
Predicting Online Community Churners using
Gaussian Sequences

Matthew Rowe

School of Computing and Communications, Lancaster University, Lancaster, UK
m.rowe@lancaster.ac.uk

Abstract. Knowing which users are likely to churn (i.e. leave) a service
enables service providers to offer retention incentives for users to remain.
To date, the prediction of churners has been largely performed through
the examination of users’ social network features; in order to see how
churners and non-churners differ. In this paper we examine the social
and lexical development of churners and non-churners and find that they
exhibit visibly different signals over time. We present a prediction model
that mines such development signals using Gaussian Sequences in the
form of a joint probability model; under the assumption that the values
of churners’ and non-churners’ social and lexical signals are normally
distributed at a given time point. The evaluation of our approach, and its
different permutations, demonstrates that we achieve significantly better
performance than state of the art baselines for two of the datasets that
we tested the approach on.

1 Introduction

The churn (leaving) of a user from a service represents a loss to the service owner,
be it: a telecommunications operator, where a customer leaving represents a
loss of financial income; a question-answering platform, where an expert leaving
could lead to a reduction of know-how in the community, or: a discussion forum,
in which a user leaving could result in the forum’s social capital, and perhaps
vibrancy, being reduced. Therefore, predicting which users will leave a given
service is important to a range of service providers; and an effective means of
doing so enables retention strategies to be applied to those potential churners.

The majority of work within the area of churn prediction has focussed on
building a prediction model using information about a user’s social network
position [2], and thus the extent to which he is interacting with other users,
and/or the activity of a given user up until a given point in time. Our prior
work [8] proposed an approach based upon the lifecycle of a user (i.e. the period
of time between a user joining a service to either churning or remaining) in
which social and lexical dynamics of the user were mined and a model fitted
to the development curve of the user; properties of those models were then
used as features for prediction models to differentiate between churners and
non-churners. However, this approach was limited by only concentrating on a
fixed number of lifecycle stages (e.g. 20) and did not examine how churners

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42413774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and non-churners developed differently. In this paper we attempt to fill these
gaps by exploring the following two questions: (i) How do churners and non-
churner develop? And; (ii) How can we exploit development information to detect
churners?

In exploring these questions we found that churners and non-churner do
indeed differ in how they develop, both socially and lexically, over their lifetimes,
and that by assuming a Gaussian distribution at each lifecycle stage then we can
chain together Gaussian Sequences for use in prediction. This paper makes the
following contributions:
– Examination of different lifecycle patterns for both churners and non-churners

across three online community datasets; with different lifecycle fidelity set-
tings (5, 10 and 20 stages).

– Prediction models based on Gaussian sequences with slack variables for tun-
ing, and a new model learning approach called Dual-Stochastic Gradient
Descent.

– Evaluation of the proposed models against state of the art baselines showing
significantly better performance for two of the tested datasets.
We begin this paper with a review of existing churn prediction approaches

before then moving on to detail the datasets used for our work and how we label
both churners and non-churners within them.

2 Related Work

Churner prediction has been studied across a number of domains, for instance
Zhang et al. [9] predicted churners in a Chinese telecommunications network by
inducing a decision tree classifier from user activity features (e.g. call duration)
and network properties (e.g. 2nd order ego-network clustering coefficient). Mc-
Gowan et al. [6] also predicted churners from a telecommunications provider by
experimenting with different dimensionality reduction and boosting methods.
Lewis et al. [5] examined Facebook networks of college students over a 4 year
period and found an association between friendship maintenance and geographi-
cal proximity and shared tastes. Quercia et al. [7] analysed Facebook friendships
and users’ personality traits, finding that churn was likely to happen if the ages
of connected users differed and if one of the users was neurotic or introverted.
Kwak et al. have examined churners from Twitter networks in [3] and [4]: in the
former the authors analysed the differences between social network snapshots,
separated by 6 weeks, of Korean Twitter users finding that users unfollowed
other users when the users talked about uninteresting topics; while in the lat-
ter work [4], the authors induced a logistic regression model to predict churners
based on pairwise features (formed between the user and each of his subscribers).

Similar to our work, the work by Karnstedt et al. in [1] and [2] examined
the prediction of churners from the Irish online community platform Boards.ie,
finding that the probability of a user churning was related to the number of prior
users with whom the individual has communicated having churned before. The
authors examined the social network properties of churners against non-churners

(i.e. in-degree, out-degree, clustering coefficient, closeness centrality, etc.), induc-
ing a J48 decision tree to differentiate between churners and non-churners when
using social network properties formed from the reply-to graph of the online
communities. In this paper, we implement this model as our baseline by en-
gineering the same features using the same experimental setup. Our approach
differs from existing work by assessing churners’ and non-churners’ development
signals, and inducing a joint-probability function from such information.

Table 1. Splits of users within the datasets and the churn window duration

Platform #Churners #Non-churners Churn Window

Facebook 1,033 1,199 [04-11-2011, 28-08-2012]
SAP 10,421 7,255 [29-11-2009,07-09-2010]
Server Fault 12,314 11,144 [13-06-2010,24-12-2010]
Boards.ie 65,528 6,120,008 [01-01-2005,13-02-2008]

3 Datasets

To provide a broad examination of user lifecycles across different online commu-
nity platforms we used data collected from four independent platforms:
1. Facebook: Data was obtained from Facebook groups related to Open Uni-

versity degree course discussions. Although Facebook provides the ability to
collect social network data for users, we did not collect such data in this in-
stance and instead used the reply-to graph within the groups to build social
networks for individual users.

2. SAP Community Network (SAP): The SAP Community Network is a com-
munity question answering system related to SAP technology products and
information technologies. Users sign up to the platform and post questions
related to technical issues, other users then provide answers to those ques-
tions and should any answers satisfy the original query, and therefore solve
the issue, the answerer is awarded points.

3. Server Fault. Similar to SAP, Server Fault is a platform that is part of the
Stack Overflow question answering site collection.1 The platform functions
in a similar vein to SAP by providing users with the means to post questions
pertaining to a variety of server-related issues, and allowing other community
members to reply with potential answers.

