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Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations
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We use density functional theory to calculate the electronic band structures, cohesive energies, phonon
dispersions, and optical absorption spectra of two-dimensional In2X2 crystals, where X is S, Se, or Te. We identify
two crystalline phases (α and β) of monolayers of hexagonal In2X2, and show that they are characterized by
different sets of Raman-active phonon modes. We find that these materials are indirect-band-gap semiconductors
with a sombrero-shaped dispersion of holes near the valence-band edge. The latter feature results in a Lifshitz
transition (a change in the Fermi-surface topology of hole-doped In2X2) at hole concentrations nS = 6.86 × 1013

cm−2, nSe = 6.20 × 1013 cm−2, and nTe = 2.86 × 1013 cm−2 for X=S, Se, and Te, respectively, for α-In2X2 and
nS = 8.32 × 1013 cm−2, nSe = 6.00 × 1013 cm−2, and nTe = 8.14 × 1013 cm−2 for β-In2X2.
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I. INTRODUCTION

The discovery of graphene [1,2] has triggered the growth
of a family of two-dimensional (2D) nanomaterials, including
hexagonal boron nitride [3,4], silicene [5–8], germanane
[9], and a variety of transition metal dichalcogenides [10–
14]. These materials are of great interest due to their
potential applications in optoelectronics [11,13,15,16]. Re-
cently we discussed a new member of this family: atomi-
cally thin layers of hexagonal gallium chalcogenides [17],
which are indirect-band-gap semiconductors with unusual,
sombrero-shaped valence-band edges and optical absorp-
tion spectra that are dominated by zone-edge transitions.
In this work we study closely related materials: 2D crys-
tals of indium chalcogenides (In2X2, where X is S, Se,
or Te).

Chalcogenides of indium take several forms [18–22],
including tetragonal, rhombohedral, cubic, monoclinic, and
orthorhombic phases, as well as the hexagonal structures
on which we focus here. Indium selenide (InSe) exists in
a layered hexagonal structure in nature with an in-plane
lattice parameter of 4.05 Å and a vertical lattice parameter
of 16.93 Å, and has been proposed for use in ultrahigh-density
electron-beam-based data storage [23]. Very recently, samples
of few-layer hexagonal InSe have been produced and their
optical properties have been studied [24,25]. Indium sulfide
(InS) and indium telluride (InTe) exhibit orthorhombic and
tetragonal structures, respectively, but this does not exclude
the possibility of growing metastable hexagonal structures
(structural changes induced by annealing have been reported
in transmission electron microscopy of indium chalcogenide
thin films [26]). We have investigated whether monolayers of
the hexagonal phase are stable in any of these three materials.

The structures of two stable or metastable polytypes of
monolayer hexagonal In2X2 identified in this work are shown
in Fig. 1. Viewed from above, a monolayer of α-In2X2 forms
a 2D honeycomb lattice, with vertically aligned In2 and X2

pairs at the different sublattice sites. Its point group is D3h.
The sp orbitals of the In atoms in each dimer are strongly
hybridized, and each of the two In atoms is bound to three
neighboring chalcogens. The lattice structure of β-In2X2 is
depicted in the bottom panel of Fig. 1, with one of the X

layers shifted with respect to the other, breaking the mirror
symmetry of the original structure but establishing inversion
symmetry in its stead. The point group of β-In2X2 is D3d . The
lattice parameters calculated using ab initio density functional
theory (DFT) for these two polytypes of In2X2 are discussed
in Sec. II, along with lattice dynamics. We find that the α

and β polytypes can be distinguished by comparing optically
active [infrared (IR) and Raman] phonon spectra and that the
band structures of α-In2X2 crystals are very similar to those of
hexagonal Ga2X2 crystals [17]. In Secs. III and IV we report
first-principles calculations of the electronic band structures
of α-In2X2 and β-In2X2.

