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Abstract

We establish a partial stochastic dominance result for the maximum of a mul-

tivariate Gaussian random vector with positive intraclass correlation coefficient

and negative expectation. Specifically, we show that the distribution function

intersects that of a standard Gaussian exactly once.

Keywords: Gaussian comparison inequalities, stochastic dominance,

multivariate normal distribution, positive intraclass correlation coefficient

2010 MSC: Primary: 60E15, secondary: 62E17, 62G30

1. Introduction

Gaussian comparison inequalities provide a useful tool in probability and

statistics, with applications in areas including Gaussian processes and extreme

value theory. A survey of results and applications can be found in the books by

Ledoux and Talagrand [1] and Lifshits [2]. Suppose that X = (X1, . . . , Xk) and

Y = (Y1, . . . , Yk) are two multivariate Gaussian vectors. Comparison inequali-

ties typically involve finding conditions on the correlation structures of X and

Y from which it can be deduced that P(X ∈ C) ≤ P(Y ∈ C) for some suitable

class of sets C ∈ Rk, usually of the form
∏k
i=1(−∞, xi]. An important example

is Slepian’s inequality [3] which states that if E(X) = E(Y ), E(X2
i ) = E(Y 2

i )

for all i and E(XiXj) ≤ E(YiYj) for all i 6= j, then P(X1 ≤ x1, . . . , Xk ≤ xk) ≤
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P(Y1 ≤ x1, . . . , Yk ≤ xk) for all (x1, . . . , xk) ∈ Rk.

A direct consequence of Slepian’s inequality is that FX∗(x) ≤ FY ∗(x) for

all x ∈ R, where X∗ = max{X1, . . . , Xk} and Y ∗ = max{Y1, . . . , Yk}, so X∗

stochastically dominates Y ∗ and the distribution functions of X∗ and Y ∗ never

cross each other. In this paper, by contrast, we obtain a partial stochastic

dominance result by showing that, under certain assumptions on X, FX∗(x)

intersects the standard Gaussian distribution function Φ(x) exactly once. Sup-

pose that X is a multivariate normal random vector with expectation µ =

(µ1, . . . , µk) and all variances equal to 1. It is easy to see that if µi ≥ 0 for some

i, then FX∗(x) < Φ(x − µi) ≤ Φ(x). Therefore, X∗ dominates the standard

Gaussian. Our result shows that when µi < 0 for all i, if the covariances of

X are equal and positive (that is, X has the intraclass correlation structure

with positive correlation coefficient), then FX∗(x) intersects Φ(x) exactly once

and this is from below. Therefore there exists some value x0 ∈ R such that X∗

dominates the standard Gaussian on the interval (−∞, x0) but the standard

Gaussian dominates X∗ on (x0,∞).

Multivariate normal random vectors with the intraclass correlation structure

occur in random effects models in which the error in a measurement arises as

a combination of a class-specific error and an individual-specific error. More

precisely, Xi = µi +
√
ρY0 +

√
1− ρYi for i = 1, . . . , k, where ρ ∈ (0, 1) and the

Y0, . . . , Yk are independent standard normal random variables. Our motivation

for this work was an application to the Bayesian design of exploratory clinical

trials in which k experimental treatments are compared to a single control [4].

In that paper, one or more of the treatments is suitable to be developed further

in a phase III trial if there is a sufficiently high probability that at least one

treatment out-performs the control by a given threshold. Corollary 1 enables

us to quantify the effect of increasing the threshold on that probability. This is

then used to recommend an appropriate sample size for the trial.

The main results are stated in Section 2 and proved in Section 3. The

proof is surprisingly long and technical, as well as being very sensitive to the

assumptions. We are not aware of any simplifications to the argument, however,
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nor of other results in the literature that enable a comparison of this form.

2. Statement of results

In this section, we state our main theorem, which is then proved in Section

3. We also state and prove the corollary of this result that is used in [4].

We begin with some notation. For ρ ∈ (0, 1) and µ = (µ1, . . . , µk) ∈ Rk, let

(X1, . . . , Xk) ∼ N(µ,Σ) be a multivariate Gaussian random vector with Σij =

ρ + (1 − ρ)δij , where δij is the Kronecker delta. Let X∗ = max{X1, . . . , Xk}.

For any random variable Y , we denote the distribution function of Y by FY and

the density function of Y by fY . In the special case when Y ∼ N(0, 1), we set

Φ = FY and φ = fY .

