
Iterated Local Search for the Workload Balancing

Problem in Service Enterprises

Thanh-Ha Nguyen∗, Mike Wright

Lancaster University Management School, Lancaster, LA1 4YX, UK

Abstract

In this paper, we consider a telecommunication service company facing sea-
sonal demand and time-varying capacity. A uniform lead-time, which is the
maximum time span a customer has to wait before receiving the required ser-
vice, is quoted to all customers. We present a quadratic integer programming
model for the problem of scheduling jobs to meet the promised lead-time with
the objective of balancing the workload across time. Since in practice solving
such a problem to optimality can be very difficult, two variants of an iterated
local search approach are proposed, which iteratively apply local search to
perturbations of the current search point, leading to a randomized walk in
the space of local optima, instead of sampling the space of all possible can-
didate solutions. These heuristics may be seen as simple variants of variable
neighborhood search, which, in its basic form, exploits systematically the
idea of neighborhood change, both in descent to local minima and in escape
from the valleys which contain them. Extensive computational tests show
that our heuristics are able to provide high quality solutions efficiently.

Keywords: Scheduling, Quadratic integer programming, Iterated local
search, Variable neighborhood search, Meta-heuristic, Capacity
management

∗Corresponding author
Email addresses: n.thanh-ha@lancaster.ac.uk (Thanh-Ha Nguyen),

m.wright@lancaster.ac.uk (Mike Wright)

Preprint submitted to Elsevier June 27, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42413563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

In the telecommunications industry, a common practice is to use uniform
lead time, which is the maximum time span a customer has to wait before
receiving the required service. For services (e.g. installation of broadband at
telecom exchanges) where customers do not have to participate in the service
delivery process, the advantages of quoting a uniform lead time are twofold.
On the one hand, all customers are guaranteed a uniform delivery lead time.
On the other hand, the firm can flexibly choose the best time within the
promised lead-time to carry out the work. We consider a telecommunication
operator with seasonal demand for such a service. The available capacity per
period also follows a cyclic pattern. In order to improve service efficiency, i.e.
to avoid unnecessary capacity over-utilization in certain periods and under-
utilization in other periods, the workload must be balanced across time.
Thus, we are interested in how to match the firm’s capacity to customer
demand in such a way that: a) the quoted lead-time is satisfied and b) the
capacity utilization rate per period is distributed as equally as possible along
the time line. This problem will be referred to as the Workload Balancing
Problem (WBP) in the rest of the paper.

A clear definition for the measure of balance is necessary for the study
of workload balancing. Naturally, variance, standard deviation or sum of
squared deviations (SSD) are good measures, as they tend to penalize larger
deviations at a higher rate. We model the WBP in terms of minimizing the
SSD of capacity utilization rates across time periods from their mean. The
WBP can be seen as a Quadratic Integer Programming Problem (QIP or
QIPP) due to the formulation of the problem as an integer problem with a
quadratic objective function. The QIP is, in general, difficult to solve. Hence
mathematical programming techniques may fail to deliver exact solution in
reasonable time. To practically solve the QIP, heuristic algorithms which
find high quality solutions in short computation time have been proposed.
Such heuristic algorithms are iterated local search [1], variable neighborhood
search [2, 3, 4], simulated annealing [5, 6, 7], tabu search [8, 9, 10], genetic
algorithms [11, 12, 13, 14, 15], evolution strategies [16, 17], ant algorithms
[18, 19, 20, 21], and scatter search [22, 13]. Among them, iterated local search
(ILS) is a simple and powerful stochastic local search method for solving
combinatorial problems. ILS is reported to be among the best performing
algorithms for a number of problems such as the Traveling Salesman Problem
(TSP)[23] and the Quadratic Assignment Problem (QAP)[1]. The latter is

2



NP-hard and is considered as one of the hardest QIP [24]. The QAP can
be described as the optimization problem of assigning a set of facilities to a
set of locations with given distances between the locations and given flows
between the facilities in order to minimize the sum of the product between
flows and distances. The test results in [1] show that ILS algorithms have
excellent performance when compared to robust tabu search and MAX-MIN
ant system, which are known to perform well for the QAP [19, 25]. For
this reason, we propose two variants of an ILS method to tackle the WBP,
which iteratively apply local search to perturbations of the current search
point, leading to a randomized walk in the space of local optima, instead of
sampling the space of all possible candidate solutions. Thus, ILS may be seen
as a simple variant of variable neighborhood search, which in its basic form,
exploits systematically the idea of neighborhood change, both in descent to
local minima and in escape from the valleys which contain them[2].

The WBP was only once investigated by investigated by Li and He [26].
They proposed two greedy local search algorithms to tackle the problem.
However, these algorithms are time consuming and because of the greedy
strategy, they can often get stuck in local optima. Another problem is that
without providing a mathematical model and thus an exact method, in their
experiments, the previous authors were only able to compare CPU times,
but not obtain any information about solution quality in terms of loss of
optimality.

This paper proposes several improvements to the previously published
work by Li and He [26] as follows: Section 2 presents a mathematical model
for the WBP, based on which an exact solution can be derived. In Section
3, besides an exact method, two new heuristics based on ILS are proposed
to improve search speed and solution quality. In Section 4, to illustrate
the proposed heuristic algorithms, a concrete numerical example is provided.
Section 5 shows computation results for 140 test problem instances. Sec-
tion 6 concludes and discusses potential extensions and directions for further
research.

