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Multi-norms

H.G. Dales

Abstract. We give a survey of the theory of multi-norms, based on a
talk given in Tartu on 5 September 2013.

1. Introduction

A theory of multi-norms based on a normed space E was first introduced
by Dales and Polyakov in [7], and there have now been several papers on
this topic. The present paper is a survey of the theory, somewhat expanded
from the talk in Tartu.

1.1. Some history. The work on what were to become “multi-norms” was
begun in 2003, when Maxim Polyakov arrived from Moscow as a Royal So-
ciety Fellow at my then university of Leeds; Maxim had been a student of
Alexander Helemskii at Moscow State University. We decided to attack to-
gether the question when various Banach left modules over group algebras
were respectively projective, injective, or flat. Our work appeared in [6].
Most questions were resolved in [6], but one in particular was left open, and
I first explain this.

Let G be a locally compact group. Then the group algebra (L1(G), ? ) is
a Banach algebra for the convolution product, and the Banach space Lp(G)
is a Banach left L1(G)-module in a canonical way for each p ≥ 1. The
most important case is that in which p = 2, and so Lp(G) is the Hilbert
space L2(G); of course the theory of representations of L1(G) as an algebra
of bounded linear operators on L2(G), which is equivalent to the theory of
L2(G) as a Banach left L1(G)-module, is of fundamental importance in very
many areas of harmonic analysis and operator theory. The following is a
consequence of the famous theory of Barry Johnson in [16].
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Theorem 1.1. Suppose that G is an amenable locally compact group and
that 1 < p <∞. Then Lp(G) is an injective Banach left L1(G)-module.

Both Barry Johnson and Alexander Helemskii had asked whether the
converse of this theorem holds. Our attempt in [6] concentrated on the case
where G is a discrete group, and we proved the following in [6, Theorem
5.12].

Theorem 1.2. Let G be a group, and take p with 1 < p < ∞. Suppose
that ` p(G) is an injective Banach left ` 1(G)-module. Then the group G is
pseudo-amenable.

Here we say that a group G is pseudo-amenable if, for each ε > 0, there
exists n0 ∈ N such that, for each n ∈ N with n ≥ n0 and each finite subset
F of G with |F | = n, there is a non-empty, finite subset S of G such that
|SF | < εn |S|.

This should be contrasted with the famous Følner condition, which char-
acterizes when a group G is amenable: for each ε > 0 and each finite subset
F of G, there is a non-empty, finite subset S of G such that |Sx∆Sy| < ε |S|
for each x, y ∈ F . Here ∆ denotes the symmetric difference of two sets.

It is easy to see that every amenable group is pseudo-amenable, but we
were unable to prove the converse; this still seems to be a very interesting
and challenging question in the combinatorical theory of groups. A counter-
example will not be easy to find because a pseudo-amenable group cannot
contain F2, the free group on two generators, and there are not many groups
that are not amenable and do not contain F2.

Maxim returned to Leeds in 2005 as a Marie Curie Fellow, and we decided
to try again to resolve the above problem. We discovered that one could
reformulate it and several others in terms of what we called “multi-norms”,
and this was the seed from which the theory of multi-norms developed.
Tragically, Maxim Polyakov died in Moscow in January 2006, and the work
[7] that subsequently emerged was prepared in later years. Happily, the
idea that this theory would resolve the above question was correct, and the
following theorem is proved in [8].

We need the notions of a (p, q)-multi-norm and a multi-bounded set; these
will be defined below.

Definition 1.3. Let G be a locally compact group, and take p, q such
that 1 ≤ p ≤ q < ∞. A continuous linear functional Λ on L∞(G) is left
(p, q)-multi-invariant if the set {s ·Λ : s ∈ G} is multi-bounded with respect
to the (p, q)-multi-norm. The group G is left (p, q)-amenable if there exists
a left (p, q)-multi-invariant mean on L∞(G).

The following theorem combines [8, Theorems 8.4 and 9.6].
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Theorem 1.4. Let G be a locally compact group.

(i) Take p, q with 1 ≤ p ≤ q <∞. Then G is amenable if and only if G is
left (p, q)-amenable.

(ii) Take p > 1. Then Lp(G) is injective as a Banach left L1(G)-module
if and only if G is amenable.

1.2. Basic definitions. The theory of multi-norms developed a life of its
own, and it seems to have applications in quite a few different arenas. The
fundamental idea is that we start with a normed space (E, ‖ · ‖) and define
a sequence (‖ · ‖n) of norms, where ‖ · ‖n is a norm on the Cartesian product
En for n ∈ N. Of course certain axioms must be satisfied. This scenario is
reminiscent of the theory of operator spaces, which is now very fashionable,
but it has significant differences.

Here are the basic definitions. We write N for the set of natural numbers,
and set Nn = {1, . . . , n} for n ∈ N; the collection of permutations of the set
Nn is denoted by Sn.

Definition 1.5. Let (E, ‖ · ‖) be a complex normed space. A multi-norm
on the family {E n : n ∈ N} is a sequence (‖ · ‖n : n ∈ N) such that ‖ · ‖n is
a norm on E n for each n ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and
such that the following Axioms (A1)–(A4) are satisfied for each n ∈ N and
x = (x1, . . . , xn) ∈ E n:

(A1)
∥∥(xσ(1), . . . , xσ(n))

∥∥
n

= ‖x‖n (σ ∈ Sn);

(A2) ‖(α1x1, . . . , αnxn)‖n ≤ (maxi∈Nn |αi|) ‖x‖n (α1, . . . , αn ∈ C);

(A3) ‖(x1, . . . , xn, 0)‖n+1 = ‖x‖n;

(A4) ‖(x1, . . . , xn−1, xn, xn)‖n+1 = ‖x‖n.

In this case, (E n, ‖ · ‖n) = ((E n, ‖ · ‖n) : n ∈ N) is a multi-normed space.

We shall sometimes say that (‖ · ‖n) is a multi-norm based on E.
In the case where (E, ‖ · ‖) is a Banach space, each space (E n, ‖ · ‖n) is a

Banach space, and ((E n, ‖ · ‖n) : n ∈ N) is termed a multi-Banach space.
In fact, Axiom (A3) is a consequence of Axioms (A1), (A2), and (A4)

[7, Proposition 2.7].

To obtain a dual multi-norm and a dual multi-Banach space, we replace
Axiom (A4) with a variant, (B4):

(B4) ‖(x1, . . . , xn, xn)‖n+1 = ‖(x1, . . . , xn−1, 2xn)‖n.

In this case, (E n, ‖ · ‖n) = ((E n, ‖ · ‖n) : n ∈ N) is a dual multi-normed
space.

The dual space to a normed space E is denoted by E′, and the closed unit
ball of E is E[1].

41



162 H.G. DALES

Let ‖ · ‖n be a norm on En. Then ‖ · ‖′n is the dual norm on (En, ‖ · ‖n)′

when this latter space is identified with (E′)n. The dual of (En, ‖ · ‖n) is

((E′)n, ‖ · ‖′n). The dual of a multi-normed space is a dual multi-Banach
space, and the dual of a dual multi-normed space is a multi-Banach space.
Thus the second dual of a multi-normed space based on E is a multi-normed
space based on the second dual space E′′. Here we have a clear difference
from the theory of operator spaces; in the latter theory the dual of an oper-
ator space is an operator space.

