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Abstract 

 

Fear can distort our sense of time – making time seem slow or even stand still. Here, I 

used Hierarchical Drift Diffusion Modelling (HDDM; Vandekerckhove, Tuerlinckx, & Lee, 

2008, 2011; Wiecki, Sofer, & Frank, 2013) to test the idea that temporal accumulation speeds 

up during fear. Eighteen high fearful and twenty-three low fearful participants judged the 

duration of both feared stimuli (spiders) and non-feared stimuli (birds) in a temporal bisection 

task. The drift diffusion modelling results support the main hypothesis.  In high but not low 

fearful individuals evidence accumulated more rapidly toward a long duration decision - drift 

rates were higher – for spiders compared to birds. This result and further insights into how 

fear affects time perception would not have been possible based on analyses of choice 

proportion data alone. Further results were interpreted in the context of a recent two-stage 

model of time perception (Balci & Simen, 2014). The results highlight the usefulness of 

diffusion modelling to test process-based explanations of disordered cognition in emotional 

disorders. 

.  
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Rapid temporal accumulation in spider fear: Evidence from Hierarchical Diffusion 

Modelling  

In moments of high fear people often report that time is slowing down or even 

standing still. A distorted sense of time for fear-evoking and other emotionally arousing 

stimuli has been consistently reported in laboratory research. For example, a recent study 

(Buetti & Lleras, 2012) found that high fearful individuals perceive the duration of spiders as 

lasting longer than control stimuli. One explanation of this effect is that fear increases the rate 

at which temporal information accumulates. The novel approach taken here is to use 

Hierarchical Drift Diffusion Modelling (HDDM; Wiecki et al., 2013) to: 1) test the rapid 

temporal accumulation hypothesis for feared stimuli 2) provide evidence of how the effects of 

fear on time perception unfold across time in the context of a recent model of timing (Balci & 

Simen, 2014). 

Studies using the temporal bisection task have shown that time perception is 

particularly sensitive to the effects of fear-related stimuli. In one study (Grommet et al., 

2011), participants completed a training phase in which they learnt to recognise short and 

long standard durations and, in a test phase, judged whether fear-related and low arousal 

stimuli from the International Affective Picture System (Lang, Bradley, & Cuthbert, 2005) 

were more similar in duration to either a long or short duration that they had learnt earlier. 

Participants judged pictures presented for seven durations presented within both a short (250–

1000 ms) and long duration range (400–1600 ms).  For both duration ranges, participants 

judged high fear stimuli as lasting longer than low arousal stimuli. A similar lengthening 

effect has been recorded for other fear-related stimuli including angry faces (e.g., Gil & 

Droit-Volet, 2011) and fear-conditioned stimuli (Droit-Volet, Mermillod, Cocenas-Silva, & 

Gil, 2010; Ogden, Moore, Redfern, & McGlone, 2014). Further studies have shown the effect 

varies with individual differences including; self-reported fearfulness (Tipples, 2011), 
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specific phobia (Buetti & Lleras, 2012; Watts & Sharrock, 1984) and anxiety (Bar-Haim, 

Kerem, Lamy, & Zakay, 2010; Tipples, 2011). For example, spider fearful individuals 

perceive the duration of spiders to be longer than low arousal stimuli (Buetti & Lleras, 2012). 

Overall, this set of findings shows that time perception is especially sensitive to distortion 

due to fear. 

But how does fear affect time perception? There exist both neural and cognitive 

models of time perception that could help answer this question (Allman, Teki, Griffiths, & 

Meck, 2014; for recent reviews see; Grondin, 2010; Muller & Nobre, 2014) . These models 

differ according to whether they specify either an intrinsic (e.g., Goel & Buonomano, 2014) 

or a dedicated timing mechanism. The effects of fear on time perception have been 

interpreted in the context of a popular dedicated timing model  - the internal clock model 

(Gibbon, Church, & Meck, 1984; Rammsayer & Ulrich, 2001; Treisman, Faulkner, Naish, & 

Brogan, 1990; Treisman, 1963; Zakay & Block, 1997). Internal clock models typically 

include 1) an arousal-sensitive pacemaker that emits units of time (or pulses) at a specific rate 

2) an attention-controlled switch that closes when timing starts and re-opens when time ends 

and 3) an accumulator where pulses are integrated and perceived time is calculated. The 

pacemaker increases or decreases in speed. A key prediction concerns the effects of 

pacemaker speeding over time. If the pacemaker speeds up, then time will be perceived as 

relatively longer as stimuli durations increase – there will be a multiplicative pattern. For data 

gathered using the temporal bisection task a multiplicative pattern is indexed by a steeper 

psychophysical slope for duration - time estimates grow proportionately longer with time. 