2. Problem formulation

2.1. Assumptions

We consider a major telecommunication service company. The company
is using an integrated planning system, based on hierarchical planning con-
cepts that allow to decompose the entire planning problem into partial plan-

3



Table 1: Notation for problem formulation

M : length of one demand-cycle

N : length of one capacity-cycle

τ : finite planning horizon, τ = lcm(M,N)

I: set of job arrival dates, I = {1, . . . , τ}, i ∈ I

J : set of job completion dates, J = {1, . . . , τ}, j ∈ J

Ji: set of feasible completion dates of jobs arriving in period i

λi: demand in period i

cj : available capacity in period j

xij : number of jobs that arrive at period i and are assigned to com-
pletion date j

X : assignment scheme X = [xij ]τ×τ

ℓ: the minimum time span a job has to wait before it can be pro-
cessed

L: uniform lead-time, ℓ < L ≤ τ + ℓ

uj: used capacity in period j

µj: capacity utilization rate in period j

µ: mean of capacity utilization rates during the planning horizon τ

ri: internal release date of jobs that arrive in period i

di: due date of jobs that arrive in period i

ning tasks but to still consider their interdependencies and to coordinate their
solutions. This planning system consists of different modules such as demand
forecasting, resources planning, work scheduling, which are interlinked with
each other. It makes use of solution approaches known as mathematical pro-
gramming and meta-heuristics and provides supports at different levels for
planning tasks along the company’s service chain, from long-term strategic
decision making to short-term operational decisions. The levels for planning
may overlap or may be distinct. Either way there is a flow of information
from strategic to operational planning and then to operational planning and
vice versa.

4



Demand. The firm faces seasonal demand for a particular service, e.g. broad-
band installation. The estimated demand data are provided by the respon-
sible module for forecasting demand. Thus, the start and the end point of
the seasonal cycle are known. Further, the seasonal demand pattern, which
repeats itself every cycle, is also given. By dividing the seasonal cycle into
time periods 1, . . . ,M , the demand pattern can be expressed by a vector
[λ1, . . . , λM ]T . Each element of this vector represents the demand (measured
by the number of jobs) that occurs through a particular time period.

Capacity:. The firm has a fixed number of permanent employees and a num-
ber of seasonal technicians with repeated fixed term contracts. The latter
are retained in order to meet peaks in demand (e.g. surge of demand for
broadband installations at the beginning of school terms). The information
concerning availability of the workforce per time period is provided by means
of the medium-term, anticipatory deployment plan. As it is possible to es-
timate the average time a technician needs to complete a job, we represent
capacity during a time period in terms of the number of jobs to better match
it with customer demand. Capacity levels are assumed to follow a cycle of
N time periods with the pattern [c1, . . . , cN ]

T .

Planning horizon. The planning horizon τ is the minimum time interval after
each of which both demand and capacity pattern will repeat themselves.
Thus, τ is determined as the least common multiplier of M and N , τ =
lcm(M,N).

Lead time. Uniform lead-time L is quoted to all customers. We assume that
L is bounded by ℓ+1 and τ +ℓ (ℓ < L ≤ τ+ℓ), where ℓ denotes the minimal
time span a job has to wait before it can be processed.

Job. All jobs are the same and can be completed within one time period.
Each job is characterized by its arrival i and the time period j, when it is
completed.

For the ease of notation, let I and J where I = J = {1, . . . , τ} denote the
set of job arrival dates and job completion dates respectively. The demand
and the available capacity during the planning horizon are represented by
the vectors λ = [λi] and c = [cj ], where i ∈ I and j ∈ J . The vector λ is
obtained by τ/M-times concatenation of [λ1, . . . , λM ]T , and the vector c by
τ/N -times concatenation of [c1, . . . , cN ]

T .

5



We want to find a job assignment scheme X = [xij ]τ×τ that determines
how many jobs of each demand λi are to be completed in which time period
j, so that all demands are met within L periods and the workload is balanced
over time. In an ideal case, the capacity utilization rate in every time period
would be the same.

In the following, the lead-time constraints and the objective function
of the WBP are specified. Note that, an explicit formulation of capacity
constraints is not needed. The reasons are as follows: (a) If the total capacity
is sufficient to accommodate the total demand over τ periods (that is,

∑

i∈I

λi ≤
∑

j∈J

cj) and the quoted lead-time L is long enough, the objective function

will ensure that workload is distributed across periods as equally as possible
and the capacity utilization rate in each period is less or equal 100%. (b)
Otherwise, the firm will not be able to accommodate the total demand within
the promised lead-time without exceeding the total capacity. In this case,
the firm is better off increasing capacity by hiring more labor or outsourcing
part of its service activities, but modeling these aspects is out of the scope
of this paper.

2.2. Lead-time constraints

We use internal release and due dates to indicate the time window in
which a job must be completed. The internal release date is the earliest
possible time a job can start. The internal release date ri ∈ {1, . . . , τ} of
jobs, that arrive in period i, is computed as

ri = (i+ ℓ+ 1) mod τ (1)

The modulo operation (mod τ) is used here and in the rest of the paper
to model the cyclical behavior of demand and capacity that recurs every τ
periods. The due date di ∈ {1, . . . , τ} of jobs arriving in period i is the latest
time these jobs must be completed, and is calculated as arrival time plus
quoted lead-time.

di = (i+ L) mod τ (2)

Note that if ri < di, the due date di simply represents the di-th time pe-
riod in the same planning horizon as the internal release date ri. Otherwise,
if ri ≥ di, di represents a time period in the subsequent planning horizon.

6



Example If the considered planning horizon τ is a week, the quoted
lead-time L is 5 days, and ℓ = 0, for jobs arriving on Thursday (day 4),
we calculate ri = (4 + 1) mod 7 = 5 and di = (4 + 5) mod 7 = 2. That is,
the internal release date is Friday of the current week and the due date is
Tuesday of the following week. In this case ri > di. Another example, if a
job arrives on Monday (day 1), we have ri = 2, di = 6 and ri < di.

