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Abstract: In this paper we will illustrate how to constrain unavoidable Kähler corrections

for N = 1 supergravity (SUGRA) inflation from the recent Planck data. We will show that

the non-renormalizable Kähler operators will induce in general non-minimal kinetic term

for the inflaton field, and two types of SUGRA corrections in the potential — the Hubble-

induced mass (cH), and the Hubble-induced A-term (aH) correction. The entire SUGRA

inflationary framework can now be constrained from (i) the speed of sound, cs, and (ii) from

the upper bound on the tensor to scalar ratio, r⋆. We will illustrate this by considering

a heavy scalar degree of freedom at a scale, Ms, and a light inflationary field which is

responsible for a slow-roll inflation. We will compute the corrections to the kinetic term

and the potential for the light field explicitly. As an example, we will consider a visible

sector inflationary model of inflation where inflation occurs at the point of inflection, which

can match the density perturbations for the cosmic microwave background radiation, and

also explain why the universe is filled with the Standard Model degrees of freedom. We

will scan the parameter space of the non-renormalizable Kähler operators, which we find

them to be order O(1), consistent with physical arguments. While the scale of heavy

physics is found to be bounded by the tensor-to scalar ratio, and the speed of sound,

O
(
1011 ≤ Ms ≤ 1016

)
GeV, for 0.02 ≤ cs ≤ 1 and 10−22 ≤ r⋆ ≤ 0.12.
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1 Introduction

The success of primordial inflation [1–4], for a review, see [5], can be gauged by the current

observations arising from the comic microwave background (CMB) radiation [6–8]. The

observations from Planck have put interestingly tight bounds on a number of unknown

parameters of a generic inflationary model [6], in particular the speed of sound, cs, of

the perturbations, which also determines any departure from the Gaussian perturbations,

the local type of non-Gaussianity, f local
NL , and the constraint on tensor-to-scalar ratio, r⋆,

which can potentially unearth the scale of New Physics within any given effective field

theory set-up.

The N = 1 supergravity (SUGRA) [9, 10], for a review, see [11], is an excellent well-

defined set-up where we can address some of the key questions about the physics of the

new scale for instance. The Kähler metric determines the kinetic term for the inflaton

potential, and one particular choice is the minimal Kinetic term for the inflaton field.

However, quantum corrections to the Kähler potential is not very well-known. Generically

corrections to the Kähler potential arise from integrating out the heavy physics, and due

to lack of concrete knowledge on the details of the heavy physics, many times computing

these corrections can be very challenging, see [12].
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The aim of this paper is to place a generic bound on the Planck suppressed correc-

tions to the Kähler potential on top of the minimal Kähler potential. We will consider

dimensional 3 and dimensional 4 gauge invariant non-renormalizable Kähler operators in

this paper. Since these correction will lead to a departure from the minimal kinetic term

for the inflationary potential, such corrections can now be bounded from the Planck data,

especially from the speed of sound of the primordial perturbations. In fact the Kähler po-

tential within N = 1 SUGRA can induce corrections to the inflationary potential which can

yield large Hubble-induced mass correction to the inflaton field [13–17], some times known

as the SUGRA-η problem, and the Hubble-induced SUGRA A-term for the potential. In

the context of N = 1 SUGRA hybrid inflation [18–20], some of the Kähler corrections

were constrained by the tensor to scalar ratio, r⋆, and the spectral tilt, nS , of the power

spectrum. In this paper we will be constraining these Kähler corrections systematically

from the interaction of the heavy physics to the light inflaton field from the recent Planck

data. Let us consider the scale of New Physics, Ms, to be within

Mp ≥ Ms ≥ Hinf , (1.1)

where Hinf is the Hubble parameter during inflation, and Mp = 2.4 × 1018GeV. In order

to constrain Ms, we would require to consider at least 2 fields, one which is heavy at the

relevant scale, Ms, and the other which is light. We will assume that these two fields are

coupled gravitationally. In past such a scenario has been considered by many authors, where

the heavy field leaves interesting imprints in the dynamics of a low scale inflation [23–35].

Broadly speaking there are two possible scenarios which one can envisage:

• The heavy field is dynamically frozen: we can imagine that the heavy field is com-

pletely frozen, in which case it would be effectively a single light field with a canonical

kinetic term for the inflaton field, with a speed of sound, cs = 1. For a slow roll infla-

tion, the perturbations will be primarily Gaussian. If the heavy field is settled down

to its minimum VEV, i.e. zero, then there will be no effect from the heavy field at

all. However, if the heavy field is settled with a finite non-zero VEV, and it remains

dynamically inactive, means its velocity is strictly zero, then it can still contribute

to the vacuum energy density of the inflaton, and this would be encoded in Hinf .

Also, the kinetic term for the light inflaton field will depart from being pure canon-

ical. However the departure will depend on the scale of new physics. If Ms ≪ Mp,

then the departure from canonical kinetic term will be negligible for all practical

purposes. Therefore, again the observational predictions for the CMB will be unal-

tered and will be similar to the previous case. Both of these scenarios were taken

into account by various interesting papers, see for example [17, 18, 20–22, 36], and

here we will not consider them in great details. We will analyse a slightly different

scenario as mentioned below.

• The heavy field is coherently oscillating during the initial phases of inflation: in this

case we will consider a very simple scenario, where we imagine that the heavy field

is coherently oscillating at a VEV given by Ms with an amplitude Ms at the onset
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of inflation driven by the light field. The coherent oscillations of the heavy field will

not last forever, its amplitude would be damped during inflation very rapidly within

couple of e-foldings of inflation. However, just right at the onset of inflation, the

relevant modes which are leaving the Hubble patch for the CMB can be constrainable.

This will provide a window of opportunity for us to constrain such a scenario, see

refs. [23–25] for probing the influence of heavy physics into the light inflaton field. In

this paper we will consider a similar scenario, but in the context of N = 1 SUGRA.

First of all the coherent oscillations of the heavy field around its non-zero vacuum

would provide a non-zero vacuum energy density, i.e ∼ M4
s . Through its coupling

to the light field in the Kähler potential, it would also yield non-canonical kinetic

term contribution to the light field, and therefore cs 6= 1 for a slow roll inflaton field.

Eventually, the heavy field will be settled down to its minimum. We presume that

the dominant contribution to the long wavelength fluctuations are still seeded by

the light inflaton, but the fact that cs 6= 1 for the inflaton, it would leave imprints

which would be constrainable directly by the scale of heavy physics, Ms, and the

non-minimal corrections to the kähler potential.

We will discuss this latter scenario in some details, and provide a full N = 1 SUGRA

potential for the light and the heavy field within a simple example. We will be using the

following constraints from CMB, and also requirement for a guaranteed reheating of the

Standard Model d.o.f for the success of big bang nucleosynthesis [37].

1. Successful single field inflation driven by φ field with the right amplitude and tilt of

the power spectrum.