Theorem 1. For any ρ ∈ (0, 1) and µ ∈ (−∞, 0)k, the distribution functions

FX∗(x) and Φ(x) intersect exactly once. Furthermore, if x0 ∈ R is the intersec-

tion point, then fX∗(x0) > φ(x0).

A direct consequence of this result is that

FX∗(x) > Φ(x) for all x > x0;

FX∗(x) < Φ(x) for all x < x0.

Equivalently, if Z ∼ N(0, 1), then the conditional distribution of [X∗|X∗ >

x0] is stochastically dominated by the conditional distribution of [Z|Z > x0]

and the conditional distribution of [X∗|X∗ < x0] stochastically dominates the

conditional distribution of [Z|Z < x0].

Corollary 1. For any ρ ∈ (0, 1) and µ ∈ Rk, if P(Xi < 0 for all i = 1, . . . , k) ≥

κ for some κ ∈ (0, 1), then P(Xi < Φ−1(ζ) − Φ−1(κ) for all i = 1, . . . , k) > ζ

for all ζ ∈ (κ, 1).
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Proof of Corollary 1. We have

Φ(Φ−1(κ)) ≤ P(Xi < 0 for all i = 1, . . . , k)

= P(Xi + Φ−1(κ) < Φ−1(κ) for all i = 1, . . . , k)

= FY ∗(Φ−1(κ)),

where Y ∗ = max{X1 + Φ−1(κ), . . . , Xk + Φ−1(κ)}. If ζ > κ, then Φ−1(ζ) >

Φ−1(κ) and so, applying Theorem 1 to (X1 + Φ−1(κ), . . . , Xk + Φ−1(κ)), gives

FY ∗(Φ−1(ζ)) > Φ(Φ−1(ζ)) = ζ, as required. (Since FX∗(x) < Φ(x) for all x ∈ R

when µi ≥ 0 for any i, the existence of κ guarantees that E(Xi + Φ−1(κ)) < 0

for all i.)

3. Proof of main result

In this section we provide a proof of Theorem 1. We begin by expressing

FX∗(x) in terms of independent identically distributed (i.i.d.) Gaussian random

variables. We then show that the distribution functions intersect at most once

provided that a quantity expressed in terms of these i.i.d. variables can be shown

to be strictly positive. This quantity is obtained as the solution to a first order

linear differential equation with variable linear coefficient. Positivity follows by

showing that the linear coefficient is negative. The coefficient is expressed in

terms of standard univariate Gaussian density functions which then enables us

to deduce positivity as a consequence of properties of the inverse Mill’s ratio.

Finally, we show that the distribution functions must intersect at least once, by

considering their relative values in the limit as x→ ±∞.

For ρ ∈ (0, 1), ν0 ∈ R and ν = (ν1, . . . , νk) ∈ Rk, let Y0, . . . , Yk be indepen-

dent Gaussian random variables with Y0 ∼ N(ν0, ρ) and Yi = N(νi, 1 − ρ) for

i = 1, . . . , k. Let

G(ν0,ν) = P(max{Y1 − Y0, . . . , Yk − Y0} < 0).

Observe that (Y1 − Y0, . . . , Yk − Y0) ∼ N(ν − ν0,Σ) where Σ is as defined in
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Section 2 and hence FX∗(x) = G(x,µ) = G(0,µ− x).

As G(ν0,ν) is strictly increasing in ν0 ∈ (−∞,∞) from 0 to 1, there exists

a unique function g : (0, 1)×Rk → R such that G(g(ζ,ν),ν) = ζ. So FX∗(x) =

Φ(x) for some x ∈ R if and only if g(ζ,µ) = Φ−1(ζ) for some ζ ∈ (0, 1). In

order to show that there is at most one value of x for which FX∗(x) = Φ(x), it

is enough to show that h(ζ,ν) = Φ−1(ζ) − g(ζ,ν) is strictly increasing in ζ or

equivalently that

z(ζ,ν) =
∂h

∂ζ
(ζ,ν) =

(
φ(Φ−1(ζ))

)−1 − ∂g

∂ζ
(ζ,ν) > 0.

The second statement of the theorem follows directly from this result by the

argument below. Since G(g(ζ,ν),ν) = ζ, differentiating with respect to ζ gives

∂G

∂ν0
(g(ζ,ν),ν)

∂g

∂ζ
(ζ,ν) = 1.

Suppose there exists some x0 ∈ R such that FX∗(x0) = Φ(x0). Let ζ0 = Φ(x0)

so g(ζ0,µ) = x0 = Φ−1(ζ0). Then

fX∗(x0) =
∂G

∂ν0
(x0,µ) =

(
∂g

∂ζ
(ζ0,µ)

)−1
> φ(Φ−1(ζ0)) = φ(x0)

as required.