To satisfy the guaranteed lead-time, the completion date j of any job that
arrives in period i must be within the time intervals below:

Ji =

{

{ri . . . di} if ri < di

{ri . . . τ} ∪ {1 . . . di} if ri ≥ di
(3)

Hence, a feasible assignment scheme X must satisfy the condition: xij = 0
for any i ∈ I and j /∈ Ji, or equivalently

τ
∑

i=1

(

∑

di<j≤τ
ri<di

xij +
∑

1≤j<ri
ri<di

xij +
∑

di<j<ri
ri≥di

xij

)

= 0 (4)

2.3. Objective function

In order to formulate the objective function f(X) that minimizes the
SSD of capacity utilization rates, we first compute the used capacity uj(X)
and the capacity utilization rate µj(X) in each period j ∈ J . For notation
simplicity, uj(X) and µj(X) will be written as uj and µj .

The used capacity uj in period j is determined by adding all the allocated
jobs in this period, and can be mathematically written as

uj =
τ

∑

i=1

xij (5)

The capacity utilization rate µj in period j is the used capacity in that
period divided by the available capacity in the same period.

µj = uj/cj =
τ

∑

i=1

xij/cj (6)

Let µ̄ denote the average utilization rates during τ periods, the objective

7



function is given by

f(X) =
τ

∑

j=1

[µj − µ̄]2 =
τ

∑

j=1

µ2

j − τ · µ̄2 (7)

Combining Equations (6) and (7) and µ̄ = 1

τ

τ
∑

j=1

µj we can write the

objective function as directly depending on X = [xij ]τ×τ

f(X) =

τ
∑

j=1









τ
∑

i=1

xij

cj









2

−
1

τ









τ
∑

j=1

τ
∑

i=1

xij

cj









2

(8)

2.4. Mathematical model

The model for the workload balancing problem WBP can be formulated
as

(WBP) min
X

f(X) (9)

s/t
τ

∑

j=1

xij = λi ∀i ∈ I (10)

τ
∑

i=1









∑

di<j≤τ
ri<di

xij +
∑

1≤j<ri
ri<di

xij +
∑

di<j<ri
ri≥di

xij









= 0 (4)

ri = (i+ ℓ+ 1) mod τ ∀i ∈ I (1)

di = (i+ L) mod τ ∀i ∈ I (2)

xij ∈ N0, i ∈ I, j ∈ J (11)

Some explanations shall be given as follows. The decision variable is
X = [xij ]τ×τ . The objective (9) is to minimize the SSD of capacity utilization
rates over τ periods. Constraints (10) force that all demands are to be filled.
Constraints (4) secure that each job can only be processed after the internal
release date, and has to be completed within the quoted lead-time. Equations
(1) and (2) compute the internal release date and the due date of any job

8



respectively. Finally variables are restricted to be integer in (11).

3. Solution approaches

3.1. Exact method

We use CPLEX (see http://www.ilog.com/ for details) to solve the WBP
exactly for small-scale problems. The WBP can be written in the following
standard matrix form, as required by CPLEX

min
y

f(y) =
1

2
yTFy

s/t Ay = b

y− ≤ y ≤ y+, yk ∈ N ∀k ∈ {1, . . . , τ 2}

where F ∈ R
τ2×τ2, A ∈ N

τ×τ2 and y−, y+ ∈ N
τ2×1. The decision variable y

is bounded by the lower bound y− and upper bound y+. Each element yk of
the vector y corresponds to one and only one element xij of the allocation
matrix X defined in the previous section, with k satisfying k = i · τ + j. The
vector y has τ 2 elements, but only τ · (L − ℓ) out of them are positive. All
other elements are set to zero according to the lead-time constraints specified
in Section 2.2. Even so, in practice, solving such a quadratic problem to
optimality can be very difficult. Our experiments show that, unfortunately,
CPLEX may take several hours on a modern workstation to obtain a globally
optimal solution even for small-scale problems. Problems of medium or large
size cannot be solved by CPLEX, the solver usually runs out of memory.

3.2. Heuristics

3.2.1. Notations and definitions

For solving the WBP, Li and He [26] propose two greedy search algo-
rithms named Single Day Shift (H1) and Multiple Day Spread (H2). Their
experiments show that H2 outperforms H1 in run-time performance, but do
not reveal any insight into the solution quality of the heuristics in terms of
loss of optimality. The basic idea is to shift jobs within the valid time win-
dow in order to achieve workload balancing. Following this idea, in Section
3.2.2, we design and develop two new local search procedures S-Shift and M-
Shift, which we then embed separately into a metaheuristic framework based
on iterated local search (ILS) in Section 3.2.3. Two variants are developed,

9



S-ILS and M-ILS, which use S-Shift and M-Shift in their local step, respec-
tively. The new algorithms improve the run time and the solution quality
significantly as exhibited by the numerical experiments reported in Section
5. Before discussing these algorithms, we introduce some further notations
and definitions.

Table 2: Additional notation for S-Shift and M-Shift heuristic

j : source period, current completion date

t : target period, completion date after a shift

Jj: set of feasible target periods t, which jobs from source pe-
riod j ∈ J can be shifted to

Ij : set of possible arrival dates of jobs that can be completed
in period j ∈ J

Ijt: set of possible arrival dates of jobs that can be completed
in periods j ∈ J and t ∈ J

Sj(t,Π): shift of quantity Π of jobs from source period j to target
period t

Oij(t, πi): shift operation of quantity πi of jobs, from the cell [i, j] to
the cell [i, t] in the assignment scheme X

Feasible assignment scheme. A feasible job assignment scheme X is a τ × τ
matrix, that satisfies the constraints of the WBP (see Section 2.4).

Better assignment scheme. Given two feasible assignment schemes X andX ′,
X ′ is better than X if X ′ has a lower sum of squares of the utilization rate
across τ time periods, that is f(X ′) < f(X) where f is defined in Equations
(7) and/or (8).