Our DFT calculations were performed using the CASTEP

[27] and VASP [28] plane-wave-basis codes to calculate the
structural parameters of In2X2. We used both the local den-
sity approximation (LDA) and the Perdew-Burke-Ernzerhof
[29] (PBE) generalized gradient approximation exchange-
correlation functionals in our calculations. The same func-
tionals were used to calculate the electronic band structures,
optical absorption spectra, and phonon dispersion curves.
For the electronic band structures we also used the screened
Heyd-Scuseria-Ernzerhof 06 (HSE06) hybrid functional [30]
to compensate at least partially for the underestimation of
the band gap by the LDA and PBE functionals. The HSE06
band structure calculations used the geometry optimized
using the PBE functional. The plane-wave cutoff energy
used in our calculations was 600 eV. During the geometry
relaxations a 12 × 12 Monkhorst-Pack k-point grid was used,
while band structures were obtained with a 24 × 24 grid.
The optical absorption spectra were obtained with a very
dense grid of 95 × 95 k points. The artificial out-of-plane
periodicity of the monolayer was set to 20 Å in each case.
Phonon dispersion curves were calculated in VASP using the
method of finite displacements in a 4 × 4 supercell with
6 × 6 k points, and in CASTEP [31] using density functional
perturbation theory (DFPT). We also evaluated the infrared
intensity and Raman intensity tensors for the zone-center
optical phonons in In2X2. The DFPT calculations used a plane-
wave cutoff of 816 eV, a 31 × 31 Monkhorst-Pack grid, norm-
conserving DFT pseudopotentials, and an artificial periodicity
of 15.9 Å.
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FIG. 1. (Color online) Structures of the α and β polytypes of
monolayer indium chalcogenides In2X2 (X=S, Se, or Te). The
parameters a, dIn−In, and dX−X are the lattice parameter, the In–In
bond length, and the vertical distance between X atoms, respectively.

II. LATTICE STRUCTURE AND LATTICE DYNAMICS
OF α-In2 X2 AND β-In2 X2

A. Lattice structures

Our geometry-optimization calculations show that the
lattice parameters in α-In2X2 increase with the atomic number
of the chalcogen atom X, while the In–In bond lengths hardly
change; see Table I. The bond lengths obtained with the
PBE functional are systematically larger than those optimized
within the LDA, as expected [32]. As shown in Sec. II B, we
find all three α-In2X2 crystals to be dynamically stable. The
cohesive energy Ec is also shown in Table I. This is the energy
of two isolated indium atoms plus the energy of two isolated
chalcogen atoms minus the energy per unit cell of the In2X2

layer. We have not included the zero-point phonon energy in
the latter. The difference between the LDA and PBE cohesive
energies is significant; nevertheless, both functionals predict
the cohesive energy to be largest for In2S2 and smallest for
In2Te2.

We have also performed calculations to investigate the β-
In2X2 polytypes. We find that these structures are dynamically
stable, but the static-lattice cohesive energy is slightly lower
than the α structure by 0.022 and 0.013 eV per unit cell
according to the LDA and PBE functionals, respectively. The
relative energy of the α and β polytypes is almost the same
for each chalcogen X. The phonon zero-point energies (ZPEs)
reported in Table I demonstrate that lattice dynamics does
not affect the relative stability of the α and β polytypes. The

TABLE I. Structural parameters (as defined in Fig. 1) of mono-
layer α-In2X2 (top) and β-In2X2 (bottom) from DFT calculations with
the LDA and PBE exchange-correlation functionals. The static-lattice
cohesive (atomization) energy Ec is also shown, as is the phonon ZPE.