By symmetry, it is sufficient to prove that z(ζ,ν) > 0 in the case ν1 ≥ · · · ≥

νk. Now G(ν0,ν)→ P(X1 ≤ ν0) = Φ(ν0− ν1) as νk ≤ · · · ≤ ν2 → −∞. Since G

and its derivatives are equicontinuous in all variables, it follows that g(ζ,ν)→

ν1 + Φ−1(ζ) and z(ζ,ν) → ∂ν1
∂ζ = 0 as νk ≤ · · · ≤ ν2 → −∞. We abusively

use the notation f(νi) to denote limνk≤···≤νi+1→−∞ f(ν), so z(ζ,ν1) = 0 for all

values of ζ ∈ (0, 1) and ν1 ∈ R.

Recall that G(g(ζ,ν),ν) = ζ. Differentiating both sides with respect to νi,

i = 1, . . . , k, gives

∂G

∂νi
(g(ζ,ν),ν) +

∂G

∂ν0
(g(ζ,ν),ν)

∂g

∂νi
(ζ,ν) = 0
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and hence
∂g

∂νi
(ζ,ν) = −Qi(g(ζ,ν),ν)

where

Qi(ν0,ν) =
∂G
∂νi
∂G
∂ν0

(ν0,ν).

It follows that

∂

∂νi

(
z(ζ,ν)−

(
φ(Φ−1(ζ))

)−1)
=

∂

∂ζ

∂h

∂νi
(ζ,ν)

=
∂

∂ζ
(Qi(g(ζ,ν),ν))

=
∂Qi
∂ν0

(g(ζ,ν),ν)
∂g

∂ζ
(ζ,ν)

= −∂Qi
∂ν0

(g(ζ,ν),ν)
(
z(ζ,ν)−

(
φ(Φ−1(ζ))

)−1)
.

Therefore, for each i = 1, . . . , k, if νj is fixed for all j 6= i, z(ζ,ν)−
(
φ(Φ−1(ζ))

)−1
is the solution to a first order linear differential equation in νi and hence we can

evaluate z(ζ,νi) inductively for i = 2, . . . , k by

z(ζ,νi)−
(
φ(Φ−1(ζ))

)−1
=
(
z(ζ,νi−1)−

(
φ(Φ−1(ζ))

)−1)
exp

(
−
∫ νi

−∞
Ai(t)dt

)
,

where Ai(t) is the limit of

∂Qi
∂ν0

(g(ζ, ν1, . . . , νi−1, t, νi+1, . . . , νk), ν1, . . . , νi−1, t, νi+1, . . . , νk)

as νk ≤ · · · ≤ νi+1 → −∞. Hence

z(ζ,νi) = z(ζ,νi−1) exp

(
−
∫ νi

−∞
Ai(t)dt

)
+
(
φ(Φ−1(ζ))

)−1(
1− exp

(
−
∫ νi

−∞
Ai(t)dt

))
.

Suppose that it is true that z(ζ,νi−1) ≥ 0, for some i ≥ 2. Then, if

∂Qi
∂ν0

(ν0,ν
i) ≥ 0 for all ν0 ∈ R and ν1 ≥ · · · ≥ νi, (1)
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with strict inequality unless ν1 = ν2 = · · · = νi, then it follows that z(ζ,νi) > 0,

and by induction the theorem will be proven.

We now show that (1) holds for i = 1, . . . , k. Since

∂Qi
∂ν0

=
∂

∂ν0

(
∂G
∂νi
∂G
∂ν0

)
=

∂2G
∂ν0∂νi

∂G
∂ν0
− ∂2G

∂ν2
0

∂G
∂νi(

∂G
∂ν0

)2 ,

it is sufficient to show that

∆i =

(
∂2G

∂ν0∂νi

∂G

∂ν0
− ∂2G

∂ν20

∂G

∂νi

)
(ν0,ν

i) ≥ 0

for all i = 1, . . . , k, ν0 ∈ R and ν1 ≥ · · · ≥ νi with strict inequality unless

ν1 = ν2 = · · · = νi.

Now

G(ν0,ν) = P(max{Y1, . . . , Yk} < Y0)

=

∫ ∞
−∞

fY0(t)P(max{Y1, . . . , Yk} < t)dt

=
1
√
ρ

∫ ∞
−∞

φ

(
t− ν0√

ρ

) k∏
j=1

Φ

(
t− νj√
1− ρ

)
dt.

