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Facets of the axial three-index assignment polytope

Trivikram Dokkaa,∗, Frits C.R. Spieksmab

aDepartment of Management Science, Lancaster University Management School, Lancaster, LA1 14X,
United Kingdom.

bORSTAT, K.U.Leuven, Naamsestraat 69, B-3000, Leuven, Belgium.

Abstract

We revisit the facial structure of the axial 3-index assignment polytope. After reviewing
known classes of facet-defining inequalities, we present a new class of valid inequalities,
and show that they are facets of this polytope. This answers a question posed by Qi and
Sun [14]. Moreover, we show that we can separate these inequalities in polynomial time.

Keywords: multi-dimensional assignment; polyhedral methods; facets; separation
algorithm;

1. Introduction

The axial 3-index (or 3-dimensional) assignment problem can be described as follows.
Given are three disjoint n-sets I, J,K and a weight function w : I × J ×K −→ R. The
problem is to select a collection of triples M ⊆ I × J × K such that each element of
each set appears in exactly one triple, and such that total weight of the selected triples
is minimized (or maximized). Its formulation as an Integer Linear Program (ILP) is:

min
∑
i∈I

∑
j∈J

∑
k∈K

wijkxijk

s.t.
∑
j∈J

∑
k∈K

xijk = 1 ∀i ∈ I, (1.1)∑
i∈I

∑
k∈K

xijk = 1 ∀j ∈ J, (1.2)∑
i∈I

∑
j∈J

xijk = 1 ∀k ∈ K, (1.3)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (1.4)

This problem has many applications; we restrict ourselves here to mentioning that
optimization problems in data-association, production, and logistics can often be modeled
as 3-index assignment problem; we refer to Spieksma [15] for an overview. In this work
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we contribute to the polyhedral knowledge of the facial structure of the convex hull of
the feasible solutions to (1.1)-(1.4). In particular, we give a new class of facet-defining
inequalities, and we show that this class can be separated in polynomial time. We
also describe known classes of facets by adopting a geometrical point of view, i.e., we
organize the variables xijk in a three-dimensional array (a cube), thereby illustrating the
differences between distinct classes of inequalities.

1.1. Literature

It is well-known that, as opposed to the polytope that corresponds to the two-
dimensional assignment problem, not all extreme vertices of the polytope corresponding
to (1.1)-(1.4) are integral. In fact, different types of fractional vertices exist; work on
this topic is reported in Kravtsov [10]. Early work investigating the facial structure of
the polytope PI is described in Balas and Saltzman [4] and Euler [8]. They give dif-
ferent classes of facet-defining inequalities (see Section 2). Subsequently, other classes
of facet-defining inequalities are reported in Qi and Balas [12] (see also Qi, Balas and
Gwan [13]). Separation algorithms are discussed in Balas and Qi [3]. A nice overview
of existing polyhedral results is given in Qi and Sun [14]. This paper also contains the
question: “Are there other facet classes such that the right hand sides of their defining
inequalities are 2?”, to which we provide an (affirmative) answer here. An exact algo-
rithm based on known valid inequalities that are used in conjunction with Lagrangian
multipliers is given in Balas and Saltzman [5].

A related polytope is the one that corresponds to the so-called planar three-index
assignment problem; this is the problem that arises when a collection of triples needs to
be selected such that each pair of elements from (I × J) ∪ (I ×K) ∪ (J ×K) is selected
precisely once. The facial structure of this polytope has first been studied in Euler et
al. [7]. Also, polytopes that correspond to four-index assignment problems have been
studied, see Appa et al. [1]. Recent results that unify these polyhedral results for all
multi-index assignment polytopes can be found in Appa et al. [2].

1.2. Preliminaries

To avoid trivialities we assume n ≥ 4. Let An denote the (0, 1) matrix corresponding
to the constraints (1.1) - (1.3). Thus An has n3 columns (one for each variable) and 3n
rows (one for each constraint). Then, the 3-index assignment polytope is the following
object:

Pn
I = conv{x ∈ {0, 1}n

3

: Anx = 1},

while its linear programming (LP) relaxation is described as:

Pn = {x ∈ Rn3

: Anx = 1, x ≥ 0}.

For reasons of convenience, we will often omit the superscript n, and use A, PI and
P instead. We use R ≡ (I ∪ J ∪ K); elements of R are called indices. We also use
V ≡ I × J ×K; elements of V are called triples. Given a triple (i, j, k) ∈ V , we refer to
i, j and k as first, second, and third indices respectively.

An important object is the so-called column intersection graph corresponding to An.
This graph G(V,E), has a node for each column of An (i.e., a node for each triple) and
an edge for every pair of columns that have a +1 entry in the same row. Notice that each
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Figure 1: The arrangement of the xijk variables in a three-dimensional cube.

column of An contains three +1’s. The intersection of two columns c and d is nothing
else but the number of indices that the triples c and d have in common; this number is
denoted by |c ∩ d|. Thus, the edge set E of the column intersection graph is given by
E = {(c, d) : {c, d} ⊆ V, |c ∩ d| ≥ 1}, i.e., two nodes are connected iff the corresponding
triples share some index. We call two triples disjoint if the corresponding nodes are not
connected in G. Clearly, cliques (a complete subgraph of G) and odd cycles (a cycle
consisting of an odd number of vertices in G) are relevant structures. Indeed, it is clear
that when given a set of variables that correspond to nodes that form a clique in G, at
most one of these variables can equal 1. In other words, a clique in G corresponds to a
valid inequality for Pn with righthand side 1, see Balas and Saltzman [4]. Also, a set of
variables that correspond to an odd cycle in G gives rise to a valid inequality, see e.g.
Euler [8].

In this work, we use well-known concepts from polyhedral theory; for a thorough
introduction into this field we refer to Nemhauser and Wolsey [11].

We will adopt a geometrical point of view to illustrate the valid inequalities. To do
so, we see the variables xijk arranged as in a cube, see Figure 1.

We find it convenient to have a symbol for the set of all x-variables that share two
indices. More concrete, we define the following sets.

• For a given (j∗, k∗) ∈ J ×K: the set

(−, j∗, k∗) ≡ {(i, j, k) ∈ V : j = j∗, k = k∗}.

We use x(−, j∗, k∗) to denote the total weight of the corresponding variables.

• For a given (i∗, k∗) ∈ I ×K, the set

(i∗,−, k∗) ≡ {(i, j, k) ∈ V : i = i∗, k = k∗}.

We use x(i∗,−, k∗) to denote the total weight of the corresponding variables.

• For a given (i∗, j∗) ∈ J ×K, the set

(i∗, j∗,−) ≡ {(i, j, k) ∈ V : i = i∗, j = j∗}.
4



We use x(i∗, j∗,−) to denote the total weight of the corresponding variables.

Geometrically, such a set of variables corresponds to an “axis” through the cube depicted
in Figure. Further, we write x(A) for

∑
q∈A xq.

In the next section we review the known classes of facet-defining inequalities of PI .

2. A review of known facet classes of PI

In this section, we review the known facet classes of PI . There are two classes of
facet-defining inequalities with right-hand side (RHS) 1 (Subsection 2.1), and we distin-
guish four classes of facet-defining inequalities with right-hand side 2 (Subsection 2.2).
Subsection 2.3 deals with other facet-defining inequalities.