α-In2X2

a (Å) dIn−In (Å) dX−X (Å) Ec (eV/cell) ZPE (eV/cell)
X LDA PBE LDA PBE LDA PBE LDA PBE LDA PBE

S 3.80 3.92 2.74 2.83 5.11 5.18 16.17 13.85 0.135 0.127
Se 3.95 4.09 2.74 2.83 5.30 5.38 15.12 12.87 0.097 0.091
Te 4.23 4.38 2.73 2.82 5.50 5.60 14.00 11.87 0.080 0.075

β-In2X2

a (Å) dIn−In (Å) dX−X (Å) Ec (eV/cell) ZPE (eV/cell)
X LDA PBE LDA PBE LDA PBE LDA PBE LDA PBE

S 3.81 3.93 2.74 2.83 5.10 5.17 16.15 13.84 0.135 0.127
Se 3.96 4.09 2.74 2.82 5.28 5.37 15.10 12.86 0.097 0.091
Te 4.24 4.39 2.73 2.82 5.48 5.58 13.98 11.85 0.080 0.074

optimal lattice parameters of these structures are summarized
in the bottom half of Table I.

B. Lattice dynamics

We have calculated phonon dispersion curves for In2X2

using both the finite-displacement approach and DFPT. The
DFPT results are presented in Fig. 2. The finite-displacement
approach agrees very well with these dispersion curves at a
supercell size of 4 × 4 primitive unit cells. Other than a small
pocket near �, we find no trace of imaginary frequencies in the
Brillouin zone. This small pocket of instability (shown in detail
in the inset beside the middle panel of Fig. 2 for α-In2Se2) is
extremely sensitive to the details of the calculation and in
some cases disappears altogether. This suggests that it merely
indicates the difficulty of achieving numerical convergence for
the flexural phonon branch, which appears to be a common
issue in first-principles calculations for 2D materials [33].
Therefore the phonon dispersion curves suggest that isolated
atomic crystals of hexagonal indium chalcogenides, In2X2,
are dynamically stable. The spurious imaginary modes were
assumed not to contribute to the ZPEs reported in Table I. The
nonanalytic contribution to the dynamical matrix due to long-
range Coulomb interactions (longitudinal/transverse optical
mode splitting) is neglected in this work. For a discussion of
this issue in 2D materials, see Appendix A of Ref. [34].

The DFT-LDA phonon dispersions for α- and β-In2X2 are
shown in Fig. 2. The caption for this figure also contains
a tabulated list of all IR- and Raman-active optical phonon
modes at the � point. We have used a unit cell with lattice
vectors (a/2,

√
3a/2) and (−a/2,

√
3a/2), where a is the

lattice parameter. The lattice parameters and other structural
parameters are given in a separate Table I. x̂, ŷ, and ẑ are
unit vectors in the Cartesian directions. The most important
difference between the α and β structures is the number
of Raman-active �-point phonons. We find that there are
two fewer Raman-active modes in β-In2X2, offering a way
to distinguish the polytypes. Note that β-In2X2 possesses
inversion symmetry, while α-In2X2 does not. Raman and IR
activity are mutually exclusive in materials with inversion
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FIG. 2. (Color online) Phonon dispersion curves for α (top panel) and β (bottom panel) polytypes of In2S2, In2Se2, and In2Te2. The inset
shows the low-frequency spectrum of α-In2Se2 with several methods. Below we list the DFT-LDA optical-phonon frequencies at �, the
irreducible representation (irrep.) to which the eigenvectors belong, and the IR and Raman activity. The modes are labeled as longitudinal
optical (LO), transverse optical (TO), or out-of-plane optical (ZO). The irreducible representation is given in the conventional molecular
notation in which one and two primes indicate z → −z reflection symmetry and antisymmetry, respectively. For IR activity we indicate the
component of electric field involved (out-of-plane, Ez, or in-plane, E‖), while for Raman activity we indicate the components of electric field
that are coupled by the Raman tensor.