4. Boards.ie This platform is a community message board that provides a range
of dedicated forums, where each forum is used to discuss a given topics (e.g.
Rugby Union, Xbox360 games, etc.). We were provided with data covering
the period 1998-2008 and, like SAP and ServerFault, we also had access to
the reply-to graph in each forum.

1 http://stackoverflow.com/

Unlike on subscription-based services where a churner is identifiable by the
cancellation of the service (e.g. cancelling a contract), on online community
platforms we do not have such information from which to label churners and
non-churners. Instead, we examined users’ activity and then decided on a suit-
able inactivity threshold where, should a user remain inactive for more than
that period (i.e. x days), then we can say he has churned. To derive this thresh-
old, we first defined ∆ as the maximum number of days between posts across
the platforms’ datasets for each user, and then plotted the relative frequency
distribution of ∆ across the platforms in Figure 1. We then selected each dis-
tribution’s mean as the churn control window size: 149 days, 141 days, 97 days
and 198 days for Facebook, SAP, ServerFault and Boards.ie respectively.

To derive churners and non-churners we took the final post date in a given
dataset and went back n (size of the churn control window) days, this date gives
the churn window end point (t′′). We then went back a further 2n days to give
the churn window start point (t′); thus the churn window is defined as a closed
date interval [t′, t′′]. Users who posted for the final time in [t′, t′′] were defined as
churners and users who posted after [t′, t′′] were labeled as a non-churners. Table
1 shows the number of churners and non-churners derived using this approach.
We split each platform’s users up into a training and test set using an 80:20%
split respectively - using the former set to inspect how users develop and evolve
and the latter set (test) to detect churners. All analysis that follows and the
features engineered for our experiments use data from before the churn window,
thereby not biasing our prediction experiments and reflecting a real-world churn
prediction setting where we only have information up until a given time point.

●

●

●
●

●

●
●
●
●
●●●

●

●●

●

●

●

●
●
●
●●

●
●

●●

●

●●

●

●

●
●

●
●
●●

●

●●

●●

●
●
●●●
●
●●●
●
●

●

●

●
●●●●●●
●
●

●

●

●

●
●●
●

●

●

●

●●

●●●
●●
●
●
●

●

●●●●

●

●

●●●

●●●

●●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●●●●
●
●

●
●

●●

●

●

●

●
●

●

●
●

●

●●●●
●

●
●●
●

●●

●●

●

●

●
●
●

●
●
●

●

●
●

●

●

●
●
●

●
●

●
●
●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●

●

●

●
●

●●

●●
●

●
●

●
●
●●●
●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●
●
●
●
●

●

●

●

●

●●

●

●

●●

●
●
●●

●

●

●

●

●
●

●
●●

●

●
●
●●
●

●
●

●●

●●

●

●●

●

●●●

●

●

●
●
●

●●

●

●

●

●●●

●

●
●
●

●

●
●

●

●
●
●●●
●
●

●
●
●

●

●
●

●

●

●

●

●

●●●

●

●

●
●●●●

●

●●
●

●
●●

●

●
●●
●
●
●
●
●

●●

●

●
●
●

●●●
●●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●

●●●●

●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●●●●●

●

●●

●●

●

●●

●●

●

●

●●

●

●

●●

●●

●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●

●●

●

●

●

●

●●●●

●

●

●

●●●●●●●●●●

●●

●

●

●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

∆

p(
x)

