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We present the first measurements of the differential cross section dσ/dpγ
T for the production of an 

isolated photon in association with at least two b-quark jets. The measurements consider photons with 
rapidities |yγ | < 1.0 and transverse momenta 30 < pγ

T < 200 GeV. The b-quark jets are required to have 
p

jet
T > 15 GeV and |yjet| < 1.5. The ratio of differential production cross sections for γ + 2 b-jets to 

γ + b-jet as a function of pγ
T is also presented. The results are based on the proton–antiproton collision 

data at 
√

s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured 
cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as 
well as predictions based on the kT-factorization approach and those from the sherpa and pythia Monte 
Carlo event generators.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
In hadronic collisions, high-energy photons (γ ) emerge unal-
tered from the hard parton–parton interaction and therefore pro-
vide a clean probe of the underlying hard-scattering dynamics [1]. 
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Photons produced in these interactions (called direct or prompt) 
in association with one or more bottom (b)-quark jets provide an 
important test of perturbative Quantum Chromodynamics (QCD) 
predictions at large hard-scattering scales Q and over a wide range 
of parton momentum fractions. In addition, the study of these 
processes also provides information about the parton density func-
tions (PDF) of b quarks and gluons (g), which still have substan-
tial uncertainties. In pp̄ collisions, γ + b-jet events are produced 
primarily through the Compton process gb → γ b, which domi-
nates for low and moderate photon transverse momenta (pγ

T ), and 
through quark–antiquark annihilation followed by g → bb̄ gluon 
splitting qq̄ → γ g → γ bb̄, which dominates at high pγ

T [2,3]. 
The final state with b-quark pair production, pp̄ → γ + bb̄, is 
mainly produced via qq̄ → γ bb̄ and gg → γ bb̄ scatterings [4]. The 
γ + 2 b-jet process is a crucial component of background in mea-
surements of, for example, tt̄γ coupling [5] and in some searches 
for new phenomena. A series of measurements involving γ and 
b(c)-quark final states have previously been performed by the D0 
and CDF Collaborations [3,6–9].

http://creativecommons.org/licenses/by/3.0/
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In this measurement, we follow an inclusive approach by allow-
ing the final state with any additional jet(s) on top of the studied 
b-quark jets. Inclusive γ + 2 b-jet production may also originate 
from partonic subprocesses involving parton fragmentation into a 
photon. However, using photon isolation requirements significantly 
reduces the contributions from such processes. Next-to-leading or-
der (NLO) calculations of the γ + 2 b-jet production cross section, 
which includes all b-quark mass effects, have recently become 
available [4]. These calculations are based on the four-flavor num-
ber scheme, which assumes four massless quark flavors and treats 
the b quark as a massive quark not appearing in the initial state.

This letter presents the first measurement of the cross section 
for associated production of an isolated photon with a bottom 
quark pair in pp̄ collisions. The results are based on data corre-
sponding to an integrated luminosity of 8.7 ± 0.5 fb−1 [10] col-
lected with the D0 detector from June 2006 to September 2011 
at the Fermilab Tevatron Collider at 

√
s = 1.96 TeV. The large 

data sample and use of advanced photon and b-jet identification 
tools [11–13] enable us to measure the γ + 2 b-jet production 
cross section differentially as a function of pγ

T for photons with 
rapidities |yγ | < 1.0 and transverse momenta 30 < pγ

T < 200 GeV, 
while the b jets are required to have pjet

T > 15 GeV and |yjet| < 1.5. 
This allows for probing the dynamics of the production process 
over a wide kinematic range not studied before in other measure-
ments of a vector boson +b-jet final state. The ratio of differen-
tial cross sections for γ + 2 b-jet production relative to γ + b-jet 
production is also presented in the same kinematic region and dif-
ferentially in pγ

T . The measurement of the ratio of cross sections 
leads to cancellation of various experimental and theoretical uncer-
tainties, allowing a more precise comparison with the theoretical 
predictions.