2.092 < 109PS < 2.297 (within 2σ) , (1.2)

0.958 < nS < 0.963 (within 2σ) . (1.3)

2. Speed of sound, cs: the Planck analysis has constrained it to be [6, 8]:

0.02 ≤ cs ≤ 1 (within 2σ) . (1.4)

3. Tensor-to-scalar ratio: the Planck constraint is r⋆ ≤ 0.12 [6]

r⋆ ≡
PT

PS
≤ 0.12. (1.5)

4. Local type of non-Gaussianity, f local
NL : the Planck constraint on local non-Gaussianity

is [6, 8]:

f local
NL = 2.7± 5.8 (within 1σ) . (1.6)

In this paper we will not consider the constraints arising from various non-Gausisnaity

bounds [8], but we will solely focus on the constraints arising from the speed of sound

during perturbation, and the tensor to scalar ratio. In the companion paper we have

discussed how non-Gaussianity can constrain the Kähler corrections.
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5. Particle physics constraint: we wish to ensure that the inflaton solely decays into

the Standard Model (SM) d.o.f, therefore we embed the light fields within supersym-

metric SM, such as minimal supersymmetric Standard Model (MSSM). In this case

the inflaton carries solely the SM charges as in the case of the inflaton driven by

gauge invariant combinations of squarks and sleptons [38–41]. This will naturally

ensure that we obtain the right abundances for the dark matter and the baryons

in the universe as required by the observations [42–45]. One can however follow a

hidden sector or a SM gauge singlet inflaton, but it is not always straightforward

to explain the universe with the right dark matter abundance [46–48], and baryon

asymmetry, see [5].

The results of the first half of this paper will be very generic — applicable to any

inflationary scenario. In section 2, we will discuss briefly the Planck constraints. In sec-

tion 3, we will discuss the setup with one heavy and one light superfield which are coupled

via gravitational interactions through Kähler potential. In section 4, we will describe the

effective field theory potential for the light superfield Φ, and discuss the kinetic terms for

various interesting scenarios. In section 5, we will discuss the role of non-canonical kinetic

term and consider two possibilities, one where the heavy superfield is dynamically frozen,

see section 5.1, and the more interesting scenario when the heavy field is oscillating at

the onset of inflation, see section 5.2. We will scan the parameters for the Planck sup-

pressed Kähler operators in subsection 5.3, we will discuss how tensor-to-scalar ratio, r⋆,

can constrain the mass scale of the heavy physics.

2 Cosmological perturbations for cs 6= 1

In this section we briefly recall some of the important formulae when cs 6= 1, the scalar

and tensor perturbations are given by [6, 49, 50]:

PS(k) = PS

(
k

csk⋆

)nS−1

,

PT (k) = PT

(
k

csk⋆

)nT

, (2.1)

where the speed of sound at the Hubble patch is given by, csk⋆ = aH (where k⋆ ∼
0.002Mpc−1). The amplitude of the scalar and tensor perturbations can be recast in

terms of the potential, as [6]:

PS =
V⋆

24π2M4
p csǫV

, (2.2)

PT =
2V⋆

3π2M4
p

c
2ǫV
1−ǫV
s , (2.3)

where running of the spectral tilt for the scalar and tensor modes can be expressed at

csk⋆ = aH, as:

nS − 1 = 2ηV − 6ǫV − s , (2.4)

nT = −2ǫV , (2.5)
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where running of the sound speed is defined by an additional slow-roll parameter, s, as:

s =
ċs
Hcs

=

√
3

V

ċs
cs
Mp. (2.6)

In all the above expressions, the standard slow-roll parameters (with cs = 1) are defined by:

ǫV =
M2

p

2

(
V ′

V

)2

, ηV = M2
p

(
V ′′

V

)
. (2.7)

Finally, the single field consistency relation between tensor-to-scalar ratio and tensor spec-

tral tilt is modified by [6, 51]:

r⋆ = 16ǫV c
1+ǫV
1−ǫV
s = −8nT c

1−
nT
2

1+
nT
2

s . (2.8)

Using the results for cs 6= 1 stated in eqs. (2.2)–(2.8), the upper bound on the numerical

value of the Hubble parameter during inflation is given by:

H ≤ 9.241× 1013
√

r⋆
0.12

c
ǫV

ǫV −1
s GeV (2.9)

where r⋆ is the tensor-to-scalar ratio at the pivot scale of momentum k⋆ ∼ 0.002Mpc−1.

An equivalent statement can be made in terms of the upper bound on the energy scale of

inflation for cs 6= 1 as:

V⋆ ≤
(
1.96× 1016GeV

)4 r⋆
0.12

c
2ǫV
ǫV −1
s . (2.10)

Here in eqs. (2.9) and (2.10), the equalities will hold good for a high scale model of inflation.

Furthermore, for a sub-Plancikan slow-roll models of inflation, one can express the

tensor-to-scalar ratio, r⋆, at the pivot scale, k⋆ ∼ 0.002Mpc−1, in terms of the field dis-

placement, ∆φ, during the observed ∆N ≈ 17 e-foldings of inflation, for cs 6= 1 [52, 53]:

3

25
√
cs

√
r⋆
0.12

∣∣∣∣
{

3

400

( r⋆
0.12

)
− ηV (k⋆)

2
− 1

2

}∣∣∣∣ ≈
|∆φ|
Mp

, (2.11)

where ∆φ = φcmb − φe ≪ Mp, where φcmb and φe are the values of the inflaton field at the

horizon crossing and at the end of inflation.

3 Inflationary setup within N = 1 SUGRA

Let us consider two sectors; heavy sector denoted by the superfield S, and the light sector

denoted by Φ. Let us assume that the two sectors interact only gravitationally, S could

denote the hidden sector, while Φ could denote the visible sector for example part of

MSSM [54, 55]. Note that the origin of S superfield need not be always hidden sector,

within MSSM it is possible to have a false vacuum at very high VEVs, see for instance [56].
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In the latter case both S and Φ could be embedded within MSSM for instance.1 For the

purpose of illustration, we will assume S to have a simple superfield potential given by:

W = W (Φ) +W (S) , Φ = Light , S = Heavy , (3.1)

=
λΦn

nMn−3
p

+
Ms

2
S2 , (3.2)

where n ≥ 3 and λ ∼ O(1), and Φ superfield is the D-flat direction of MSSM. The scale Ms

governs the scale of heavy physics. Furthermore, we will assume 〈s〉, 〈φ〉 ≤ Mp, where both

s and φ are fields corresponding to the super field S and Φ. There are two flat directions

which can drive inflation with n = 6, which are lifted by themselves [58–60],

φ =
ũ+ d̃+ d̃√

3
, φ =

L̃+ L̃+ ẽ√
3

(3.3)

where ũ, d̃ denote the right handed squarks, and L̃ denotes that left handed sleptons and

ẽ denotes the right handed slepton. In this case the inflaton mass for φ will be given by:

m2
φ =

m2
L̃
+m2

L̃
+m2

ẽ

3
, m2

φ =
m2

ũ +m2
d̃
+m2

d̃

3
, (3.4)

for L̃L̃ẽ and ũd̃d̃ directions respectively. Typically these masses are set by the scale of

SUSY, which is typically of the order of ≥ O(1)TeV, set by he ATLAS and CMS [76, 77].