100 101 102

10
−3

10
−2

10
−1 Mean

Median

(a) Facebook

●

●

●
●

●●●●
●
●
●●●●

●●
●
●
●●
●●●
●●●●
●
●
●
●●●●

●●●
●
●
●●●●
●

●
●
●●●●●●●●●
●
●
●●●
●
●
●●●

●●
●●
●●●●●
●●
●●●
●
●
●
●
●●●●●
●
●

●●●●●●
●●●
●
●●
●
●●

●
●
●
●●●
●
●●
●●●
●

●●●
●
●●

●
●
●●●
●

●

●●
●
●●●
●
●●
●
●●●●●
●●
●
●
●
●
●
●●
●●●
●
●
●

●

●●
●●●
●●●
●●●
●
●●●
●
●
●
●●
●●

●
●●●●
●
●

●
●
●
●●

●
●
●
●●
●
●
●●
●●

●
●●

●

●●
●
●●
●
●

●●
●
●●
●

●●
●●●
●
●
●●

●●
●●
●●●

●●
●●
●●●●●●●

●●
●

●
●
●
●
●●●

●

●
●
●

●

●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●
●

●●
●
●
●
●

●

●●

●
●
●●●
●
●

●●●
●
●
●●
●
●
●
●
●
●
●●

●

●●

●

●
●
●
●
●
●
●●●●
●●●

●●

●●

●

●
●
●●●

●
●●●

●
●●

●
●
●●●

●

●●●
●
●
●
●●
●
●
●
●
●
●
●●
●
●

●

●●●
●●●●
●

●
●

●

●

●
●
●
●
●
●●●
●
●

●

●

●●
●●●
●
●
●

●
●
●

●
●●
●●
●●

●

●●
●

●
●●

●
●

●●●
●●

●●
●

●
●●
●
●●●

●

●

●

●

●
●●●

●

●
●●
●

●

●●●
●

●

●

●
●●●

●

●●

●●
●
●●
●

●

●
●●
●
●●●
●●

●

●

●
●
●●

●●●
●

●
●●

●●
●

●●
●●

●●
●
●

●
●
●
●
●
●
●●●
●
●●

●

●●●
●
●

●●

●●●

●●
●
●

●

●

●

●

●
●
●●

●

●

●
●

●●

●
●
●●
●
●●●
●
●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●●
●●
●●●
●

●

●●
●
●

●
●

●

●●

●

●●

●

●

●
●

●●●●●

●

●
●●
●

●
●●

●●

●
●

●
●●●
●
●
●
●
●●●
●
●●

●
●
●

●
●
●
●

●●
●●●●●●●●●
●
●
●

●

●●

●●
●●
●

●●

●

●

●

●

●●
●
●

●●
●
●

●
●●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●
●

●

●

●●●

●
●●
●
●●

●
●●
●
●

●
●
●

●

●

●

●
●
●

●●

●
●
●
●
●
●●●
●
●

●

●

●

●

●●●
●
●

●

●

●

●

●
●
●

●
●
●
●
●
●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●
●
●
●

●
●
●
●●●●●

●
●
●
●●

●

●

●
●
●●
●●

●
●
●

●

●
●

●
●
●
●

●

●●

●

●

●
●●

●

●

●

●●●●
●●

●

●

●
●●
●
●
●●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●
●●

●

●
●
●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●●

●●●
●
●
●
●

●

●

●
●

●
●

●

●
●
●
●
●
●
●
●
●

●
●

●

●

●
●●●
●●

●

●

●
●
●
●

●●

●

●
●●

●

●
●

●

●●●
●
●
●
●
●
●●

●
●●

●
●●
●
●
●

●

●
●
●●●●
●
●

●

●

●

●

●

●

●●

●

●
●

●●

●●●

●●

●

●

●●
●
●●
●
●●
●
●

●●

●

●

●
●
●
●
●
●
●

●

●
●
●

●

●●

●

●

●●

●●●●●

●

●
●

●

●
●●
●●

●●

●
●
●

●●

●
●

●

●●

●
●

●●
●

●

●
●

●

●

●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●

●

●●
●●●
●

●●

●

●
●

●●●

●
●●
●●
●●

●

●

●

●

●●

●
●
●
●
●

●●
●
●

●

●

●

●
●●●

●●

●
●

●

●

●

●
●●●
●
●

●●●●●

●
●
●

●

●
●

●●

●●●

●●

●●

●

●
●●

●●●●

●
●

●

●

●

●
●●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●●

●

●

●●●●●

●

●

●●
●
●

●●

●●

●●●●●

●●●●

●●●

●●●●●

●●

●

●

●●●

●
●●

●●

●

●

●

●
●

●●

●

●

●

●●●●●

●●●

●●●

●

●●●●

●
●●●

●●

●

●

●●

●

●

●●●

●●

●●●●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●

●

●

●●

●●●●

●

●●●●●●

●

●●●●

●

●●

●●

●●●●

●

●●●●●●●●●

●

●●●●●●

●●

●

●

●

●●

●

●

●

●●

●
●●

●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●

●●

●●●●●●●●●

●
●

●●●●

●

●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

∆

p(
x)

100 101 102 103

10
−4

10
−3

10
−2

10
−1

(b) SAP

●

●

●
●●●●●

●
●●●●●●●●●●●●

●
●●●
●
●●●●●●●●

●●●
●
●
●●●●
●
●
●
●●●●
●
●
●●

●●●●●●●
●●●●●●●●
●●
●●●●●
●●
●●●●
●
●

●
●
●●●●

●
●●●
●
●●●●●●●●●●

●
●●●●
●●
●
●●●●●
●●●●●
●●
●
●●●●●
●
●
●
●
●
●●●●●●
●
●
●
●
●
●
●
●

●

●●●●
●
●
●

●

●●
●●
●●●●●
●●
●●●●●●
●
●
●●●
●●●
●
●●●●
●●●●
●

●
●●●●●●
●●
●
●
●
●●●
●●●●●●●
●
●●
●●●●●
●●●
●●●
●
●
●●●●
●●
●
●●●

●

●
●●●
●
●●●●●●●●●●●
●●●
●
●●
●
●

●●
●●●
●
●●●●●●

●●

●
●●

●
●●
●
●●

●●

●●
●●●●
●●●
●
●●
●
●
●
●
●
●
●●●
●
●
●
●

●
●●●
●●●●●
●
●●●
●

●●
●
●●●
●
●
●●
●●
●
●●●●

●●
●●
●●
●

●●
●
●

●

●●
●
●●
●
●●
●

●
●●●●
●●●

●
●

●
●
●●
●●
●●
●
●
●●●
●●
●●
●●

●

●●

●●

●

●

●●●●●

●

●
●

●
●
●

●

●

●●
●
●
●

●

●
●
●●
●●

●
●●

●

●●
●
●●
●

●
●

●
●
●●
●●

●
●

●●
●
●

●

●●●

●

●●●●●●

●

●

●
●●
●●

●

●●
●

●
●
●
●
●
●
●●●
●
●
●●●
●
●●
●●●
●

●
●●●●

●
●●●●●
●

●

●●●

●
●
●
●
●
●●●
●

●

●●
●
●
●
●
●

●

●
●
●
●
●
●●
●
●

●
●
●●
●
●

●●
●
●●●
●
●●

●
●●●

●
●
●●●●●
●
●
●
●
●
●

●

●
●

●●

●

●

●●
●

●

●
●
●

●
●
●

●
●
●

●
●
●
●●

●
●
●●
●●●
●●●

●

●

●
●
●

●●

●●●●
●
●●

●

●
●●
●●
●●●●●

●

●
●●●

●●●
●
●

●
●●●

●

●●
●●●●

●●

●●
●●

●

●
●

●
●●
●●
●

●

●
●
●
●
●

●
●
●

●

●●●

●

●
●●
●

●

●
●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●

●
●

●●

●

●●●

●●

●●●

●●

●●●●●●●●

●

●●●●●●●

∆

p(
x)

100 101 102 103

10
−4

10
−3

10
−2

10
−1

(c) Server Fault

●

●

●
●

●●●●●
●●

●●●
●●
●●●●

●●
●●●●●●●●●●●●●

●●●
●
●●●●●●
●
●●●●●●●
●
●●
●●●
●
●●●
●
●
●
●●●
●●●●●●●●
●●●●●●●●●
●
●●●
●●●●
●
●
●●
●●●
●●●●
●
●●
●●●●
●●
●●●
●●
●
●
●●●
●