2.1. Facet-defining inequalities with RHS 1

As described in Subsection 1.2, a clique in the column intersection graph gives rise to
a valid inequality. Balas and Saltzman [4] showed that there exist three types of cliques in
G(V,E), and two of them give rise to families of valid inequalities that are facet-defining
for PI . It is known that each of these classes can be separated in O(n3) (see Balas and
Qi [3]).

2.1.1. Clique inequalities of type I

Consider a triple c = (ic, jc, kc) ∈ V . For each c ∈ V , define

Q(c) = {(i, j, k) ∈ V : i = ic, j = jc or i = ic, k = kc or j = jc, k = kc}.

Thus, Q(c) is the set of triples sharing at least two indices with triple c. The correspond-
ing inequalities are clearly valid. For each c ∈ V :

x(Q(c)) ≤ 1. (2.5)

Fact 1. ([4]) Inequalities (2.5) define facets of PI ; these inequalities are called clique
inequalities of type I.

When we organize the variables xijk in a three-dimensional array (a cube), a clique
inequality of type I can be seen as the sum of those x-variables that lie on the three
“axes” through a particular cell. Indeed an alternative way of expressing Q(c) is by
observing that

Q(c) = (−, jc, kc) ∪ (ic,−, kc) ∪ (−, jc, kc),

see Figure 2.

2.1.2. Clique inequalities of type II

Consider two disjoint triples c = (ic, jc, kc) ∈ V and d = (id, jd, kd) ∈ V . For each such
pair of triples c, d ∈ V , define

Q(c, d) = {(ic, jc, kc), (ic, jd, kd), (id, jc, kd), (id, jd, kc)}.
5
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Figure 2: Geometric illustration of a clique inequality of type I; the three dotted axes correspond to the
variables in this inequality.
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Figure 3: Geometric illustration of a clique inequality of type II; the four highlighted cells correspond
to the four variables in this inequality.

Thus, Q(c, d) is the set of triples that has two indices in common with d, and one
with c, together with triple c; notice that Q(c, d) contains exactly four triples. The
corresponding inequalities are clearly valid. For each disjoint pair c, d ∈ V :

x(Q(c, d)) ≤ 1. (2.6)

Fact 2. ([4]) Inequalities (2.6) define facets of PI ; these inequalities are called clique
inequalities of type II.

2.2. Facet-defining inequalities with RHS 2

There are four classes known of facet-defining inequalities with right-hand side 2; these
classes are members of larger classes of facet-defining inequalities that have arbitrary
right-hand sides (see Qi and Sun [14] for a nice overview). Below we describe each of
these classes restricted to right-hand side 2. It is shown in [14] that each of these four
classes can be separated in O(n3) time.
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2.2.1. Lifted 5-hole inequalities

Balas and Saltzman [4] describe a class of facet-defining inequalities that correspond to
cycles of odd length in G; this class can have an arbitrary right-hand side. Here, we
restrict ourselves to describing those inequalities that have right-hand side 2, and we
will refer to them as lifted 5-hole inequalities. Let U consist of two elements of I, two
elements of J , and a single element of K, i.e., U = {i1, i2, j1, j2, k1} ⊂ R. Of course, the
roles of I, J,K in the definition of U can be interchanged. For each such U ⊂ R, define

S(U) = {(i, j, k) ∈ V : |(i, j, k) ∩ {i1, i2, j1, j2, k1}| ≥ 2}.

Thus, S(U) contains the triples that have at least two indices in common with U =
{i1, i2, j1, j2, k1}. The corresponding inequalities are valid. For each U = {i1, i2, j1, j2, k1} ⊂
R:

x(S(U)) ≤ 2. (2.7)

Fact 3. ([4]) Inequalities (2.7) define facets of PI ; these inequalities are called lifted
5-hole inequalities.

Informally, we can view the left-hand side of a lifted 5-hole inequality as the union
of four (specific) clique inequalities of type I. Indeed, it is easily verified that S(U) =
Q(i1, j1, k1)∪Q(i1, j2, k1)∪Q(i2, j1, k1)∪Q(i2, j2, k1), see Figure 4. Thus, informally said,
a lifted 5-hole inequality consists of 8 axes. In fact, clique inequalities of type I, as well
as the lifted 5-hole inequalities, can be seen as members of a larger class of facet-defining
inequalities (called facet class Q in [14], see also [4]).

2.2.2. P (2) inequalities

This class of inequalities was introduced by Qi and Balas [12] (see also Qi et al. [13]),
and can be seen as a generalization of the clique inequalities of type II. Consider two
disjoint sets of indices U,W ⊂ R. We define

C1(U) ≡ {(i, j, k) ∈ V : i, j, k ∈ U}, and (2.8)

C2(U,W ) ≡ {(i, j, k) ∈ V : |(i, j, k) ∩ U | = 1, |(i, j, k) ∩W | = 2}. (2.9)

Thus, C1(U) consists of those triples whose indices are contained in U , while C2(U,W )
contains triples that share precisely one index with U , and precisely two indices with W .
We now apply definitions (2.8) and (2.9) to the following two choices of U and W . Here
is a first choice:

U = {i1, i2, j1, j2, k1, k2},W = {i3, j3, k3}. (2.10)

This leads to

C1(U) = {(i1, j1, k1), (i1, j1, k2), (i1, j2, k1), (i1, j2, k2),

(i2, j1, k1), (i2, j1, k2), (i2, j2, k1), (i2, j2, k2)}, and

C2(U,W ) = {(i1, j3, k3), (i3, j1, k3), (i3, j3, k1), (i2, j3, k3), (i3, j2, k3), (i3, j3, k2)}.
7
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Figure 4: Geometric illustration of a lifted 5-hole inequality; the eight dotted axes correspond to the
variables in this inequality.
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Figure 5: Geometric illustration of a P (2) inequality; the fourteen highlighted cells correspond to the
fourteen variables in this inequality.

And here is a second choice for the sets U,W :

U = {i1, i2, j1, k1},W = {i3, j2, j3, k2, k3}. (2.11)

This leads to

C1(U) = {(i1, j1, k1), (i2, j1, k1))}, and

C2(U,W ) = {(i1, j2, k2), (i1, j2, k3), (i1, j3, k2), (i1, j3, k3), (i2, j2, k2), (i2, j2, k3),

(i2, j3, k2), (i2, j3, k3), (i3, j1, k2), (i3, j1, k3), (i3, j2, k2), (i3, j3, k1)}.

The following inequalities are valid. For each disjoint pair of sets U,W ⊂ R satisfying
(2.10) or (2.11):

x(C1(U)) + x(C2(U,W )) ≤ 2. (2.12)

Fact 4. ([4]) Inequalities (2.12) define facets of PI ; these inequalities are called P (2)
inequalities.

Thus, an inequality of the class P (2) consists of 14 cells, see Figure 5.

2.2.3. Bull inequalities

This class of inequalities was described in Gwan and Qi [9]. It is a class of inequalities
with arbitrary right-hand side; here, we restrict our attention to the case where the
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right hand side equals 2. Notice that this class of inequalities contains variables whose
coefficient has value 2.

Consider a single triple from V , say (i1, j1, k1), and consider a set U = {i2, j2} (with
i1 6= i2, j1 6= j2); let us call W = {i1, j1, k1} ∪ U . Define

F (U) = {(i, j, k) ∈ V : |(i, j, k) ∩W | ≥ 2, 1 ≤ |(i, j, k) ∩ {i1, j1, k1}| ≤ 2}}.