Operation. An operation is described by the expression Oij(t, πi), where O
symbolizes the movement of quantity πi of jobs from the cell [i, j] to the cell
[i, t] in the matrix X . This means that, for πi jobs with arrival time i, the
completion date is changed from j to t. We will refer to j and t as source
period and target period of shift respectively. An operation would

• reduce xij by πi jobs

10



• increase xit by πi jobs

Shift. A shift Sj(t,Π) is a set of operations Oij(t, πi), which describes the
shift of a total of Π jobs with different arrival times i, from the completion
date j to another completion date t. Such a shift would

• reduce the used capacity uj in source period j by Π jobs

• increase the used capacity ut in target period t by Π jobs

Positions of jobs to be shifted. As the length of any feasible time window
for completion is L− ℓ periods, jobs currently scheduled in period j can be
moved at most L − ℓ − 1 periods earlier or later. Hence, the range Jj of
possible target periods, which jobs can be moved to is between periods t−

and t+ where

t− = [j − (L− ℓ− 1)] mod τ

t+ = [j + (L− ℓ− 1)] mod τ

Thus,

Jj =

{

{t−, . . . , t+} if t− < t+

{1, . . . , t+} ∪ {t−, . . . , τ} if t− > t+
(12)

To make sure that the solution obtained after an operation is feasible, we
only select jobs to move that can be assigned to both completion days j and
t without violating the lead-time constraints. Let i− and i+ denote, respec-
tively, the earliest and the latest arrival time of jobs that can be “legally”
completed in period j. i− and i+ can be computed as

i− = (j − L) mod τ

i+ = (j − ℓ− 1) mod τ

Thus, the set Ij of all possible arrival times of jobs, for which period j is
a feasible completion time is given by

Ij =

{

{i−, . . . , i+} if i− < i+

{1, . . . , i+} ∪ {i−, . . . , τ} if i− > i+
(13)

The set of all possible arrival times of jobs, that can be completed in both
periods j and t is therefore

Ijt = Ij ∩ It (14)

11



Quantity of jobs to be shifted. Suppose we want to move jobs from a source
period j to a target period t, the maximum quantity of jobs to be shifted out
of period j in a shift Sj(t,Π) is defined as

Πmax =

⌊

cj

(

µj −
uj + ut

cj + ct

)+

+ 0.5

⌋

(15)

Equation (15) says that the shift aims to balance out the gap of capacity
utilization rate between periods j and t, where

uj+ut

cj+ct
represents the average

capacity utilization rate in periods j and t. Further, the formula (15) is
edited to round the result to the nearest integer. We denote a+ = max{a, 0}
and ⌊a+ 0.5⌋ as the nearest integer to a.

Moving Πmax jobs may introduce infeasibilities. In order to avoid this
problem, we shift no more than the total amount

∑

i∈Ijt

xij of jobs, which

are currently assigned to completion date j and can be moved to another
completion date t within the valid time window. Thus, the total quantity of
jobs to be shifted is adjusted to

Π = min











∑

i∈Ijt

xij



 ,Πmax







(16)

Feasible shift. Now we define a feasible shift as

Sj(t,Π) =







Oij(t, πi) : i ∈ Ijt, j ∈ J, t ∈ Jj , πi ≥ 0 ∧Π =
∑

i∈Ijt

πi







(17)

Given j, t and Π for a shift Sj(t,Π), the number of jobs to be shifted in
an operation Oij(t, πi) is determined by

πi =



















min{xij ,Π} if i = min Ijt

min











xij ,






Π−

∑

k∈Ijt
k<i

πk







+










if i ∈ Ijt \ {min Ijt}
(18)

The shift operations are carried out in ascending order of job arrival, that

12



is, first-arrive, first-shifted. Equation (18) ensures that in each operation, no
more than the current number of jobs in cell [i, j] are shifted, and the total
number of jobs shifted from source period j to target period t is exactly Π.

3.2.2. Local search methods S-Shift and M-Shift

S-Shift. The search iteratively considers all possible pairs of completion dates
(j, t), where j has a higher capacity utilization rate than t, i.e. µj > µt. S-
Shift starts with the pair that has the highest gap of utilization rates and
continues in descending order of the gap [µj − µt]. For each pair (j, t), the
algorithm checks whether t is a valid target period for a shift from j. If
yes, i.e. t ∈ Jj, the total number of jobs to be shifted Π is determined using
Equations (15) and (16). The set of shift operations Oij(t, πi) to be processed
is found using Equation (17). The shift operations are applied in ascending
order of job arrival i ∈ Ijt, until the total quantity Π of jobs are completely
moved from source period j to target period t. In each shift operation, πi

jobs with arrival i are to be reassigned from completion date j to completion
date t, see Equation (18). The algorithm stops when a better assignment
scheme X ′ is obtained, or after having gone though all possible pairs (j, t)
and no better solution can be found.

M-Shift. M-Shift differs from S-Shift in that, whilst S-Shift moves jobs from
a source period j to the best suitable target period t in each search iteration,
M-Shift spreads jobs from the source period j to all feasible target candidates
proportionally.