●●●
●
●●
●●●●●●●
●●●
●

●
●●●●
●●
●
●●●●
●
●●●
●●●●

●●
●●●
●●●●●
●
●
●●
●
●
●
●●
●●
●●●
●●

●●●●
●●
●●●
●
●●●●●
●
●
●
●●●
●
●●
●
●●
●●
●
●

●
●●
●●
●
●
●●
●●●●●●●
●
●
●●
●●●●●
●●●
●●
●
●
●
●

●
●
●●

●●●●
●●●
●●●●●●
●
●
●
●●●●●●

●
●●
●
●●●●
●
●
●

●●●
●

●●

●●

●

●
●●●
●

●
●

●●
●
●

●

●●

●

●●
●●
●●
●
●●●●
●
●●
●●●●
●●●
●●●
●

●
●●
●●
●

●
●●●●●
●
●●●●
●
●
●●●●

●
●
●
●
●
●
●●●
●●●
●
●

●

●
●
●
●
●
●●
●●
●●
●
●
●●
●

●●●
●
●
●
●●●●●

●
●●
●●●●
●●●●
●

●
●
●●

●
●
●

●●●

●

●
●●●
●
●
●
●●
●●
●

●

●●

●

●●●●●
●

●
●
●
●●

●

●●
●●
●

●

●●
●●
●●●●
●
●
●●
●
●
●

●

●●
●●
●
●
●●
●●
●●

●
●
●
●●
●
●●●●
●

●

●

●

●
●
●●

●

●●●●●
●
●

●
●

●

●
●

●

●

●
●●
●●●
●
●●●
●

●

●

●●

●

●

●●

●

●●
●●●●●
●●●●●
●●

●●

●●
●

●
●

●

●●
●
●●

●
●

●

●
●●●●
●

●●

●●●
●●●
●
●●
●

●

●
●

●●●●●●●
●

●
●●
●

●

●

●●●
●
●●
●

●●

●

●

●
●●

●

●●
●●

●

●
●

●●
●
●
●
●

●●

●

●

●
●●
●
●

●●●
●●
●●
●
●
●●

●
●●
●

●●
●●●
●

●●●●
●
●

●
●
●●
●
●●
●
●

●●●●●

●
●●
●●●

●

●
●●
●

●●
●

●

●●●
●
●
●

●

●●●●●●
●
●
●
●●●●●●
●●●●
●

●
●
●●●●
●●●●
●
●●●●●
●
●
●
●
●

●

●●
●
●
●●●
●
●●●●●●
●●

●
●
●

●●●

●
●
●●●●
●
●
●●●

●

●

●
●
●●●●
●●●●●
●

●
●

●

●
●
●●●
●●

●
●●

●●●●●●●●
●●
●
●●
●●
●
●●●●

●●●
●●●
●●●●
●
●●●●

●

●●●
●
●
●
●●●●
●
●●●●
●●
●●●
●

●●●

●

●

●
●
●

●
●

●●●●

●●
●●
●

●
●●●
●●
●
●●
●●
●
●

●

●

●●
●●
●
●●●●●
●●●
●●●●●●
●
●
●
●
●
●

●

●
●●
●
●
●

●●
●●●

●
●
●
●

●
●
●
●●●●
●
●●●
●
●
●

●

●
●
●●
●●●
●●
●●●●●
●●
●●●●●
●●
●●●●
●
●

●

●

●

●

∆

p(
x)

100 101 102 10310
−4

10
−3

10
−2

10
−1

(d) Boards.ie

Fig. 1. Gap distributions across users of the different platforms. The mean and median
of the distributions are shown using blue dashed and red dotted lines respectively.

4 User Lifecycles

In this section we briefly describe our approach for representing the lifecycles of
users on the online community platforms - for a more comprehensive description
we refer the reader to our prior work [8]. We begin by segmenting a user’s

lifecycle into k stages, where each stage contains the same number of posts.
The setting of k controls the fidelity of a user’s lifecycle and in this paper we
experiment with various settings where k = {5, 10, 20}. For each lifecycle stage
(i.e. s ∈ S = {1, 2, . . . , k}) we wish to inspect the social and lexical dynamics of
the user, as follows:

4.1 Social Dynamics

For examining the social dynamics of each user we looked at the distribution
of his in-degree and out-degree - i.e. the number of edges that connect to a
given user and the the number of edges from the user. As we are dealing with
conversation-based platforms for our experiments we can use the reply-to graph
to construct these edges, where we define an edge connecting to a given user u if
another user v has replied to him. Given our use of lifecycle periods we use the
discrete time intervals that constitute s ∈ S to derive the set of users who replied
to u, defining this set as Γ INs = {author(q) : p ∈ Pu, q ∈ P, time(q) ∈ s, q → p}.2
We also define the set of users that u has replied to within a given time interval
using ΓOUTs with the reply direction reversed. From these definitions we can then
form a discrete probability distribution that captures the distribution of repliers
to user u, using Γ INs , and user u responding to community users using ΓOUTs .
For an arbitrary user (v ∈ Γ INs) who has contacted user u within lifecycle stage
s we define this probability of interaction as follows:

Pr(v | Γ INs) =
|{q : p ∈ Pu, q ∈ Pv, time(q) ∈ s, q → p}|∑

x∈Γ IN
s
|{q : p ∈ Pu, q ∈ Px, time(q) ∈ s, q → p}|

Given this formulation we now have time-dependent discrete probability dis-
tributions for a given user’s in-degree and out-degree distributions, thereby al-
lowing the social changes of users to be analysed in terms of the users commu-
nicating with a given user over time.

4.2 Lexical Dynamics

We modelled the lexical dynamics of users based on their term usage over time.
We first retrieved all posts made by a given user within a lifecycle period and
then removed stop words and filtered out any punctuation. We defined a multiset
of the set of terms used by u in a given time period: t ∈ Cs and a mapping
function g : Cs → N that returns the multiplicity of a given term’s usage by the
user at a given time period. We then defined the discrete conditional probability
distribution for a given user u and lifecyle stage s based on the relative frequency
distribution of terms used by u in that lifecycle period.

2 We use p→ q to denote message q replying to message p, Pu to denote posts authored
by u, P to denote all posts.

4.3 Modelling User Evolution

Given the use of discrete probability distributions derived for each dynamic (e.g.
in-degree) and lifecycle stage (s) we can gauge the changes that each user goes
through by assessing for changes in this distribution. To this end we assess:
(i) period variation, using entropy; (ii) historical contrasts to assess how the
user is diverging from prior dynamics, using cross-entropy measured between a
given stage’s distribution and all prior stage distributions and then taking the
minimum, and; (iii) community contrasts to assess how the user is diverging
from the general behaviour of the community, using cross-entropy also.