Thus, F (U) contains those triples that share at least two indices withW , and either one or
two indices with {i1, j1, k1}. The following inequalities are valid. For each (i1, j1, k1) ∈ V
and U ⊂ R:

2xi1,j1,k1
+ x(F (U)) ≤ 2. (2.13)

Fact 5. ([9]) Inequalities (2.13) define facets of PI ; these inequalities are called bull
inequalities.

Notice that we can write

F (U) ∪ (i1, j1, k1) =

{(i1, j1,−), (i1,−, k1), (−, j1, k1), (i1, j2,−), (i2, j1,−), (i2,−, k1), (−, j2, k1)}.

Thus, a bull inequality consists of 7 axes and a single variable with coefficient 2, see
Figure 6 for an illustration.

2.2.4. Comb inequalities

This class of inequalities was also described in Gwan and Qi [9]. Again, it is a class
of inequalities with arbitrary right-hand side; here, we restrict our attention to the case
where the right hand side equals 2.

Let i1, i2, i3 ∈ I, j1, j2, j3 ∈ J , k1, k2, k3 ∈ K be pairwise distinct indices in R, and
let

U = {(i1, j2, k2), (i1, j3, k3), (i2, j2, k3), (i2, j3, k2), (i3, j1, k1), (i3, j2, k2), (i3, j3, k3)}.
(2.14)

The following inequalities are valid. For each (i1, j1, k1) ∈ V and U satisfying (2.14):

x(U) + x[(i1, j1,−) ∪ (i1,−, k1)] ≤ 2. (2.15)

Fact 6. ([9]) Inequalities (2.15) define facets of PI ; these inequalities are called comb
inequalities.

Thus, a comb inequality consists of 2 axes and 7 cells, see Figure 7 for an illustration.

2.3. Other facet-defining inequalities

Based on odd-cycles present in the column intersection graph G, Euler [8] described
a class of facet-defining inequalities. Indeed, an odd cycle in G gives rise to a valid
inequality, and, in some circumstances (see [8]), such a valid inequality can be lifted to

10
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Figure 6: Geometric illustration of a bull inequality; the seven dotted axes correspond to the variables
in this inequality, whereas the highlighted cell corresponds to the variable with coefficient 2.
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Figure 7: Geometric illustration of a comb inequality; the two dotted axes, and the seven highlighted
cells, correspond to the variables in this inequality.
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a facet-defining inequality. Although we refrain from giving a precise description of the
resulting inequalities, we note here that the right-hand side of this class of inequalities
equals n− 1.

As far as we aware, the classes of inequalities that we covered in this section constitute
all known facet-defining inequalities of the polytope PI .

3. Wall Inequalities

3.1. A new class of valid inequalities

In this section we present a new class of valid inequalities that we call wall inequalities.
We will prove in Section 3.2 that these inequalities define facets of PI , thereby answering
a question asked by [9].

Let i1, i2, i3 ∈ I, j1, j2, j3 ∈ J , k1, k2 ∈ K be pairwise distinct indices in R. We define
the following set of triples:

B ={(i1, j1, k1), (i1, j2, k2), (i2, j1, k2), (i2, j2, k1),

(i3, j3,−), (i3,−, k1), (i3,−, k2), (−, j3, k1), (−, j3, k2)}.
(3.16)

Consider now the following inequalities. For each B satisfying (3.16):

x(B) ≤ 2. (3.17)

These inequalities are valid, as witnessed by the following lemma.

Lemma 7. Inequalities (3.17) are valid.

Proof. Inequalities (3.17) can be obtained by adding equations (1.1) with i = i3, (1.2)
with j = j3 and (1.3) with k = k1, k2, and by adding a clique inequality of type II:
x(Q((i2, j2, k1), (i1, j1, k2))) ≤ 1. Next, integer rounding, i.e., dividing the resulting
inequality by 2 and rounding down all coefficients to the nearest integers, gives a wall
inequality. �

We note that inequalities (3.17) can be written as

x(B) = x(Q(i3, j3, k2)) + x(Q((i1, j1, k2), (i2, j2, k1)))

+ x[(i3,−, k1) ∪ (−, j3, k1)],
(3.18)

where Q(i3, j3, k2) is the set of variables in a clique inequality of type I corresponding to
triple (i3, j3, k2) and Q((i1, j1, k2), (i2, j2, k1)) is the set of variables in a clique inequality
of type II corresponding to triples (i1, j1, k2), (i2, j2, k1). Thus, a wall inequality consists
of five axes and four cells, see Figure 8 for an illustration.

3.2. Wall inequalities define facets of PI

Here we prove the main theorem.

Theorem 8. Inequalities (3.17) define facets of PI .
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Figure 8: Geometric illustration of a wall inequality; the five dotted axes, and the four highlighted cells,
correspond to the variables in this inequality.
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Proof. Let us first explain the plan we follow in order to prove that x(B) ≤ 2 defines a
facet of PI . An inequality defines a facet of PI when it is satisfied by every x ∈ PI and
the dimension of the polyhedron PB ≡ {x ∈ PI : x(B) = 2} is equal to the dimension of
PI − 1 (see [11]). To prove that this is the case we will show that

• an inequality from (3.17) does not define an improper face, and

• adding x(B) = 2 to the constraints defining PI increases the rank of the equality
system of PI by exactly one.

The latter statement means that any equation that is satisfied by all x ∈ PB , is a linear
combination of the equations in the system defining PB . Since the dimension of the
polyhedron P is equal to the number of variables in the system defining P minus rank of
the equality system of P , proving the second point above implies dim(PB) = dim(PI)−1.

To prove that an inequality from (3.17) does not induce an improper face, we need to
exhibit a feasible solution with x(B) ≤ 1. Here is such a feasible solution: xi3+`,j3+`,k2+` =
1 for ` = 0, . . . , n−1 (indices should be read modulo n; the values of the indices i3, j3, k2

follow from the specific wall inequality under consideration).
To show that an inequality from (3.17) defines a facet of PI i.e., that dim(PB) =

dim(PI) − 1, we use the same approach as used in [4] and [9]. Namely, we exhibit
scalars λi, i ∈ I, µj , j ∈ J, νk, k ∈ K and a scalar π such that if αx = α0 for all x ∈ PB ,
then the scalars λi, µj , νk, and π satisfy:

αijk = λi + µj + νk if (i, j, k) ∈ V \B, (3.19)

αijk = λi + µj + νk + π if (i, j, k) ∈ B, and (3.20)

α0 =
∑
i∈I

λi +
∑
j∈J

µj +
∑
k∈K

νk + 2π. (3.21)

To prove (3.19) and (3.20), we repeatedly apply the following interchange procedure.

1. Consider a solution x ∈ PI containing two disjoint triples (i, j, k) and (a, b, c), i.e.,
we have xijk = xabc = 1.

2. Construct a solution x̄ from x by interchanging the first index in the two selected
triples (i, j, k) and (a, b, c): x̄ajk = x̄ibc = 1. Observe that x̄ ∈ PI .

3. Deduce the value of αijk from (i) and (ii) using αx = αx̄, which now implies
αijk = αajk + αibc − αabc.

The above procedure describes a first index interchange; clearly, a similar procedure
exists involving a second and third index interchange. Without of loss of generality let
us assume that i1 = 1, i2 = 2, i3 = 3, j1 = 1, j2 = 2, j3 = 3, k2 = 2, k3 = 3.