13



Algorithm 1 S-Shift

Require: λ, c, ℓ, L,X
Ensure: X ′

1: Sort the set J of job completion dates j in descending order of utilization rate µj , into
DRU

2: for k = 1 to τ − 1 do

3: Set j ← DRU [k]; {Source period}
4: for l = T to k do

5: Set t← DRU [l]; {Target period}
6: if t ∈ Jj then

7: Set u′ ← u;u′

j ← uj −Π;u′

t ← ut +Π;

8: Set µ′ ← u′./c; f(X ′)←
τ
∑

j=1

(

µ′

j − µ̄′

)2

;{Compute f(X ′)}

9: if f(X ′) < f(X) then
10: Set m← 1;
11: repeat

12: Set i← Ijt[m];
13: Set xij ← xij − πi;xit ← xit + πi; {Shift operation Oij(t, πi)}
14: Set Π← Π− πi;m← m+ 1;
15: until Π = 0;
16: Set X ′ ← X ;
17: return

18: end if

19: end if

20: end for

21: end for

14



Algorithm 2 M-Shift

Require: λ, c, ℓ, L,X
Ensure: X ′

1: existBetterAS ← 0;
2: Sort the set J of job completion dates j in descending order of utilization rate µj , into

DRU
3: for k = 1 to τ do

4: j ← DRU [k]; {Source period}
5: Sort the set Jj of feasible target periods t in ascending order of utilization rate µt,

into LDS
6: for all t ∈ LDS do

7: Set u′ ← u;u′

j ← uj −Π;u′

t ← ut +Π;

8: Set µ′ ← u′./c; f(X ′)←
τ
∑

j=1

(

µ′

j − µ̄′

)2

;{Compute f(X ′)}

9: if f(X ′) < f(X) then
10: existBetterAS ← 1;
11: m← 1;
12: repeat

13: i← Ijt[m];
14: xij ← xij − πi;xit ← xit + πi; {Shift operation Oij(t, πi)}
15: Π = Π− πi;m← m+ 1;
16: until Π = 0;
17: end if

18: end for

19: if existbetterAS = 1 then

20: Set X ′ ← X ;
21: return

22: end if

23: end for

3.2.3. ILS heuristic

In order to escape from local optima, S-Shift and M-Shift are embedded,
each separately, in an ILS framework. We denote the meta-heuristics as
S-ILS and M-ILS respectively.

The three main components of the ILS heuristic are as below:

Initialization. Similar to the approach in [26], the initial solution in Step 1
is generated deterministically by allocating each daily demand λi across the
time interval between the internal release date ri and the due date di, as
evenly as possible.

15



Algorithm 3 Variable neighborhood search S-ILS/M-ILS

Require: λ, c, ℓ, L, tmax, kmax

Ensure: Xopt

1: Initialization: Select an initial solution X
2: set Xopt ← X ; fopt ← f(X)
3: repeat

4: Set k ← 1
5: repeat

6: Exploration of neighborhood: Find a better solution X ′ with f(X ′) < f(X) using
S-Shift or M-Shift;

7: if f(X ′) < fopt then
8: Set X ← X ′;Xopt ← X ′; fopt ← f(X ′); k ← 1;
9: else

10: Perturbation: Set X ← perturbation(Xopt, k); k ← k + 1;
11: end if

12: until kmax

13: until tmax

Exploration of neighborhood. The core of the search procedure is, of course,
the exploration of the neighborhood. In each iteration, the search starts from
a solution X and attempts to find a better solution X ′ using the local search
heuristic S-Shift or M-Shift (see Section 3.2.2).

1. If no better solution X ′ than X can be found, a new starting point
for the next iteration is randomly generated by perturbing the current
best solution Xopt. In the following we denote fopt = f(Xopt) as the
objective function value of Xopt.

2. Otherwise, a random solution from the neighborhood of Xopt is gener-
ated using perturbation of Xopt to restart the next round of search.

Perturbation. ILS uses perturbation techniques to enable the search to escape
the valley of a local optimum and find another better solution. In this step,
a solution is generated by perturbing the current best, from which the search
continues to explore the solutions landscape. The solutions are perturbed in
a random way in order to avoid cycling which might occur if deterministic
rules are used. First, a non-zero element xij > 0 is randomly chosen in the
assignment scheme X . Second, a random target period t ∈ Jj is determined.
Third, the quantity πi of jobs to be shifted is generated as an integer random
number between 1 and xij . Finally, the perturbed solution is obtained after
the shift operation Oij(t, πi) which reassigns πi jobs arriving in period i from
completion date j to completion date t.

16



We increase the perturbation strength in a similar way as done in VNS [2]
by repeating the described perturbation k times. We vary k between 1 and
kmax starting at 1. If after the perturbation and the subsequent local search
no better solution is found, k is increased by one, otherwise it is set to 1. If
kmax is reached, we set k back to 1. The search stops when the maximum
CPU time allowed tmax runs out.

4. Illustrative example

In this section, we present a numerical example to illustrate S-ILS and
M-ILS.

Example We have M = 7 days, N = 7 days, τ = lcm(M,N) = 7 days,
ℓ = 2 days. The weekly demand and capacity are given as

• λ = [λi] = [524, 391, 523, 490, 372, 254, 126]T,

• c = [cj] = [480, 400, 260, 320, 370, 490, 480]T respectively.

Further, L is set to 4 days.

Table 3: Initial solution

H
H
H
H
H
H

i
j 1 2 3 4 5 6 7

Mon Tue Wed Thu Fri Sat Sun λi

1 Mon 262 262 524
→ 2 Tue 196 195 391

3 Wed 262 261 523
4 Thu 245 245 490
5 Fri 186 186 372
6 Sat 127 127 254
7 Sun 63 63 126
uj 431 313 190 325 458 457 506
cj 480 400 260 320 370 490 480
µj 0.90 0.78 0.73 1.02 1.24 0.93 1.05
f(X) 0.1771 ↑ ↑

In Table 3, the dark gray cells represent the time span a job has to wait
before it can be processed. The light gray cells indicate the time window

17



Table 4: Comparisons between S-ILS and M-ILS by means of an example

Iter. S-ILS M-ILS

j → t i πi Π f(X) j → t i πi Π f(X)