Period Variation. For each platform (Facebook, SAP, and ServerFault) we
derived the entropy of each user in each of his individual lifecycle periods based
on the in-degree, out-degree and term distributions; we then recorded the mean
of these entropy values over each lifecycle period for churners and non-churners.
Figure 2 shows the differences in the development signals between churners and
non-churners for ServerFault users,3 where, although the development signals
remain relatively level across the lifecycle stages, there are clear differences in
the magnitude of the entropy values - in particular for lower fidelity settings
the 95% confidence intervals of the signals do not overlap. Such distinct signals
between churners and non-churners resonate with the theory of social exchange:
users who remain in the community share more connections (higher in-degree and
out-degree entropy) and thus invest more and get more out of the community,
churners meanwhile are the converse.

Historical Comparisons. Figure 3 shows the in-degree, out-degree and lexical
period cross-entopies for Server Fault, deriving the values as above for the pe-
riod variation measures for both the churners and non-churners. We note that
across all of the plots churner signals are lower in magnitude than non-churners
signals, indicating that the properties of the non-churners tend to have a greater
divergence with respect to earlier properties than the churners. This suggests
that churners’ behaviour is more formulaic than non-churners, that is they ex-
hibit less divergence from what has occurred beforehand. In general, the curve
of churners and non-churners diminishes towards the end of their lifecycles but
with different gradients.

Community Comparisons. For examining how users diverged from the com-
munity in which they were interacting we used users’ in-degree, out-degree and
lexical term distributions and compared them with the same distributions de-
rived globally over the same time periods. For the global probability distribu-
tions we used the same means as for forming user-specific distributions, but
rather than using the set of posts that a given user had authored (Pu) to derive

3 We use this platform throughout as an example due to brevity. The remaining plat-
forms exhibit similar curves.

●
●

● ●

●

1 2 3 4 5

0.
5

0.
7

indegree k = 5

Lifecycle Stage

H
●

●
● ●

●

●
●

● ●
●

● ●
●

●
● ●

● ●

●
●

2 4 6 8 10

0.
2

0.
4

0.
6

indegree k = 10

Lifecycle Stage

H

● ●
●

●
● ●

● ●

●
●

● ●
●

●
●

●
● ●

●
●

●

●●
●

●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

5 10 15 20

0.
1

0.
3

indegree k = 20

Lifecycle Stage

H

●

●●
●

●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●●●●●●●●

●●
●

●
●

● ● ● ● ●

1 2 3 4 50.
5

0.
7

0.
9

outdegree k = 5

Lifecycle Stage

H

● ● ● ● ●

● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

2 4 6 8 10
0.

6
0.

8

outdegree k = 10

Lifecycle Stage
H

●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●
●●●●●●●●●

●●●●
●●●●

●●

5 10 15 20

0.
5

0.
7

0.
9 outdegree k = 20

Lifecycle Stage

H

●
●●●●●●●●●

●●●●
●●●●

●●

●
●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

1 2 3 4 5

4.
0

4.
3

4.
6

lexical k = 5

Lifecycle Stage

H

●
●

●
●

●

● ● ● ● ●

●
●

● ● ● ●
● ● ● ●

2 4 6 8 10

3.
8

4.
2

4.
6 lexical k = 10

Lifecycle Stage

H

●
●

● ● ● ●
● ● ● ●

●
● ●

●
● ●

● ● ● ●

●
●●●

●●
●

●●●

●

●
●●●●

●●

●●

5 10 15 20

3.
4

3.
8

4.
2

lexical k = 20

Lifecycle Stage
H ●

●●●
●●

●
●●●

●

●
●●●●

●●

●●

●
●●●●●●

●
●●●

●
●●●

●●●●●

Fig. 2. Period entropy distribution on ServerFault for different fidelity settings (k) for
users’ lifecycles and different measures of social (indegree and out degree) and lexical
dynamics. The green dashed line shows the non-churners, while the red solid line shows
the churners.

the probability distribution, we instead used all posts to return Q.4 We then
calculated the the cross-entropy as above between the distributions. (H(Pu, Q))
over the different lifecycle stages. Again, as with period cross-entropies, we find
churners’ signals to have a lower magnitude than non-churners suggesting that
non-churners’ properties tend to diverge from the community as they progress
throughout their lifetime within the online community platforms.

5 Churn Prediction from Gaussian Sequences

Above we plotted the 95% confidence intervals of a given measurement m (e.g.
the period entropy of users’ in-degree at lifecycle stage 1) for both churners
and non-churners. If we assume that the distribution of a given measurement
(m) at a particular lifecycle stage (s) is normally distributed, then for each
measurement we have two signals (one for churners and one for non-churners)

4 For instance, for the global in-degree distribution we used the frequencies of received
messages for all users.

●
●

● ●

2.0 3.0 4.0 5.0

0.
01

0.
05

indegree k = 5

Lifecycle Stage

H
●

●
● ●

●

● ● ●
●

●
●

●
●

●

●

● ●

2 4 6 8 10

0.
00

0.
03

indegree k = 10

Lifecycle Stage

H

●
●

●

●
●

●

●

● ●

● ● ●

● ●
●

●
● ●

● ● ● ● ●

●

● ●
●

● ● ● ● ● ● ●
●

● ●

5 10 15 20−
0.

01
0.

02

indegree k = 20

Lifecycle Stage

H

● ● ● ● ●

●

● ●
●

● ● ● ● ● ● ●
●

● ●

●
● ●

●
●

●
●

●
●

● ● ● ●
● ● ●

● ● ●

●

●
●

●

2.0 3.0 4.0 5.0

0.
02

0.
06

outdegree k = 5

Lifecycle Stage

H ●

●
●

●

●

●

●
●

●
●

●
● ●

●
● ● ●

2 4 6 8 10
0.

01
0.

04
0.