α-In2X2

ω� (cm−1) IR intensity (D2 Å−2 amu−1) Polarization of Raman-
Branch In2S2 In2Se2 In2Te2 Irrep. In2S2 In2Se2 In2Te2 active modes

4 40.6 35.6 30.7 E′′ Ez ↔ E‖
5 40.6 35.6 30.7 E′′ Ez ↔ E‖
6 135 107 85.4 A′

1

{
E‖↔E‖
Ez↔Ez

7 262 178 146 E′′ Ez ↔ E‖
8 262 178 146 E′′ Ez ↔ E‖
9 (TO) 264 181 150 E′ 10.2 (E‖) 5.18 3.57 E‖ ↔ E‖
10 (LO) 264 181 150 E′ 10.2 (E‖) 5.18 3.57 E‖ ↔ E‖
11 (ZO) 282 199 162 A′′

2 0.25 (Ez) 0.10 0.061

12 293 228 207 A′
1

{
E‖↔E‖
Ez↔Ez

β-In2X2

ω� (cm−1) IR intensity (D2 Å−2 amu−1) Polarization of Raman-
Branch In2S2 In2Se2 In2Te2 Irrep. In2S2 In2Se2 In2Te2 active modes

4 40.8 35.8 31.2 Eg

{
E‖↔E‖
E‖↔Ez

5 40.8 35.8 31.2 Eg

{
E‖↔E‖
E‖↔Ez

6 134 106 84.9 A1g

{
E‖↔E‖
Ez↔Ez

7 261 177 146 Eg

{
E‖↔E‖
E‖↔Ez

8 261 177 146 Eg

{
E‖↔E‖
E‖↔Ez

9 (TO) 262 180 149 Eu 10.4 (E‖) 5.4 3.8
10 (LO) 262 180 149 Eu 10.4 (E‖) 5.4 3.8
11 (ZO) 281 198 161 A2u 0.25 (Ez) 0.10 0.06

12 293 228 207 A1g

{
E‖↔E‖
Ez↔Ez
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FIG. 3. (Color online) HSE06 band structures (solid red lines) for α-In2S2, α-In2Se2, and α-In2Te2. Spin-orbit coupling (SOC) is not
included in these results. The zero of energy is taken to be the Fermi level EF and the bottom of the conduction band is marked with a horizontal
line. For comparison, the semilocal band structures are also shown, including the effects of SOC. The orbital composition of the α-In2X2 states
highlighted by ©, �, and ♦ are summarized in the table below. Dominant contributions were found to originate from s- and p-type orbitals;
the “+” and “−” subscripts refer to even (+) and odd (−) states with respect to z → −z reflection. The LDA spin-orbit splittings |�EK

SO| of
the bands at the K point are also given. The notation “pxpy” refers to equal px and py contributions as a consequence of symmetry.

X Band � K |�EK
SO| (meV)

S ©+ 0.012sIn + 0.039pIn
z + 0.002sS + 0.198pS

z 0.061sIn + 0.142pIn
z + 0.045pS

xp
S
y 18

S �− 0.127sIn + 0.003pIn
z + 0.068sS + 0.081pS

z 0.202sIn + 0.008pIn
z + 0.057pS

xp
S
y

S ♦+ 0.059sIn + 0.112pIn
z + 0.071sS + 0.001pS

z 0.028pIn
x pIn

y + 0.037pS
xp

S
y 79

Se ©+ 0.011sIn + 0.044pIn
z + 0.001sSe + 0.197pSe

z 0.052sIn + 0.138pIn
z + 0.049pSe

x pSe
y 92

Se �− 0.115sIn + 0.005pIn
z + 0.060sSe + 0.090pSe

z 0.193sIn + 0.007pIn
z + 0.058pSe

x pSe
y

Se ♦+ 0.056sIn + 0.116pIn
z + 0.065sSe + 0.001pSe

z 0.028pIn
x pIn

y + 0.036pSe
x pSe

y 23

Te ©+ 0.013sIn + 0.053pIn
z + 0.001sTe + 0.168pTe

z 0.039sIn + 0.131pIn
z + 0.047pTe

x pTe
y 13

Te �− 0.119sIn + 0.007pIn
z + 0.067sTe + 0.079pTe

z 0.167sIn + 0.005pIn
z + 0.052pTe

x pTe
y

Te ♦+ 0.064sIn + 0.103pIn
z + 0.063sTe + 0.004pTe

z 0.029pIn
x pIn

y + 0.030pTe
x pTe

y 47

symmetry. If none of the IR-active modes found in In2X2

appears in the Raman spectrum of a sample, this would point
towards the β-In2X2 polytype. We discuss the electronic band
structure of the energetically more favorable α phase in Sec. III,
and then discuss the β phase in Sec. IV.