We define for all i ∈ I, j ∈ J and k ∈ K:

λi = αinn − αnnn, (3.22)

µj = αnjn − αnnn, and (3.23)

νk = αnnk. (3.24)
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Then, in order to prove (3.19), we need to prove for (i, j, k) ∈ V \B

αijk = λi + µj + νk = αinn + αnjn + αnnk − 2αnnn (3.25)

In the following, when we illustrate a solution x ∈ PI , we only write those variables
in the set B that take positive values.

We first deduce four equations which we will use in proving (3.25) for each (i, j, k) /∈ B.
Consider a solution x ∈ PB such that xnnn = xi33 = 1. Using a first index interchange,
we obtain x̄ ∈ PB with x̄inn = x̄n33 = 1. Using αx = αx̄ we have

αnnn + αi33 = αinn + αn33. (3.26)

Note that (3.26) is true for every i ∈ I.

Consider a solution x ∈ PB such that xnnn = x3j3 = 1. Using a second index
interchange, we obtain x̄ ∈ PB with x̄njn = x̄3n3 = 1. Therefore,

α3n3 = αnnn + α3j3 − αnjn. (3.27)

Note that this is true for every j ∈ J .

Again, consider a solution x ∈ PB such that xnnn = x3j2 = 1. Using a second index
interchange, we obtain x̄ ∈ PB with x̄njn = x̄3n2 = 1. Therefore,

α3n2 = αnnn + α3j2 − αnjn. (3.28)

Note that this is true for every j ∈ J .

Now, consider a solution x ∈ PB such that xnnn = x33k = 1. Using a third index
interchange, we obtain x̄ ∈ PB with x̄nnk = x̄33n = 1. Therefore,

α33n = αnnn + α33k − αnnk. (3.29)

Observe that (3.29) is true for all k ∈ K.

3.2.1. Proving (3.19)

If at least two indices of i, j, k are equal to n then it is easy to see that (3.25) holds,
and hence (3.19) follows. Below we consider the cases when at least two indices of i, j, k
are not equal to n.

Case 1: when i = n, j 6= n and k 6= n
Substituting i = n in (3.25), implies that we need to show the following:

αnjk = αnjn + αnnk − αnnn. (3.30)

We consider all possible cases of j and k as follows. We explain in detail the three steps
in the interchange procedure mentioned above for the case when j = 1, k 6= 2. For other
possible values of j and k such that (n, j, k) /∈ B we omit the complete details in proving
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(3.25); instead we give the start solution, the type of index interchange, and the new
solution in Table 1.

Let x ∈ PB be such that xn1k = x33n = x222 = 1. Using a third index interchange
we obtain x̄ ∈ PB such that x̄n1n = x̄33k = x̄222 = 1. By αx = αx̄ we have:

αn1k + α33n = αn1n + α33k.

Substituting the value of α33n from (3.29) we get the required equality:

αn1k = αnnk + αn1n − αnnn.

In the column ‘remarks’ of Table 1, we mention the equality used (e.g., (3.29) in the
above case) in deducing the expression for αijk. Notice that when i = n, j = 3 and
k ∈ {2, 3}, (i, j, k) ∈ B, and we need to prove (3.20).

case start sol. interchange type new sol. remarks
j ∈ {1, 2, 3}
j = 1, k 6= 2 xn1k, x33n, x222 3 x̄n1n, x̄33k, x̄222 (3.29)
j = 1, k = 2 xn12, x33n, x123 3 x̄n1n, x̄332, x̄123 (3.29)
j = 2, k 6= 2 xn2k, x33n, x112 3 x̄n2n, x̄33k, x̄112 (3.29)
j = 2, k = 2 xn22, x33n, x213 3 x̄n2n, x̄332, x̄213 (3.29)

j = 3, k ∈ {2, 3} (i, j, k) ∈ B
j = 3, k /∈ {2, 3} xn3k, x3n3, x112 2 x̄nnk, x̄333, x̄112 (3.27)

j /∈ {1, 2, 3}
k = 2 xnj2, x33n, x123 3 x̄njn, x̄332, x̄123 (3.29)
k 6= 2 xnjk, x33n, x112 3 x̄n2n, x̄33k, x̄112 (3.29)

Table 1: Proving (3.19) when i = n, j 6= n, k 6= n

Case 2: when i 6= n, j = n and k 6= n
We consider all possible values of i and k such that (i, n, j) /∈ B in Table 2. Straight
forward calculations prove the corresponding version of (3.25):

αink = αinn + αnnk − αnnn. (3.31)

Case 3: when i 6= n, j 6= n and k = n
Similar to the above two cases we prove the following version of (3.25)

αijn = αinn + αnjn − αnnn (3.32)

for all possible cases of the values of i and j in Table 3.
Case 4: when i 6= n, j 6= n and k 6= n

We now prove (3.25) for the case when i 6= n,j 6= n, k 6= n. Let x ∈ PB such that
xnnn = xijk = 1 with (i, j, k) ∈ B. Note that such a solution always exists. We define x̄
by doing a first index interchange; we get x̄inn = x̄njk = 1. By αx = αx̄, we have:

αnnn + αijk = αinn + αnjk. (3.33)
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case start sol. interchange type new sol. remarks
k ∈ {2, 3}
i = 3 (i, j, k) ∈ B

k = 2, i = 2 x2n2,x33n,x123 3 x̄2nn,x̄332,x̄123 (3.29)
k = 2, i /∈ 2, 3 xin2,x33n,x213 3 x̄inn,x̄332,x̄213 (3.29)
k = 3, i = 2 x2n3,x33n,x112 3 x̄2nn,x̄333,x̄112 (3.29)
k = 3, i /∈ 2, 3 xin3,x33n,x222 3 x̄inn,x̄333,x̄222 (3.29)

k /∈ {2, 3}
k /∈ {2, 3}, i = 1 x1nk,xn33,x222 1 x̄nnk,x̄133,x̄222 (3.26)
k /∈ {2, 3}, i 6= 1 xink,xn33,x112 1 x̄nnk,x̄133,x̄112 (3.26)

Table 2: Proving (3.19) when i 6= n, j = n, k 6= n

case start sol. interchange type new sol. remarks
i /∈ {1, 2, 3}

i /∈ {1, 2, 3}, j = 2 xi2n,xn33,x112 1 x̄n2n,x̄i33,x̄112 (3.26)
i /∈ {1, 2, 3}, j 6= 2 xijn,xn33,x222 1 x̄njn,x̄i33,x̄222 (3.26)

i ∈ {1, 2, 3}
i = 1, j 6= 2, 3 x1jn,xn33,x222 1 x̄njn,x̄133,x̄222 (3.26)
i = 1, j = 3 x13n,x3n3,x222 2 x̄1nn,x̄333,x̄222 (3.27)
i = 1, j = 2 x12n,x3n2,x213 2 x̄1nn,x̄322,x̄213 (3.28)
i = 2, j 6= 1, 3 x2jn,xn33,x112 1 x̄njn,x̄233,x̄112 (3.26)
i = 2, j = 3 x23n,x3n3,x112 2 x̄2nn,x̄333,x̄112 (3.27)
i = 2, j = 1 x21n,x3n2,x123 2 x̄2nn,x̄312,x̄123 (3.28)
i = 3, j 6= 1, 3 x3jn,xn33,x112 1 x̄njn,x̄333,x̄112 (3.26)
i = 3, j = 1 x31n,xn33,x222 1 x̄n1n,x̄333,x̄222 (3.26)
i = 3, j = 3 (i, j, k) ∈ B

Table 3: Proving (3.19) when i 6= n, j 6= n, k = n

Using equation (3.30) we get

αijk = αinn + αnnk + αnjn − 2 · αnnn. (3.34)

This completes the proof of equation (3.25), and hence (3.19) is true.