One proposal is that fear (and emotional arousal more generally) speeds the rate of the 

pacemaker and therefore, a key prediction is that fear will lead to a multiplicative pattern.   

Although phobic and unselected individuals consistently overestimate the duration of 

fear-related stimuli the rate of responding frequently follows an additive rather than 
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multiplicative pattern across stimulus duration (for recent examples see; Fayolle & Droit-

Volet, 2014; Grommet et al., 2011). Within internal clock models, additive effects are thought 

to reflect the operation of an attention-controlled switch mechanism that closes when timing 

starts. Therefore, a viable alternative to the pacemaker speeding account is that fear 

modulates the switch mechanism. However, care is needed when interpreting the absence of 

process from absence of an interaction because the measurement procedure may lack 

sensitivity to the predicted effect. For example, a ceiling effect may hide the interaction - the 

rate of responding may reach an upper limit (a ceiling) sooner for feared stimuli and 

consequently, the multiplicative pattern is not found. 

One way of addressing possible measurement artefact is to include an additional 

measure that is less susceptible to such effects. Recent results (Tipples, Brattan, & Johnston, 

2013) suggest reaction times (RTs) might help shed light on the effects of emotion on time 

perception. The authors used the bisection task to test for increased neural activation for 

angry and happy expressions compared to neutral expressions. The results of a recent review 

(Coull, Cheng, & Meck, 2011) and meta-analyses (Wiener, Turkeltaub, & Coslett, 2010) were 

used to select regions of interest within a putative time perception network. The authors 

found that neural response to emotion during timing was strongest within regions of the time 

perception network when RTs were slowest, at the duration before the arithmetic mean of all 

stimulus durations. The authors argued that such effects reflect modulation by emotion of the 

neural structures responsible for temporal decision making because RTs are usually slowest 

when decisions are most difficult. However, aggregate RTs offer little insight into the 

processes that might precede a decision making stage. Drift diffusion modelling offers a 

solution to ceiling effects (Ratcliff, 2014)  by modelling both RTs and choice proportion data 

and also, can shed light on how processes unfold over time.  The advantage of drift diffusion 

modelling over standard RT measures has recently been demonstrated for research into the 
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effects of emotional stimuli on basic cognitive processes. Specifically, diffusion modelling 

has been used to uncover: 1) a processing advantage for threat-related words in anxiety 

(White, Ratcliff, Vasey, & McKoon, 2010) and 2) facilitated processing due to negative 

distracters in depression (Pe, Vandekerckhove, & Kuppens, 2013).  Here, I used diffusion 

modelling to test for increased temporal accumulation speed due to fear.  

- - - - -Insert Figure 1 about here - - - - - 

The key idea of the drift diffusion models of two-alternative forced choice data 

(Ratcliff & McKoon, 2008; Ratcliff, 1978) is that a decision is made based on the sequential 

accumulation of information over time. As shown in Figure 1, the evidence accumulation 

process denoted by the drift-rate parameter v, is modelled (with accompanying noise), as 

following a random walk until a threshold is reached and a decision can be made. In two-

alternative forced choice tasks such as the temporal bisection task, the amount of information 

required for a decision is governed by boundary separating the (short and long) response 

options. In tasks that emphasize accuracy (e.g., lexical decision), large boundary values 

indicate conservative response criteria (more information is required for a decision) whereas 

smaller values indicate more liberal and perhaps impulsive response criteria (less information 

is required for a decision). Two further parameters are typically calculated from response 

time and choice proportion (or accuracy) data namely, a starting point z that moves closer to 

the a particular response threshold when participants demonstrate response biases and non-

decision time (Ter). The non-decision time parameter Ter, is thought to index stimulus 

encoding and response execution processes. To accommodate different mean correct and 

mean error RTs, the parameters of inter-trial variability in the drift rate, starting point and 

non-decision time can also be included in the model. 