The D0 detector is a general purpose detector described in de-
tail elsewhere [14]. The subdetectors most relevant to this analysis 
are the central tracking system, composed of a silicon microstrip 
tracker (SMT) and a central fiber tracker embedded in a 1.9 T 
solenoidal magnetic field, the central preshower detector (CPS), 
and the calorimeter. The CPS is located immediately before the 
inner layer of the central calorimeter and is formed of approx-
imately one radiation length of lead absorber followed by three 
layers of scintillating strips. The calorimeter consists of a cen-
tral section (CC) with coverage in pseudorapidity of |ηdet| < 1.1,14

and two end calorimeters (EC) extending coverage to |ηdet| ≈ 4.2, 
each housed in a separate cryostat, with scintillators between 
the CC and EC cryostats providing sampling of developing show-
ers for 1.1 < |ηdet| < 1.4. The electromagnetic (EM) section of 
the calorimeter is segmented longitudinally into four layers (EMi, 
i = 1–4), with transverse segmentation into cells of size �ηdet ×
�φdet = 0.1 × 0.1 (see footnote 14), except EM3 (near the EM 
shower maximum), where it is 0.05 × 0.05. The calorimeter allows 
for a precise measurement of the energy of electrons and pho-
tons, providing an energy resolution of approximately 4% (3%) at 
an energy of 30 (100) GeV. The energy response of the calorime-
ter to photons is calibrated using electrons from Z boson decays. 
Because electrons and photons interact differently in the detector 
material before the calorimeter, additional energy corrections as a 
function of pγ

T are derived using a detailed geant-based [15] sim-
ulation of the D0 detector response. These corrections are ≈ 2% for 
photon candidates of pγ

T = 30 GeV, and smaller for higher pγ
T .

14 The polar angle θ and the azimuthal angle φ are defined with respect to the 
positive z axis, which is along the proton beam direction. Pseudorapidity is defined 
as η = − ln[tan(θ/2)]. Also, ηdet and φdet are the pseudorapidity and the azimuthal 
angle measured with respect, to the center of the detector.
The data used in this analysis are required to satisfy D0 exper-
iment data quality criteria that ensure the proper functioning of 
detector subsystems (calorimeter and tracking detectors are most 
important for this analysis) [14] during data-taking. The data is 
collected using a combination of triggers requiring a cluster of 
energy in the EM calorimeter with loose shower shape require-
ments. The trigger efficiency is ≈ 96% for photon candidates with 
pγ

T = 30 GeV and 100% for pγ
T � 40 GeV. Offline event selection 

requires a reconstructed pp̄ interaction vertex [16] within 60 cm 
of the center of the detector along the beam axis. The efficiency 
of the vertex requirement is ≈ (96–98)%, depending on pγ

T . The 
missing transverse momentum in the event is required to be less 
than 0.7pγ

T to suppress background from W → eν decays. Such a 
requirement is highly efficient (≥ 98%) for signal events.

Photon candidates are identified in the D0 detector as isolated 
clusters of energy deposits in the calorimeter with significant en-
ergy in the EM calorimeter layers and no spatially-matched track 
in the tracking system. The detailed description of photon selec-
tion and isolation criteria can be found in Refs. [3,6]. The photon 
selection efficiency and acceptance are calculated using samples 
of γ + b-jet events, generated with the sherpa [17] and pythia

[18] Monte Carlo (MC) event generators. The samples are pro-
cessed through a geant-based [15] simulation of the D0 detector. 
Simulated events are overlaid with data events from random pp̄
crossings to properly model the effects of multiple pp̄ interactions 
and noise in data. We ensure that the instantaneous luminosity 
distribution in the overlay events is similar to the data. The effi-
ciency for photons to pass the identification criteria is (71–82)%
with relative systematic uncertainty of 3%.

For the γ + n b measurement (n = 1, 2), at least n jets with 
pjet

T > 15 GeV and |yjet| < 1.5 are selected. Jets are reconstructed 
using the D0 Run II algorithm [19] with a cone radius of R = 0.5. 
A set of criteria is imposed to ensure that we have sufficient in-
formation to identify the jet as a heavy-flavor candidate: the jet is 
required to have at least two associated tracks with pT > 0.5 GeV
and at least one hit in the SMT, one of these tracks must also have 
pT > 1.0 GeV. These criteria have an efficiency of about 90% for a 
b jet. Light jets (initiated by u, d and s quarks or gluons) are sup-
pressed using a dedicated heavy-flavor (HF) tagging algorithm [13].