III. ELECTRONIC AND OPTICAL PROPERTIES OF
MONOLAYERS OF α-In2 X2

A. Band structures

The calculated electronic band structures of α-In2X2 are
summarized in Fig. 3, with the orbital compositions and
spin-orbit splittings tabulated in the figure caption. All three
materials are indirect-gap semiconductors, primarily due to
the valence-band maximum (VBM) lying between the � and
K points. Further analysis of the valence band reveals a saddle
point along the �–M line, illustrated in Fig. 4. This saddle
point gives rise to a Van Hove singularity in the density of
states. Due to the presence of these saddle points, hole-doping
causes In2X2 to undergo a Lifshitz transition when the hole
concentration reaches the critical value where all states are
depleted above the energy of the saddle point, since this leads
to a change in the topology of the Fermi surface. The carrier
density at which the Lifshitz transition takes place in each
material is tabulated in the caption of Fig. 4 and was obtained
by integrating the DFT density of states from the saddle point
to the valence-band edge.

It is possible to fit an inverted sombrero polynomial to the
valence-band dispersions EVB around the VBM:

EVB =
3∑

i=0

E2ik
2i + E′

6k
6 cos(6ϕ), (1)

where k and ϕ are the radial and polar coordinates of wave
vectors about the � point. The polar angle ϕ is measured from
the �–K line. The parameters {E2i} and E′

6 were obtained
by fitting Eq. (1) to the DFT valence band in the ranges
0.28 Å−1 < |k| < 0.42 Å−1, 0.22 Å−1 < |k| < 0.36 Å−1, and
0.12 Å−1 < |k| < 0.26 Å−1 in In2S2, In2Se2, and In2Te2,
respectively. The fitting ranges are centered on the position of
the VBM and their widths are chosen to ensure a quantitatively
accurate fit at both the VBM and the saddle point. The
coefficients are tabulated in the caption of Fig. 4. This fit
should provide a good starting point for a simple analytical
model of the valence band in these materials. Note, however,
that the fit is designed to describe the immediate vicinity of
the VBM and the saddle point, and is of limited accuracy at
the � point; this is due to the fact that the quality of the fit
would drop significantly if we were to extend the fitting range
as far as the � point. The fitting was performed using the same
procedure as that used in Ref. [17].

We find that the conduction-band minimum (CBM) is at
the � point in all cases except the LDA band structure of
α-In2Te2, where it is at the M point. The HSE06 band structure
is expected to be the most reliable and hence we predict that

205416-4
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FIG. 4. (Color online) LDA energy contours (with a step of
2 meV) for the valence band of α-In2X2 around the � point. The
contour corresponding to the energy of the saddle point (Lifshitz
transition) is highlighted. The table below shows the fitted coefficients
E2i (in units of eV Å2i) for the inverted sombrero dispersion near the
VBM of α-In2X2 in Eq. (1). The zero of energy is set to the VBM. The
root mean square of the residuals σ indicates the amount by which
the fit is in error. The last column shows the hole density nX for the
Lifshitz transition.