Recently, researchers (Balci & Simen, 2014) have used diffusion models to 

understand time perception with data collected using the temporal bisection task. The model  
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extends the scope of an existing drift diffusion model of time perception (Simen, Balci, 

deSouza, Cohen, & Holmes, 2011; Simen, Rivest, Ludvig, Balci, & Killeen, 2013) by 

proposing a sequential drift-diffusion process.  Specifically, according to the model proposed 

by Balci and Simen, decision making in the temporal bisection task is carried out in two 

stages. In the first stage, temporal information accumulates with accompanying noise until it 

reaches a single fixed threshold (Simen et al., 2011, 2013). A core assumption of the model is 

that drift and diffusion during the first stage arise from accumulating Poisson pulses, some 

excitatory, and some inhibitory (Simen et al., 2011). Time estimates are based on the time 

taken for the pulses to accumulate toward a single fixed threshold. Information accumulation 

at this first stage determines the starting point (z) of the follow-up comparison processes that 

begins at the second stage. The second stage is assumed to start immediately after the offset 

of the interval (or timing stimulus). During the second stage, the time estimate from the first 

stage is compared to bisection point - midway between the short and long threshold - where 

the probability of responding long and short is equal. Participants respond long if the 

difference exceeds the long threshold and respond short if the difference exceeds the short 

threshold.  

The modelling results reported by Balci and Simen (Balci & Simen, 2014) were in 

keeping with their two-stage model.  First, both drift rates and the starting point parameter (z) 

increased linearly with stimulus duration. The increase in the drift rate parameter with 

stimulus duration is direct evidence for an increase the accumulation of temporal information 

with time – more evidence accrues in favour of the long response with time. The concurrent 

linear increase in the starting point parameter supports the idea that increased temporal 

accumulation occurred during initial stimulus exposure.  In other experimental tasks, a shift 

in the starting point parameter might indicate a pre-existing bias for certain response (perhaps 

through greater reward for that response). However, for data gathered using the bisection task 
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the two-stage model described by Balci and Simen is best able to explain such a finding. 

Specifically, during exposure to the stimulus the idea is that evidence accrues in favor of the 

long response with time and consequently, the starting point parameter shifts towards the long 

response threshold. Also, there was a linear decrease in non-decision time with time. Again, 

such a pattern makes sense if it is assumed that during exposure to longer stimulus durations 

(at the first stage), the drift rate reaches the long threshold and participants have time to 

prepare a response - effectively reducing their non-decision time. 

In the current study, high and low fearful participants judged the duration of both 

feared stimuli (spiders) and non-feared stimuli (birds) in a temporal bisection task. The 

central hypothesis was that fear would increase temporal accumulation leading to higher drift 

rates for feared stimuli. If the effects occur during the presentation of the stimuli then 

according to the two-stage (Balci & Simen, 2014), higher drift rates will occur concurrently 

with a shift in the starting point parameter z towards the upper (long) response threshold. 

Also in keeping with latter model, I predict a linear increase in both drift rates and the starting 

point parameter z.  

Method 

Participants 

Forty-one psychology undergraduates took part in exchange for a partial course credit. 

The participants were from a pool of 265 psychology undergraduate students and invited to 

take part based on their response to an initial screening question: “Are you particularly afraid 

of spiders?” The sample was composed of 18 high fearful individuals (Mean age = 19; SD = 

1.87; 17 females, 1 male) who responded “yes” to initial screening question and a further 23 

low fearful individuals (Mean age = 22; SD = 9.71; 16 females, 7 males) who volunteered 

and responded “no” to the initial screening question. All participants were informed that the 

experiment involved the presentation of spider images. Validation of the screening question 
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was carried out by administering the Spider Phobia Questionnaire (SPQ; Klorman, Weerts, 

Hastings, Melamed, & Lang, 1974) after completion of the experiment. The results of the 

SPQ validated the assignment of participants to the high and low fearful groups based on the 

initial screening question. Specifically, the mean score on the SPQ for the high-fearful 

participants (M = 20.77; SD = 3.35) was higher (F (1, 39), = 268.22, p < .0001) than the 

mean of the low fearful group (M = 4.34; SD = 3.05). The ethical committee of the 

University of Hull approved the study and informed consent was obtained from all 

participants.  

Stimuli and apparatus 

A pink oval used in previous research (Droit-Volet, Brunot, & Niedenthal, 2004) was 

used in the training phase during which participants learnt to recognize short and long stimuli 

durations. The stimuli for the test phase consisted of 63 images of spiders that were selected 

from a recently created picture base (Dan-Glauser & Scherer, 2011) and a further 63 birds 

collected from the internet. The bird stimuli were selected (by the first author) on the basis 

that they were similar in size, luminance and color to the spider images. When presented on 

the computer screen all images measured 150 mm in width and 115 mm in height. All stimuli 

were presented on a 17-inch computer monitor (1280 × 1080, 60Hz) connected to a 1 GHz 

Pentium computer. Stimulus presentation and data collection were controlled by E-Prime 

software (Schneider, Eschman, & Zuccolotto, 2002). 