Let us consider minimal Kähler potentials for both φ and s. For the purpose of

illustration we will consider the simplest choice which produces minimal kinetic term, and

the corrections are of the form:

K = s†s+ φ†φ+ δK , (3.5)

where gauge invariant Kähler corrections:

δK = f
(
φ†φ, s†s

)
, f
(
s†φφ

)
, f
(
s†s†φφ

)
, f
(
sφ†φ

)
. (3.6)

The higher order corrections to the Kähler potentials are extremely hard to compute. In

the following, we will assume that the leading order corrections are of the generic form

— allowed by the gauge invariance.2 For the purpose of illustration, let us consider the

1By visible sector we mean that the inflaton itself carries the SM charges, such as in the case of MSSM [38–

41]. In all these examples the inflaton Φ is the D-flat direction made up of squarks and sleptons, see [57],

which is lifted by the F -term of the non-renormalizable superpotential.
2For MSSM flat directions, some of these corrections were already considered before in the context

of Affleck-Dine baryogenesis, see [58–61]. For MSSM inflation this paper is the first to deal with these

corrections explicitly.
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following terms:

K(1) = φ†φ+ s†s+
a

M2
p

φ†φs†s+ · · · , (3.7)

K(2) = φ†φ+ s†s+
b

2Mp
s†φφ+ h.c.+ · · · , (3.8)

K(3) = φ†φ+ s†s+
c

4M2
p

s†s†φφ+ h.c.+ · · · , (3.9)

K(4) = φ†φ+ s†s+
d

Mp
sφ†φ+ h.c.+ · · · , (3.10)

where a, b, c, d are dimensionless parameters.3 These corrections will inevitably lead to a

departure from the minimal kinetic energy for both the fields. Our aim will be to constrain

these unknown parameters, i.e. a, b, c, d, and the scale of heavy physics, Ms, from the

CMB constraints mentioned above in the introduction.

4 Effective field theory potential for inflaton from N = 1 SUGRA

Typically, the scalar potential in N = 1 SUGRA for the F -term can be written in terms

of the superpotential, W , and the Kähler potential, K, see [11]:

V = e
K
(
Φ†

i ,Φi

)
/M2

p

[
(DΦiW (Φ))KΦiΦ̄j

(
DΦ̄j

W ∗
(
Φ†
))

− 3
|W (Φ)|2

M2
p

,

]
(4.1)

where i = Φ, S in our case, and FΦ ≡ DΦW = WΦ + KΦ/M
2
p , and KΦiΦ̄j is the inverse

matrix of KΦiΦ̄j
, and the subscript denotes derivative with respect to the field.

Typically at the leading order, the total potential will get contributions from [58–60]:

1. Interaction between flat direction and inflaton via exponential prefactor:

eK(φ,φ
†)/M2

pV (s) .

2. Cross coupling terms between the flat direction induced Kähler derivative and the

inflaton superpotential:

KφK
φφ̄Kφ̄

|W (s)|2
M4

p

.

3. Interaction between the Kähler derivative and superpotential of the inflaton, super-

gravity Kähler metric and Kähler potential of the flat direction:

KφK
φs̄Ds̄W

∗
(
s†
)W (s)

M2
p

+ h.c. .

3The · · · contain higher order terms of type (1/Mp)
2
(

φ†φ
)2

+ (1/Mp)
2
(

s†s
)2

+ . . ., and higher order

terms, here we are ignoring them. These corrections have been taken into account in the context of SUGRA

hybrid inflation in refs. [18–22]. Here we are mainly interested in considering the effects of heavy field s on

the dynamics of a light field φ.
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4. Self coupling between inflaton via Kähler derivative interaction:

(
DSW (s)

)
Kss̄

(
DS̄W

∗
(
s†
))

.

Additionally, the Hubble-induced A terms arises from the following dominant contributions

in the effective theory of supergravity [58–60]:

1. Cross coupling terms in the Kähler derivative between the derivative of the flat di-

rection superpotential and inflaton superpotential:

WφK
φφ̄Kφ̄

W ∗
(
s†
)

M2
p

+ h.c. .

2. Interaction terms between the flat direction superpotential and inflaton Kähler

derivative:

Ks
W (φ)

M2
p

Kss̄
(
DS̄W

∗
(
s†
))

+ h.c. .

3. Cross coupling terms between the flat direction and inflaton superpotential:

− 3

M2
p

W ∗
(
s†
)
W (φ) + h.c. .

4. Couplings between the flat direction and inflaton:

WφK
φs̄
(
DS̄W

∗
(
s†
))

+ h.c. .

The resulting leading order potential for the light field φ at low energies can be captured

by the following terms [57–60]:

V (φ)=V (s)+
(
m2

φ+cHH(t)2
)
|φ|2+

(
A

λφn

nMn−3
p

+aHH(t)
λφn

nMn−3
p

+h.c.

)
+λ2 |φ|2(n−1)

M
2(n−3)
p

+ · · · ,

(4.2)

where A ∼ mφ is the dimension full quantity, · · · contain terms of higher orders, cH , aH
are numbers containing the information about the Kähler potential, we can infer them

from table 1, and appendix B and C. Note that during inflation, H(t) ∼ Hinf , is nearly

constant. Note that there are two kinds of Hubble-induced terms; one proportional to the

mass term, and the second of the order of the A-term.

5 Non-minimal Kähler potential and non-canonical kinetic terms

In this section we will consider two interesting possibilities, one which is the simplest and

provides an excellent model for inflation with a complete decoupling of the heavy field.

Inflation occurs via the slow roll of φ field within an MSSM vacuum, where inflation would

end in a vacuum with an enhanced gauge symmetry, where the entire electroweak symmetry

will be completely restored.
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Non-minimal Non-canonical Potential

Kähler potential kinetic term V (φ)

LKin = Kij∗
(
∂µΦ

i
) (

∂µΦj∗
)

for |s| ≪ Mp

K(1) = φ†φ+ s†s

+
a

M2
p

φ†φs†s

LKin =

(
1 +

a|s|2
M2

p

)
(∂µφ)

(
∂µφ†

)

+
a

M2
p

{
φ†s (∂µφ)

(
∂µs†

)

+φs† (∂µs)
(
∂µφ†

)}

+

(
1 +

a|φ|2
M2

p

)
(∂µs)

(
∂µs†

)

V (s) +

(
m2

φ + 3(1− a)H2

)
|φ|2 − Aφn

nMn−3
p

−
(
1 + a

|s|2
M2

p

)(
1− 3

n

)
s2

M2
p

λMsφ
n

Mn−3
p

−
(
1− a

|s|2
M2

p

)(
a− 1

n

)
(s†)2

M2
p

λMsφ
n

Mn−3
p

+ λ2 |φ|2(n−1)

M
2(n−3)
p

+ h.c.

K(2) = φ†φ+ s†s

+
b

2Mp
s†φφ+ h.c.

LKin = (∂µφ)(∂
µφ†) + (∂µs)

(
∂µs†

)

+
bφ

2Mp
(∂µφ)

(
∂µs†

)

+
bφ†

2Mp
(∂µs)

(
∂µφ†

)

V (s) +

(
m2

φ + 3
(
1 + b2

)
H2

)
|φ|2 −A

φn

nMn−3
p

−
{(

1− 3

n

)
φ+

bφ†s

nMp

}
λφn−1Mss

2

Mn−1
p

−
(
s†φ

Mp
− bnφ†

)
2Msλφ

n−1s†

nMn−2
p

− bMss
2

2M2
p

(
2Mss

Mp
− Mss

2s†

M3
p

)
φφ

− 4M2
s b|s|2s†
M3

p

φφ+ λ2 |φ|2(n−1)

M
2(n−3)
p

+ h.c.

K(3) = φφ† + ss†

+
c

4M2
p

s†s†φφ+ h.c.

LKin = (∂µφ)
(
∂µφ†

)
+ (∂µs)

(
∂µs†

)

+
cs†φ

4M2
p

(∂µφ)
(
∂µs†

)

+
csφ†

4M2
p

(∂µs)
(
∂µφ†

)

V (s) +

(
m2

φ + 3H2

)
|φ|2 −A

φn

nMn−3
p

−
{(

1− 3

n

)
φ+

cφ†ss

2M2
p

}
λφn−1Mss

2

Mn−1
p

+
cM2

s s
2s†sφφ

M4
p

− M2
s c|s|2s†s†
M4

p

φφ+ λ2 |φ|2(n−1)

M
2(n−3)
p

−
(
s†φ

Mp
− cnφ†s

Mp

)
2Msλφ

n−1s†

nMn−2
p

+ h.c.