1 5→ 6 2 64 64 0.11977 5→ 6 2 64 64 0.11977
5→ 4 1 8 8 0.11922

2 5→ 4 1 8 8 0.11922 6→ 7 3 2 2 0.11920
3 6→ 7 3 2 2 0.11920 7→ 1 4 39 39 0.10663
4 7→ 1 4 39 39 0.10633 6→ 7 3 20 20 0.10309
5 6→ 7 3 20 20 0.10309 5→ 6 2 5 5 0.10221
46 6→ 7 3 1 1 2.9×10−5 1→ 2 5 1 1 1.2×10−5

47 1→ 2 5 1 1 1.2×10−5 − − − − −
61 4→ 5 1 94 94 1.2×10−5 2→ 1 5 97 97 7.0×10−6

328 7→ 6 3 193 193 7.0×10−6 7→ 6 3 171 171 3.6×10−6

810 6→ 7 3 193 193 3.6×10−6 3→ 2 6 66 66 3.6×10−6

between the internal release date ri and the due date di of jobs arriving on
day i. It can be seen that e.g. the feasible time window for completing
jobs arriving on Monday, are Thursday and Friday. As another example,
for any job arriving on Thursday, the completion date has to be Sunday of
the same week as the arrival date, or Monday of the following week. In
both heuristics, to create an initial solution, the daily demands are allocated
across the feasible 2-days completion time interval respectively, as evenly
as possible. Table 3 shows the initial state (x14 = x15 = 262; x25 = 196,
x26 = 195 etc.). The used capacity per day is determined using Equation (5)
u = [uj] = [431, 313, 190, 325, 458, 457, 506]T. According to Equation (6) the
daily capacity utilization rates are calculated and can be written in the vector
form µ = [µj ] = [0.90, 0.78, 0.73, 1.02, 1.24, 0.93, 1.05]T. Thus, the objective
function value of the initial solution is 0.1771.

Starting from the initial solution, the search process of both heuristics is
recorded. The CPU time limit tmax is set to 50 seconds, which is long enough
for solving this small test instance to optimality. Here only the results of some
search iterations are indicated in Table 4 to take up less space. In each of
these iterations, source day j and target day t of each shift operation, as well

18



as arrival date and number of shifted jobs πi are shown.
In the initial solution, Friday has the highest capacity utilization rate,

Saturday has the lowest rate among the feasible target candidates, and only
jobs arriving on Tuesday are feasible to be moved from Friday to Saturday.
Therefore, the very first shift operation changes the completion date of 64
jobs arriving on Tuesday from Friday to Saturday.

Unlike S-ILS, M-ILS can spread jobs from a source day to more than one
target day as can be seen in the first iteration, and thus converges faster than
S-ILS. An example of neighborhood change can be seen in the 47th iteration,
in which no better solution is found. Here, a solution generated at random
is taken as the starting point for the next iteration to escape the valley of a
local optimum. S-ILS obtains the best solution in the 810th, and M-ILS in
the 328th round of search. The heuristics terminate when tmax is reached and
no better solution is found. The best objective function values provided by
S-ILS and M-ILS are both 3.6×10−6 which correspond to that of the optimal
solution obtained by CPLEX.

5. Computational study

In this section, some computational results regarding the solution ap-
proaches proposed will be given. The test problems are categorized into 7
different classes (each containing 20 test instances) according to the size of
the test problems as depicted in Table 5. The test instances in classes 1–4
are of rather small and common problems, where the planning horizon T can
be 7 days, 30 days, 12 or 24 hours. Less common problems are represented
by the test instances in classes 5–7, in which demand cycle M and resource
cycle N are set to be different prime numbers, which causes a significant
increase in the problem size. Demand and capacity data in each time period
are generated from a uniform distribution λi ∼ U(0, 500) and cj ∼ U(0, 500).

All computations were carried out on a PC with an Intel Core 2 Duo CPU
E6550 @ 2.33 GHz 1.98 GHz and 3.25 GB RAM under Windows XP. As a
MQIP solver, CPLEX 11.2 is used, which is a commercial solver employing
branch-and-cut methods. We applied it to the formulation of the WBP in
Section 2.4 without any further specific tailoring, i.e. CPLEX’s standard
configuration parameters were used, except that the default relative and
absolute optimality tolerance of 10−4 and 10−6 were changed to 0. These
changes are necessary, because the objective function value of the WBP is
near zero, and hence the default tolerance gaps would significantly influence

19



the solution quality. CPLEX terminates after either an optimal solution is
found or because of an error. The heuristics are coded in C.

Table 5: The configuration of test problems

M = N = τ

No. of a No. of No. of test
Class M N τ ℓ L variables constraints instances

1 7 7 7 2 5 49 (21) 28 20 (1-20)
2 12 12 12 2 5 144 (36) 48 20 (21-40)
3 24 24 24 2 5 576 (72) 96 20 (41-60)
4 30 30 30 2 5 900 (90) 120 20 (61-80)

M 6= N

5 7 13 91 2 7 8,281 (455) 364 20 (81-100)
6 11 13 143 2 7 20,449 (715) 572 20 (101-120)
7 13 17 221 2 7 48,841 (1,105) 884 20 (121-140)

aThe column indicates the total number of variables and the number of positive vari-
ables given in brackets

Firstly, the heuristic algorithms are used to solve the small size test in-
stances of classes 1–4. The run times for finding feasible solutions are effec-
tively instantaneous. However, in order to verify the solution quality of our
algorithms and those of Li and He, namely whether they find an optimum
or not, we compare the heuristic solutions with those provided by CPLEX.
We set kmax = 1, 000 and tmax = 200 seconds. The quality of a solution
obtained by S-ILS and M-ILS is indicated in Table 6 as a percentage gap
between the objective value of this solution and either the optimum solu-
tion value (if available) or the objective value of the best solution found by
the MQIP solver. For each problem class of 20 different test instances, the
minimum, mean and maximum values of the percentage gap to CPLEX’s
solution are recorded. Further, CPU times are also presented in Table 6.
CPLEX was able to solve 75%, 60%, 60%, and 55% of instances of classes 1–
4 to optimality respectively, but the computation is for most of the problem
instances time consuming. The same problems are solved in much shorter

20



CPU time by S-ILS and M-ILS. The final solutions provided by the heuristics
are, on average, very close to those obtained by CPLEX. The average gap
to CPLEX’s solutions is between 0.48% and 1.56% for S-ILS and between
0.40% and 0.77% for M-ILS. Furthermore, it can be observed that on average
M-ILS converges faster and provides better solution quality than S-ILS. Fig-
ure 1 illustrates the comparison results between S-ILS, M-ILS and CPLEX
in more details.