3.2.2. Proving (3.20)

For (i, j, k) ∈ B we define

πijk = αijk − λi − µj − νk. (3.35)

Next, to prove (3.20), we show that all πijk are equal. To do this, we first prove that
π222 = π213 = π123 = π112 and then derive the rest of the relations from these equalities.

Consider x ∈ PB such that xu = xt = xr = 1, where r = (3, 3, 1), u = (1, 1, 3)
and t = (2, 2, 2). Define x̄ from x by a first index interchange with ū = (2, 1, 3) and
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t̄ = (1, 2, 2). Note that ū, t ∈ B; u, t̄ /∈ B and x̄ ∈ PB . Since αx = αx̄, we have:

αu + αt = αū + αt̄. (3.36)

Substituting the values of αu and αt̄ from equation (3.19) and the values of αt and αū

from equation (3.35) we obtain

πt + λ2 + µ2 + ν2 + λ1 + µ1 + ν3 = πū + λ2 + µ1 + ν3 + λ1 + µ2 + ν2 (3.37)

or π222 = π213.
Again, consider x ∈ PB such that xu = xt = xr = 1, where r = (3, 3, 1), u = (1, 1, 3)

and t = (2, 2, 2). A third index interchange will give ū = (1, 1, 2) and t̄ = (2, 2, 3). Using
αx = αx̄, we have:

πt + λ1 + µ1 + ν3 + λ2 + µ2 + ν2 = πū + λ1 + µ1 + ν2 + λ2 + µ2 + ν3

which implies π222 = π112.
Similarly, consider x ∈ PB such that xr = xu = xt = 1, where r = (3, 3, 1), u =

(5, 1, 2) and t = (1, 2, 3). Define x̄ from x by a first index interchange with ū = (1, 1, 2)
and t̄ = (5, 2, 3). Note that ū, t ∈ B; u, t̄ /∈ B and x̄ ∈ PB . Again by αx = αx̄, we have:

πt + λ5 + µ1 + ν2 + λ1 + µ2 + ν3 = πū + λ1 + µ1 + ν2 + λ5 + µ2 + ν3

or πt = πū i.e., π123 = π112.
Thus, at this point we have shown that:

ζ ≡ π222 = π112 = π123 = π213.

It still remains to show that for all i, j, k, the following is true:

π3j2 = πi32 = πi33 = π33k = π3j3 = ζ.

We prove this by exhibiting pairs of feasible solutions in the following way. Consider
x ∈ PB such that xr = xu = xt = 1, where r = (3, 1, 3), u = (2, 2, 1) and t = (i, 3, 2)
with i /∈ {2, 3}. Construct x̄ from x by a first index interchange yielding ū = (2, 2, 2) and
t̄ = (i, 3, 1). Note that ū, t ∈ B; u, t̄ /∈ B and x̄ ∈ PB . Again by αx = αx̄, we have:

πt + λ2 + µ2 + ν1 + λi + µ3 + ν2 = πū + λ2 + µ2 + ν2 + λi + µ3 + ν1

or πt = πū i.e.,
πi32 = π222 = ζ for i /∈ {2, 3}.

Next, consider x ∈ PB such that xr = xu = xt = 1, such that r = (2, 3, 3), u = (3, j, k)
and t = (1, 1, 2), with j /∈ {3} and k /∈ {2, 3}, a third index interchange will give
ū = (3, j, 2) and t̄ = (1, 1, k). Again using αx = αx̄ implies

π3j2 = π112 = ζ for j 6= 3.

For simplicity, in rest of the cases we avoid complete working of details and we simply
illustrate start and new solutions, and type of interchange used in each case (as before).
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Therefore, for the rest of the cases consider x ∈ PB such that xr = xu = xt = 1 with
following cases:

• r = (1, 2, 3), u = (6, 3, k) and t = (3, j, 2), with j 6= 3 and k /∈ {2, 3}, a first index
interchange will give ū = (3, 3, k) and t̄ = (6, j, 2). Applying αx = αx̄ will give
πt = πū i.e.,

π33k = π3j2 = ζ for k /∈ {2, 3}.

• r = (1, 1, 2), u = (3, 2, k) and t = (i, 3, 3), with i /∈ {1, 3} and k /∈ {2, 3}, a second
index interchange will give ū = (3, 3, k) and t̄ = (i, 2, 3) which implies

πi33 = π33k = ζ for i /∈ {1, 3}.

• r = (1, 1, 2), u = (i, 3, 7) and t = (3, j, 3), with i /∈ {1, 3} and j /∈ {1, 3}, a third
index interchange will give ū = (i, 3, 3) and t̄ = (3, j, 7), which gives us

π3j3 = πi33 for j /∈ {1, 3}.

• r = (1, 2, 3), u = (4, 4, 1) and t = (3, 3, 2), a third index interchange will give
t̄ = (4, 4, 2) and ū = (3, 3, 1) which implies

π332 = π331 = ζ.

• r = (3, 7, 3), u = (1, 1, 1) and t = (2, 3, 2), a third index interchange will give
t̄ = (2, 3, 1) and ū = (1, 1, 2) which implies

π232 = π112 = ζ.

• r = (2, 2, 2), u = (4, 4, 4) and t = (3, 3, 3), a first index interchange will give
ū = (3, 4, 4) and t̄ = (4, 3, 3). Notice that here we have t, t̄ ∈ B and u, ū /∈ B.
Hence we have πt = πt̄ and this implies

π333 = π433 = ζ.

• r = (3, 4, 2), u = (2, 1, 1) and t = (1, 3, 3), a third index interchange will give
ū = (2, 1, 3) and t̄ = (1, 3, 1) which implies

π133 = π213 = ζ.

• r = (2, 2, 2), u = (4, 4, 4) and t = (3, 1, 3), a second index interchange will give
ū = (4, 1, 4) and t̄ = (3, 4, 3). Again, observe that here we have t, t̄ ∈ B and
u, ū /∈ B. Hence we have πt = πt̄ and this implies

π313 = π343 = ζ.

Therefore we get, for all i, j, and k, the following:
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π3j2 = π33k = πi33 = π3j3 = π112 = π123

= π222 = π213 = πi32.

3.2.3. Proving (3.21)

Let x̃ be defined by

x̃ijk = 1, if i = j = k

= 0, otherwise

Then x̃ ∈ PB , hence αx̃ = α0. Substituting the values of α from (3.19), (3.20) will give
us (3.21).

Finally, we remark the following. Since our polytope PI is not full-dimensional,
there is no unique representation of a facet-defining inequality. Indeed, by adding or
subtracting an equality from (1.1)- (1.3), another, equivalent representation of a facet-
defining inequality can appear. Hence, it is conceivable that a wall inequality is nothing
else but another representation of some already known inequality. That, however, is not
the case. For each class of known facet-defining inequalities that we covered in Section 2,
we can exhibit a fractional point satisfying equalities (1.1)- (1.3), such that it is not cut
away by the known class, but is cut away by the wall inequality. We refer to Dokka [6]
for the precise details.