K(4) = φφ† + ss†

+
d

Mp
sφ†φ+ h.c.

LKin =

(
ds

Mp
+

ds†

Mp
+ 1

)
(∂µφ)

(
∂µφ†

)

+ (∂µs)
(
∂µs†

)

+
dφ†

Mp
(∂µφ)

(
∂µs†

)
+

dφ

Mp
(∂µs)

(
∂µφ†

)

V (s) +

(
m2

φ + 3
(
1 + d2

)
H2

)
|φ|2 −A

φn

nMn−3
p

−
(
1− 3

n

)
λφnMss

2

Mn−1
p

−
(

s†

Mp
− d

)
2Msλφ

ns†

nMn−2
p

+ λ2 |φ|2(n−1)

M
2(n−3)
p

+ h.c.

Table 1. Various supergravity effective potentials and non-canonical kinetic terms for |s| ≪ Mp

in presence non-niminmal Kähler potential. Here both φ and s are complex fields, and so are the

A-terms.

5.1 Heavy field is dynamically frozen

Let us first assume that the dynamics of the heavy field s is completely frozen during the

onset and the rest of the course of slow roll inflation driven by φ. The full potential can

be found in table 1. Note that the potential for s field, V (s) contains soft term and the

corresponding A-term:

V (s) ∼ M2
s |s|2 +A′Mss

2 , (5.1)

where A′ is a dimensional quantity, and it is roughly proportional to A′ ∼ Ms ≫ TeV. In

this case there are two possibilities which we briefly mention below:

• we can imagine that the heavy field, s, to have a global minimum at:

〈s〉 = 0, 〈ṡ〉 = 0 , V (s) = 0 . (5.2)
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In this particular setup, the kinetic terms for each cases, i.e. 1, 2, 3, 4, become canon-

ical for the φ field, therefore the heavy field is completely decoupled from the dy-

namics. One can check them from table 1. This is most ideal situation for a single

field dominated model of inflation, where the overall potential for along φ direction

simplifies to:

V (φ) = m2
φ|φ|2 +

(
A

λφn

nMn−3
p

+ h.c.

)
+ λ2 |φ|2(n−1)

M
2(n−3)
p

. (5.3)

The overall potential is solely dominated by the φ field, therefore Hubble expansion

rate becomes, Hinf ∝ V (φ)/M2
p .

In this setup inflation can occur near a saddle point or an inflection point, where

φ0 ≪ Mp, and mφ ≫ Hinf , first discussed in refs. [38, 39]. During inflation the Hub-

ble expansion rate is smaller than the soft SUSY breaking mass term and the A-term,

i.e. A ∼ mφ ≫ H(t) for aH ∼ cH ∼ O(1) in eq. (4.2), such that the SUGRA correc-

tions are unimportant. This scenario has been discussed extensively, and has been

extremely successful with the Planck data explaining the spectral tilt right on the

observed central value, with Gaussian perturbations with the right amplitude [36, 62].

• On the other hand, if

〈s〉 ∼ Ms ≪ Mp , 〈ṡ〉 = 0 , V (s) = M4
s , (5.4)

then the kinetic term for φ field will be canonical for cases K2 and K3 by virtue

ṡ = 0, see table 1. However for cases K1 and K4, the departure from canonical for

the φ field will depend on Ms. If 〈Ms〉 ≪ Mp, and a, d ∼ O(1), see table 1, then the

kinetic term for φ will be virtually canonical, and as a consequence cs ≈ 1, while the

potential will see a modification:

Vtotal = M4
s + cHH2|φ|2 +

(
aHH

λφn

nMn−3
p

+ h.c.

)
+ λ2 |φ|2(n−1)

M
2(n−3)
p

. (5.5)

This large vacuum energy density, i.e. M4
s ≫ (TeV)4, would yield a large Hubble

expansion rate, i.e. H2
inf ∼ M4

s /M
2
p ≫ m2

φ ∼ O(TeV)2. Therefore, the Hubble

induced mass and and the A-term would dominate the potential over the soft terms.

Inspite of large mass, cH , and aH -term, there is no SUGRA-η problem, provided

inflation occurs near the saddle point or the inflection point [17, 36]. We will not

discuss this case any further, we will now focus on a slightly non-trivial scenario,

where high scale physics can alter some of the key cosmological predictions.

5.2 Heavy field is oscillating during the onset of inflation

One dramatic way the heavy field can influence the dynamics of primordial perturbations

is via coherent oscillations around its minimum, while φ still plays the role of a slow roll

inflaton.4 Furthermore, the heavy field would only influence the first few e-foldings of

4There could be other scenarios where the influence of heavy field is felt throughout the inflationary

dynamics, see for instance in refs. [18–22, 29–31]. Here we will discuss a slightly simpler scenario where

both heavy and light sectors are coupled gravitationally via the Kähler correction.
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inflation, once the heavy field is settled down its effect would be felt only via the vacuum

energy density. Inspite of this short-lived phase, the heavy field can influence the dynamics

and the perturbations for the light field as we shall discuss below.

Let us imagine the heavy field is coherently oscillating around a VEV, 〈s〉 ∼ Ms, during

the initial phase of inflation, such that

V (s) 6= 0, 〈s〉 6= 0, 〈ṡ〉 6= 0 . (5.6)

The origin of coherent oscillations of s field need not be completely ad-hoc, such a scenario

might arise quite naturally from the hidden sector moduli field which is coherently oscillat-

ing before being damped away by the initial phase of inflation, see for instance [80]. This

is particularly plausible for high string scale moduli, where the moduli mass can be heavy

and can be stabilised early on in the history of the universe. There could also be a possi-

bility of a smooth second order phase transition from one vacuum to another during the

intermittent phases of inflation [63, 64]. Such a possibility can arise within MSSM where

there are multiple false vacua at high energies [56]. Irrespective of the origin of this heavy

field, during this transient period, the heavy field with an effective mass, Ms ≫ Hinf , can

coherently oscillate around its vacuum. We can set its initial amplitude of the oscillations

to be of the order Ms.

s(t) = Ms +Ms sin (Mst) . (5.7)

This also implies that at the lowest order approximation, 〈s〉 ∼ Ms and 〈ṡ〉 ∼ M2
s .

5 The

contribution to the potential due to the time dependent oscillating heavy field, see eq. (5.7),

is averaged over a full cycle
(
0 < tosc < H−1

inf

)
is given by:

〈V (s)〉 ≈ M2
s 〈s2(t)〉 ∼ H2

infM
2
p . (5.8)

The s field provides at the lowest order corrections to the kinetic term for the φ field, and

to the overall potential, see table 1, for both kinetic and potential terms.

At this point one might worry, the coherent oscillations of the s field might trigger

particle creation from the time dependent vacuum, see refs. [65–69], for a review see [70].

First of all, if we assume that the heavy field is coupled to other fields gravitationally, then

the particle creation may not be sufficient to back react into the inflationary potential.

Furthermore, inflation would also dilute the quanta created during this transient phase. We

would not expect any imprint of this event on cosmological scales [71], except one interesting

possibility could be to excite some non-Gaussianity [72–75]. In this paper we will not study

the effects of non-Gaussianity, we shall leave this question for the companion paper.