Procedure and design 

Participants were tested separately in a darkened room with the experiment lasting no 

longer than 45 minutes per participant. The temporal bisection task was used.  In an initial 

training phase participants learnt to distinguish between a short and long time duration 

(400ms and 1600ms respectively).  This was achieved by first presenting a pink oval in a 

fixed sequence of short then long, for 8 trials.  In a further 8 trials the pink oval was 
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displayed in a random sequence.  Participants were instructed to press z to indicate short or m 

to indicate long (this mapping was on display throughout the experiment).  During these 

sixteen trials participants received feedback for both correct and incorrect responses.  The 

visual feedback lasted for 2 seconds and there was an inter-trial interval of 500ms.   

During the main experimental phase, the pink oval was replaced by a spider or bird 

image which appeared for either the previously learnt durations (400ms and 1600ms) or an 

intermediate duration (600ms, 800ms, 1000ms, 1200ms or 1400ms) and participants were 

asked to indicate whether the image was displayed for a duration closer to the learnt short or 

long time duration.  There were 2 blocks each comprised of 126 trials. Within each block of 

126 trials there were 9 repetitions of every possible combination of stimulus type (spider, 

bird) and duration (400, 600, 800, 1000, 1200, 1400 and 1600).  On each trial, one of the 63 

bird or spider images was selected at random (without replacement) and assigned to one of 

these 9 repetitions. This selection procedure was repeated for the second block of trials. After 

completion of the temporal bisection task participants completed the SPQ (Klorman et al., 

1974) questionnaires. As described in the Participants section, the SPQ was used to create the 

high fearful and low fearful groups.  

Data analyses and Modelling  

Hierarchical (multilevel) logistic regression 

In previous research (e.g., Tipples, 2011) I estimated either logistic regression curves 

for each individual for each condition  and then conducted a second stage ANOVA on 

psychophysical indices of timing1. Generalized linear mixed model (GLMMs) offer greater 

statistical precision and increased statistical power compared to the two-stage approach (Barr, 

2008; Moscatelli, Mezzetti, & Lacquaniti, 2012) and therefore, I adopted the GLMM 

approach here. Specifically, repeated measurements were taken of the long and short 

responses across conditions and therefore, Generalized Estimating Equations (Liang & Zeger, 
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1986) with a binomial (logistic) link function were used to account for the correlation 

between responses (within individuals). The choice of working correlation matrix and 

decision to retain specific interaction terms in the model were based on the corrected quasi-

likelihood information criterion (cQIC) as an index of model fit - with lower values 

indicating a better fit.  An exchangeable matrix was selected with robust Huber/White 

sandwich estimators (of standard errors, confidence intervals (CIs) and p values) to safeguard 

against misspecification of the correlation matrix.  The main effects of stimulus type (birds, 

spiders) stimulus duration (400, 600, 800, 1000, 1200, 1400, 1600 milliseconds) and group 

(low fearful, high fearful) were entered into in the model in a single step and this model was 

subsequently used as a baseline to test each interaction term (in sequence). 

Hierarchical Drift Diffusion Modelling 

To estimate drift diffusion parameters I used a Hierarchical Drift Diffusion Modelling 

procedure (Vandekerckhove et al., 2008, 2011; Wiecki et al., 2013) implemented in Python 

(Wiecki et al., 2013). In brief, HDDM uses Markov Chain Monte Carlo simulations to 

estimate a range of probable values for diffusion parameters – a posterior distribution of 

values for each parameter. The estimation is hierarchical because both subject and group level 

parameters are estimated simultaneously in a single model. Hierarchical Bayesian estimation 

is particularly suited to the type of research design used here because subject and group-level 

posterior estimates allowed to reciprocally influence each other leading to greater statistical 

precision (Wiecki et al., 2013) for research designs with a relatively small number of 

observations (<20) per cell of the design. A further more general advantage of Bayesian 

estimation is that it is possible to directly quantify uncertainty for a given experimental 

hypothesis by comparing the overlap between the (posterior) distributions of specific 

parameter estimates – a true confidence or credibility interval for an effect.   
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Hierarchical Bayesian regression. The central hypothesis - that for high but not 

low fearful individuals drifts rates would be higher for spiders compared to birds – was tested 

by estimating a hierarchical drift diffusion regression model for the high fearful and low 

fearful groups separately. Stimulus type (bird, spider) was entered as a dummy variable 

regressor with the bird condition serving as the baseline (or intercept) condition. To test the 

prediction of the model proposed by Balci and Simen - that drift rates will increase with 

stimulus duration - duration was entered as a continuous covariate in the regression model. 