One can ask: “What are multi-norms good for?”. Here are some answers.

(1) Solving some specific questions – for example, characterizing when
some modules over group algebras are injective, as above; see [8].

(2) Understanding the geometry of Banach spaces that goes beyond the
shape of the unit ball.

(3) Throwing some light on absolutely summing operators.

(4) Giving a theory [7, Chapter 6] of “multi-bounded linear operators”
between Banach spaces; this gives a class of bounded linear opera-
tors that subsumes various known classes, and sometimes gives new
classes.

(5) Giving results about Banach lattices [7, § 6.4].

(6) Giving a theory of decompositions [7, Chapter 7] of Banach spaces,
generalizing known theories.

(7) Giving a theory that “is closed in the category”.

We can only glance at some of these aspects in this review.

1.3. First examples – the maximum and minimum multi-norm. Let
E be a normed space, and let (En, ‖ · ‖n) be either a multi-normed space or
a dual multi-normed space based on E. Then it is a little exercise to see
that

max ‖xi‖ ≤ ‖(x1, . . . , xn)‖n ≤
n∑
i=1

‖xi‖ (1)

for all x1, . . . , xn ∈ E and n ∈ N.
It follows that there are a maximum multi-norm and minimum multi-norm

based on E; they are denoted by (‖ · ‖max
n : n ∈ N) and (‖ · ‖min

n : n ∈ N),
respectively, and they are defined by the property that

‖x‖min
n ≤ ‖x‖n ≤ ‖x‖max

n (x ∈ E n, n ∈ N)

for every multi-norm (‖ · ‖n : n ∈ N) based on E. The formula for ‖ · ‖min
n is:

‖x‖min
n = max

i∈Nn

‖xi‖ (x = (x1, . . . , xn) ∈ E n, n ∈ N) .

It easy to see that there is a maximum multi-norm based on E, but it is not
so easy to obtain a formula for this multi-norm; one might suspect that the
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right-hand side of (1) would be the answer, but this gives not a multi-norm
but a dual multi-norm.

In fact, the dual of ‖ · ‖max
n is the weak 1-summing norm µ1,n (see below)

[7, Theorem 3.33], and hence

‖x‖max
n = sup


∣∣∣∣∣∣
n∑
j=1

〈xj , λj〉

∣∣∣∣∣∣ : µ1,n(λ) ≤ 1

 , (2)

for all x = (x1, . . . , xn) ∈ E n and n ∈ N, where the supremum is taken over
all λ = (λ1, . . . , λn) ∈ (E′)n.

1.4. Matrix descriptions of multi-norms. Let Mm,n denote the linear
space of m×n matrices over the complex numbers, C. We may give Mm,n a
norm by identifying it with the Banach space B(`∞n , `∞m ) of bounded linear
operators from `∞n to `∞m , where `∞n = (`∞n , ‖ · ‖∞) denotes the space Cn

with

‖(α1, . . . , αn)‖∞ = max{|α1| , . . . , |αn|} (α1, . . . , αn ∈ C) .

Let E be a normed space. Then Mm,n acts from En to Em in the obvious
way. Consider a sequence (‖ · ‖n) such that each ‖ · ‖n is a norm on En and
such that ‖x‖1 = ‖x‖ for each x ∈ E.

Theorem 1.6 ([7], Theorem 2.35). This sequence of norms is a multi-
norm if and only if

‖a · x‖m ≤ ‖a : `∞n → `∞m ‖ ‖x‖n
for all m,n ∈ N, a ∈Mm,n, and x ∈ En.

We could calculate ‖a‖ for a ∈ Mm,n in different ways. For example, we
could identify Mm,n with the Banach space B(` pn , `

q
m) for other values of p

and q in [1,∞]. The case where p = q = 1 gives a dual multi-norm. Cases
of more general p and q seem to be rather messy.

1.5. Tensor-norm characterizations. We now explain how multi-norms
correspond to certain tensor norms, and thus relate the theory of multi-
norms to that of tensor products of Banach spaces. In fact, in retrospect,
one can see that one could have started with norms on tensor products and
avoided multi-norm theory, but this would seem to be a loss.

We describe briefly the connection; details are given in [8, § 3]. We write
δi for the sequence (δi,j : j ∈ N) for i ∈ N; c 0 is the Banach space of all null
sequences.



164 H.G. DALES

Definition 1.7. Let E be a normed space. Then a norm ‖ · ‖ on c 0 ⊗ E
is a c 0-norm if ‖δ1 ⊗ x‖ = ‖x‖ for each x ∈ E and if the linear operator
T⊗IE is bounded on (c 0⊗E, ‖ · ‖), with norm at most ‖T‖, for each compact
operator T on E.

In the above definition, we used compact operators T on E, but we could
replace “compact” by “bounded” and obtain an equivalent definition. The
c 0-norms that we obtain are “reasonable cross-norms”, in the sense of [25,
§ 6.1].

Suppose that ‖ · ‖ is a c 0-norm on c 0 ⊗ E, and set

‖(x1, . . . , xn)‖n =
n∑
i=1

δi ⊗ xi (x1, . . . , xn ∈ E, n ∈ N) .

Then (‖ · ‖n : n ∈ N) is a multi-norm based on E.
Let E be a Banach space. Then a norm ‖ · ‖ on c 0 ⊗E satisfies condition

(P) (due to Pisier) of [22, § 2, p. 12] if

‖(T ⊗ IE)(z)‖ ≤ ‖T‖ ‖z‖ (z ∈ c 0 ⊗ E, T ∈ B(c 0)) .

Such norms are exactly the c 0-norms of Definition 1.7, and so the definition
of a multi-normed space corresponds to the theory in [22] of norms on c 0⊗E
satisfying property (P).

A more general and detailed version of the following theorem is given as
[8, Theorem 3.4 and Corollary 3.7].

Theorem 1.8. Let E be a normed space. Then the above construction
defines a bijection from the family of c 0-norms on c 0 ⊗ E to the family of
multi-norms based on E. The maximum and minimum multi-norm struc-
tures based on E correspond to the projective tensor norm ‖ · ‖π and the
injective tensor norm ‖ · ‖ε on c 0 ⊗ E, respectively.

There is an analogous construction that gives a bijection from the family
of “` 1-norms on ` 1 ⊗E” to the family of dual multi-norms based on E; see
[8, Theorem 4.3].

2. Multi-norms and absolutely summing operators

There is a close connection between the theory of multi-norms and that
of absolutely summing operators that we first describe. The latter theory
has been studied by many authors; see the fine texts [11, 12, 15, 20, 25], for
example.
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2.1. The weak p-summing norm. We recall the definition of the weak
p-summing norms on a normed space; the following standard definition was
given in [7, Definition 4.1.1] and [9, § 2.3]. For further discussion, see [11,
12, 15].

Let E be a normed space, and take p ∈ [1,∞) and n ∈ N. Following the
notation of [7, 8, 15], we define µp,n(x) for x = (x1, . . . , xn) ∈ E n by

µp,n(x) = sup


(

n∑
i=1

|〈xi, λ〉|p
)1/p

: λ ∈ E′[1]

 .

Then µp,n is the weak p-summing norm (at dimension n). Now equation (2)
makes sense.