X E0 E2 E4 E6 E′
6 σ (meV) nX (1013 cm−2)

S −0.16 0.96 −3.33 0.42 0.67 0.12 6.86
Se −0.14 0.91 −4.23 −0.60 1.64 0.17 6.20
Te −0.13 1.42 −20.8 82.3 11.5 0.25 2.86

the CBM occurs at � in all cases. Nevertheless, there are local
minima of the conduction band at �, K, and M in each case,
with the exception of the PBE band structure of α-In2Te2. The
HSE06 band gaps of α-In2X2 are summarized in Table II. The

TABLE II. HSE06 band gaps � and effective masses m∗ of In2X2

at the high-symmetry points in the conduction band according to the
HSE06 functional (in units of electron mass me).

m∗/me

X � (eV) �c Kc Mc
→�c Mc

→Kc

α-In2X2

S 2.53 0.26 0.86 1.24 0.42
Se 2.16 0.20 0.71 2.30 0.33
Te 2.00 0.17 0.53 0.64 0.23

β-In2X2

S 2.45 0.25 1.59 0.39
Se 2.07 0.20 2.39 0.24
Te 1.88 0.16 0.67 0.23

HSE06 band gap is expected to underestimate the quasiparticle
band gap by no more than 10% [35] and is known to be
accurate in 2D materials [36]. The effective masses at the
high-symmetry points in the conduction band are summarized
in Table II. The effective mass is isotropic at the � and K
points, but not at M. We note that the effective mass is quite
sensitive to the fitting range. The data in Table II were obtained
by fitting in one dimension in a range corresponding to 1/8 of
the K–M line in the Brillouin zone [37]. If the fitting range is
doubled, the effective masses change by up to 10%.

The band structures computed using semilocal density
functionals are also plotted in Fig. 3 for comparison. The
LDA and PBE functionals give very similar results to the
HSE06 functional up to the Fermi level, but above that
significant discrepancies arise. This is most notable in the case
of α-In2Te2, where the position of the CBM is ambiguous:
the LDA predicts that the CBM is at the M point, while
the PBE functional puts it at the � point, in agreement with
HSE06. A similar behavior was found in 2D hexagonal gallium
chalcogenides [17].

In the semilocal DFT calculations we took spin-orbit (SO)
coupling into account using a relativistic DFT approach [28].
As can be seen in Fig. 3 (also listed in its caption), some
of the bands exhibit spin splitting, including the highest
valence (�E

v,K
SO ) and lowest conduction (�E

c,K
SO ) bands near

the K point (see the table in Fig. 3). While we were unable
to calculate the SO splittings in HSE06 due to limited
computational resources, we expect that they will exhibit
a similar magnitude to that found in the semilocal band
structures. The caption of Fig. 3 also contains lists describing
the orbital decomposition of the valence and conduction band
states at the � and K points into the most relevant atomic
orbitals of In and the chalcogens.

B. Optical absorption spectra

The orbital composition of the bands was obtained by
projecting the orbitals in the plane-wave basis set of VASP onto
spherical harmonics, and the results are reported in the caption
of Fig. 3. We have found that these bands around the Fermi
level are dominated by s- and p-type orbitals. Although one
expects the d orbitals to substantially influence the electronic
structure in In-based compounds, the valence and conduction
bands of In2X2 monolayers do not appear to contain any
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FIG. 5. (Color online) Absorption coefficient of α- and β-In2X2 2D crystals as obtained from the imaginary part of the dielectric function
ε by normalizing it to absolute units after it was compared to Im(ε) evaluated for graphene in the range 0.8–1.5 eV, where monolayer graphene
absorbs 2.3% of light. The raw results for Im(ε) are indicated on the right-hand axis.

significant contributions from d states, despite the explicit
inclusion of all the d electrons in our calculations. States in
each band are either odd or even with respect to z → −z

symmetry (this information is obtained from the complex
phases of the orbital decomposition in VASP). Therefore,
the interband absorption selection rules require that photons
polarized in the plane of the 2D crystal are absorbed by
transitions between bands whose wave functions have the
same z → −z symmetry (even → even and odd → odd), and
photons polarized along the z axis cause transitions between
bands with opposite symmetry (even → odd and odd → even).