07

outdegree k = 10

Lifecycle Stage
H ●

●
●

● ●
●

● ● ●

● ●

●
●

● ●

● ●
●

●
●

●

●

●
●

●
● ● ● ●

●

● ● ● ● ● ● ●

5 10 15 200.
00

0.
04

outdegree k = 20

Lifecycle Stage

H ●
●

●

●

●
●

●
● ● ● ●

●

● ● ● ● ● ● ●

●

●
●

●
●

●

● ● ● ●
● ●

● ●
● ● ●

● ●

●

●
●

●

2.0 3.0 4.0 5.00.
3

0.
6

0.
9

lexical k = 5

Lifecycle Stage

H

●

●
●

●

●

●
●

●
●

●
●

● ● ● ● ● ●

2 4 6 8 10

0.
2

0.
5

0.
8

lexical k = 10

Lifecycle Stage

H ●

●
●

● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

5 10 15 20

0.
1

0.
4

0.
7 lexical k = 20

Lifecycle Stage
H ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Fig. 3. Period cross-entropy distribution on ServerFault for different fidelity settings
(k) for users’ lifecycles and different measures of social (indegree and out degree) and
lexical dynamics.

that each correspond to a sequence of Gaussians measured over the k lifecycle
stages:

Definition 1 (Gaussian Sequence). Let m be a given measurement, s be a
given lifecycle stage drawn from the set of lifecycle stages s ∈ S, then m is
said to be normally distributed on s and defined by N

(
µ̂m,s, (σ̂m,s)

2
)

where µ̂m,s
and σ̂m,s denote the maximum likelihood estimates of the mean and standard
deviation respectively. Then the Gaussian Sequence of m is defined as follows:

Gm =
(
N
(
µ̂m,1, (σ̂m,1)2,N

(
µ̂m,2, (σ̂m,2)2, . . . ,N

(
µ̂m,|S|, (σ̂m,|S|)

2
))

.

5.1 Single-Gaussian Sequence Model

Under the assumption that a given measurement has a Gaussian distribution at
s then for an arbitrary user (u) we may measure the likelihood that the user
belongs within a given distribution given his measurement at that stage. Using
the convenience function f(u,m, s) we can compute the probability that the user
belongs to the churn gaussian, at that time step (s), using:

P (u|βm,s) ∝βm,sN
(
f(u,m, s)|µ̂cm,s, (σ̂cm,s)2

)

●

●
●

●

2.0 3.0 4.0 5.0

2.
5

3.
5

indegree k = 5

Lifecycle Stage

H
●

●
●

●
●

●
●

●

●

●
●

●
● ● ●

●

●

2 4 6 8 101.
0

2.
0

3.
0

indegree k = 10

Lifecycle Stage

H

●

●
●

●
● ● ●

●

●

●

●
● ● ● ● ●

●

●

● ●
●

●
●

●
● ●

●

●
●

●

●
●

●

● ● ●

●

5 10 15 20

0.
5

1.
5

indegree k = 20

Lifecycle Stage

H

● ●
●

●
●

●
● ●

●

●
●

●

●
●

●

● ● ●

●

● ● ●
●

●
●

●
● ● ●

● ●

●
●

●
● ●

●
●

● ●

●

●

2.0 3.0 4.0 5.0

4.
0

5.
0

outdegree k = 5

Lifecycle Stage

H

● ●

●

●
● ●

●

●

● ● ●
●

● ●
●

●

●

2 4 6 8 10
4.

0
5.

0

outdegree k = 10

Lifecycle Stage
H

● ● ●
●

● ●
●

●

●

● ● ●
● ●

●

● ●
●

● ● ●
●

●

● ● ●

●

●
●

●

● ● ●

● ● ●
●

5 10 15 20

3.
5

4.
5

5.
5

outdegree k = 20

Lifecycle Stage

H

● ● ●
●

●

● ● ●

●

●
●

●

● ● ●

● ● ●
●

●
● ●

● ●
●

● ● ● ● ●
● ● ● ●

● ● ●
●

●

●

●

●

2.0 3.0 4.0 5.0

7.
9

8.
2

8.
5

lexical k = 5

Lifecycle Stage

H

●

●

●

●

●
●

●

●

● ● ●

●
●

●
● ●

●

2 4 6 8 10

7.
6

8.
0

8.
4

lexical k = 10

Lifecycle Stage

H

● ● ●

●
●

●
● ●

●

●

● ● ●
● ● ● ●

●

●
●

● ●
●

● ●

●

● ●

●

● ●
● ●

●
●

●
●

5 10 15 20

7.
0

8.
0

lexical k = 20

Lifecycle Stage
H

●
●

● ●
●

● ●

●

● ●

●

● ●
● ●

●
●

●
●

● ●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

Fig. 4. Community cross-entropy distribution for different fidelity settings (k) for users’
lifecycles and different measures of social (indegree and out degree) and lexical dynam-
ics.

In the above equation, N
(
f(.)|µ̂, σ̂2

)
defines the conditional probability of

the observed measurement f(.) being drawn from the given gaussian of measure
m in lifecycle stage s. We have also included a slack variable βm,s to control
for influence on the churn probability; its inclusion is necessary because we may
have an outlier measure for u and should limit over fitting as a consequence
- note that this variable is indexed by both m and s as it is specific to both
the lifecycle stage, and the measure under inspection. Given our formulation of
the churn probability in a particular lifecycle stage s and based on measure m,
we can therefore derive the joint probability of u churning over the observed
sequence of measures (m ∈ M) and his lifecycle stages (s ∈ S) as follows - we
term this the Single-Gaussian Sequence Model :

Q(u|b) =
∏
m∈M

∏
s∈S

ρ
(
βm,sN

(
f(u,m, s)|µ̂cm,s, (σ̂cm,s)2

))

The parameter ρ smooths zero probability values given our joint calculation.
Assuming we have |S| lifecycle stages, and |M | measures, then the slack variables
are stored within a parameter vector: b where - where βm,s ∈ b.