Note that, for all p ∈ [1,∞), n ∈ N, and x = (x1, . . . , xn) ∈ En, we have

µp,n(x) = sup


∥∥∥∥∥∥

n∑
j=1

ζjxj

∥∥∥∥∥∥ : ζ1, . . . , ζn ∈ C,
n∑
j=1

|ζj |p
′ ≤ 1

 , (3)

where p′ is the conjugate index to p.
Let E be a normed space. Take n ∈ N and x = (x1, . . . , xn) ∈ En, and

define

Tx : (ζ1, . . . , ζn) 7→
n∑
j=1

ζjxj , Cn → E .

It follows from (3) that

µp,n(x) =
∥∥∥Tx : ` p

′
n → E

∥∥∥ ; (4)

the map x 7→ Tx, (En, µp,n)→ B(` p
′

n , E), is an isometric linear isomorphism.

2.2. (q, p)-summing operators. Let E and F be Banach spaces, and sup-
pose that 1 ≤ p ≤ q < ∞. We recall that an operator T ∈ B(E,F ) is
(q, p)-summing if there exists a constant C such that(

n∑
i=1

‖Txi‖q
)1/q

≤ C µp,n(x1, . . . , xn) (x1, . . . , xn ∈ E, n ∈ N) .

The smallest such constant C is denoted by πq,p(T ). The set of these
(q, p)-summing operators is denoted by Πq,p(E,F ); it is a linear subspace
of B(E,F ), and (Πq,p(E,F ), πq,p) is a Banach space; we write (Πp(E,F ), πp)
for (Πp,p(E,F ), πp,p).

There is a huge theory of these (q, p)-summing operators. At this point
I should like to remember Joram Lindenstrauss (1936–2012) and Alek-
sander Pe lczyński (1932–2012), two founders of the theory of summing
operators, whom we have recently lost.

42
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The space Πq,p(E,F ) is a component of an operator ideal : see the tremen-
dous theory created by Professor Albrecht Pietsch, especially [24]. It is
an honour that Professor Pietsch was in the audience for this talk in Tartu.

2.3. The (p, q)-multi-norm. Again in retrospect, it seems that the most
important specific multi-norm is the “(p, q)-multi-norm”.

The following definition was first given in [7, § 4.1].

Definition 2.1. Let E be a normed space, and take p, q such that
1 ≤ p ≤ q <∞. For each n ∈ N and x = (x1, . . . , xn) ∈ E n, define

‖x‖(p,q)n = sup


 n∑
j=1

|〈xj , λj〉|q
1/q

: µp,n(λ) ≤ 1

 ,

where the supremum is taken over all λ = (λ1, . . . , λn) ∈ (E′)n.

As noted in [7, Theorem 4.1], (‖ · ‖(p,q)n : n ∈ N) is a multi-norm based on
E; it is called the (p, q)-multi-norm.

Take n ∈ N and x ∈ En. Then it is clear that ‖x‖(p,q1)n ≤ ‖x‖(p,q2)n when

1 ≤ p ≤ q2 ≤ q1 and that ‖x‖(p1,q)n ≤ ‖x‖(p2,q)n when 1 ≤ p1 ≤ p2 ≤ q.
We remark that the (1, 1)-multi-norm (‖ · ‖(1,1)n ) is exactly the maximum

multi-norm (‖ · ‖max
n ), and we note the useful fact that the (p, q) -multi-norm

over E′′, when restricted to E, is the (p, q) -multi-norm over E; this latter
fact is a nice application of the principle of local reflexivity .

A key result from [9, Theorem 2.6] relates (p, q)-multi-norms to the theory
of absolutely summing operators.

Theorem 2.2. Let E be a normed space, and let 1 ≤ p ≤ q < ∞. Then
the (p, q)-multi-norm induces the norm on c 0⊗E given by embedding c 0⊗E
into Πq,p(E

′, c 0).

Indeed, for n ∈ N and x = (x1, . . . , xn) ∈ E n, we have

‖x‖(p,q)n = πq,p(T
′
x : E′ → c 0) . (5)

In the special case in which q = p, we can identify the norm on c 0 ⊗ E
induced by the (p, p)-multi-norm: it is exactly the Chevet–Saphar cross-
norm, called dp, in [12, Chapter 12] and [25, p. 135].

We should like to identify the dual space of (En, ‖ · ‖(p,q)n ) for any p, q with
1 ≤ p ≤ q <∞: an abstract description of this space is given in [7, § 4.1.4],
but we lack a good concrete description of this dual space.
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3. Further examples of multi-norms

3.1. The standard t-multi-norm. Let (Ω, µ) be a measure space, take
r ≥ 1, and consider the Banach space Lr(Ω, µ), with the usual Lr-norm,
which is denoted by ‖ · ‖Lr or just ‖ · ‖. In particular, we concentrate on the
Banach spaces ` r and Lr[0, 1]. It is standard [1, Proposition 6.4.1] that, in
the case where Lr(Ω) is an infinite-dimensional space, we can regard ` r as a
closed, 1-complemented subspace of Lr(Ω).

Now take r, t with 1 ≤ r ≤ t <∞. For each family X = {X1, . . . , Xn} of
pairwise-disjoint measurable subsets of Ω such that X1 ∪ · · · ∪Xn = Ω, we
set

rX((f1, . . . , fn)) =
(
‖PX1f1‖t + · · ·+ ‖PXnfn‖t

)1/t
,

where PX : Lr(Ω)→ Lr(X) is the natural projection. Finally,

‖(f1, . . . , fn)‖[t]n = sup
X
rX((f1, . . . , fn)) .

We see that (‖ · ‖[t]n ) is a multi-norm. This is the standard t-multi-norm
(based on Lr(Ω)); see [7, § 4.2]. In the special case in which t = r, we have
the following representation theorem.

Theorem 3.1 ([8], Theorem 6.1). Let Ω be a measure space, and suppose
that 1 ≤ r < ∞. Then the standard r-multi-norm based on Lr(Ω) induces
the c 0-norm on c 0 ⊗Lr(Ω) which comes from identifying c 0 ⊗Lr(Ω) with a
subspace of the vector-valued Banach space Lr(Ω, c 0).

3.2. The Hilbert multi-norm. Let H be a Hilbert space. For n ∈ N
and each family H = {H1, . . . ,Hn} of closed subspaces of H such that
H = H1 ⊥ · · · ⊥ Hn, we set

rH((x1, . . . , xn)) =
(
‖P1x1‖2 + · · ·+ ‖Pnxn‖2

)1/2
(x1, . . . , xn ∈ H) ,

where Pi : H → Hi for i = 1, . . . , n is the projection, and then set

‖(x1, . . . , xn)‖Hn = sup
H
rH((x1, . . . , xn)) .

Then we obtain a multi-norm (‖ · ‖Hn : n ∈ N) based on H. It is the Hilbert
multi-norm.

However the Hilbert multi-norm is not really a new multi-norm because
we have the following theorem [7, Theorem 4.19].

Theorem 3.2. Let H be an infinite-dimensional Hilbert space. Then

‖x‖Hn = ‖x‖(2,2)n (x ∈ Hn, n ∈ N) .
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3.3. Banach lattice multi-norms. Let (E, ‖ · ‖) be a complex Banach
lattice. Thus E is the complexification of a real Banach lattice ER. For the
theory of Banach lattices, see [2, 21, 23], for example; there is a summary
of the properties of Banach lattices that seem to be relevant for multi-norm
theory in [7, § 1.3].