The slope for duration is a direct test of the prediction that drift rates and starting point 

parameters will increase with stimulus duration.  

Model Assessment. All hierarchical drift diffusion regression models included 

random intercepts for the subjects for each of the diffusion parameters (v, t, z, and a). For 

each fear group, model testing began by comparing an empty model (EM) that contained only 

random intercepts (and no fixed effects) with 2 models that increased in factorial complexity. 

The main effects model (MEM) included a fixed effect for both stimulus duration and 

stimulus type. The full model (FM) included fixed effects for both duration and stimulus type 

and the stimulus X duration interaction term. The Deviance Information Criterion (DIC; 

Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) was used a criteria for assessing model 

fit. Although smaller DIC values indicate a better fit the reduction needs to be sufficiently 

large to justify an increased complexity and therefore, I used a reduction in the DIC of 10 or 

more as the criteria for judging improved model fit. Details of the model estimation 

procedure, convergence and a model adequacy are described in the Appendix.  

Results 

- - - - -Insert Figure 2 about here - - - - - 

Hierarchical (Multilevel) Logistic Regression. The mean proportion of long 

responses as a function of stimulus duration, stimulus type (birds, spiders) and group (high 
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fearful, low fearful) are displayed in Figure 2. To test the pacemaker-speeding hypothesis the 

three-way interaction between group (high fearful, low fearful), stimulus type (spider, bird) 

and stimulus duration was included in the model with all lower-order terms. This interaction 

tests whether spider fearfulness is associated with a linear increase in the proportion of long 

responses as the duration of spider images (compared to bird images) increases from 400 to 

1600 ms – a steeper slope for spiders compared to birds in high compared to low fearful 

individuals. The three-way interaction was not significant (Wald Chi-Square = .336; p = 

.562) and moreover, the model with the interaction term did not improve model fit (cQIC = 

41870) compared to the main effects only model (cQIC = 42481).  

The stimulus type X group interaction resulted in improved model fit (cQIC = 41271) 

compared to a main effect only model. All other two-way interaction terms failed to improve 

model fit compared to the main effects only model. The interaction showed that high fearful 

individuals were, on average, more than twice as likely (OR = 2.44; 95% CI [1.68, 3.56], 

Wald Chi-Square = 21.90; p < .0001) to respond “long” to pictures of spiders compared to 

pictures of birds. The effect of stimulus type was absent in low fearful participants (OR = .99; 

95% CI [.85, 1.16], Wald Chi-Square = .001; p = .97).   

The Weber Ratio (WR) is often calculated from the slope and intercept parameters 

from the temporal bisection data as a standardised index of temporal sensitivity (Allan & 

Gibbon, 1991; Wearden, 1991). The WR for the slope for stimulus duration was .15 – a 

relatively low value indicating high sensitivity to changes in stimulus duration (averaged 

across stimulus type and group). The Bisection Point (BP; point at which participants equally 

often respond “short” and “long”) for each stimulus type and group separately were 

calculated from the slope and intercept from the final model. In keeping with the two-way 

interaction reported above the BP indicated a shift in the psychophysical function for spiders 

compared to birds in high fearful individuals (spiders, high fear: BP = 805; birds, high fear: 
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BP = 990; spiders, low fear: BP = 968; birds, low fear: BP = 968)1. The latter result replicates 

the leftward shift in the BP for emotional stimuli recorded in previous studies (e.g., Droit-

Volet et al., 2004)  that used the bisection task. 

Hierarchical Drift Diffusion Modelling 

- - - - - - Insert Table 1 about here - - - - - - 

Model Fit. As shown in Table 1, for both the high and low fearful groups, adding the 

effects of stimulus type and duration improved model fit compared to empty model. For the 

drift rate regression, adding the interaction term did not improve model fit for both fear 

groups and therefore, I proceeded to analyse the Main Effects Model (MEM). For the starting 

point parameter z, the best-fitting model differed according to fear group. Specifically, for the 

high but not low fearful group adding the interaction term improved model fit. 