The HF tagging algorithm is based on a multivariate analysis 
(MVA) technique that combines information from the secondary 
vertex (SV) tagging algorithms and tracks impact parameter vari-
ables using an artificial neural network (NN) to define a single 
output discriminant, MVAbl [13]. This algorithm utilizes the longer 
lifetimes of HF hadrons relative to their lighter counterparts. The 
MVAbl has a continuous output value that tends towards one for b
jet and zero for light jets. Events with at least two jets passing the 
MVAbl > 0.3 selection are considered in the γ + 2 b-jet analysis. 
Depending on pγ

T , this selection has an efficiency of (13–21)% for 
two b jets with relative systematic uncertainties of (4–6)%, primar-
ily due to uncertainties on the data-to-MC correction factors [13]. 
Only (0.2–0.4)% of light-jets are misidentified as b jets.

After application of all selection requirements, 3816 γ + 2 b-jet 
candidate (186,406 γ + b-jet candidate) events remain in the data 
sample. In these events, there are two main background sources: 
jets misidentified as photons and light-flavor jets mimicking HF 
jets. To estimate the photon purity, the γ -NN distribution in data 
is fitted to a linear combination of templates for photons and jets 
obtained from simulated γ + jet and dijet samples. An independent 
fit is performed in each pγ

T bin, yielding photon fractions between 
62% and 90%, as shown in Fig. 1. The main systematic uncertainty 
in the photon fractions is due to the fragmentation model imple-
mented in pythia [20]. This uncertainty is estimated by varying the 
production rate of π0 and η mesons by ±50% with respect to their 
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Fig. 1. Photon purity as a function of pγ
T in the selected data sample. The error bars 

include statistical and systematic uncertainties added in quadrature. The binning is 
defined as in Table 1.

Fig. 2. (Color online.) Distribution of discriminant DMJL after all selection criteria for 
a representative bin of 30 < pγ

T < 40 GeV. The expected contribution from the light 
jets component has been subtracted from the data. The distributions for the b-jet 
and c-jet templates (with statistical uncertainties) are shown normalized to their 
respective fitted fractions.

central values [21], and found to be about 6% at pγ
T ≈ 30 GeV, and 

≤ 1% at pγ
T � 70 GeV.

The fraction of different flavor jets in the selected data sample 
is extracted using a discriminant, DMJL, with distributions depen-
dent on the jet flavors. It combines two discriminating variables 
associated with the jet, mass of any secondary vertex associated 
with the jet MSV and the probability for the jet tracks located 
within the jet cone to come from the primary pp̄ interaction ver-
tex. The latter probability is found using the jet lifetime impact 
parameter (JLIP) algorithm, and is denoted as P JLIP [16]. The final 
DMJL discriminant [22] is defined as DMJL = 0.5 × (MSV/5 GeV −
ln(P JLIP)/20), where MSV and ln(P JLIP) are normalized by their 
maximum values obtained from the corresponding distributions in 
data. The data sample with two HF-tagged jets is fitted to tem-
Fig. 3. The 2 b-jet fraction in data as a function of pγ
T derived from the template 

fit to the heavy quark jet data sample after applying all selections. The error bars 
show both statistical and systematical uncertainties summed in quadrature. Binning 
is the same as given in Table 1.

plates consisting mainly of 2 b-jet and 2 c-jet events, as deter-
mined from MC simulation. The remaining jet flavor contributions 
in the sample (e.g., light+ light-jets, light+b(c)-jets, etc.) are small 
and are subtracted from the data. The fractions of these rarer jet 
contributions are estimated from sherpa simulation (which has 
been found to provide a good description of the data), and vary 
in the range (5–10)%. The difference in the values of these frac-
tions obtained from sherpa and pythia, (2–4)%, is assigned as a 
systematic uncertainty on the background estimate. The fraction of 
2 b-jet events are determined by performing a two-dimensional 
(corresponding to the 2 b-jet candidates) maximum likelihood fit 
of DMJL distributions of 2 jet events in data using the correspond-
ing templates for 2 b-jets and 2 c-jets. These jet flavor templates 
are obtained from MC simulations. As an example, the result of one 
of these maximum likelihood fits to DMJL templates is presented in 
Fig. 2 (with χ2/ndf = 6.80/5 for data/MC agreement). This shows 
the one-dimensional projection onto the highest pT jet DMJL axis 
of the 2D fit, normalized to the number of events in data, for pho-
tons with 30 < pγ