5.2 Dual-Gaussian Sequence Model

The above formulation can be extended further to include two competing Gaus-
sian distributions at a particular lifecycle stage: the churn gaussian, formed from
measurements of the known churner users, and; the non-churn gaussian, formed
from measurements of known non-churners. We can therefore adapt the proba-
bility of the user belonging to the churn gaussian to be as follows:

P (u|βm,s) ∝
[
βm,sN

(
f(u,m, s)|µ̂cm,s, (σ̂cm,s)2

)
− (1− βm,s)N

(
f(u,m, s)|µ̂nm,s, (σ̂nm,s)2

)]
+

In this instance we wrap the subtraction of the churn-distribution member-
ship probability by the β-scaled non-churn-distribution membership probability
within the positive value operand []+ in order to return a non-negative value. As
above, we can then calculate the joint churn probability over observed measures
and lifecycle stages as follows - we term this the Dual-Gaussian Sequence Model :

Q(u|b) =
∏
m∈M

∏
s∈S

ρ
[
βm,sN

(
f(u,m, s)|µ̂cm,s, (σ̂cm,s)2

)
− (1− βm,s)N

(
f(u,m, s)|µ̂nm,s, (σ̂nm,s)2

)]
+

5.3 Model Learning: Dual-Stochastic Gradient Descent

For both the single and dual-gaussian models, our objective is to minimise the
squared-loss between a user’s forecasted churn probability and the observed
churn label - given that the former is in the closed interval [0, 1] and the latter is
from the set {0, 1} - our parameters are L2-regularised to control for over-fitting:

arg min
b∗

∑
(xi,yi)∈D

(
yi −Q(u|b)

)2
+ λ||b||22 (1)

Using this objective, we can then use gradient descent to calculate the setting
of each β ∈ b by minimising the loss between a single user’s forecasted churn
probability and his actual churn label (i.e. either 0 - did not churn - or 1 -
did churn). We experimented with two learning procedures: stochastic gradient
descent (SGD), and dual-stochastic gradient descent (D-SGD) - the latter being a
novel contribution of this paper. This latter procedure learns b with the approach
in Algorithm 1, which takes as input a given regularisation weight λ, learning
rate η, smoothing variable ρ, the dataset to use for parameter tuning D, the
dimensionality of the feature space m, and the convergence threshold ε. The
algorithm runs two loops: the outer loop (lines 4-12) shuffles the order of the
dataset’s instances and iterates through them, the inner loop (lines 7-11) then
shuffles the order of the features. For each feature, the error of predicting the
churn label of the user is derived (line 9) and this is used to update the parameter
for feature j in the model; this process is repeated until the model’s parameters
have converged to a degree less than ε. We used D-SGD here to avoid sequential
updating of parameters, and to examine its effects.

Algorithm 1 Learning the model’s parameters using dual-stochastic gradient
descent. Input: λ, η, ρ, D, m, ε. Output: b

1: b = 0m; bOLD = random(m, [0, 1]); J = {0, 1, . . .m}
2: while |β − βOLD| < ε do
3: βOLD = β
4: Shuffle D
5: for (xi, yi) ∈ D do
6: Shuffle J
7: for j ∈ J do
8: e = yi −Q(i|b)
9: βj ← βj + η ∗ (e− λβj)

10: end for
11: end for
12: end while
13: return b

6 Evaluation

We now turn to the evaluation of the above models, there are two stages to
this: we begin by first tuning the various models’ hyperparameters, before then
applying the best performing model hyperparameters to the held-out test split
of users. All proposed models use a fixed smoothing setting of ρ = 0.1 and the
convergence threshold to be ε = 10−7.

6.1 Model Tuning: Setup

For the above proposed gaussian sequence models we have two hyperparameters
that are to be tuned: (i) λ the regularisation weight, and; (ii) η the learning
weight. For each model and learning routine (i.e. stochastic or dual-stochastic
gradient descent) we set the possible settings for the hyperparameters of each
be from {10−8, 10−7, . . . , 10−1}. To tune the hyperparameters we used 10-fold
cross-validation over the training split with 9 segments for training using a given
hyperparameter vector (θ = {λ, η}) to derive the parameter vector b, we then
applied this to the 1 segment held-out and recorded the Area Under the ROC
Curve (ROC). We repeated this 10 times for the 10 different segments and
recorded the mean of these as the 10-fold CV average ROC. Appendix A presents
the tuned hyperparameters for the proposed models and learning procedures.

6.2 Baselines

In order to judge how well our approach, and its variant models, performs against
existing work we included two baselines. The first baseline we denote as B1-J48:
for this we induced a J48 decision tree classifier using the above mentioned
features (e.g. in-degree entropy of a user in lifecycle stage 1) using the train-
ing split users and applied this to the test split. For the second baseline, that

we denote by B2-NB, we implemented the approach from [2] using features de-
rived from the social network of users: in-degree, out-degree, closeness-centrality,
betweenness-centrality, reciprocity, average number of posts in initiated threads,
average number of posts within participated threads, popularity (% of user au-
thored posts that receive replies), initialisation (% of threads authored by the
user), and polarity. We first tested the J48 classifier, as used in [2], but found
this to be poor performing5 therefore we used the Naive Bayes classifier instead.

Table 2. Area under the Receiver Operator Characteristic (ROC) Curve results for
the different Gaussian Sequence Models and Learning Procedures

Baselines SGD D-SGD
Platform Lifecycle Fidelity B1-J48 B2-NB Single-N Dual-N Single-N Dual-N
Facebook 5 0.559 0.461 0.570 0.472 0.548 0.478

10 0.531 0.491 0.569 0.554 0.593 0.545
20 0.478 0.444 0.664 0.500 0.528 0.583

SAP 5 0.594 0.497 0.573 0.527 0.545 0.533
10 0.533 0.494 0.553 0.503 0.584 0.590
20 0.478 0.582 0.500 0.500 0.540 0.525

ServerFault 5 0.583 0.530 0.522 0.556 0.583 0.577
10 0.534 0.546 0.500 0.557 0.569 0.589
20 0.463 0.530 0.500 0.634 0.486 0.484

Boards.ie 5 0.504 0.611 0.524 0.547 0.526 0.518
10 0.512 0.593 0.500 0.539 0.501 0.496
20 0.560 0.553 0.500 0.501 0.500 0.502

6.3 Results: Churn Prediction Performance

For the model testing phase of the experiments, we took the best performing hy-
perparameters for each model and learning procedure, trained the model using
this setting using with entire training split, and then applied it to the test split;
we did this twenty-times for each model (as each induction of the parameter vec-
tor is affected by the stochastic nature of the learning procedure) and took the
average ROC value. These ROC values for the different models and baselines are
shown in Table 2. The results show that for certain proposed models we signif-
icantly outperformed the baselines for two of the datasets.6 Surpassing B1-J48
indicates that our proposed Gaussian models beat a widely-used classification
model when detecting churners - given that this baseline makes use of the same
features as our proposed model.