For example, the Banach spaces Lr(Ω) (for r ≥ 1), L∞(Ω), or C(K) (for a
compact space K), with the usual norms and the obvious lattice operations,
are all (complex) Banach lattices.

Definition 3.3 ([7], Definition 4.41). Let (E, ‖ · ‖) be a Banach lattice.
For n ∈ N and x1, . . . , xn ∈ E, set

‖(x1, . . . , xn)‖Ln = ‖ |x1| ∨ · · · ∨ |xn| ‖
and

‖(x1, . . . , xn)‖DLn = ‖ |x1|+ · · ·+ |xn| ‖ .

Then (En, ‖ · ‖Ln) is a multi-Banach space; (‖ · ‖Ln) is the Banach lattice

multi-norm. Also (En, ‖ · ‖DLn ) is a dual multi-Banach space; (‖ · ‖DLn ) is the
dual Banach lattice multi-norm.

For each n ∈ N, the dual of the norm ‖ · ‖Ln on En is the norm ‖ · ‖DLn on

(E′)n, and the dual of the norm ‖ · ‖DLn on En is the norm ‖ · ‖Ln on (E′)n.
It follows easily that the second dual of the lattice multi-norm based on E
is exactly the lattice multi-norm based on E′′.

For example, it follows from Theorem 3.1 that, for each n ∈ N and
f1, . . . , fn ∈ Lr(Ω), we have

‖(f1, . . . , fn)‖[r]n = ‖ |f1| ∨ · · · ∨ |fn| ‖ = ‖(f1, . . . , fn)‖Ln ,
and so the standard r-multi-norm coincides with the Banach lattice multi-
norm on Lr(Ω).

When r = 1, it is well-known that L1(Ω) ⊗̂E = L1(Ω, E) for any Banach
space E, and so the standard 1-multi-norm on L1(Ω) is the maximum multi-
norm. Thus, for each n ∈ N and f1, . . . , fn ∈ L1(Ω), we have

‖(f1, . . . , fn)‖max
n = ‖ |f1| ∨ · · · ∨ |fn| ‖ = ‖(f1, . . . , fn)‖[1]n = ‖(f1, . . . , fn)‖Ln .

3.4. The [p, q]-concave multi-norm on Banach lattices. In [3], we in-
troduced a new class of multi-norms on general Banach lattices, and related
some of these to standard t-multi-norms: these multi-norms are of interest
in their own right, and also helped us to settle some questions about the
equivalence of the (p, q)-multi-norms and the standard t-multi-norms on ` r,
as we discuss below.

Let (E, ‖ · ‖) be a (complex) Banach lattice. We write |x| for the modulus
of an element x ∈ E. Take n ∈ N and an n-tuple (x1, . . . , xn) in En. Recall
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that, for each p ≥ 1, we can define the element
(∑n

j=1 |xj |p
)1/p

∈ E by the

Krivine calculus; see [7, § 1.3.1] and [21, II.1.d].

Definition 3.4. Let (E, ‖ · ‖) be a Banach lattice, take p, q ≥ 1, and take
n ∈ N. For each x ∈ En, define

‖x‖[p,q]n = sup


 n∑
j=1

|〈xj , λj〉|q
1/q

:

∥∥∥∥∥∥∥
 n∑
j=1

|λj |p
1/p

∥∥∥∥∥∥∥ ≤ 1

 ,

where the supremum is taken over λ1, . . . , λn ∈ E′.

As noted in [3, Theorem 3.4], (‖ · ‖[p,q]n : n ∈ N) is a multi-norm based on
E whenever 1 ≤ p ≤ q <∞; it is called the (p, q)-concave multi-norm based

on E. It is easy to see that ‖x‖[p,q]n ≤ ‖x‖(p,q)n (x ∈ En, n ∈ N).
These multi-norms are closely related to the (q, p)-concave operators on

E that are described on [12, p. 330].
We have the following key relationship between a standard t-multi-norm

and certain concave multi-norms.

Theorem 3.5 ([3], Theorem 3.9). Suppose that 1 ≤ r ≤ t < ∞, and
define v by the formula 1/v = 1/r− 1/t. Then the standard t-multi-norm is
equal to the [1, v′]-concave multi-norm on ` r.

3.5. A representation theorem. In all mathematical theories we would
like to find a “universal representation theorem” that gives a rather concrete
representation for all objects in an axiomatically-defined class. Thus, for
example, the great Gel’fand–Naimark theorem shows how to represent each
axiomatically-defined C∗-algebra as a norm-closed, ∗-closed subalgebra of
the C∗-algebra B(H) for some Hilbert space H [5, Theorem 3.2.29]. Again,
let E be a normed space. An operator space based on E is a sequence (‖ · ‖n)
of “matricial norms”, where ‖ · ‖n is defined on Mn(E), the space of n× n-
matrices with terms in E, such that the sequence satisfies certain “Ruan’s
axioms”; see [4, 13, 14], for example. The concrete representation of an
abstract operator space is given by Ruan’s theorem, which represents each
such system as a closed subspace of B(H) for some Hilbert space H, the
matricial norms being recovered in a canonical way. These representation
theorems are enormously useful.

There is a “universal representation theorem” for multi-Banach spaces
and for dual multi-Banach spaces; for example, it represents an arbitrary
multi-norm as closed subspace of a Banach lattice in such a way that the
multi-norm is a restriction to the subspace of a Banach lattice multi-norm.
However it must be confessed that, so far, this representation theorem has
not proved to be very useful.
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Clause (i) of the following theorem is basically a theorem of Pisier, as given
in a thesis of a student, Marcolino Nhani [22, Théorème 2.1]; it shows that
our multi-normed spaces are the “sous-espaces de treillis” of [22, Définition
3.1]. There is a simplified proof in [10]; clause (ii) is a new dual version from
[10].

Theorem 3.6. (i) Let (En, ‖ · ‖n) be a multi-Banach space. Then there is
a Banach lattice X, a closed subspace Y of X, and an isometric isomorphism
J : E → Y such that

‖(Jx1, . . . , Jxn)‖Ln = ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E, n ∈ N) .

(ii) Let (En, ‖ · ‖n) be a dual multi-Banach space. Then there is a Ba-
nach lattice X, a closed subspace Y of X, and an isometric isomorphism
J : E → X/Y such that

‖(Jx1, . . . , Jxn)‖DLn = ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E, n ∈ N) .

3.6. An associated sequence. Let E be a normed space, and let (‖ · ‖n)
be a multi-norm based on E. We can define a rate of growth sequence
(ϕn(E)) by setting

ϕn(E) = sup{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ E[1]} (n ∈ N) .

In particular (ϕmax
n (E)) is the sequence associated with the maximum multi-

norm based on E.
Trivially, 1 ≤ ϕn(E) ≤ n for all n ∈ N and

ϕm+n(E) ≤ ϕm(E) + ϕn(E)

for all m,n ∈ N.
The sequence (ϕn(E)) depends on the multi-norm that is based on E

(even though the notation does not show this), but the sequence (ϕmax
n (E))

is intrinsic to the Banach space E; it can be shown quite easily that ϕmax
n (E)

is equal to

sup


n∑
j=1

‖λj‖ :
n∑
j=1

|〈x, λj〉| ≤ 1 (x ∈ E[1])


for each n ∈ N, where λ1, . . . , λn ∈ E′.