T < 40 GeV. An independent fit is performed in 
each pγ

T bin, resulting in extracted fractions of 2 b-jet events be-
tween 76% and 87%, as shown in Fig. 3. The relative uncertainties 
of the estimated 2 b-jet fractions range from 5% to 14%, increasing 
at higher pγ

T and are dominated by the limited data statistics.
By varying independently the requirements on photon and b-jet 

identification criteria from very loose to very tight selections, we 
find no evidence of a correlation between the measured photon 
purity and the 2 b-jet fraction. The obtained photon purity and 2 
b-jet fractions are found to be consistent within uncertainties with 
the values determined using photon and b-jet identification criteria 
used with the default selections.

The estimated numbers of signal events in each pγ
T bin are cor-

rected for the geometric and kinematic acceptance of the photon 
and jets. The combined acceptance for photon and jets are calcu-
lated using sherpa MC events. The acceptance is calculated for the 
photons satisfying pγ

T > 30 GeV, |yγ | < 1.0 at particle level. The 
particle level includes all stable particles as defined in Ref. [23]. 
The jets are required to have pjet

T > 15 GeV and |yjet| < 1.5. As in 
Refs. [3,6], in the acceptance calculations, the photon is required 
to be isolated by E iso = Etot(0.4) − Eγ

< 2.5 GeV, where Etot(0.4)
T T T T
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Fig. 4. (Color online.) The γ +2 b-jet differential production cross sections as a func-
tion of pγ

T . The uncertainties on the data points include statistical and systematic 
contributions. The measurements are compared to the NLO QCD calculations [4]
using the CT10nlo_nf4 PDFs [26] (solid line). The predictions from sherpa [17],
pythia [18] and the kT-factorization approach [29,30] are also shown.

Fig. 5. (Color online.) The ratio of the measured γ + 2 b-jet production cross sec-
tions to the reference NLO with CT10 predictions. The uncertainties on the data 
include both statistical (inner error bar) and total uncertainties (full error bar). Sim-
ilar ratios to NLO calculations for predictions with sherpa [17], pythia [18] and 
kT-factorization [29,30] are also presented along with the scale uncertainties on NLO 
and kT-factorization predictions.

is the total transverse energy of particles within a cone of radius 
R = √

(�η)2 + (�φ)2 = 0.4 centered on the photon direction and 
Eγ

T is the photon transverse energy. The sum of transverse energy 
in the cone includes all stable particles [23]. The acceptance is 
driven by selection requirements in |ηdet| (applied to avoid edge 
effects in the calorimeter regions used for the measurement) and 
|φdet| (to avoid periodic calorimeter module boundaries), photon 
|ηγ | and pγ

T , and bin-to-bin migration effects due to the finite 
energy resolution of the EM calorimeter. The combined photon 
and jets acceptance with respect to the pT and rapidity selections 
varies between 66% and 77% in different pγ

T bins. Uncertainties on 
the acceptance due to the jet energy scale [24], jet energy resolu-
tion, and the difference between results obtained with sherpa and
pythia are in the range of (8–12)%.

The data, corrected for photon and jet acceptance, reconstruc-
tion efficiencies and the admixture of background events, are pre-
sented at the particle level by unfolding for effects of detector 
resolution, photon and b-jet detection inefficiencies. The differen-
tial cross sections of γ + 2 b-jet production are extracted in five 
bins of pγ

T . They are given in Table 1. The data points are plot-
ted at the values of pγ

T for which the value of a smooth function 
describing the dependence of the cross section on pγ

T equals the 
averaged cross section in the bin [25].

The cross sections fall by more than two orders of magnitude 
in the range 30 < pγ

T < 200 GeV. The statistical uncertainty on the 
results ranges from 4.3% in the first pγ

T bin to 9% in the last pγ
T

bin, while the total systematic uncertainty ranges up to 20%. Main 
sources of systematic uncertainty are the photon purity (up to 8%), 
photon and two b-jet acceptance (up to 14%), b-jet fraction (up to 
13%), and integrated luminosity (6%) [10]. At higher pγ

T , the un-
certainty is dominated by the fractions of b-jet events and their 
selection efficiencies.