Table 6: Gaps to best known solution and solution times

% Gap CPU Time

Class S-ILS M-ILS CPLEX S-ILS M-ILS

1 Min 0,00 0,00 0,01

200 s

Mean 0,75 0,77 2.173,53
Max 8,49 8,49 17.394,23

2 Min 0,00 0,00 0,01
Mean 0,48 0,40 4.753,11
Max 2,05 2,01 28.995,38

3 Min 0,12 0,04 0,28
Mean 1,29 0,63 1.676,93
Max 4,18 2,96 13.668,77

4 Min 0,16 0,10 1,22
Mean 1,56 0,69 807,83
Max 5,43 3,08 2.688,63

21



1 20 40 60 80
10

−6

10
−4

10
−2

10
0

10
2

t
max

 = 200s

f(
X

)

Test instance number

 

 

CPLEX
S−ILS
M−ILS

1 20 40 60 80
0

1

2

3

4

5

6

7

8

9

t
max

 = 200s

G
ap

 to
 b

es
t k

no
w

n 
so

lu
tio

n 
(%

)

Test instance number

 

 

S−ILS
M−ILS

Figure 1: Test problem instances of class 1–4, tmax = 200s

22



81 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

t
max

 = 100s

f(
X

)

Test instance number

 

 

S−ILS
M−ILS

81 100 120 140
−20

0

20

40

60

80

100

t
max

 = 100s

G
ap

 to
 s

ol
ut

io
n 

ob
ta

in
ed

 b
y 

M
−

IL
S

 (
%

)

Test instance number

 

 

S−ILS

Figure 2: Test problem instances of class 5–7, tmax = 100s

23



81 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

10
1

t
max

 = 1,000s

f(
X

)

Test instance number

 

 

S−ILS
M−ILS

81 100 120 140
−10

0

10

20

30

40

50

60

70

t
max

 = 1,000s

G
ap

 to
 s

ol
ut

io
n 

ob
ta

in
ed

 b
y 

M
−

IL
S

 (
%

)

Test instance number

 

 

S−ILS

Figure 3: Test problem instances of class 5–7, tmax = 1, 000s

24



Because of the large problem size, test instances of classes 5–7 cannot be
solved by CPLEX. Here, S-VNS and M-VNS are compared on the basis of
equivalent CPU times. We run both heuristics with tmax equal to 100 sec and
1,000 sec for each instance of classes 5–7. The objective function values of
final solutions are depicted in Figure 2-3. The results show that considering
the solution quality, in most of the cases M-VNS outperforms S-VNS, but
the gaps decrease with increasing tmax. Generally, it can be stated that the
longer the planning horizon τ is, and the shorter the ratio L/τ is, the more
rapidly M-VNS converges than S-VNS.

The experiments also show that our heuristics yield substantial improve-
ments in CPU time compared to those of Li and He. The CPU times for
solving three test instances of class 4 by using their heuristics, H1 and H2,
lie between 39 and 67 min (as indicated in [26] without any information re-
garding the solution quality and the used computer), whereas our maximum
CPU time is 200 sec. The main reasons for this big gap are as follows. The
number of jobs to be shifted in H1 and H2, based on which a decision will
be made whether it is better to shift, is not always feasible. This may lead
to unnecessary search iterations without solution improvement. Another fea-
ture, which makes H1 and H2 less efficient is that jobs are shifted individually
and for each job a check has to be made to ensure the lead-time constraints.
Therefore, when a large number of jobs are to be analyzed, these approaches
are very time consuming. In contrast, S-VNS and M-VNS employ feasible
shift operations Oij(t, πi), in each of which a batch of πi jobs are moved to
the target position. Further, while H1 and H2 can easily get stuck in local
optima due to their greedy strategy, our stochastic search heuristics explore
the neighborhood more thoroughly.

6. Conclusion

This paper proposes several improvements for the previously published
work by Li and He [26]. First, a mathematical formulation of the WBP
was proposed. The mathematical model helps us to better understand the
structure of the problem and justifies the use of heuristics. Second, two
variants of a new heuristic, S-ILS and M-ILS, are proposed to improve the
solution quality as well as the computational efforts. A further improvement
to the previous work is that insights into the quality of solutions obtained by
using heuristic algorithms are provided by comparing those with CPLEX’s
best known solutions for small problems. The empirical results indicate that

25



the use of CPLEX for solving the WBP is limited due to the complexity of the
problem, whereas both heuristic variants are able to provide very good results
efficiently. For large scale problems, M-ILS turns out to be more efficient than
S-ILS. Using the proposed solution algorithms we have developed a prototype
of a software application for jobs scheduling (Figure 4) at the company under
investigation. The software application can be implemented as a component
in the company’s integrated planning system. Such a system is described
in Section 2. This component receives data inputs regarding demand and
capacity from the modules for demand forecasting and capacity deployment
planning and provides a (near-) optimal solution and graphical visualization
for the WBP when data for lead-time are entered.