The following is a natural example.

Theorem 3.7. (i) For each p ∈ [1, 2], we have ϕmax
n (` p) = n1/p (n ∈ N).

(ii) For each p ∈ [2,∞], there is a constant Cp such that
√
n ≤ ϕmax

n (` p) ≤ Cp
√
n (n ∈ N) .

Further, C2 = 1 and C∞ =
√

2.
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For this and further, related examples, see [7, § 3.6].
In fact, the bound

√
n of the above example is a general truth; the follow-

ing theorem follows from Dvoretzky’s famous theorem on almost spherical
sections.

Theorem 3.8 ([7], Theorem 3.58). Let E be an infinite-dimensional
normed space. Then

√
n ≤ ϕmax

n (E) ≤ n (n ∈ N) .

The rate of growth constants ϕ
(p,q)
n (E) associated with a (p, q)-multi-norm

are equal to known constants.

Theorem 3.9. Let E be a Banach space, and suppose that 1 ≤ p ≤ q <∞
and n ∈ N. Then ϕ

(p,q)
n (E) = π

(n)
q,p (E′).

4. Multi-bounded operators

Let E and F be Banach spaces. Then of course the “natural morphisms”
form the Banach space B(E,F ) of all bounded, equivalently, continuous,
operators from E to F . Now suppose that (E n, ‖ · ‖n) and (F n, ‖ · ‖n) are
multi-Banach spaces based on E and F , respectively. What are the “natural
morphisms”? Do they form a natural multi-Banach space?

4.1. Definitions. Of course, the “natural morphisms” will be the “multi-
bounded operators”; we first define these.

Definition 4.1 ([7], §§ 5.2, 6.1). Let (E n, ‖ · ‖n) be a multi-normed space.
A subset B of E is multi-bounded if

cB := sup
n∈N

sup {‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ B} <∞ .

A sequence (xn) in E is multi-null if, for each ε > 0, there exists n0 ∈ N
such that

sup{‖(xn+1, . . . , xn+k)‖ : k ∈ N} < ε (n ≥ n0) .

The concept of “multi-null sequence” captures some well-known properties
in our examples. For example, let E be a Banach lattice, and consider the
Banach lattice multi-norm based on E. Then a multi-null sequence (xn) is
“order-null”, in the sense that there is a decreasing sequence (un) in E+

such that |xn| ≤ un (n ∈ N) and infn∈N un = 0 in E+ [7, Theorem 5.14]; for
many Banach lattices, including the examples Lr(Ω), the converse is true [7,
Theorem 5.15]. For Banach lattices E which are “monotonically bounded”,
in the sense that every increasing net in E+

[1] is bounded above, a subset

B is multi-bounded (with respect to the Banach lattice multi-norm) if and
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only if it is order-bounded, in the sense that there exists y ∈ E+ such that
|x| ≤ y (x ∈ B).

Definition 4.2 ([7], §§ 6.1.3, 6.1.4). Let (E n, ‖ · ‖n) and (F n, ‖ · ‖n) be
two multi-normed spaces. An operator T ∈ B(E,F ) is multi-bounded if
T (B) is multi-bounded in F whenever B is multi-bounded in E, and T
multi-continuous if (Txn) is a multi-null sequence in F whenever (xn) is a
multi-null sequence in E.

As one would expect, a linear map from E to F is multi-continuous if and
only if it is multi-bounded [7, Theorem 6.14].

The set of multi-bounded operators from E to F is a linear subspace
M(E,F ) of B(E,F ).

Definition 4.3 ([7], § 6.1.3). Let (E n, ‖ · ‖n) and (F n, ‖ · ‖n) be two multi-
normed spaces, and let T ∈M(E,F ). Then

‖T‖mb = sup{cT (B) : B ⊂ E, cB ≤ 1} .

We must check that ‖T‖mb < ∞ for each T ∈ M(E,F ). Explicitly, we
have

‖T‖mb = sup
n

sup

{‖(Tx1, . . . , Txn)‖n
‖(x1, . . . , xn)‖n

: (x1, . . . , xn) 6= 0

}
<∞ , (6)

and so T is multi-bounded if and only if ‖T‖mb = supn∈N
∥∥T (n)

∥∥ <∞, where

T (n) is the nth-amplification of T . In this case, we have

‖(Tx1, . . . , Txn)‖n ≤ ‖T‖mb ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E, n ∈ N) .

Let N (E,F ) denote the Banach space of nuclear operators from E to F ,
taken with the nuclear norm ν.

Theorem 4.4 ([7], Theorem 6.15). Let (E n, ‖ · ‖n) and (F n, ‖ · ‖n) be two
multi-normed spaces, and suppose that F is a Banach space. Then

(M(E,F ), ‖ · ‖mb)
is a Banach space. Further, N (E,F ) ⊂ M(E,F ), and ‖T‖mb ≤ ν(T ) for
each T ∈ N (E,F ).

We can haveM(E,F ) = B(E,F ) andM(F,E) = N (F,E) for two multi-
normed spaces (E n, ‖ · ‖n) and (F n, ‖ · ‖n), and so there is no “multi-Banach
isomorphism theorem”.

We find it to be interesting to determine the space M(E,F ) for various
examples of multi-normed spaces (E n, ‖ · ‖n) and (F n, ‖ · ‖n). For example,
suppose that E and F are Banach lattices, and we consider the lattice multi-
norms based on E and F . An operator T ∈ B(E,F ) is order-bounded if T (B)
is order-bounded in F whenever B is an order-bounded set in F , and T is
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regular if it is a linear combination of positive operators from E to F ; see
[7, § 1.3.4]. The spaces of regular and order-bounded operators are denoted
by Br(E,F ) and Bb(E,F ), respectively; clearly Br(E,F ) ⊂ Bb(E,F ), and
often (but not always) these two spaces are the same.

In the case where F = E, the spaces Br(E) and Bb(E) are Banach sub-
algebras of B(E); I find these examples to be interesting and surprisingly
little studied; they are not mentioned in [5].

Here is a typical theorem.

Theorem 4.5 ([7], § 6.4). (i) Let E and F be Banach lattices, and con-
sider the lattice multi-norms based on E and F . Then Bb(E,F ) ⊂M(E,F );
in the case where F is monotonically bounded, M(E,F ) = Bb(E,F ).

(ii) Let E = ` r and F = ` s, where r, s ≥ 1, and consider the Banach
lattice or, equivalently, the standard r- and s-multi-norms on E and F ,
respectively. Then M(E,F ) = Br(E,F ).

More generally, one could consider the spaces E = ` r and F = ` s with
standard t- and u-multi-norms, respectively, where 1 ≤ r ≤ t < ∞ and
1 ≤ s ≤ u <∞. Is the space M(E,F ) of interest in this case?

4.2. The multi-bounded multi-norm. Let (E n, ‖ · ‖n) and (F n, ‖ · ‖n)
be two multi-normed spaces. As we suggested, we would wish there to be a
natural multi-norm based on M(E,F ). In fact, it is given as follows.

Definition 4.6 ([7], Definition 6.18). Let (En, ‖ · ‖n) and (Fn, ‖ · ‖n) be
two multi-normed spaces, and take n ∈ N and T1, . . . , Tn ∈M(E,F ). Then

‖(T1, . . . , Tn)‖mbn = sup{cT1(B)∪···∪Tn(B) : B ⊂ E, cB ≤ 1} .