NLO perturbative QCD predictions, with the renormalization 
scale μR , factorization scale μF , and fragmentation scale μ f all 
set to pγ

T , are also given in Table 1. The uncertainty from the scale 
choice is (15–20)% and is estimated through a simultaneous vari-
ation of all three scales by a factor of two, i.e., for μR,F , f = 0.5pγ

T
and 2pγ

T . The predictions utilize CT10nlo_nf4 PDFs [26] and are 
corrected for non-perturbative effects of parton-to-hadron frag-
mentation and multiple parton interactions. The latter are eval-
uated using sherpa and pythia MC samples with their standard 
settings [17,18]. The overall correction varies from about 0.90 at 
30 < pγ

T < 40 GeV to about 0.95 at high pγ
T , and an uncertainty of 

� 2% is assigned to account for differences between the two MC 
generators. NLO predictions based on MSTW2008 [27] are close to 
those made with NNPDF2.3 [28] and are slightly higher (up to 7% 
at small pγ

T ) than the predictions using CT10.
The predictions based on the kT -factorization approach [29,30]

and unintegrated parton distributions [31] are also given in Ta-
ble 1. The kT -factorization formalism contains additional contribu-
tions to the cross sections due to resummation of gluon radiation 
diagrams with k2

T above a scale μ2 of O(1 GeV), where kT de-
notes the transverse momentum of the radiated gluon. Apart from 
this resummation, the non-vanishing transverse momentum dis-
tribution of the colliding partons are taken into account. These 
effects lead to a broadening of the photon transverse momentum 
distribution in this approach [29]. The scale uncertainties on these 
predictions vary from about 31% at 30 < pγ

T < 40 GeV to about 
50% in the highest pγ

T bin.
Table 1 also contains predictions from the pythia [18] MC event 

generator with the cteq6.1L PDF set. It includes only 2 → 2 matrix 
elements (ME) with gb → γ b and qq̄ → γ g scatterings (defined at 
LO) and with g → bb̄ splitting in the parton shower (PS). We also 
provide predictions of the sherpa MC event generator [17] with 
the cteq6.6M PDF set [32]. For γ + b production, sherpa includes 
all the MEs with one photon and up to three jets, with at least one 
b-jet in our kinematic region. In particular, it accounts for an ad-
ditional hard jet that accompanies the photon associated with 2 b
jets. Compared to an NLO calculation, there is an additional benefit 
of imposing resummation (further emissions) through the consis-
tent combination with the PS. Matching between the ME partons 
and the PS jets follows the prescription given in Ref. [33]. System-
atic uncertainties are estimated by varying the ME-PS matching 
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Fig. 6. (Color online.) The γ + b-jet differential production cross sections as a func-
tion of pγ

T . The uncertainties on the data points include statistical and systematic 
contributions added in quadrature. The measurements are compared to the NLO 
QCD calculations [4] using the cteq6.6M PDFs [32] (solid line). The predictions from
sherpa [17], pythia [18] and kT-factorization [29,30] are also shown.

scale by ±5 GeV around the chosen central value.15 As a result, 
the sherpa cross sections vary up to ±7%, the uncertainty being 
largest in the first pγ

T bin.
All the theoretical predictions are obtained including the isola-

tion requirement on the photon E iso
T < 2.5 GeV. The predictions are 

compared to data in Fig. 4 as a function of pγ
T . The ratios of data 

to the NLO QCD calculations with CT10 and of different QCD pre-
dictions or MC simulation to the same NLO QCD calculations are 
shown in Fig. 5 as a function of pγ

T .
The measured cross sections are well described by the NLO QCD 

calculations and the predictions from the kT -factorization approach 
in the full studied pγ

T region considering the experimental and 
theoretical uncertainties. Both of these predictions show consis-
tent behavior, although the predictions from the kT -factorization 
approach suffer from larger uncertainties. pythia predicts signifi-
cantly lower production rates and a more steeply falling pγ

T distri-
bution than observed in data. sherpa performs better in describing 
the normalization at high pγ

T , but underestimates production rates 
compared to that observed in data at low pγ

T .
In addition to measuring the γ + 2 b-jet cross sections, we 

also obtain results for the inclusive γ + b-jet cross section in the 
same pγ

T bins. Here we follow the same procedure as described 
in the previous similar D0 measurement [3]. However, as for the 
γ + 2 b-jet cross section measurement, we now use the most re-
cent HF tagging algorithm [13]. The measured cross sections are 
shown in Fig. 6, and are compared to various predictions in Fig. 7. 
Data and predictions are also presented in Table 2. The values of 
the obtained γ + b-jet cross section are consistent with our previ-
ously published results [3].

