Eqs. (11) and (12) become

r = 32α

[8(N + 3
4 )]3/2

and ns = 1 − 3

2

(
N + 3

4

)−1

(14)

For the moment, let us ignore the BICEP2 results and try to 
satisfy the Planck observations only. Assuming α � 1, for N � 60
{N � 50} we readily obtain ns = 0.975 and r = 2.99 × 10−3

{ns = 0.970 and r = 3.91 × 10−3}. As shown in Fig. 2, these values 
fall within the 95% {68%} c.l. contour of the Planck observations. 
Things improve further if we enlarge n.

Indeed, in the limit n � 1 Eqs. (11) and (12) become

r = 8α2

n2(N + 1)2
→ 0 and ns = 1 − 2

N + 1
. (15)

The spectral index is now the same as in the original R2 infla-
tion model [8] (also in Higgs inflation [9]), which is not surprising 
since we expect power-law behaviour to approach the exponen-
tial when n → ∞. Now, for N � 60 {N � 50} we obtain ns = 0.967
{ns = 0.961}, which is very close to the best fit point for the Planck 
data, as shown in Fig. 2.

Now, let us incorporate in our thinking the BICEP2 results, 
which suggest that r = 0.20 ± 0.07 [7]. From Eq. (11) it is read-
ily seen that r ∝ α2n/(n+2). This means that the tensor production 
can be enhanced if the shaft is appropriately widened, i.e. if m is 
somewhat larger than mP without affecting the scalar spectral in-
dex, as seen in Eq. (12). Indeed, it is easy to show that α � 50 is 
enough to boost the tensor signal up to BICEP2 values. For exam-
ple, assuming N � 50 and α = 50, Eqs. (11) and (12) give Table 1.
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Fig. 2. Shaft inflation for n = 2 is depicted with the large {small} cross for N � 60 {N � 50}. Shaft inflation for n � 1 is depicted with the large {small} star for N � 60
{N � 50}. The difference with R2-inflation (orange dots) stems from taking into account the contribution of φend so that N → N + 1 in Eq. (15). Intermediate values of n lie 
in-between the depicted points. As evident, there is excellent agreement with the Planck observations. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
Table 1
Values of r and ns for shaft inflation with N = α = 50
and n = 2, 4, 6 and 8.

n r ns

2 0.200 0.970
4 0.199 0.967
6 0.141 0.966
8 0.098 0.965

Fig. 3. Allowing for a running spectral index, shaft inflation can accommodate the 
BICEP2 results. The bullets depict the predictions of shaft inflation for n = 2, 4, 6
and 8 from right to left respectively. As evident, there is excellent agreement with 
the observations. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

Allowing for a running spectral index the BICEP2 results suggest 
the blue contours shown in Fig. 3. However, it is easy to show that

dns

d ln k
= − 2(n+1

n+2 )

(N + n+1
n+2 )2

∼ − 2

N2
, (16)

which gives dns
d ln k ∼ 10−3 for N � 50, so the running is not sub-

stantial.
An estimate for the required value of M is obtained enforcing 

the COBE bound onto the curvature perturbation. Using Eqs. (3)
and (10) we find
√
Pζ = 1

2
√

3π

V 3/2

m3
P |V ′|

⇒
(

M

mP

)2

= 4
√

3(n − 1)α− n
n+2 π

√
Pζ

×
[

2(n − 1)(n + 2)

(
N + n + 1

n + 2

)]− n+1
n+2

. (17)

For n = 2, N = 60 and α = 1 {α = 50} and taking 
√
Pζ = 4.706 ×

10−5 we get M = 7.7 × 1015 GeV {M = 1.6 × 1015 GeV}, which is 
close to the scale of grand unification, as expected.

Provided φ can be arbitrarily large [the vacuum density for 
large φ is constant and remains sub-Planckian, since M � mP and 
V (φ � m) � M4] one can show that slow-roll inflation can last 
for a huge number of e-folds. However, far away from the shaft, 
the potential becomes so flat that the inflaton finds itself in the 
so-called quantum diffusion zone, leading to eternal inflation [10]. 
The criterion is as follows.

For eternal inflation to occur, the classical variation of the infla-
ton field |φ̇| needs to become subdominant to the quantum varia-
tion of φ, which is given by the Hawking temperature δφ = H/2π
per Hubble time δt = H−1. Comparing the two it is easy to show 
that

|φ̇| ≷ δφ

δt
⇔ ∣∣V ′∣∣ ≷ 3

2π
H3, (18)

where we used the slow-roll equation of motion 3H φ̇ � −V ′ . In 
view of Eq. (3) and using the Friedman equation V (φ) � 3(HmP )2, 
after some algebra, one can show

|φ̇| ≷ δφ

δt
⇔ N

N∗
� N + n+1

n+2

N∗ + n+1
n+2

≶ (
√
Pζ )−

n+2
n+1 ∼ 104–6, (19)

where we also used Eq. (17), we considered that 1 < n+2
n+1 < 3

2 and 
with N∗ we have denoted the remaining e-folds, when the cosmo-
logical scales leave the horizon, i.e. N∗ � 60.

Thus, we see that, even though the multiverse may be under-
going eternal inflation, our region finds itself relatively close to the 
potential shaft such that slow-roll takes over and the inflaton grad-
ually moves into the shaft. The inflaton slow-rolls for a few mil-
lions of e-folds before the cosmological scales exit the horizon and 
N∗ � 60 after this. Eventually, inflation, in our region, ends and the 
inflaton oscillates at the bottom of the shaft, leading to (p)reheat-
ing and the hot big bang. Meanwhile, elsewhere in the multiverse, 
eternal inflation continues. One can imagine that there may be a 
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large number of shafts puncturing the inflationary plateau (lead-
ing to different vacua, possibly with different values of n). Some 
regions of the multiverse are close to the shafts in such a way that 
eternal inflation is superseded by classical slow-roll which attracts 
the system into the shaft in question. Our observable universe is 
such a case.

In summary, we introduced and studied a new family of in-
flation models, which we called shaft inflation. The models corre-
spond to the scalar potential given in Eq. (3) and are parametrised 
by n > 1. We obtained the models in the context of global super-
symmetry starting with a superpotential, which interpolates from 
a generic monomial to an O’Raifearteagh form for small to large 
values of the inflaton field respectively. However, shaft inflation 
can be obtained in different setups, as mentioned, for example, in 
the case n = 2. We showed that we obtain values for the spectral 
index ns or the tensor to scalar ratio r that are in excellent agree-
ment with the latest observations of the Planck satellite and the 
BICEP2.
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