Hence

∂G

∂ν0
(ν0,ν) = − 1

ρ

∫ ∞
−∞

φ′
(
t− ν0√

ρ

) k∏
j=1

Φ

(
t− νj√
1− ρ

)
dt

= − 1
√
ρ

φ( t− ν0√
ρ

) k∏
j=1

Φ

(
t− νj√
1− ρ

)∞
−∞

+
1
√
ρ

∫ ∞
−∞

φ

(
t− ν0√

ρ

)
∂

∂t

 k∏
j=1

Φ

(
t− νj√
1− ρ

) dt

=
1
√
ρ

∫ ∞
−∞

φ

(
t− ν0√

ρ

)
∂

∂t

 k∏
j=1

Φ

(
t− νj√
1− ρ

) dt,
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∂G

∂νi
(ν0,ν) = − 1√

ρ(1− ρ)

∫ ∞
−∞

φ

(
t− ν0√

ρ

)
φ

(
t− νi√
1− ρ

)∏
j 6=i

Φ

(
t− νj√
1− ρ

)
dt,

∂2G

∂ν0∂νi
(ν0,ν) =

1√
ρ(1− ρ)

∫ ∞
−∞

φ′
(
t− ν0√

ρ

)
φ

(
t− νi√
1− ρ

)∏
j 6=i

Φ

(
t− νj√
1− ρ

)
dt,

and

∂2G

∂ν20
(ν0,ν) =

1

ρ

∫ ∞
−∞

φ′
(
t− ν0√

ρ

)
∂

∂t

 k∏
j=1

Φ

(
t− νj√
1− ρ

) dt.

It follows that

∆i =
1√

ρ(1− ρ)

∫ ∞
−∞

φ′
(
s− ν0√

ρ

)
φ

(
s− νi√

1− ρ

)∏
j 6=i

Φ

(
s− νj√

1− ρ

)
ds

× 1
√
ρ

∫ ∞
−∞

φ

(
t− ν0√

ρ

)
∂

∂t

 k∏
j=1

Φ

(
t− νj√
1− ρ

) dt

− 1√
ρ(1− ρ)

∫ ∞
−∞

φ

(
s− ν0√

ρ

)
φ

(
s− νi√

1− ρ

)∏
j 6=i

Φ

(
s− νj√

1− ρ

)
ds

× 1

ρ

∫ ∞
−∞

φ′
(
t− ν0√

ρ

)
∂

∂t

 k∏
j=1

Φ

(
t− νj√
1− ρ

) dt

=
1

ρ2
√

1− ρ

∫ ∞
−∞

∫ ∞
−∞

{
(s− t)φ

(
s− ν0√

ρ

)
φ

(
t− ν0√

ρ

)
φ

(
s− νi√

1− ρ

)

×
∏
j 6=i

Φ

(
s− νj√

1− ρ

)
∂

∂t

 k∏
j=1

Φ

(
t− νj√
1− ρ

)}dsdt.
Interchanging s and t, we also have

∆i =
1

ρ2
√

1− ρ

∫ ∞
−∞

∫ ∞
−∞

{
(t− s)φ

(
s− ν0√

ρ

)
φ

(
t− ν0√

ρ

)
φ

(
t− νi√
1− ρ

)

×
∏
j 6=i

Φ

(
t− νj√
1− ρ

)
∂

∂s

 k∏
j=1

Φ

(
s− νj√

1− ρ

)}dsdt.
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Hence, ∆i can be expressed as the average of these two forms, giving

∆i =
1

2ρ2
√

1− ρ

∫ ∞
−∞

∫ ∞
−∞

{
φ

(
s− ν0√

ρ

)
φ

(
t− ν0√

ρ

)
φ

(
s− νi√

1− ρ

)
φ

(
t− νi√
1− ρ

)

×
∏
j 6=i

Φ

(
s− νj√

1− ρ

)∏
j 6=i

Φ

(
t− νj√
1− ρ

)
(s− t) (Hi(s,ν)−Hi(t,ν))

}
dsdt,

where

Hi(t,ν) =
Φ
(
t−νi√
1−ρ

)
φ
(
t−νi√
1−ρ

) ∂
∂t

(∏k
j=1 Φ

(
t−νj√
1−ρ

))
∏k
j=1 Φ

(
t−νj√
1−ρ

) .