4. Separation

In this section we address the separation problem corresponding to the wall facets.
More specifically, we give an O(n4) separation algorithm to decide whether a given x ∈ P
that satisfies the clique inequalities of type I and type II, violates a wall inequality.

For convenience, let us define the concept of a large triple, and a large axis. These
concepts are defined with respect to a given (fractional) solution x ∈ P . We call a
triple c ∈ V large if xc > 1

7 . Similarly, we call an axis (i, j,−) large (respectively
(i,−, k), (−, j, k)) when x(i, j,−) > 1

7 (respectively when x(i,−, k) > 1
7 , x(−, j, k) > 1

7 ).
We assume the following sets of large triples are pre-computed in a preprocessing step:

LT (i) ≡ {(j, k) ∈ J ×K : (i, j, k) is large},
LT (j) ≡ {(i, k) ∈ I ×K : (i, j, k) is large},
LT (k) ≡ {(i, j) ∈ I × J : (i, j, k) is large}.

Further, we will use LT to denote the set of all large triples, i.e.,

LT ≡ {(i, j, k) ∈ I × J ×K : (i, j, k) is large}.
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Also, the following sets of large axes are pre-computed:

LAJ(i) ≡ {j ∈ J : (i, j,−) is large},
LAK(i) ≡ {k ∈ K : (i,−, k) is large},
LAI(j) ≡ {i ∈ I : (i, j,−) is large},

LAK(j) ≡ {k ∈ K : (−, j, k) is large},
LAI(k) ≡ {i ∈ I : (i,−, k) is large},
LAJ(k) ≡ {j ∈ J : (−, j, k) is large}.

Notice that all these sets can be computed in O(n3) time. Large triples (axes) play
a vital role in our separation algorithm, because of the fact that for a fixed r ∈ R there
are at most a constant number of large triples, and large axes that contain r. We record
the following straightforward observations in a lemma.

Lemma 9. Given is some x ∈ P . The following statements are true:

(i) For each i ∈ I the number of pairs (j, k) ∈ J ×K such that triple (i, j, k) is large
is at most 6.

(ii) For each i ∈ I the number of j ∈ J such that the axis (i, j,−) is large is at most 6.

(iii) The number of large triples in x equals at most 7n.

Proof. We argue by contradiction.

Ad (i) Suppose statement (i) is not true, then at least 7 pairs (j, k) ∈ J ×K exist with
x(i, j, k) > 1

7 . This implies:∑
j∈J

∑
k∈K

x(i, j, k) > 7× 1

7
= 1,

which contradicts x ∈ P .

Ad (ii) Similar to (i).

Ad (iii) Suppose statement (iii) is not true, then the number of large triples exceeds 7n.
But then, total value of all x-variables exceeds 7n× 1

7 = n, which contradicts x ∈ P .

�
In the following subsections we will prove the following theorem:

Theorem 10. The separation problem for wall inequalities (3.16) can be solved in O(n4)
time.

Recall that B stands for the set of triples present in some wall inequality, see (3.16).
We use B1 ⊂ B to denote four of these triples, i.e., we set

B1 ≡ {(i1, j1, k1), (i1, j2, k2), (i2, j1, k2), (i2, j2, k1)}.
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Notice that wall inequalities (3.16) are symmetric in the following sense: the values of
indices k1 and k2, as well as i1 and i2 (or j1 and j2) can be interchanged without changing
the inequality. We use this symmetry later on.

Theorem 10 relies on the following lemma.

Lemma 11. Any violated wall inequality falls into at least one of the following three
cases:

Case 1: No triple in B1 is large.

Case 2: A triple from B1, as well as the axis (i3, j3,−), are large.

Case 3: A triple from B1 with a third index k from {k1, k2}, as well as an axis with third
index k′ from {k1, k2}, k′ 6= k, are large.

Proof. Imagine a violated wall inequality where none of these cases apply. Then it must
be the case that all large triples from B1, as well as all large axes, share an index from
{k1, k2}, say k1. However, since x ∈ P , we have x[(i3,−, k1)∪ (−, j3, k1)] +x(i1, j1, k1) +
x(i2, j2, k1) ≤ 1. Thus, the sum of the remaining variables in the wall inequality, being
x[(i3, j3,−) ∪ (i3,−, k2) ∪ (−, j3, k2)] + x(i2, j1, k2) + x(i1, j2, k2) must exceed 1; this is
impossible since each of these terms is not large. �

We will now show how to detect a violated wall inequality in each of the three cases
given in Lemma 11.

4.1. Case 1: when no triple in B1 is large

As mentioned before, we assume that the given (fractional) solution x ∈ P satisfies
the clique inequalities of type I and type II. We now give some properties of a violated
wall inequality when no triple in B1 is large.

Lemma 12. For a violated wall inequality with no large triple in B1, the following state-
ments are true:

(i) at least one of the axes (−, j3, k1) and (−, j3, k2) is large,

(ii) at least one of the axes (i3,−, k1) and (i3,−, k2) is large,

(iii) at least one of the axes (i3,−, k1) and (−, j3, k1) is large,

(iv) at least one of the axes (i3,−, k2) and (−, j3, k2) is large.

Proof.

Ad (i) Since x ∈ P , we know that

x[(i3, j3,−) ∪ (i3,−, k1) ∪ (i3,−, k2)] ≤ 1.

Together with x(B1) ≤ 4
7 , it follows that, for a wall inequality to be violated, at

least one of the axes (−, j3, k1), (−, j3, k2) must be large.
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Ad (ii) A similar argument as above using x[(i3, j3,−)∪(−, j3, k1)∪(−, j3, k2)] ≤ 1 applies.

Ad (iii) Since x satisfies the clique inequalities of type I, and in particular: x(Q(i3, j3, k2)) ≤
1, statement (iii) follows from x(B1) ≤ 4

7 .

Ad (iv) A similar argument as above using x(Q(i3, j3, k1)) ≤ 1 applies.

�
Correctness of Algorithm 1 Consider a violated wall inequality. It follows from

Lemma 12, and from symmetry, that it is enough to consider the case when (i3,−, k1) and
(−, j3, k2) are large. We now assume that x(i1, j1, k1) ≥ max{(i1, j2, k2), (i2, j1, k2), (i2, j2, k1)};
we come back to this assumption later. Algorithm 1 starts by enumerating over K ×K
to consider all pairs k1 and k2. For each fixed k1 and k2, each i3 ∈ LAI(k1) and
j3 ∈ LAJ(k2) are considered to identify a violated inequality. Clearly, since (i3,−, k1)
and (−, j3, k2) are large, it follows that i3 ∈ LAI(k1) and j3 ∈ LAJ(k2); no other i3, j3
need to be considered.