- - - - - - Insert Figure 3 about here - - - - - - 

- - - - - - Insert Figure 4 about here - - - - - - 

Drift Rates. The mean response times as a function of stimulus duration for both 

short and long responses are displayed in Figure 3. The main hypothesis was that for high 

fearful individuals, drift rates would be higher for spiders compared to birds. As can be seen 

in Figure 4, the data support this hypothesis. For high but not low fearful individuals 95% of 

the probability density mass for the Spiders>Birds contrast did not contain zero (β = .34; 95% 

CrI = .28 to .41). Also, the Modelling results support the key prediction of the model 

proposed by Balci and Simen – drift rates increased linearly with stimulus duration for both 

the high fearful group, (β = .002; 95% CrI = .0026 to .0029) and low fearful group (β = .002;  

95% CrI = .0022 to .0024).  

- - - - - - Insert Figure 5 about here - - - - - - 

Starting point parameter. For the starting point parameter regression model, the 

results support the key prediction of the model proposed by Balci and Simen:  the starting 



15 

 

point parameter increased with increased stimulus duration for both high fearful and low 

fearful individuals. Specifically, 95% of the probability density mass for the slope for 

duration did not contain zero for both the high fearful group (β = .00033; 95% CrI = .00031 

to .00036) and the low fearful group (β = .00032; 95% CrI = .00031 to .000343). With respect 

to fear, the main prediction was that for high but not low fearful individuals the starting point 

would be higher for spiders compared to birds. The results show that for high fearful 

individuals the estimated Spiders>Birds contrast, (β = .084; 95% CrI = .04 to .12) was 

qualified by stimulus duration. The interaction effect is illustrated in Figure 5 where it can be 

seen that the estimated starting point parameter was initially higher for spiders (M = .43) 

compared to birds (M = .37) but this effect reversed in direction as the stimulus duration 

increased; the slope for the interaction effect was negative (β = -.000074) with an estimated 

reduction in the Spiders>Birds effect of .015 for every 200 ms. For low fearful participants 

the Spiders>Birds contrast was negative (β = -.02; 95% CrI = -.04 to -01), indicating a higher 

starting point for birds compared to spiders in this group.  

 Discussion 

Drift diffusion modelling of time estimates support the main prediction that temporal 

information accumulates more rapidly in fear: In high but not low fearful individuals drift 

rates were higher for spiders compared to birds. The conclusion that fear increases the rate of 

temporal accumulation would have been difficult based on analyses of the choice proportion 

data alone because the multiplicative pattern – typically used to index rate changes in 

accumulation or pacemaker speeding - was absent. In short, the results highlight the value of 

using both RTs and choice proportion data in the context of diffusion modelling to study the 

effects of emotion on time perception. 

The drift diffusion modelling results allow further novel insights into how fear affects 

timing. First, the results support the idea that fear affects time estimation rapidly because the 
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effect of fear on drift rates was present at shortest (400 ms) duration. In other words, evidence 

favouring a long decision had started to accumulate in high fearful individuals even when 

spiders were presented for just 400 ms. Second, analyses of the starting point parameter z 

supports the idea that increased temporal accumulation due to fear occurs during the 

presentation of the stimulus until the decision threshold for responding long is reached. 

Specifically, for high fearful individuals, the starting point was higher for spiders compared 

to birds at short stimulus durations but this effect reversed in direction as the stimulus 

durations increased beyond 1000 ms. Such a cross-over pattern makes sense if it is assumed 

that drift rates increased more rapidly for spiders during the initial presentation of the stimuli. 

An increased drift for spiders would lead to a higher starting point but once the threshold is 

reached as the durations lengthen and the counted pulses exceed the bisection point, the 

comparison process completes for spiders but not birds. For the bird stimuli, the drift rate and 

the starting point will continue to increase until the decision threshold has been reached.  In 

sum, the results support the idea that the effects of fear on time perception specifically and 

timing more generally, follow a two-stage time-dependent sequence of processes (Balci & 

Simen, 2014). 