Since the kinetic terms for the 4 cases tabulated in table 1 are now no longer canonical,

they would contribute to the speed of sound, cs 6= 1, which we can summarize case by case

5At this point one might say why we had taken the amplitude of oscillations for the heavy field to be

Ms. In some scenarios, it is possible to envisage the amplitude of the oscillations to be Mp. This would

not alter much of our discussion, therefore for the sake of simplicity we will consider the initial amplitude

for the s field to be displaced by Ms, the same as that of the VEV.
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below:

cs =

√
ṗ

ρ̇
≈





√√√√X1(t)−X2(t)− ˙̂
V

X1(t) +X3(t) +
˙̂
V

for Case I

√√√√Y1(t)−Y2(t)− ˙̂
V

Y1(t) +Y3(t) +
˙̂
V

for Case II

√√√√Z1(t)− Z2(t)− ˙̂
V

Z1(t) + Z3(t) +
˙̂
V

for Case III

√√√√W1(t)−W2(t)− ˙̂
V

W1(t) +W3(t) +
˙̂
V

for Case IV ,

(5.9)

where p is the effective pressure and ρ is the energy density. The dot denotes derivative

w.r.t. physical time, t. All the symbols, i.e. X1, X2, Y1, Y2, Z1, Z2, W1, W2, appearing

in eq. (5.9) are explicitly mentioned in the appendix. Additionally, here we have defined,

V̂ = V (φ)− V (s).6

5.3 Constraining non-renormalizable operators, i.e. a, b, c, d, and Ms

For the potential under consideration, we have V (s) = 3H2M2
p ∼ M2

s s
2 ≫ m2

φ|φ|2, where
mφ ∼ O(TeV) is the soft mass. In this case the contributions from the Hubble-induced

terms are important compared to the soft SUSY breaking mass, mφ, and the A term for all

the four cases tabulated in table 1. The potential, eq. (4.2), after stabilizing the angular

direction of the complex scalar field φ = |φ| exp[iθ], see [17, 38–40], reduces to a simple

form along the real direction, which is dominated by a single scale, i.e. H ∼ Hinf :

V (φ) = V (s) + cHH2|φ|2 − aHHφn

nMn−3
p

+
λ2|φ|2(n−1)

M
2(n−3)
p

, (5.10)

where we take λ = 1, and,the Hubble-induced mass parameter cH , for s ≪ Mp, is

defined as:7

cH =





3(1− a) , for Case I

3
(
1 + b2

)
, for Case II

3 , for Case III

3
(
1 + d2

)
, for Case IV .

(5.11)

Note that for only third case, i.e. K3, the Hubble induced mass term does not contain

any Kähler correction, i.e. δK. Similarly, we can express aH , see appendix C for full

6As a side remark, our analysis will be very useful for the Affleck-Dine (AD) baryogenesis [58–60],

especially when the minimum of the AD field is rotating in presence of the inflaton oscillations. Effectively,

the AD field will have non-canonical kinetic terms, this has never been taken into account in the literature

and one should take the non-canonical kinetic terms for the AD field in presence of the inflaton oscillations

in order to correctly estimate the baryon asymmetry. The role of s field will be that of an inflaton and φ

field will be that of an AD field.
7See appendix B and appendix C for details.
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expressions. Note that for all 4 cases, the kinetic terms are all non-minimal, and we have

already listed in table 1. Fortunately for this class of potential given by eq. (5.10), inflection

point inflation can be accommodated, when a2H ≈ 8(n − 1)cH . This can be characterized

by a fine-tuning parameter, δ, which is defined as [38]:

a2H
8(n− 1)cH

= 1−
(
n− 2

2

)2

δ2 . (5.12)

When |δ| is small,8 a point of inflection φ0 exists, such that V ′′ (φ0) = 0, with

φ0 =

(√
cH

(n− 1)
HMn−3

p

)1/n−2

+O
(
δ2
)
. (5.13)

For δ < 1, we can Taylor-expand the inflaton potential around an inflection point,

φ = φ0, as [17, 78, 79]:

V (φ) = α+ β(φ− φ0) + γ(φ− φ0)
3 + κ(φ− φ0)

4 + · · · , (5.14)

where the expansion coefficients are now given by:

α = V (φ0) = V (s) +

(
(n− 2)2

n(n− 1)
+

(n− 2)2

n
δ2
)
cHH2φ2

0 +O
(
δ4
)
, (5.15)

β = V
′

(φ0) = 2

(
n− 2

2

)2

δ2cHH2φ0 +O
(
δ4
)
, (5.16)

γ =
V

′′′
(φ0)

3!
=

cHH2

φ0

(
4(n− 2)2 − (n− 1)(n− 2)3

2
δ2
)
+O

(
δ4
)
, (5.17)

κ =
V

′′′′
(φ0)

4!
(5.18)

=
cHH2

φ2
0

(
12(n− 2)3 − (n− 1)(n− 2)(n− 3)

(
7n2 − 27n+ 26

)

2
δ2

)
+O

(
δ4
)
.

Note that once we specify cH and Hinf , all the terms in the potential are determined. In

this regard the potential indeed simplifies a lot to study the cosmological observables.

As an concrete example, we considered n = 6 case, where the flatness of the superfield

Φ is lifted by the non-renormalizable operator. This is appropriate for both ũd̃d̃ and L̃L̃ẽ

flat directions. In our scans we allow the constraints from Planck observations [6, 7], see

eqs. (1.2), (1.3), (1.4), (1.5).

Let us now scan the parameter space for cH , aH with the help of eqs. (2.2), (2.3), (2.4),

(2.5), (2.8), by fixing λ = O(1) and δ ∼ 10−4. In order to satisfy the Planck observational

constraints on the amplitude of the power spectrum, 2.092 × 10−9 < PS < 2.297 × 10−9

(within 2σ), spectral tilt 0.958 < nS < 0.963 (within 2σ), sound speed 0.02 ≤ cs ≤ 1

(within 2σ), and tensor-to-scalar ratio r⋆ ≤ 0.12, we obtain the following constraints on

our parameters for Hinf ≥ mφ ∼ O(TeV), where successful inflation can occur via inflection

8We will consider a moderate tuning of order δ ∼ 10−4 between cH and aH .
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point inflation:

cH ∼ O
(
10− 10−6

)
, for 10−22 < r⋆ < 0.12

aH ∼ O
(
30− 10−3

)
, for 10−22 < r⋆ < 0.12

Ms ∼ O
(
9.50× 1010 − 1.77× 1016

)
GeV , for 10−22 < r⋆ < 0.12 . (5.19)

Our motivation of doing such a scan is to generate feasible amplitude of power spectrum

Ps , spectral tilt ns, sound speed cs and tensor to scalar ratio r⋆, which also satisfies the

particle physics constraints in our prescribed inflationary setup. As these constraints are

necessary to satisfy the inflation, we have to choose the parameter space in such a way

that all of these constraints satisfy simultaneously. Inflation would not occur outside our

scanning region since at least one of the constraints would be violated.

Note that for the above ranges, eq. (5.19), φ0 gets automatically fixed by eq. (5.13),

φ0 ∼ O
(
1014 − 1017

)
GeV for 10−22 < r⋆ < 0.12 . (5.20)

Here the upper and lower bound appearing in eq. (5.19) and eq. (5.20) are obtained from

large and small values of the tensor-to-scalar ratio varying within a wide range 10−22 <

r⋆ < 0.12 for the pivot scale k⋆ ∼ 0.002Mpc−1.