Here is a somewhat more explicit formula for ‖(T1, . . . , Tn)‖mbn :

‖(T1, . . . , Tn)‖mbn = sup ‖(Tixj : i ∈ Nn, j ∈ Nk)‖nk ,
where the supremum is taken over x1, . . . , xk ∈ E with ‖(x1, . . . , xk)‖k ≤ 1.

The theorem that follows easily is the following.

Theorem 4.7 ([7], Theorem 6.20). Let (En, ‖ · ‖n) and (Fn, ‖ · ‖n) be two

multi-normed spaces. Then ‖ · ‖mbn is a norm on the linear space M(E,F )n,
and

((M(E,F )n, ‖ · ‖mbn ) : n ∈ N)

is a multi-normed space with ‖T‖mb1 = ‖T‖mb; it is a multi-Banach space in
the case where F is a Banach space.

44
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There is a natural concept of a “multi-Banach algebra”; the obvious ex-

ample is the multi-normed space (M(E,F )n, ‖ · ‖mbn ), with the “product”
defined by

(S1, . . . , Sn) · (T1, . . . , Tn) = (S1T1, . . . , SnTn)

for S1, . . . , Sn, T1, . . . , Tn ∈ M(E,F )) There are other natural examples,
for example related to group algebras. It is hoped that this idea will be
investigated in the future.

5. Equivalences of multi-norms

The natural notion of the equivalence of two multi-norms was given in [7,
§ 2.2.4]. We would like to know when two (p, q)-multi-norms are mutually
equivalent, especially on the Banach spaces of the form Lr(Ω); also, it seems
that a (p, q)-multi-norm is rarely equivalent to a standard t-multi-norm, and
we conjectured in [9] that this is never the case. The investigation of these
questions seems to involve some quite delicate calculations in the classical
theory of absolutely summing operators.

Some preliminary results on equivalences were given in [7]. The question
was taken up more seriously in [9], and rather a large number of results was
obtained; some of the remaining questions are resolved in [3]. However one
or two aggravating points still remain open.

5.1. Definitions. We first give the basic definitions.

Definition 5.1. Let (E, ‖ · ‖) be a normed space. Then EE is the family of

all multi-norms based on E. Suppose that (‖ · ‖1n : n ∈ N) and (‖ · ‖2n : n ∈ N)
belong to EE . Then

(‖ · ‖1n) ≤ (‖ · ‖2n) if ‖x‖1n ≤ ‖x‖2n (x ∈ E n, n ∈ N) ,

and (‖ · ‖2n : n ∈ N) dominates (‖ · ‖1n : n ∈ N), written (‖ · ‖1n) 4 (‖ · ‖2n), if
there is a constant C > 0 such that

‖x‖1n ≤ C ‖x‖2n (x ∈ E n, n ∈ N) ; (7)

the two multi-norms are equivalent , written

(‖ · ‖1n : n ∈ N) ∼= (‖ · ‖2n : n ∈ N) or (‖ · ‖1n) ∼= (‖ · ‖2n) ,

if each dominates the other.

Clearly equivalent multi-norms have equivalent rates of growth (via the
sequences (ϕn(E))), but the converse does not hold.
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5.2. The Hilbert space multi-norm. We first give a result about the
Hilbert space multi-norm based on a Hilbert space H. We have noted that
it was proved in [7] that the Hilbert space multi-norm is equal to the (2, 2)-
multi-norm; at that stage we guessed that it would be equivalent to the
maximum multi-norm because we could not think of any larger multi-norm.
This turned out to be correct; the proof in [8, §4.1] involves the “little
Grothendieck theorem” and obtains the best constant of equivalence.

Theorem 5.2. Let H be an infinite-dimensional, complex Hilbert space.
Then

‖x‖Hn = ‖x‖(2,2)n ≤ ‖x‖max
n ≤ 2√

π
‖x‖(2,2)n (x ∈ Hn, n ∈ N) ;

the constant 2/
√
π is best-possible in this inequality.

One can fix n ∈ N and try to find the best constant cn such that

‖x‖max
n ≤ cn ‖x‖(2,2)n (x ∈ Hn) .

It is not too hard to see that c1 = c2 = 1, but the calculation of c3 seems to
be very challenging; with a lot of effort, it was discovered in [8, § 4.1] that
c3 = 1 and that c4 > 1; this seems to give some new information about the
geometry of Hilbert spaces.

5.3. Equivalence of two (p, q)-multi-norms. Let E be a normed space,
and take p, q with 1 ≤ p ≤ q < ∞. The question of the equivalence of two
(p, q)-multi-norms on E can be reduced to a question about (q, p)-summing
operators from E.

Theorem 5.3 ([8], Corollary 2.9). Let E be a Banach space, and suppose
that 1 ≤ p1 ≤ q1 < ∞ and 1 ≤ p2 ≤ q2 < ∞. Then the following are
equivalent:

(a) (‖ · ‖(p1,q1)n : n ∈ N) ∼= (‖ · ‖(p2,q2)n : n ∈ N) on E;

(b) Πq1,p1(E′, c 0) = Πq2,p2(E′, c 0) .

One might expect that one could now just consult the classical literature
to determine when clause (b), above, holds. However it seems that earlier
theory gives only some partial results.

Look at the “triangle” T = {(p, q) : 1 ≤ p ≤ q <∞}. For c ∈ [0, 1), look
at the curve Cc:

Cc =

{
(p, q) ∈ T :

1

p
− 1

q
= c

}
.

Take r ∈ (1,∞). Then the curve C1/r meets the line p = 1 at the point
(1, r′), and the union of these curves is T .
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Two points P1 = (p1, q1) and P2 = (p2, q2) in T are equivalent for a normed

space E if the two corresponding multi-norms (‖ · ‖(p1,q1)n ) and (‖ · ‖(p2,q2)n )
based on E are equivalent.

Our first main question is: When are two points in T equivalent for ` r

(where r ≥ 1)?
The following is a fairly easy consequence of the theory of absolutely

summing operators, as given in [12, Theorem 10.4], for example.

Theorem 5.4. Let E be a normed space, and suppose that (p1, q1) and

(p2, q2) belong to T . Then (‖ · ‖(p2,q2)n ) ≤ (‖ · ‖(p1,q1)n ) whenever both q1 ≤ q2
and 1/p1 − 1/q1 ≤ 1/p2 − 1/q2.

The following calculation gives us a start. It will show non-equivalence
between some (p, q)-multi-norms.

We calculate ‖(δ1, . . . , δn)‖(p,q)n acting on ` r (for r ≥ 1 and (p, q) ∈ T ).
The answer is:

n1/r+1/q−1/p when p < r and 1/p− 1/q ≤ 1/r,

1 when 1/p− 1/q > 1/r,

n1/q when p ≥ r .


There are similar calculations involving ‖(f1, . . . , fn)‖(p,q)n , where

fi =
1

n1/r
(ζ−i, ζ−2i, . . . , ζ−ni, 0, 0, . . . )

and ζ = exp(2πi/n).
The techniques used in the proofs of equivalence include the following.

First, the generalized Hölder’s inequality gives the next lemma; here E is
any Banach space.