The calculated LDA optical absorption spectra are shown
in Fig. 5. The intensities are obtained from the imaginary
part of the dielectric function and normalized to absolute

units by using graphene as a benchmark [17], since we know
that graphene absorbs 2.3% of light intensity over a broad
spectral range. We calculated the LDA dielectric function
of graphene at low energies and rescaled the absorption
coefficients to reproduce the 2.3% absorption, then applied
the same scaling to the In2X2 spectra. Note that LDA results
are only qualitatively accurate and should only be used for
a comparative study of the different In2X2 monolayers and
for an order-of-magnitude estimate of the expected peak
positions. Furthermore, local-field effects, which are expected
to influence out-of-plane absorption, are not included. A
better description would require a computationally much more
expensive calculation using the GW approximation and the
Bethe-Salpeter equation for excitonic corrections [38]. Much
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FIG. 6. (Color online) HSE06, LDA, and PBE DFT band structures for β-In2S2, β-In2Se2, and β-In2Te2. Spin-orbit coupling is taken into
account in the case of LDA and PBE. The zero of energy is taken to be the Fermi level EF and the bottom of the conduction band is marked
with a horizontal line. The orbital composition of the β-In2X2 states highlighted by ©, �, and ♦ are summarized in the table below. Dominant
contributions were found to originate from s- and p-type orbitals; the “+” and “−” subscripts refer to even (+) and odd (−) states with respect
to three-dimensional inversion. The notation “pxpy” refers to equal px and py contributions as a consequence of symmetry.

X Band � K

S ©+ 0.012sIn + 0.039pIn
z + 0.002sS + 0.199pS

z 0.060sIn + 0.142pIn
z + 0.045pS

xp
S
y

S �− 0.126sIn + 0.004pIn
z + 0.067sS + 0.080pS

z 0.202sIn + 0.008pIn
z + 0.058pS

xp
S
y

S ♦+ 0.060sIn + 0.112pIn
z + 0.072sS + 0.001pS

z 0.059pIn
x pIn

y + 0.052pS
xp

S
y + 0.054pS

z

Se ©+ 0.012sIn + 0.043pIn
z + 0.001sSe + 0.198pSe

z 0.051sIn + 0.138pIn
z + 0.049pSe

x pSe
y

Se �− 0.115sIn + 0.005pIn
z + 0.059sSe + 0.088pSe

z 0.192sIn + 0.007pIn
z + 0.058pSe

x pSe
y

Se ♦+ 0.057sIn + 0.117pIn
z + 0.065sSe + 0.001pSe

z 0.060pIn
x pIn

y + 0.049pSe
x pSe

y + 0.061pSe
z

Te ©+ 0.014sIn + 0.053pIn
z + 0.002sTe + 0.169pTe

z 0.038sIn + 0.131pIn
z + 0.047pTe

x pTe
y

Te �− 0.117sIn + 0.008pIn
z + 0.065sTe + 0.078pTe

z 0.166sIn + 0.004pIn
z + 0.053pTe

x pTe
y

Te ♦+ 0.065sIn + 0.105pIn
z + 0.064sTe + 0.004pTe

z 0.060pIn
x pIn

y + 0.040pTe
x pTe

y + 0.054pTe
z
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TABLE III. Coefficients E2i (in units of eV Å2i) for the inverted
sombrero dispersion near the VBM of β-In2X2 in Eq. (1) using the
LDA functional. The zero of energy is set to the VBM. The root mean
square of the residuals σ indicates the amount by which the fit is in
error. The last column shows the critical hole concentration nX at
which the Lifshitz transition takes place (see text).

X E0 E2 E4 E6 E′
6 σ (meV) nX (1013 cm−2)

S −2.26 1.21 −7.52 10.7 1.99 0.17 8.32
Se −2.32 1.14 −4.66 3.91 0.76 0.13 6.00
Te −1.35 1.53 −23.1 90.9 11.1 0.30 8.14

like Ga2X2 monolayers, In2X2 sheets exhibit a prominent
absorption peak (originating from the vicinity of the K point)
near 3–5 eV, where the absorption coefficients of In2X2 are
comparable to and even exceed that of monolayer and bilayer
graphene. As such, we suggest that ultrathin films of InX biased
in vertical tunneling transistors with graphene electrodes could
be used as an active element for the detection of ultraviolet
photons. It is not surprising to find absorptions of a similar
order of magnitude in In2X2 and graphene, since both are
atomically thin materials.