In figure 1, we have shown that the allowed ranges of the non-renormalizable coefficients

of the operators mentioned in eqs. (3.7), (3.8), (3.9), (3.10). The solid blue and red curves

are drawn for the sound speed cs = 0.02 and cs = 1 and the shaded regions are shown to

point out the allowed region which satisfies the Planck 2σ constraints on the amplitude of

power spectrum PS and spectral tilt nS as mentioned in eq. (1.2) and eq. (1.3) respectively.

It is important to note that the non-minimal couplings “a”, “b” and “d” directly controls

both cH , aH in the inflaton potential. But the coupling “c” only affect aH , while leaving

cH free from non-minimal correction, i.e. cH ∼ 3. For the consistency check see appendix

where all the non-minimal couplings “a”, “b”, “c” and “d” are explicitly written in terms

of the scale (VEV) of the heavy field Ms.

In figure 2(a) and figure 2(b) we have shown the constraints on the amplitude of the

the power spectrum for scalar modes, PS , and log(r), with respect to spectral tilt, nS at

the pivot scale k⋆ = 0.002 Mpc−1 by red and blue curves for the sound speed, cs = 1 and

cs = 0.02, respectively. If we consider the full parameter space as stated in eq. (5.19), there

are solutions which have been shown in a yellow and aqua shaded regions. We have also

shown the 2σ region allowed by the Planck data [6] for both the cases by green shaded

region, i.e. PS and nS . It is important to note that if we consider the full parameter space

then the low cs fits the data well compared to the high value cs.

However from figure 2(a) it is clearly observed that the high value of cs also confronts

the data well within a small patch for a specific choice of parameter space lying within

the parameter scanning range mentioned in eq. (5.19). Consequently the full parameter

space for low cs and a tiny patch for high cs fits the CMB power spectra well in the

low l (2 < l < 49) and high l (50 < l < 2500) multipole region. But for the low l

(2 < l < 49) region, the statistical error is too huge to differentiate between different cs
scenarios. Therefore, we will concentrate only on the high l (50 < l < 2500) region for the

low and high cs model discrimination with high statistical accuracy (2σ C.L.). See figure 3

for the details where we explicitly use this additional input.
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cS = 0.02

cS = 1
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1.0000
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a
a vs r* plot

(a) Case I.

cS = 0.02

cS = 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.92

0.94

0.96

0.98

1.00
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b

b vs r* plot

(b) Case II.

cS = 1

cS = 0.02

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r*

c

c vs r* plot

(c) Case III.

cS = 0.02

cS = 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.4

0.5

0.6

0.7

0.8

0.9

1.0

r*

d
d vs r* plot

(d) Case IV.

Figure 1. We show the constraints on the non-renormalizable Kähler operators, “a”,“b”,“c” and

“d” with respect to the tensor-to-scalar ratio r⋆ at the pivot scale k⋆ = 0.002Mpc−1 when the heavy

field s is oscillating during the initial phase of inflation, especially at the time when the interesting

perturbations are leaving the Hubble patch for Hinf ≫ mφ ∼ O(TeV). All the shaded regions

represent the allowed parameter space for the Hubble induced inflation satisfying the Planck 2σ

constraints on the amplitude of power spectrum 2.092 × 10−9 < PS < 2.297 × 10−9 and spectral

tilt 0.958 < nS < 0.963, as mentioned in eq. (1.2) and eq. (1.3) respectively. The dark coloured

boundaries are obtained from the allowed range of the speed of sound cs, within the window

0.02 ≤ cs ≤ 1.

Furthermore, by using Planck+WMAP-9 [6, 7], Planck+WMAP-9+high l [6, 7] and

Planck+WMAP-9+BAO datasets [6, 7], we have shown r vs. ns in the marginalized 1σ

and 2σ CL. contours in figure 3. The yellow and green lines are drawn for the proposed

model with cs = 1 and cs = 0.02 respectively. The region in between the yellow and

green lines represent the allowed region obtained from the proposed model within the
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(a) PS vs nS .

cS = 1

cS = 0.02

0.92 0.94 0.96 0.98 1.00
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gH
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logHrL vs nS plot

(b) log(r) vs nS .

Figure 2. For Hinf ≥ mφ ∼ O(TeV), we have shown the variation of (a) PS vs nS , and (b)

log(r) vs nS , for MSSM flat direction (for ũd̃d̃ and L̃L̃ẽ inflaton cadidates) in presence of non-

minimal Kähler corrections. The red and blue curves are drawn for cs = 1 and cs = 0.02, which

show the model parameters, δ ∼ 10−4, λ = 1, cH = 2, aH = 2.108, φ0 = 1.129 × 1016 GeV, for

the pivot scale k⋆ = 0.002Mpc−1. The green shaded region shows the 2σ CL. range allowed by the

Planck data [6] for both the cases. Instead of getting a solid red and blue curves we obtain a yellow

and aqua shaded regions if we would consider the full parameter space for (Hinf ≥ mφ ∼ O(TeV)).

window 50 ≤ N ≤ 70. In figure 3 we fix the number of e-foldings within the window,

50 ≤ N ≤ 70, because at N = 50 and N = 70 the illustrated model satisfies the Planck

2σ combined constraints on the upper and lower bound of the amplitude of the power

spectrum PS , spectral tilt nS , and the upper bound of tensor-to-scalar ratio r⋆ as mentioned

in eq. (1.2), (1.3), (1.5) at the pivot scale k⋆ ∼ 0.002 Mpc−1 for both cs = 0.02 and

cs = 1 branch.

Let us now derive an analytical expression for the scale of inflation, i.e. Ms. We

consider a full cycle averaged within an interval 0 < tosc < H−1
inf , and using eq. (5.13),

eq. (5.15) and eq. (2.9) for n=6 flat directions, we can derive a following constraint on the

scale of the heavy field, Ms for k⋆
(
∼ 0.002Mpc−1

)
, by setting α ∼ V (s) ≈ M4

s and the

fine tuning parameter, δ ∼ O(10−4) ≪ 1, the leading order contribution to the potential

will be given by:

Ms ≤ 1.77× 1016
( r⋆
0.12

)1/4
c

ǫV
2(ǫV −1)
s GeV . (5.21)

The above eq. (5.21) will fix the upper bound on Ms ∼ O
(
1016

)
by setting cs = 1.9

Additionally, we also obtain a lower bound on Ms by considering the lower bound of the

sound speed at, cs = 0.02, which will generate very small value of the tensor-to-scalar ratio

r⋆ ∼ O
(
10−22

)
and satisfies the Planck observational constraints. Consequently we get

the lower bound of the scale of the heavy field at, Ms ∼ O
(
1011

)
GeV.

9In the setup ǫV (k∗ ≈ kcmb) ≈ 0.0021 which satisfies the WMAP+Planck constrain, as this combined

data set puts an upper bound at ǫV < 0.008at 95% CL. [7, 8] So for 0.02 ≤ cs ≤ 1, (cs)
[ǫV /2(ǫV −1)] ≈ 1 in

the eq. (5.21). So the contribution in the scale of Ms comes from r∗ and the prefactor sitting in the above

eq. (5.21).
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Figure 3. We show the joint 1σ and 2σ CL. contours using Planck+WMAP-9, Planck+WMAP-

9+high l and Planck+WMAP-9+BAO data. The yellow and green lines are drawn for the proposed

model with cs = 1 and cs = 0.02 where the model parameters are fixed at, δ ∼ 10−4, λ = 1, cH =

2, aH = 2.108, φ0 = 1.129 × 1016 GeV, for the pivot scale k⋆ = 0.002Mpc−1 respectively. The

region in between the yellow and green lines represent the allowed region obtained from the model.