Figure 4: Software application for jobs scheduling

Future research could focus on profit maximization taking into consid-
eration that customers are delay sensitive, i.e. customer demand increases
with lower lead-time. Another aspect which is worthy to pay attention on
is that the firm may incur lateness penalties when ever the actual delivery
time exceeds the quoted lead-time. In addition, demand uncertainty is an
interesting topic for further study in this context.

26



References

[1] T. Stützle, Iterated local search for the quadratic assignment problem,
European Journal of Operational Research 174 (2006) 1519–1539.

[2] P. Hansen, N. Mladenov́ıc, J. Brimberg, J. A. M. Pérez, Variable neigh-
borhood search, in: M. Gendreau, J.-Y. Potvin (Eds.), Handbook of
Metaheuristics, Vol. 146 of International Series in Operations Research
& Management Science Volume, Sprin, 2010, pp. 61–86.

[3] P. Hansen, N. Mladenov́ıc, Variable neighborhood search, in: Search
Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, Springer, 2005, pp. 211–238.

[4] N. Mladenov́ıc, P. Hansen, Variable neighborhood search, Computers
Operations Research 24 (11) (1997) 1097–1100.

[5] A. G. Nikolaev, S. H. Jacobson, Simulated annealing, in: M. Gendreau,
J.-Y. Potvin (Eds.), Handbook of Metaheuristics, Vol. 146 of Interna-
tional Series in Operations Research & Management Science, Springer,
2010, pp. 1–39.

[6] D. T. Connolly, An improved annealing scheme for the QAP, European
Journal of Operational Research 46 (1990) 93–100.

[7] R. Burkard, F. Rendl, A thermodynamically motivated simulation pro-
cedure for combinatorial optimization problems, European Journal of
Operational Research 17 (2) (1984) 169–174.

[8] T. James, C. Rego, F. Glover, Multistart tabu search and diversification
strategies for the quadratic assignment problem, IEEE Transactions on-
Systems, Man and Cybernetics, Part A: Systems and Humans 39 (3)
(2009) 579–596.

[9] R. Battiti, G. Tecchiolli, The Reactive Tabu Search, ORSA Journal on
Computing 6 (2) (1994) 126–140.

[10] J. Skorin-Kapov, Tabu Search Applied to the Quadratic Assignment
Problem, INFORMS Journal on Computing 2 (1) (1990) 33–45.

27



[11] J. M. S. Valente, M. R. A. Moreira, A. Singh, R. A. F. S. Alves, Genetic
algorithms for single machine scheduling with quadratic earliness and
tardiness costs, The International Journal of Advanced Manufacturing
Technology 54 (2011) 251–265.

[12] J. M. Valente, J. F. Goncalves, A genetic algorithm approach for the
single machine scheduling problem with linear earliness and quadratic
tardiness penalties, Computers & Operations Research 36 (2009) 2707–
2715.

[13] D. M. Tate, A. E. Smith, A Genetic Approach to the Quadratic Assign-
ment Problem, Computers & Operations Research 22 (1) (1995) 73–83.

[14] C. Fleurent, J. A. Ferland, Genetic Hybrids for the Quadratic Assign-
ment Problem, in: P. Pardalos, H. Wolkowicz (Eds.), Quadratic as-
signment and related problems, Vol. 16 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, American Mathemat-
ical Society, 1994, pp. 173–187.

[15] P. C. Gilmore, Optimal and suboptimal algorithms for the quadratic
assignment problem, Journal of the Society for Industrial and Applied
Mathematics 10 (2) (1962) 305–313.

[16] A. Auger, N. Hansen, Theory of evolution strategies: a new perspective,
in: A. Auger, B. Doerr (Eds.), Theory of Randomized Search Heuristics:
Foundations and Recent Developments, Series on Theoretical Computer
Science, World Scientific Publishing Company, 2011, pp. 289–325.

[17] V. Nissen, Solving the Quadratic Assignment Problem with Clues from
Nature, IEEE Transactions on Neutral Networks 5 (1) (1994) 66–71.

[18] M. López-Ibán̋ez, T. Stützle, An experimental analysis of design choices
of multi-objective ant colony optimization algorithms, Swarm Intelli-
gence 6 (2012) 207–232.

[19] T. Stützle, H. H. Hoos, MAX-MIN Ant System, Future Generation Com-
puter Systems 16 (2000) 889–914.

[20] V. Maniezzo, Exact and Approximate Nondeterministic Tree-Search
Procedures for the Quadratic Assignment Problem, INFORMS Journal
on Computing 11 (4) (1999) 358–368.

28



[21] L. M. Gambardella, E. D. Taillard, M. Dorigo, Ant colonies for the
quadratic assigment problem, Journal of the Operational Research So-
ciety 50 (2) (1999) 167–176.

[22] M. G. Resende, C. C. Ribeiro, F. Glover, R. Mart́ı, Scatter search and
path-relinking: Fundamentals, advances, and applications, in: M. Gen-
dreau, J.-Y. Potvin (Eds.), Handbook of Metaheuristics, Vol. 146 of
International Series in Operations Research & Management Science,
Springer, 2010, pp. 87–107.

[23] D. S. Johnson, L. A. McGeoch, Experimental analysis of heuristics for
the stsp, in: G. Gutin, A. Punnen (Eds.), The Traveling Salesman Prob-
lem and Its Variations, Kluwer Academic Publishers, 2002, pp. 369–443.

[24] A. K. M., B. N. W., L. J. Goux J.-P., Solving large quadratic assignment
problems on computational grids, Mathematical Programming 91 (3)
(2002) 563–588.

[25] E. D. Taillard, Robust taboo search for the quadratic assignment prob-
lem, Parallel Computing 17 (1991) 443–455.

[26] Y. Li, B. He, Optimizing lead time and resource utilization for service
enterprises, Service Oriented Computing and Applications 2 (2-3) (2008)
65–78.

29