The results indicate variance across the prediction model as to which model
performs best and under what conditions. For instance, the single-gaussian model

5 We also tested support vector machines and the perceptron classifier.
6 Testing for significance using the Student T-test for independent samples.

performs better overall than the dual-gaussian model: this is largely due to
the latter model smoothing zero-probability values through the setting of ρ.
Future work will experiment with ρ, either by indexing prediction models by this
value or by tuning it as a hyperparameter. There appears to be no discernible
winner in terms of the learning procedure to adopt, thus with dual-stochastic
gradient descent being more computationally expensive we would lean towards
using stochastic gradient descent in its place.

7 Conclusions and Future Work

In this paper we have presented a means to predict churners based on Gaus-
sian Sequences. Our approach assumes that measures of user development are
normally distributed, at each discrete lifecycle stage, and from which the prob-
ability of a user belonging to a churner or non-churner class can be gauged.
We proposed two models to detect churners: the first using a single Gaussian
Sequence formed from known churners’ development information, and a second
approach using dual-Gaussian Sequences from both churners’ and non-churners’
development information. Evaluation demonstrated that our detection models
outperformed the two baselines - including the popular J48 decision tree classifier
- for two of the tested online community datasets.

To the best of our knowledge this is the first work to directly compare the
development signals of churners and non-churners and use that information to
inform predictions. Our own prior work [8] focused on inducing regression models
that capture the development trajectory of the above-mentioned measures. We
implemented this same approach across the reduced lifecycle fidelity settings
(i.e. k = {5, 10}) and found that: (i) its fit was poor for lower lifecycle fidelities;
and (ii) prediction experiments resulted in low ROC values, in many cases zero.
The presented approach in this paper therefore surpasses our own prior work in
terms of its applicability to lower settings of lifecycle fidelities, and thus more
users.

The first area of further work will explore the use of different objective func-
tions that are to be optimised: above we used a reduction in the squared-error,
yet an objective that accounts for rankings of users, based on their churn prob-
ability, would be better suited given the use ROC as our evaluation measure.
The second area of future work will explore the task of churn point prediction:
forecasting the day at which the user posts for the last time, our approach is
amenable to such a setting via changing predictive function’s codomain.

References

1. Marcel Karnstedt, Tara Hennessy, Jeffrey Chan, Partha Basuchowdhuri, Conor
Hayes, and Thorsten Strufe. Churn in social networks. In Handbook of Social
Network Technologies and Applications, pages 185–220. Springer, 2010.

2. Marcel Karnstedt, Matthew Rowe, Jeffrey Chan, Harith Alani, and Conor Hayes.
The effect of user features on churn in social networks. Proceedings of the ACM
WebSci, 11:14–17, 2011.

3. Haewoon Kwak, Hyunwoo Chun, and Sue Moon. Fragile online relationship: a first
look at unfollow dynamics in twitter. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1091–1100. ACM, 2011.

4. Haewoon Kwak, Sue B Moon, and Wonjae Lee. More of a receiver than a giver:
Why do people unfollow in twitter? In ICWSM, 2012.

5. Kevin Lewis, Marco Gonzalez, and Jason Kaufman. Social selection and peer influ-
ence in an online social network. Proceedings of the National Academy of Sciences,
109(1):68–72, 2012.

6. D. McGowan, A. Brew, B. Casey, and N.J. Hurley. Churn prediction in mobile
telecommunications. In Proceedings of the 22nd Irish Conference on Artificial In-
telligence and Cognitive Science, 2011.

7. Daniele Quercia, Mansoureh Bodaghi, and Jon Crowcroft. Loosing friends on face-
book. In Proceedings of the 3rd Annual ACM Web Science Conference, pages 251–
254. ACM, 2012.

8. Matthew Rowe. Mining user lifecycles from online community platforms and their
application to churn prediction. In Data Mining (ICDM), 2013 IEEE 13th Inter-
national Conference on, pages 637–646. IEEE, 2013.

9. Xiaohang Zhang, Zhiyu Liu, Xuecheng Yang, Wenhua Shi, and Qi Wang. Predict-
ing customer churn by integrating the effect of the customer contact network. In
Service Operations and Logistics and Informatics (SOLI), 2010 IEEE International
Conference on, pages 392–397. IEEE, 2010.

A Appendix: Model Tuning Results

Table 3. Tuned hyperparameters for the various proposed models as λ, η pairs

SGD D-SGD
Platform Fidelity Single-N Dual-N Single-N Dual-N
Facebook 5 0.1, 0.01 0.1, 0.01 10−5, 0.1 0.1, 0.01

10 0.1, 0.01 10−5, 0.01 0.01, 0.1 10−5, 0.01
20 0.1, 0.01 0.001, 0.1 0.1, 0.1 0.01, 0.1

Sap 5 0.1, 0.001 10−5, 0.01 10−6, 0.01 0.01, 0.01
10 0.1, 0.01 0.1, 0.01 0.001, 0.1 0.01, 0.1
20 0.1, 0.01 0.1, 0.01 0.001, 0.1 0.001, 0.1

ServerFault 5 10−5, 0.01 0.1, 0.01 0.01, 0.1 0.1, 0.01
10 0.1, 0.1 0.01, 0.01 0.001, 0.1 0.01, 0.1
20 10−6, 0.1 0.01, 0.01 10−5, 0.1 0.01, 0.1

Boards.ie 5 10−6, 0.001 0.1, 0.001 0.001, 0.1 0.1, 0.001
10 0.1, 0.1 0.01, 0.001 0.001, 0.1 0.001, 0.001
20 0.1, 0.1 0.1, 0.01 0.1, 10−6 10−5, 0.1