We use σ(γ + 2 b-jet) and σ(γ + b-jet) cross sections to cal-
culate their ratio in bins of pγ

T . Fig. 8 shows the pγ
T spectrum 

of the measured ratio. The systematic uncertainties on the ra-
tio vary within (11–15)%, being largest at high pγ

T . The major 
sources of systematic uncertainties are attributed to the jet accep-

15 We choose the following ME-PS matching parameters: the energy scale Q 0 =
15 GeV and the spatial scale D = 0.4, where D is taken to be of the radius of the 
photon isolation cone.
Fig. 7. (Color online.) The ratio of γ + b-jet production cross sections to NLO with 
CT10 predictions for data and theoretical predictions. The uncertainties on the data 
include both statistical (inner error bar) and total uncertainties (full error bar). The 
ratios to the NLO calculations with predictions from sherpa [17], pythia [18] and 
kT-factorization [29,30] are also presented along with the scale uncertainties on NLO 
and kT-factorization predictions.

Fig. 8. (Color online.) The ratio of measured cross sections for γ +2 b-jet to γ +b-jet 
production as a function of pγ

T compared to theoretical predictions. The uncer-
tainties on the data points include both statistical (inner error bar) and the full 
uncertainties (full error bar). The measurements are compared to the NLO QCD cal-
culations [4]. The predictions from sherpa [17], pythia [18] and kT-factorization [29,
30] are also shown along with the scale uncertainties on NLO and kT-factorization 
predictions.

tances and the estimation of b-jet and 2 b-jet fractions obtained 
from the template fits to the data. Fig. 8 also shows comparisons 
with various predictions. The measurements are well described 
by the calculations done by NLO QCD and kT-factorization pre-
dictions taking into account the experimental and theoretical un-
certainties. The scale uncertainties on the NLO calculations are 
typically � 15%, while they vary upto 35% at high pγ

T for the 
kT-factorization approach. The predictions from sherpa describe 
the shape, but underestimate the ratio for most of the pγ bins. 
T
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Table 1
The differential γ + 2 b-jet production cross sections dσ/dpγ

T in bins of pγ
T for |ηγ | < 1.0, pjet

T > 15 GeV and |yjet| < 1.5 together with statistical uncertainties (δstat), total 
systematic uncertainties (δsyst) and total uncertainties (δtot) which are obtained by adding δstat and δsyst in quadrature. The last four columns show theoretical predictions 
obtained with NLO QCD, kT factorization, and with the pythia and the sherpa event generators.

pγ
T bin (GeV) 〈pγ

T 〉 (GeV) dσ/dpγ
T (pb/GeV)

Data δstat (%) δsyst (%) δtot (%) NLO kT fact. pythia sherpa

30–40 34.5 2.24 × 10−1 4.3 +19/−17 +19/−18 2.39 × 10−1 2.20 × 10−1 8.96 × 10−2 1.23 × 10−1

40–50 44.6 9.80 × 10−2 5.4 +18/−15 +19/−16 1.08 × 10−1 9.96 × 10−2 4.99 × 10−2 6.79 × 10−2

50–65 56.6 4.52 × 10−2 6.2 +15/−14 +16/−16 4.51 × 10−2 4.31 × 10−2 1.99 × 10−2 3.29 × 10−2

65–90 75.2 1.54 × 10−2 7.2 +14/−14 +16/−16 1.49 × 10−2 1.48 × 10−2 5.57 × 10−3 1.19 × 10−2

90–200 118.3 1.93 × 10−3 9.1 +19/−18 +21/−21 1.67 × 10−3 1.96 × 10−3 5.12 × 10−4 1.45 × 10−3