Lemma 5.5. Take p, q1, q2 such that 1 ≤ p ≤ q1 < q2. Then, for each

x = (x1, . . . , xn) ∈ En, the number ‖x‖(p,q2)n is equal to

sup

‖(ζ1x1, . . . , ζnxn)‖(p,q1)n :

n∑
j=1

|ζj |u ≤ 1

 ,

where u satisfies 1/u = 1/q1 − 1/q2.

Second, the famous Khintchine’s inequality gives the following involving
the Rademacher functions rn. See [1, Theorem 6.2.3], for example.
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Theorem 5.6. For each u > 0, there exist constants Au and Bu such
that

Au

 n∑
j=1

|αj |2
1/2

≤

∫ 1

0

∣∣∣∣∣∣
n∑
j=1

αjrj(t)

∣∣∣∣∣∣
u

dt

1/u

≤ Bu

 n∑
j=1

|αj |2
1/2

for all α1, . . . , αn ∈ C and all n ∈ N.

Third, we need of course to use a result connected with Grothendieck’s
constant KG; we use the following factorization theorem of Grothendieck
from [12, Lemma 2.23], for example.

Theorem 5.7. Let F = Ls(Ω), where Ω is a measure space and s ≥ 1,
and let n ∈ N. Take u > s and u = 2 in the cases where s > 2 and
s ∈ [1, 2], respectively. Then there is a constant Ku > 0 such that, for each
λ = (λ1, . . . , λn) ∈ Fn with µ1,n(λ) = 1, there exist ζ1, . . . , ζn ∈ C and
ν = (ν1, . . . , νn) ∈ Fn such that:

(i) λj = ζjνj (j ∈ Nn) ;

(ii)
∑n

j=1 |ζj |u ≤ 1 ;

(iii) µu′,n(ν) ≤ Ku .

In the case where s ∈ [1, 2], we can take Ku = KG.

Finally, we need the identification of the spaces Πq,p(H) for a Hilbert
space H in terms of various Schatten classes, essentially as given in [12]. For
details, see [9, Theorem 3.15].

These preliminaries allow us to obtain a full solution of the equivalence
question when r = 1 and when r ≥ 2. Here is the solution when r ≥ 2; see
also Figure 1.

Theorem 5.8. Let Ω be a measure space such that E := Lr(Ω) is an
infinite-dimensional space, where r ≥ 2. Then the triangle T is decomposed
into the following (mutually disjoint) equivalence classes:

(1) the region Tmin := Ar = {(p, q) ∈ T : 1/p− 1/q ≥ 1/2};
(2) the curves Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ 2}, for c ∈ (0, 1/2);

(3) the line segment Tmax := {(p, p) : 1 ≤ p ≤ 2};
(4) the singletons T(p,q) := {(p, q)} for (p, q) ∈ T with p > 2.

Moreover:

(5) there is a constant K > 0 such that

‖ · ‖min
n ≤ ‖ · ‖(p,q)n ≤ ‖ · ‖(1,2)n ≤ K ‖ · ‖min

n (n ∈ N) ,

and so the (p, q)-multi-norm is equivalent to the minimum multi-
norm for E, for each (p, q) ∈ Tmin ;

45
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(6) for each c ∈ (0, 1/2) and each (p, q) ∈ Tc, we have

‖ · ‖(2,2/(1−2c))n ≤ ‖ · ‖(p,q)n ≤ ‖ · ‖(1,1/(1−c))n ≤ KG ‖ · ‖(2,2/(1−2c))n (n ∈ N) ;

(7) for each (p, p) ∈ Tmax, the (p, p)-multi-norm is equivalent to the max-
imum multi-norm for E, and the (1, 1)-multi-norm is equal to the
maximum multi-norm.

p

q

(1, 1)

2

2

Tc

T01
1−c

T(p,q)

Tmin

Figure 1. The various mutually disjoint equivalence classes
of (p, q)-multi-norms on Lr(Ω) for r ≥ 2.

p

q

(1, 1) r

Tc when c ∈ (0, 1/2]Tmax

T(p,q)
Tmin

2 Tc when c ∈ (1/2, 1/r)

xc

uc

Lc ⊂ Tc

r′

2

Figure 2. The various mutually inequivalent sets of (p, q)-
multi-norms on Lr(Ω) for 1 < r < 2.
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The corresponding picture in the more difficult case in which 1 < r < 2
is the following. Here our knowledge is incomplete. Consider the following
sets and Figure 2:

Tmin = {(p, q) ∈ T : 1/p− 1/q ≥ 1/r};
Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ r}∪{(p, uc) : r ≤ p ≤ xc} where 1/r−1/uc = c

and 1/xc − 1/uc = 1/2 for some c ∈ (1/2, 1/r);

the curves Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ r} for some c ∈ (0, 1/2];

the line segment Tmax := {(p, p) : 1 ≤ p < r};
the singletons T(p,q) := {(p, q)} for (p, q) ∈ T with either p = q = r or

both p > r and 1/p− 1/q < 1/2.

No two points in distinct sets are equivalent, and it may well be that
these are exactly the equivalence classes. However, we cannot say whether
the points (r, uc) and (xc, uc) are equivalent when 1/2 < c < 1/r. Now
consider the points on the curve Cc with 1 ≤ p ≤ r; the left-hand point of
this curve is (1, 1/(1− c)), and each such point with 1 ≤ p < r is equivalent
to (1, 1/(1 − c)). This leaves open the question whether the point (r, uc) is
equivalent to (1, 1/(1−c)). An old example of Kwapień [19] shows that this is
not the case for c = 0, and it is proved in [3] that it is true for c ∈ (1/2, 1/r),
but we do not know what happens when c ∈ (0, 1/2].

5.4. Equivalence of a (p, q)-multi-norm and the standard t-multi-
norm. Fix the space ` r, where r ≥ 1, and fix t ≥ r, so the standard
t-multi-norm on ` r is defined. We wish to determine the two sets

Br,t :=
{

(p, q) ∈ T : (‖ · ‖[t]n ) 4 (‖ · ‖(p,q)n )
}

and

Dr,t :=
{

(p, q) ∈ T : (‖ · ‖(p,q)n ) 4 (‖ · ‖[t]n )
}
.

Clearly there is a (p, q)-multi-norm which is equivalent to the standard
t-multi-norm on ` r if and only if these regions have a non-empty intersection,
and so we wish to determine these two sets.

First, it is easy to see that

Br,t = {(p, q) ∈ T : 1/p− 1/q ≤ 1/r − 1/t, q ≤ t} .
However it is harder to determine the set Dr,t. Again this is rather easy in
the case where r ≥ 2: we have

Dr,t = {(p, q) ∈ T : 1/p− 1/q ≥ 1/2} ,
and so the the two sets Br,t and Dr,t are indeed disjoint.

Now suppose that 1 < r < 2, and define v by 1/v = 1/r − 1/t. Again,
provided that v > 2, the (p, q)-multi-norms on ` r are never equivalent to the
standard t-multi-norm on ` r.
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p

q

(1, 1)

Br,t

2

(r, t)

Dr,t

v′

Figure 3. The set Br,t and (the possible range for) the set
Dr,t when 1 < r < 2, t ≥ r, and 1/r − 1/t ≤ 1/2. When
r ≥ 2, the set Dr,t contains the dotted line.