Now

(s− t) (Hi(s,ν)−Hi(t,ν)) = (s− t)
∫ s

t

∂Hi

∂u
(u,ν)du

which is positive for all s and t if the integrand is positive for all u. In order to

show that ∆i ≥ 0, it is therefore sufficient to show that ∂Hi

∂t (t,νi) ≥ 0 for all

i = 1, . . . , k, and ν1 ≥ · · · ≥ νi with strict inequality unless ν1 = ν2 = · · · = νi.

Let m(x) = φ(x)/Φ(x) be the inverse Mill’s ratio. Then

Hi(t,ν) =
1√

1− ρ

k∑
j=1

m
(
t−νj√
1−ρ

)
m
(
t−νi√
1−ρ

) .
Using the fact that m′(x) = −m(x)(x+m(x)), we obtain

∂Hi

∂t
(t,νi) =

1

1− ρ

k∑
j=1

m′
(
t−νj√
1−ρ

)
m
(
t−νi√
1−ρ

) − m
(
t−νj√
1−ρ

)
m′
(
t−νi√
1−ρ

)
m
(
t−νj√
1−ρ

)2


=
1

1− ρ

k∑
j=1

m
(
t−νj√
1−ρ

)
m
(
t−νi√
1−ρ

) ( νj − νi√
1− ρ

+m

(
t− νi√
1− ρ

)
−m

(
t− νj√
1− ρ

))

=
1

(1− ρ)3/2

k∑
j=1

m
(
t−νj√
1−ρ

)
m
(
t−νi√
1−ρ

) ∫ νj

νi

(
1 +m′

(
t− u√
1− ρ

))
du.

But m′(x) > −1 for all x ∈ R (see Sampford [5]) and hence, letting νk ≤ · · · ≤
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νi+1 → −∞,
∂Hi

∂t
(t,νi) ≥ 0

for all i = 1, . . . , k, and ν1 ≥ · · · ≥ νi with strict inequality unless ν1 = ν2 =

· · · = νi, as required.

Finally, we show that the distribution functions must intersect at least once.

Since FX∗(x) is strictly decreasing in each µi, it is sufficient to do this in the

case when µ = µ1 for some µ < 0 where 1 = (1, 1, . . . , 1). To see this, set

µ+ = maxi µi and µ− = mini µi and let x+ (respectively x−) be the intersection

point of Φ(x) and the distribution function corresponding to µ+1 (respectively

µ−1). Then FX∗(x−) ≤ Φ(x−) and FX∗(x+) ≥ Φ(x+), and hence there must

exist some x0 ∈ [x−, x+] for which FX∗(x0) = Φ(x0). (A similar argument,

where Slepian’s inequality provides the required monotonicity, can be used to

show that FX∗(x) intersects Φ(x) at least once when Σ is any correlation matrix

with Σii = 1 for all i and Σij ∈ [0, 1) for all i 6= j.)

Suppose from now on that µ = µ1 for some µ < 0. By using the asymptotic

expansions as x→ −∞ of Φ(x) and FX∗(x) (see, for example, [6]), we have that

Φ(x) � x−1φ(x) and

FX∗(x) � (x− µ)−kφ

(√
k

1 + (k − 1)ρ
(x− µ)

)
.

Since k/(1 + (k − 1)ρ) > 1, limx→−∞(FX∗(x)/Φ(x)) = 0 and hence FX∗(x) <

Φ(x) for x sufficiently large and negative.

By Slepian’s inequality, FX∗(x) ≥ Φ(x− µ)k. Therefore,

lim
x→∞

1− FX∗(x)

1− Φ(x)
≤ lim
x→∞

1− Φ(x− µ)k

1− Φ(x)

= lim
x→∞

kφ(x− µ)Φ(x− µ)k−1

φ(x)

= k exp(−µ2/2) lim
x→∞

exp(µx)

= 0.
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The final equality is the only place in the proof where we have required negative

expectations. It follows that FX∗(x) > Φ(x) for x sufficiently large and positive,

and so the distribution functions must intersect at least once.

Remark 1. In the case when µ = µ1 for some µ < 0, x0 = Φ−1(ζ0) where

ζ0 ∈ (0, 1) is the solution to the equation Φ−1(ζ0) − g(ζ0,0) = µ. Here g(ζ,0)

is the equicoordinate quantile function of N(0,Σ), the standard k-dimensional

multivariate Gaussian with all correlations equal to ρ. It follows from the proof

above that Φ−1(ζ) − g(ζ,0) is strictly increasing from −∞ to 0. Numerical

estimates for ζ0, and hence for x0, can be found relatively easily as a consequence

of this monotonicity. For general µ, this approach can be used to find estimates

for x− and x+ (defined above), which give the end-points of a finite interval in

which to search for x0.
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