The small circle on the left corresponds to N = 50, while the right big circle corresponds to N = 70.

At this point one might worry about the large vacuum energy density stored in the

heavy field. This indeed helps inflation, in particular ameliorating the fine tuning param-

eter, we have taken δ ∼ 10−4 in our scans [17, 78]. However such a large vacuum energy

would need to be canceled after the end of slow roll inflation. In the string landscape [80],

or in the MSSM landscape [56], it is plausible to have a bubble nucleation provided the rate

of nucleation is large than the Hubble expansion rate. In the context of MSSM, these bub-

bles will naturally yield a low energy vacuum which is an enhanced gauge symmetry point,

first suggested in ref. [56]. In the string vacua case, it is a challenge that the false vacuum

governed by the heavy field s would nucleate to the MSSM vacuum [63]. Furthermore,

the bubble nucleation could lead to an observational effects such as gravitational waves,

etc. [81]. One may be able to constrain further the scale of heavy physics, Ms, from the

high frequency gravitational waves, here we will not discuss these issues any further but we

will leave this for future investigation. We can also envisage a smooth phase transition of

the false vacuum as it can happen in the case of hybrid inflation [82, 83], possibly triggered

by the MSSM inflaton itself as discussed in ref. [78]. In any of these scenarios we do not

expect any modification on large scales, and therefore we do not expect these events to

affect the primordial perturbations.

6 Conclusion

In this paper, we have shown that in any N = 1 SUGRA inflation model when ever there

are more degrees of freedom, non-minimal Kähler corrections would induce three distinct

types of corrections: (i) non-minimal kinetic term for the inflaton, (ii) Hubble-induced

mass correction to the inflaton, and (iii) Hubble-induced A-term in the potential.
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The exact nature of Kähler potential and Kähler corrections might not be known

in all possible scenarios, but our aim has been to constrain the coefficients of the non-

renormalizable Kähler higher dimensional operators phenomenologically, which are gauge

invariant, from the recent Planck data. We assumed minimal Kähler potentials for all the

fields to begin with. We first considered the heavy physics to be completely decoupled

from the dynamics of the light inflaton field. We considered the light field to be embedded

within MSSM, such that the reheating of the universe is guaranteed to be that of the SM

dof. In the simplest setup when the heavy field is well settled down in its potential, it

only affects via its vacuum energy density. The kinetic terms are mostly canonical, and

therefore we do not obtain any constraint on the coefficients of the dimensional 3 and 4

non-reormalizable Kähler operators.

We further investigated an intriguing possibility, when the heavy field is coherently

oscillating with a frequency larger than the Hubble parameter during the onset of inflation,

while the light field is slowly rolling over the potential. In this particular scenario, we were

able to constrain the coefficients of the Planck suppressed Kähler operators of dimensional 3

and 4. We scanned the four parameters, a, b, , c , d, and obtained a region of the parameter

space where we can satisfy the current Planck observations, i.e. PS , nS , cs and r⋆ within

2σ CL, and we obtained all the coefficients to be of order a, b, c, d ∼ O(1), as naturally

expected in any non-rrenormalizable SUGRA theory. In fact, as we can see from figure 1

their magnitudes are always less than one.

In figure 2, we have shown for the range of non-renormalizable corrections, the param-

eter space for the allowed range of PS versus nS for the allowed range of 0.02 ≤ cs ≤ 1. In

figure 3, we have plotted r⋆ vs. nS , for cs = 1 and cs = 0.02 for the number of e-foldings,

N = 50, 70. For the range of parameter space scanned, we were able to set an upper limit

on the scale of new physics from the constraints arising from r⋆, which we obtained to be

within 1011 ≤ Ms ≤ 1016GeV. For the lower bound on Ms, we found r⋆ ∼ O
(
10−22

)

and extremely negligible, and for the upper bound we saturated r⋆ = 0.12. Note that the

current Planck data mildly prefers lower value of the speed of sound, i.e. cs < 1, this is

visible from our scans and the plot on r⋆ versus nS , see figure 3.

Finally, we would like to mention that all the above bounds have been obtained for a

very particular kind of inflation model, which is fully embedded within MSSM, the inflaton

is an MSSM flat direction and inflation happens at the point of inflection with a fine tuned

parameter at the inflection point is roughly one part in 104. We chose MSSM inflation

for its advantage that the dynamics can be well understood during inflation and after

inflation. In particularly, we can ascertain that the universe after inflation would be filled

with the SM degrees of freedom, and also the model is capable of explaining the Higgs

mass constraint and the dark matter abundance, along with the constraints on the inflaton

mass arising from the LHC [42–44]. Not every model of inflation enjoys such advantages,

and therefore studying this model in some details along with SUGRA corrections yielded

interesting constraints. Our methodology can be followed for other kinds of inflationary

models too.

There is a further scope of improvement in our analysis. So far we have only used the

Planck constraints from the power spectra, PS , spectral tilt, nS , tensor-to-scalar ratio, r⋆,

– 18 –



J
H
E
P
0
4
(
2
0
1
4
)
0
7
7

and the constraint on the speed of sound, cs. In principle we should be able to use the

non-Gaussian parameters, f local
NL , glocalNL and possibly τ localNL , to further constrain the non-

renormalizable Kähler operators of dimension 3 and 4. In our companion paper, we would

consider the non-Gaussian constraints in some details. All these cosmological constraints

arising from Planck and future CMB missions can further improve our understanding of

many different aspects of physics beyond the SM. With an improvement on tensor-to-scalar

ratio, r⋆, we would be able to further constraint the scale of heavy physics, Ms.
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A XYZ

The symbols appearing in the eq. (5.9), in the definition of the sound speed cs for I ≪ Mp,

after imposing the slow-roll approxiation are given by:

X1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

aM3
s

M2
p

[2 sin(2Mst) + 4 cos(Mst)]

−aM4
s

M2
p

|φ| cosΘ [cos(2Mst)− sin(Mst)]

}
,

Y1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

2bM2
s

Mp
cos(Mst) +

bM3
s

Mp
|φ| cosΘ sin(Mst)

}
,

Z1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

cM3
s

4M2
p

[2 sin(2Mst) + 4 cos(Mst)]

− cM4
s

4M2
p

|φ| cosΘ [cos(2Mst)− sin(Mst)]

}
,

W1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

4dM2
s

Mp
cos(Mst) +

dM3
s

Mp
|φ| cosΘ sin(Mst)

}
,

X2(t) =

(
Y2(t) +

a|φ|2M5
s

M2
p

sin(2Mst)

)
,

Y2(t) = Z2(t) = W2(t) = 5M5
s sin(2Mst) + 8M5

s cos(Mst),

X3(t) =

(
Y3(t)−

a|φ|2M5
s

M2
p

sin(2Mst)

)
,

Y3(t) = Z3(t) = W3(t) = 3M5
s sin(2Mst)− 8M5

s cos(Mst). (A.1)
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Here the complex inflaton field φ is parameterized by, φ = |φ| exp(iΘ). Here the new

parameter Θ characterizes the phase factor associated with the inflaton and it has a two

dimensional rotational symmetry.