But now we finally come to the case where 1 < r < 2 and v ≤ 2. Here we
can use the notion of [p, q]-concave multi-norms and some deep theorems of
Maurey given in [12] to see that{

(p, q) ∈ T :
1

p
− 1

q
≥ 1

r
− 1

t

}
⊂ Dr,t ⊂

{
(p, q) ∈ Cr,t :

1

p
− 1

q
≥ 1

2

}
.

The situation is shown in the next diagram:

p

q

(1, 1)

Br,t

2

v′

(r, t)

Dr,t

Figure 4. The set Br,t and (the possible range for) the set
Dr,t when 1 < r < 2, t ≥ r, and 1/r − 1/t > 1/2

Thus we see that, in the case where 1 < r < 2 and 1/r − 1/t > 1/2, the
points (p, q) such that 1/p− 1/q = 1/r − 1/t and 1 ≤ p ≤ r are indeed such
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that the (p, q)-multi-norm is equivalent to the standard t-multi-norm on ` r,
thus refuting a conjecture in [9].

6. Decompositions and multi-duals

We conclude with some remarks about decompositions of Banach spaces,
taken from [7, Chapter 7]. This theory was developed as a step towards
finding a good notion of a “multi-dual space”. Throughout E is a Banach
space.

6.1. Decompositions. Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decompo-
sition of E. Then the decomposition is hermitian if

‖ζ1x1 + · · ·+ ζkxk‖ ≤ ‖x1 + · · ·+ xk‖
whenever |ζ1| . . . , |ζk| ≤ 1 and x1 ∈ E1, . . . , xk ∈ Ek.

The reason for this terminology is that the decomposition is hermitian if
and only if the projections Pj : E → Ej are each hermitian operators (in the
sense of numerical range theory).

For example, take p ∈ [1,∞] with p 6= 2, and let ` p = E1 ⊕ · · · ⊕ Ek be
an hermitian decomposition. Then there exist subsets S1, . . . , Sk of N such
that Ej = ` p(Sj) (j ∈ Nk).

We now consider decompositions related to multi-norms.

Definition 6.1. Let (En, ‖ · ‖n) be a multi-normed space, let k ∈ N, and
let E = E1⊕· · ·⊕Ek be a direct sum decomposition of E. The decomposition
is small (with respect to the multi-norm) if

‖P1x1 + · · ·+ Pkxk‖ ≤ ‖(x1, . . . , xk)‖k (x1, . . . , xk ∈ E) ,

and the decomposition is orthogonal (with respect to the multi-norm) if

‖(y1, . . . , yj)‖j = ‖(x1, . . . , xk)‖k
whenever x1 ∈ E1, . . . , xk ∈ Ek and there is a partition {Sj : j ∈ Nk} of Nn
such that yj =

∑{xi : i ∈ Sj} for each j ∈ Nk.

Let E = E1 ⊕ · · · ⊕ Ek be an orthogonal decomposition of E. Then
certainly

‖(x1, . . . , xk)‖k = ‖x1 + · · ·+ xk‖ (x1 ∈ E1, . . . , xk ∈ Ek) .
It is a little exercise to see that a small decomposition is always an orthog-

onal decomposition and that an orthogonal decomposition is an hermitian
decomposition of the Banach space E. It is an aggravating fact that I do
not know an example of an orthogonal decomposition that is not a small
decomposition; if the two concepts were always the same the theory would
be cleaner.

Here are some examples.

46
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Theorem 6.2. Let K be a compact space, and let C(K) = E1 ⊕ · · · ⊕Ek
be a direct sum decomposition of C(K). Then the following are equivalent:

(a) Ej = C(Kj) (j ∈ Nk) for some partition {K1, . . . ,Kk} of K into
clopen subspaces ;

(b) the decomposition is small with respect to the lattice multi-norm ;

(c) the decomposition is orthogonal with respect to the lattice multi-norm ;

(d) the decomposition is hermitian.

Theorem 6.3. Let H be a Hilbert space, and let H = H1⊕ · · · ⊕Hk be a
direct sum decomposition of H. Then the following are equivalent:

(a) the decomposition is orthogonal in the classical sense ;

(b) the decomposition is small with respect to the Hilbert multi-norm ;

(c) the decomposition is orthogonal with respect to the Hilbert multi-norm ;

(d) the decomposition is hermitian.

Now suppose that E is a Banach lattice and that we are considering the
lattice multi-norm based on E. It is easy to see that every band decomposi-
tion of E is a small decomposition, and hence an orthogonal decomposition.
I wondered if the converse of this statement held: if so, the concepts of
“band decomposition” and “orthogonal decomposition with respect to the
lattice multi-norm” would coincide for Banach lattices. This required the
following theorem; it was a surprise to me that the result was not standard
in the Banach-lattice literature, but this seemed not to be the case. Happily,
I asked the late Nigel Kalton if the result were true, and he provided a very
elegant new proof; the result follows from the following theorem.

Theorem 6.4. Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decomposition of
a Banach lattice E. Suppose that

‖x1 + · · ·+ xk‖ = ‖ |x1| ∨ · · · ∨ |xk| ‖ (xj ∈ Ej , j ∈ Nk) .

Then the decomposition is a band decomposition.

This provides the following result.

Theorem 6.5. Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decomposition of
a Banach lattice E. Then the following are equivalent:

(a) the decomposition is orthogonal with respect to the lattice multi-norm;

(b) the decomposition is small with respect to the lattice multi-norm;

(c) the decomposition is a band decomposition.

In fact, Kalton [17, Theorems 5.4 and 5.5] proved the following stronger
and considerably deeper result.
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Theorem 6.6. Let E = F⊕G be a direct sum decomposition of a Banach
lattice E.

(i) Suppose that the decomposition is hermitian. Then

‖x+ y‖ =
∥∥∥(|x|2 + |y|2)1/2

∥∥∥ (x ∈ F, y ∈ G) .

(ii) Suppose that, for some p ∈ [1,∞) with p 6= 2, we have

‖x+ y‖ =
∥∥∥(|x|p + |y|p)1/p

∥∥∥ (x ∈ F, y ∈ G) .

Then the decomposition is a band decomposition.

6.2. Multi-dual spaces. We now consider how to form the “multi-dual”
of a multi-normed space.

Let (En, ‖ · ‖n) be a multi-normed space. It is tempting to regardM(E,C)
as the “multi-dual” of the space E. However recall that M(E,C) = E′

when we regard C as having its unique multi-norm structure, and that, as a
multi-normed space, M(E,C) has just the minimum multi-norm. Thus the
approach of using this multi-normed space as a “multi-dual” is not satisfac-
tory.

A second temptation is to look at the family ((E′)n, ‖ · ‖′n) for a multi-

normed space (En, ‖ · ‖n), where ‖ · ‖′n is the dual of the norm ‖ · ‖n. But

this is an even worse failure: (‖ · ‖′n : n ∈ N) is a dual multi-norm, not a
multi-norm, on {(E′)n : n ∈ N}.

In [7], we give a different approach, using the notion of orthogonal de-
compositions. It is somewhat complicated to describe even the definition of
the “multi-dual of a multi-normed space” (maybe the theory can be simpli-
fied?), and we conclude by merely giving one theorem.

Theorem 6.7. Take p ≥ 1 with conjugate index q. Then the multi-dual

of ((` p)n, ‖ · ‖[p]n ) is ((` q)n, ‖ · ‖[q]n ).
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