In addition, we claim that for a violated wall inequality to exist, it must be true that
there exist i1, j1 ∈ I × J such that:

x(i1, j1, k1) >
1− x[(i3,−, k1) ∪ (−, j3, k1)]

4
. (4.38)

Indeed, suppose this were not true, then

x(i1, j1, k1) ≤ 1− x[(i3,−, k1) ∪ (−, j3, k1)]

4
,

which is equivalent with:

4x(i1, j1, k1) ≤ 1− x[(i3,−, k1) ∪ (−, j3, k1)],

which by our earlier assumption, implies:

x(i1, j1, k1) + x(i1, j2, k2) + x(i2, j1, k2) + x(i2, j2, k1) + x[(i3,−, k1) ∪ (−, j3, k1)] ≤ 1.
(4.39)

However, since clique inequalities of type I are satisfied, we have:

x[(i3, j3,−) ∪ (i3,−, k2) ∪ (−, j3, k2)] ≤ 1. (4.40)

Inequalities (4.39) and (4.40) would imply that no violated wall inequality exists, and
hence it is true that for a violated wall inequality to exist, (4.38) must hold. Thus, we
can use (4.38) to build a list of all (i1, j1) ∈ I × J . Then the inequality is checked for
each (i2, j2) ∈ I × J for fixed i3, j3, k2, k1 and for each (i1, j1) ∈ S. Hence, in this case
of no large triple in B1, a violated wall inequality is found if one exists. We point out
that that the assumption x(i1, j1, k1) ≥ max{(i1, j2, k2), (i2, j1, k2), (i2, j2, k1)} is indeed
without loss of generality: one of these four elements has the largest weight among them,
and the arguments used above go through for each choice of maximum-weight element.
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Algorithm 1 Separation algorithm for Wall Facets - Case 1

{No large triple in B1}
S := ∅
for all k1, k2 ∈ K ×K do
for all i3 ∈ LAI(k1) do
for all j3 ∈ LAJ(k2) do

for all (i1, j1) ∈ I × J do
if (4.38) is satisfied then
S := S ∪ {(i1, j1)}

end if
end for
for all (i1, j1) ∈ S do
for all (i2, j2) ∈ I × J do
if x(B) > 2 then

Output x(B) ≤ 2 as violated wall inequality
end if

end for
end for

end for
end for

end for

Complexity of Algorithm 1 The first ‘for’ loop runs O(n2) times. By Lemma 9
and by the definition of the sets LA, the second and third ‘for’ loops each run O(1) times.
The loop to find the set of (i1, j1)’s satisfying (4.38) runs O(n2) times. However, the
cardinality of this set S is 3. To see this, suppose there exist 4 pairs (ih1 , j

h
1 ), h = 1, . . . , 4,

satisfying (4.38). This implies:

4∑
h=1

x(ih1 , j
h
1 , k1) + x[(−, j3, k1) ∪ (i3,−, k1) > 1,

which contradicts x ∈ P . Thus, the cardinality of the set S is at most 3. Therefore, the
sixth ‘for’ loop runs O(1) times, while the last loop runs in O(n2). This gives a the total
complexity of Algorithm 1 of O(n4).

4.2. Case 2: A triple from B1, as well as the axis (i3, j3,−), are large

In this case, the algorithm looks for a violated inequality when there is a large triple
in B1, and when the axis (i3, j3,−) is large. Without loss of generality we assume that
the large triple is (i1, j2, k2). As in case 1, we assume that the given solution x ∈ P
satisfies the clique inequalities of type I and II. The algorithm to identify a violated wall
inequality in this case is given in Algorithm 2.

Correctness of Algorithm 2 Algorithm 2 starts by choosing a candidate for i3 in I.
Then the set LAJ(i3) is enumerated for j3 making use of the fact that (i3, j3,−) is large.
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Since x ∈ P satisfies all clique inequalities of type II, it follows that

x[(i3, j3,−) ∪ x(i3,−, k1) ∪ x(i3,−, k2) ∪ x(−, j3, k1) ∪ x(−, j3, k2)] > 1, (4.41)

for a wall inequality to be violated.
Let us assume that the following is true:

x(i3,−, k1) ≥ max{x(i3,−, k2), x(−, j3, k1), x(−, j3, k2)}. (4.42)

Algorithm 2 Separation algorithm for Wall Facets - case 2

{triple (i1, j2, k2) and axis (i3, j3,−) are large}
S := ∅
for all i3 ∈ I do
for all j3 ∈ LAJ(i3) do
for all k1 ∈ K do
if (4.43) is satisfied then
S := S ∪ {k1}

end if
end for
for all k1 ∈ S1 do
for all k2 ∈ K do
for all (i2, j1) ∈ I × J do
for all (i1, j2) ∈ LT (k2) do
if x(B) > 2 then

Output x(B) ≤ 2 as violated wall inequality
end if

end for
end for

end for
end for

end for
end for

Then it follows that a wall inequality can only be violated when

x(i3,−, k1) >
1− x(i3, j3,−)

4
. (4.43)

Indeed, if this were not true then we have:

x(i3,−, k1) ≤ 1− x(i3, j3,−)

4
,

which is equivalent with:

4x(i3,−, k1) ≤ 1− x(i3, j3,−),
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leading to (using (4.42)):

x[(i3,−, k1) ∪ (i3,−, k2) ∪ (−, j3, k1) ∪ (−, j3, k2)] ≤ 1− x(i3, j3,−),

contradicting (4.41). Now, Algorithm 2 enumerates over all k1 ∈ K to make a list S
of all k1 satisfying (4.43) for a fixed i3 and j3. Then for each choice of k1 ∈ S, and
fixed i3, j3, the algorithm enumerates over all k2 ∈ K. Next, for a fixed choice of
i3, j3, k2, k1, the algorithm enumerates over all (i, j) pairs for i2, j1. Finally, for a fixed
i2, i3, j1, j3, k1, k2, the algorithm checks the inequality for all candidates of i1 and j2 such
that (i1, j2) ∈ LT (k2). Since we assumed triple (i1, j2, k2) to be large, it is enough to
consider the (i2, j1) pairs in LT (k2) to identify a violated wall inequality in this case.
Notice that assumption (4.42) is indeed without loss of generality: one of the four axes
in (4.42) has the largest weight among them, and straightforward modifications of (4.43)
can then be used.

Complexity of Algorithm 2 We will now prove the complexity part. First, notice
that the cardinality of S is at most 3. Suppose this were not true, then we have kh1 ,
h = 1, 2, 3, 4, each satisfying (4.43) for a fixed i3, implying

x(i3, j3,−) +

4∑
h=1

x(i3,−, kh1 ) > 1,

which is impossible, since x ∈ P . Notice that this argument applies for each possible
axis in (4.42) having the largest weight.

The first ‘for’ loop runs O(n) times, second ‘for’ loop runs O(1) times, the third ‘for’
loop runs O(n) times, the fourth ‘for’ loop runs O(1) times, the fifth loop runs O(n)
times, the sixth ‘for’ loop runs O(n2) times, and the last ‘for’ loop runs O(1) times.
Hence the overall complexity is O(n4).

4.3. Case 3: A triple from B1, as well as an axis with a different third index, are large

In this case, the algorithm looks for a violated inequality when there is a large triple in
B1, and when an axis with a different third index is large. Without loss of generality we
assume that the large triple is (i1, j2, k2). As before, we assume that the given solution
x ∈ P satisfies the clique inequalities of type I and II.

It follows that either axis (i3,−, k1) or axis (−, j3, k1) is large. Symmetry implies
that we can assume, without loss of generality, the large axis to be (i3,−, k1). Further,
we need to distinguish three subcases depending upon which of the remaining four axes
has the largest weight.