Table 2
The differential γ + b-jet production cross sections dσ/dpγ

T in bins of pγ
T for |ηγ | < 1.0, pjet

T > 15 GeV and |yjet| < 1.5 together with statistical uncertainties (δstat), total 
systematic uncertainties (δsyst), and total uncertainties (δtot) that are obtained by adding δstat and δsyst in quadrature. The last four columns show theoretical predictions 
obtained with NLO QCD, kT-factorization, and with the pythia and the sherpa event generators.

pγ
T bin (GeV) 〈pγ

T 〉 (GeV) dσ/dpγ
T (pb/GeV)

Data δstat (%) δsyst (%) δtot (%) NLO kT fact. pythia sherpa

30–40 34.5 1.51 2.3 12 12 1.52 1.69 1.23 1.46
40–50 44.6 5.83 × 10−1 2.4 11 12 5.06 × 10−1 5.70 × 10−1 4.23 × 10−1 5.65 × 10−1

50–65 56.6 1.92 × 10−1 2.8 9 10 1.75 × 10−1 1.98 × 10−1 1.63 × 10−1 2.02 × 10−1

65–90 75.2 6.06 × 10−2 3.3 9 9 4.93 × 10−2 5.43 × 10−2 4.27 × 10−2 5.41 × 10−2

90–200 118.3 6.15 × 10−3 3.3 13 13 4.83 × 10−3 5.68 × 10−3 3.76 × 10−3 5.05 × 10−3

Table 3
The σ(γ + 2 b-jet)/σ (γ + b-jet) cross section ratio in bins of pγ

T for |ηγ | < 1.0, pjet
T > 15 GeV and |yjet| < 1.5 together with statistical uncertainties (δstat), total systematic 

uncertainties (δsyst) and total uncertainties (δtot) which are obtained by adding δstat and δsyst in quadrature. The last four columns show theoretical predictions obtained with 
NLO QCD, kT factorization, and with the pythia and the sherpa event generators.

pγ
T bin (GeV) 〈pγ

T 〉 (GeV) σ(γ + 2 b)/σ (γ + b)

Data δstat (%) δsyst (%) δtot (%) NLO kT fact. pythia sherpa

30–40 34.5 1.48 × 10−1 2.3 +14/−6 +14/−6 1.58 × 10−1 1.42 × 10−1 7.25 × 10−2 8.42 × 10−2

40–50 44.6 1.68 × 10−1 2.5 +13/−7 +13/−8 2.04 × 10−1 1.89 × 10−1 1.18 × 10−1 1.20 × 10−1

50–65 56.6 2.36 × 10−1 2.8 +12/−8 +12/−8 2.59 × 10−1 2.34 × 10−1 1.22 × 10−1 1.63 × 10−1

65–90 75.2 2.54 × 10−1 3.3 +11/−8 +12/−10 3.05 × 10−1 2.92 × 10−1 1.30 × 10−1 2.20 × 10−1

90–200 118.3 3.14 × 10−1 3.4 +15/−14 +15/−15 3.52 × 10−1 3.67 × 10−1 1.36 × 10−1 2.87 × 10−1
The Pythia model does not perform well in describing the shape 
and underestimates ratios across all the bins. Experimental results 
as well as theoretical predictions for the ratios are presented in 
Table 3.

In summary, we have presented the first measurement of the 
differential cross section of inclusive production of a photon in 
association with two b-quark jets as a function of pγ

T at the Fer-
milab Tevatron pp̄ Collider. The results cover the kinematic range 
30 < pγ

T < 200 GeV, |yγ | < 1.0, pjet
T > 15 GeV, and |yjet| < 1.5. The 

measured cross sections are in agreement with the NLO QCD cal-
culations and predictions from the kT -factorization approach. We 
have also measured the ratio of differential σ(γ + 2 b-jet)/σ (γ +
b-jet) in the same pγ

T range. The ratio agrees with the predictions 
from NLO QCD and kT-factorization approach within the theoretical 
and experimental uncertainties in the full studied pγ

T range. These 
results can be used to further tune theory, MC event generators 
and improve the description of background processes in studies 
of the Higgs boson and searches for new phenomena beyond the 
Standard Model at the Tevatron and the LHC in final states in-
volving the production of vector bosons in association with two 
b-quark jets.
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