IV. ELECTRONIC AND OPTICAL PROPERTIES OF
MONOLAYERS OF β-In2 X2

A. Band structures

Figure 6 depicts the electronic band structures of β-In2X2,
which shows that the valence band is strikingly similar to
that of the α structure in Fig. 3, with the VBM once again
between the � and K points. This is due to the valence band
being dominated by the Ga orbitals, which are in the same
configuration in the two polytypes. Unsurprisingly, β-In2X2

possesses the same anisotropic sombrero-shaped dispersion as
α-In2X2 and therefore a Lifshitz transition can be achieved in
this case as well. However, the coefficients of the polynomial
fit and the critical carrier concentration are quite different,
as shown in Table III. The band structures with SO coupling
taken into account are also shown in Fig. 6, with the band wave
functions decomposed into the most relevant atomic orbitals
of In and the chalcogens listed in the caption.

The conduction band of the β polytype is similar to that
of the α polytype near the � point; however, some significant
differences arise at the K point, where a doubly degenerate
band appears at the bottom of the conduction band with
a completely different orbital composition from the lowest
conduction band of the α structure. The orbital composition
(see the caption of Fig. 6) of the valence band on the other
hand is almost identical to that found in α-In2X2.

B. Optical absorption spectra

The optical absorption spectra of β-In2X2 are shown in
Fig. 5. These show a good deal of similarity to those of α-
In2X2. The absorption is dominated by a large peak in the
ultraviolet range in all cases and the peak absorption exceeds
that of graphene.

V. CONCLUSIONS

We have used DFT to show that 2D hexagonal indium
chalcogenides (In2X2 where X is S, Se, or Te) are dynamically
stable. We have identified two polytypes of In2X2, and we
have shown how these can be distinguished by IR and Raman
spectroscopy. We find that all of these materials are indirect-
band-gap semiconductors with an unusual inverted-sombrero-
shaped valence band. The presence of saddle points in the
valence band along the �–M line leads to a Lifshitz transition
in the event of hole doping, for which we have calculated the
critical carrier density. We have provided an analytical fit of the
valence-band edge and have given a qualitative description of
the optical absorption spectra, which suggest that atomically
thin films of InX could find application in ultraviolet photon
detectors.
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[8] N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, Phys. Rev. B
85, 075423 (2012).

[9] E. Bianco, S. Butler, S. Jiang, O. D. Restrepo, W. Windl, and
J. E. Goldberger, ACS Nano 7, 4414 (2013).

[10] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

[11] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and
A. Kis, Nat. Nanotechnol. 6, 147 (2011).

205416-7

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1126/science.1144216
http://dx.doi.org/10.1126/science.1144216
http://dx.doi.org/10.1126/science.1144216
http://dx.doi.org/10.1126/science.1144216
http://dx.doi.org/10.1038/nature11408
http://dx.doi.org/10.1038/nature11408
http://dx.doi.org/10.1038/nature11408
http://dx.doi.org/10.1038/nature11408
http://dx.doi.org/10.1063/1.3419932
http://dx.doi.org/10.1063/1.3419932
http://dx.doi.org/10.1063/1.3419932
http://dx.doi.org/10.1063/1.3419932
http://dx.doi.org/10.1063/1.3459143
http://dx.doi.org/10.1063/1.3459143
http://dx.doi.org/10.1063/1.3459143
http://dx.doi.org/10.1063/1.3459143
http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1021/nn4009406
http://dx.doi.org/10.1021/nn4009406
http://dx.doi.org/10.1021/nn4009406
http://dx.doi.org/10.1021/nn4009406
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2010.279
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