Subcase A: max{x(i3,−, k2), x(−, j3, k2)} ≥ max{x(i3, j3,−), x(−, j3, k1)},

Subcase B: x(i3, j3,−) ≥ max{x(i3,−, k2), x(−, j3, k1), x(−, j3, k2)},

Subcase C: x(−, j3, k1) ≥ max{x(i3, j3,−), x(i3,−, k2), x(−, j3, k2)}.
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4.3.1. Subcase A

In this subsection, we assume that one of the two axes containing third index k2 is
heaviest; let us say axis (−, j3, k2) is heaviest. The algorithm to identify a violated wall
inequality in this case is given in Algorithm 3.
Correctness and Complexity of Algorithm 3 Algorithm 3 starts by considering
each possible (i1, j2, k2) ∈ LT . Then, it enumerates over all pairs i2, j1 ∈ I×J , and next
for each j3 ∈ J . Algorithm 3 then makes a list S of j3’s such that

x(−, j3, k2) >
1− [x(i2, j1, k2) + x(i1, j2, k2)]

3
. (4.44)

Indeed, notice that otherwise no violated wall inequality exists: using

x(−, j3, k2) ≤ 1− [x(i2, j1, k2) + x(i1, j2, k2)]

3
,

we can arrive at:

x(i3, j3,−) + x(i3,−, k2) + x(−, j3, k2) + x(i2, j1, k2) + x(i1, j2, k2) ≤ 1,

which, since x ∈ P , implies no violated wall inequality exists.

Algorithm 3 Separation algorithm for Wall Facets - subcase A

{triple (i1, j2, k2) and axis (i3,−, k1) are large; an axis containing as third index k2 is
heaviest}
S := ∅
for all (i1, j2, k2) ∈ LT do
for all (i2, j1) ∈ I × J do
for all j3 ∈ J do
if (4.44) is satisfied then
S := S ∪ {j3}

end if
end for
for all j3 ∈ S1 do
for all k1 ∈ K do
for all i3 ∈ LAI(k1) do
if x(B) > 2 then

Output x(B) ≤ 2 as violated wall inequality
end if

end for
end for

end for
end for

end for

Let us now argue that the number of such j3’s is at most 2. Indeed, suppose this is
not the case and let there be j1

3 , j
2
3 , j

3
3 which satisfy (4.44). We have:
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3∑
h=1

(−, jh3 , k2) + x(i2, j1, k2) + x(i1, j2, k2) > 1− [x(i2, j1, k2) + x(i1, j2, k2)]

+ x(i2, j1, k2) + x(i1, j2, k2) = 1.

This is a contradiction and hence there are at most 2 j3’s. For a fixed i2, j1, i1, j2, k2

and for each j3 ∈ S the inequality is checked for all k1 ∈ K and i3 ∈ LAI(k2). Again
this is enough as (i3,−, k1) is large.

With respect to complexity: the first ‘for’ loop runs O(n) times (since by Lemma 9
we have O(n) large triples), the second ’for’ loop runs O(n2) times, third ‘for’ loop runs
O(n) times, fourth ‘for’ loop runs O(n) times. All other ‘for’ loops only run O(1) times.
Since the third and fourth ‘for’ loops are parallel, the total complexity is O(n4).

4.3.2. Subcase B

Let us now consider the case when axis (i3, j3,−) is heaviest among the four re-
maining axes, i.e., when x(i3, j3,−) ≥ max{x(i3,−, k2), x(−, j3, k1), x(−, j3, k2)}. The
corresponding algorithm is given as Algorithm 4.
Correctness and Complexity of Algorithm 4 Suppose that we know the values of
k2, k1 and i3 of a violated wall inequality. Then, for a violated wall inequality to exist,
j3 should satisfy

x(i3, j3,−) >
1− [x(i3,−, k2) ∪ x(i3,−, k1)]

3
. (4.45)

Otherwise, it follows that total weight on all five axes does not exceed 1, which is not
compatible with the existence of a violated wall inequality, and x satisfying clique in-
equalities of type II.

29



Algorithm 4 Separation algorithm for Wall Facets - subcase B

{triple (i1, j2, k2) and axis (i3,−, k1) are large; axis (i3, j3,−) is heaviest}
S := ∅
for all k2 ∈ K do
for all k1 ∈ K do
for all i3 ∈ LAj(k1) do

for all j3 ∈ J do
if (4.45) is satisfied then
S := S ∪ {j3}

end if
end for

end for
for all j3 ∈ S do

for all (i2, j1) ∈ I × J do
for all (i1, j2) ∈ LT (k2) do
if x(B) > 2 then

Output x(B) ≤ 2 as violated wall inequality
end if

end for
end for

end for
end for

end for

Using a similar reasoning as in Subsection 4.3.1, it can be argued that there are at
most 3 j3’s such that (4.45) is satisfied. Algorithm 4 starts by first enumerating over
K for k2. In the second ‘for’ loop, the algorithm enumerates over K for k1, and the
third ‘for’ loop enumerates over LAi(k1) for i3. The fourth ‘for’ loop makes a list of j3’s
satisfying (4.45), and the fifth ‘for’ loop enumerates over this list. The sixth ‘for’ loop
runs over all (i, j) ∈ I×J , while the seventh ‘for’ loop enumerates over LT (k2) for (i1, j2)
and checks the inequality for violation.
The complexity of Algorithm 4 is determined by the first, second, fifth, sixth, and seventh
‘for’ loops that run respectively in O(n), O(n), O(1), O(n2), and O(1), which gives a
total complexity of O(n4).

4.3.3. Subcase C

Let us finally consider the case when axis (−, j3, k1) is the heaviest, i.e., when
x(−, j3, k1) ≥ max{x(i3, j3,−), x(i3,−, k2), x(−, j3, k2)}. The corresponding algorithm
is given as Algorithm 5.
Correctness and Complexity of Algorithm 5 In the first ‘for’ loop, Algorithm 5
enumerates over K for k1, in the second ‘for’ loop it enumerates over LAI(k1) to find i3.
In the third ‘for’ loop the algorithm makes a list of all j3’s such that

x(−, j3, k1) >
1− x(i3,−, k1)

4
. (4.46)

Notice that, similarly to Subcase B, if this inequality is not true, it follows that total
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weight on all five axes does not exceed 1. Thus (4.46) must be true for a violated wall
inequality to exist.

Algorithm 5 Separation algorithm for Wall Facets - subcase C

{triple (i1, j2, k2) and axis (i3,−, k1) are large; axis (−, j3, k1) is heaviest}
S := ∅
for all k1 ∈ K do
for all i3 ∈ LAi(k1) do
for all j3 ∈ J do
if (4.46) is satisfied then
S := S ∪ {j3}

end if
end for
for all j3 ∈ S do

for all (i2, j1, k2) ∈ V do
for all (i1, j2) ∈ LT (k2) do
if x(B) > 2 then

Output x(B) ≤ 2 as violated wall inequality
end if

end for
end for

end for
end for

end for

Again, using a similar reasoning as in Subsection 4.3.1, it follows that there are at most
3 j3’s such that (4.46) is satisfied. In the fourth ‘for’ loop the algorithm enumerates over
all (i2, j1, k2) ∈ V and in the fifth ‘for’ loop it enumerates over all (i1, j2, k2) ∈ LT (k2).

The complexity of Algorithm 5 is determined by the first, second, fourth, fifth, and
sixth ‘for’ loops that run respectively in O(n), O(1), O(1), O(n3), and O(1), which gives
a total complexity of O(n4).

5. Conclusion

We have exhibited a new class of valid inequalities for the axial 3-index assignment
polytope. This class of valid inequalities, called wall inequalities define facets of this
polytope, and can be separated in O(n4) time.
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