B Case -1, 2, 3, 4

Case–1: K = φ†φ+ s†s+ a

M2
p

φ†φs†s. For the above non-minimal Kähler interaction

with ′a′ being a dimensionless number. We have also computed the correction to the

Hubble-induced mass term, for cH for |I| ≪ Mp:

cH =

{
3

[
(1− a)+(1 + a)a

|s|2
M2

p

]
+

[
(1 + 3a)+(1− 3a)a

|s|2
M2

p

](
eK |Fs|2
V (s)

− 1

)}
≈ 3(1− a) ,

(B.1)

where we used the fact that: V (s) = |Ws|2 = 3H2M2
p = 4M2

s |s|2. Next we compute

the correction to the Hubble-induced A term, aHH φn

nMn−3
p

, in presence of the non-minimal

Kähler correction:

aHH
φn

nMn−3
p

=

([
1 + a

|s|2
M2

p

]
Wφ φ− 3W (φ)

)
eKW ∗

(
I†
)

M2
p

+

[
W (φ)

I†

Mp
− aW (φ)

I†

Mp

|I|2
M2

p

−aWφ φ
I†

Mp

(
1− a

|s|2
M2

p

)]
eKF ∗

s̄

Mp
+ h.c.

≈
{(

1 + a
|s|2
M2

p

)(
1− 3

n

)
s2

M2
p

+

(
1− a

|s|2
M2

p

)(
a− 1

n

) (
s†
)2

M2
p

}
λMsφ

n

Mn−3
p

+ h.c. , (B.2)

which explicitly shows the Planck suppression for |s| ≪ Mp in the Hubble-induced A term.

Case–2: K = φ†φ + s†s + b

2Mp

s†φφ + h.c. . Similarly, for the above non-minimal

kähler correction where ′b′ is a dimensionless number we can compute the correction to the

Hubble-induced mass term, cHH2|φ|2, for |s| ≪ Mp:

cH =

[
3 + b2

eK |Ws|2
H2M2

p

+

(
eK |Fs|2
V (s)

− 1

)]
≈ 3

(
1 + b2

)
, (B.3)
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where V (s) = |Ws|2 = 3H2M2
p = 4M2

s |s|2. And similarly the Hubble-induced A term,

aHH φn

nMn−3
p

, in presence of snon-minimal Kähler correction read as:

aHH
φn

nMn−3
p

=

(
Wφ φ − 3W (φ) + bWφ φ

† s

Mp

)
eKW ∗

(
I†
)

M2
p

− b

2

eKW ∗
(
I†
)

M2
p

(
Ws

Mp
− s†

Mp

W (I)

M2
p

)
φφ

+

(
W (φ)

s†

Mp
− bWφ φ

†

)
eKF ∗

s̄

Mp
+ 3bH2 s†

Mp
φφ+ h.c.

=

{(
1− 3

n

)
φ+

bφ†s

nMp

}
λφn−1Mss

2

Mn−1
p

+

(
s†φ

Mp
− bnφ†

)
2Msλφ

n−1s†

nMn−2
p

+
4M2

s b|s|2s†
M3

p

φφ

− bMss
2

2M2
p

(
2Mss

Mp
− Mss

2s†

M3
p

)
φφ+ h.c. . (B.4)

Case–3: K = φφ† + ss† + c

4M2
p

s†s†φφ + h.c. . In a similar way we can analyse the

above non-minimal Kähler interaction, where c is the dimensionless number. We have

computed the correction to the Hubble-induced mass term, cHH2|φ|2 for |s| ≪ Mp as:

cH =

[
3 +

3c

2

|s|2
M2

P

+

(
1 +

3c

2

|s|2
M2

P

− c2

4

|s|4
M4

P

)(
eK |Fs|2
V (s)

− 1

)]
≈ 3 (B.5)

where we have used V (s) = |Ws|2 = 3H2M2
p = 4M2

s |s|2. Next we compute the Hubble-

induced A term, aHH φn

nMn−3
p

:

aHH
φn

nMn−3
p

=

(
Wφ φ−3W (φ)+

c

2
Wφ φ

† ss

M2
p

− c

2

s†

Mp

Ws

Mp
φφ

)
eKW ∗

(
I†
)

M2
p

+

(
W (φ)

s†

Mp
−cWφ φ

† s

Mp

)
eKF ∗

s̄

Mp

+
3cH2

4

s†s†

M2
p

φφ+ h.c.

=

{(
1− 3

n

)
φ+

cφ†ss

2M2
p

}
λφn−1Mss

2

Mn−1
p

− cM2
s I

2I†Iφφ

M4
p

+
(s†φ
Mp

− cnφ†s

Mp

)2Msλφ
n−1s†

nMn−2
p

+
M2

s c|s|2s†s†
M4

p

φφ+ h.c. . (B.6)

Case–4: K = φφ† + ss† + d

Mp

sφ†φ + h.c. . For the above non-minimal Kähler

potential, where d is the dimensionfull number, we can compute the Hubble-induced mass

term, cHH2|φ|2, for |s| ≪ Mp:

cH =

[
3

[
1 + d

s+ s†

MP
+ d2

(
1 + d

s+ s†

MP

)−1
]
+

[
1 + d

s+ s†

MP

+3d2
(
1 + d

s+ s†

MP

)−1
](

eK |Fs|2
V (s)

− 1

)]
≈ 3

(
1 + d2

)
, (B.7)
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where we used V (s) = |Ws|2 = 3H2M2
p = 4M2

s |s|2. Next we compute the correction to the

Hubble-induced A term, aHH φn

nMn−3
p

,

aHH
φn

nMn−3
p

=
(
Wφ φ − 3W (φ)

)eKW ∗
(
s†
)

M2
p

+

(
W (φ)

I†

Mp
− dW (φ)

)
eKF ∗

s̄

Mp
+ h.c.

=

(
1− 3

n

)
λφnMss

2

Mn−1
p

+

(
s†

Mp
− d

)
2Msλφ

ns†

nMn−2
p

+ h.c. . (B.8)

C Expression for aH

Using these results in Hubble induced A-term, aH can be computed from eqs. (B.2),

eq. (B.4), eq. (B.6) and eq. (B.8) for the four physical situations, the simplified expressions

turn out be:

aH ∼





n

2

(
2

3

) 3

4

√
Hinf

Mp

[
1 + a− 4

n
+

35a

4

√
2

3

(
2− 3

n

)
Hinf

Mp

− 35a2

4

√
2

3

Hinf

Mp

]
for Case I

1

2

[
3

(
1− 1

n

)
+
5b

n
4

√
2

3

√
Hinf

Mp

](
2

3

) 3

4

√
Hinf

Mp

+2

√
2

3

((
3

2

) 3

4

√
Hinf

Mp

− bn

)

+10b

(
3

2

)5

4

(
Mp

φ

)n−2(
Hinf

Mp

)3

2

− b

2

(
3

2

)5

4

(
Mp

φ

)n−2(
Hinf

Mp

)3

2

(
5− 67

8

√
2

3

Hinf

Mp

)
for Case II

4

√
2

3
n

[√
3

2

(
1− 3

n

)
+

35c

24

Hinf

Mp

]√
Hinf

Mp

+ (1− cn)
4

√
2

3

√
Hinf

Mp

for Case III

4

√
2

3
(n− 3)

√
Hinf

Mp

+ 2

√
2

3

[(
3

2

) 3

4

√
Hinf

Mp

− d

]
for Case IV.

(C.1)
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