The results replicate previous research and add to a growing number of studies 

reporting an effect of emotion on time (Droit-Volet, 2013) by replicating previous reports 

(Buetti & Lleras, 2012; Watts & Sharrock, 1984) of an overestimation of time for spiders in 

spider fearful individuals. The most recent of these studies (Buetti & Lleras, 2012) is notable 

because the authors were able to eliminate the effect of spiders on time estimates by 

manipulating perceived control. Specifically, the authors recorded a reduction in the effect for 

high fearful individuals when participants pressed a button to increase the occurrence of 

positive images Increased perceived control was illusory because positive and negative 

images were presented at a fixed rate (75% positive, 25% negative). The findings corroborate 
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previous reports (Geer, Davison, & Gatchel, 1970) of reductions in physiological arousal in 

response to aversive stimuli under conditions of increased control. Drift diffusion modelling 

can offer insight into such findings because it offers a principled way of isolating the process 

by which increased perceived control affects time estimates. For the results reported by Buetti 

and Lleras (Buetti & Lleras, 2012)  visual inspection of the Bisection Points for positive 

images suggest that the psychophysical function for positive images shifted leftward with 

increases in perceived control. Such a pattern may indicate an increase temporal 

accumulation for positive images under high perceived control. Drift diffusion modelling 

could be used to test this idea. 

What neural processes might support the accumulation effect reported here? A recent 

review (Coull et al., 2011) and meta-analyses (Wiener et al., 2010) have helped to identify a 

network of brain regions that increases in activity during time estimation. This network 

includes the supplementary motor area, basal ganglia (including the putamen and the caudate 

nucleus), the cerebellum and the anterior insula. According to one explanation (Craig, 2009), 

changes in activity in the insula cortex, due to emotion are responsible for changes in the 

perception of time due to emotion. In this model of time perception, subjective awareness of 

time arises from the sequential integration of a progression of activity from the posterior-to-

mid-to-anterior insula. Such a process may map onto the increase in drift rates for feared 

stimuli recorded in the current research. However, it is important to emphasise that there exist 

other candidate regions for the accumulation effect reported here, including the 

supplementary motor area and basal ganglia. For example, recent studies (Dirnberger et al., 

2012; Tipples et al., 2013) of the effects of emotion on time perception have recorded 

increased activation due to emotion during temporal process across several regions of the 

putative time perception network. Drift Diffusion Modelling and other cognitive modelling 

approaches might play important role in elucidating the functions of such regions because 
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cognitive modelling enables researchers to relate changes in latent cognitive processes (e.g. 

decision vs perceptual processes) to neural activity – it provides an intermediate level of 

description.   

The effects of fear on time perception reported here are consistent with the idea that 

fear-related stimuli activate a separate system for evaluating and responding to threat. 

Candidate models include the fear-specific mechanism described by Öhman & Mineka 

(Öhman & Mineka, 2001) and the similar schema-based model of anxiety described Beck and 

Clark (Beck & Clark, 1997). In the schema-based model of anxiety Beck and Clark (1997) 

stimuli undergo 3 processing stages. In brief, the stages are 1) initial registration in which the 

an early-warning system evaluates the threat-value of the stimuli and if necessary prioritizes 

the stimulus for further processing 2) primal mode or immediate response to threat that 

consists of a range of physiological, cognitive, behavioural and affective responses that 

constitute anxiety and 3) a secondary elaboration stage in which the anxious individual 

evaluates the effectiveness and availability of coping resources. The effects of fear on time 

perception are consistent with the activation of the primal mode and in more specifically, 

increased arousal due to threat as the individual prepares to make a response. Here, the claim 

is that the effects of fear on time perception are due to the output of the primal mode stage do 

not directly cause anxiety. Nonetheless, the continued study of the effects of fear on time 

perception is likely to be valuable because time perception provides a way of studying the 

automatic cognitive processes described by Beck and others. The use of drift diffusion 

modelling furthers this objective because it enables the isolation of specific cognitive 

processes.  

As noted in the introduction there are other models of time perception that might be 

used to model the effects of emotion on timing. For example, time perception has been 

modelled as due to: 1) the synchronisation of an internal oscillator (Jones & Boltz, 1989) or 
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oscillating neurons (Miall, 1989) 2) the continuous flow of information into a leaky integrator 

(Wackermann & Ehm, 2006) and 3) as an intrinsic property of neural networks (Goel & 

Buonomano, 2014). Moreover, variants of the internal clock model derived from Scalar 

Expectancy Theory (Gibbon, 1977)  can account for performance on bisection tasks (e.g., 

Allan & Gibbon, 1991; Wearden, 1991). The current study was not designed to compare 

different models and the results do not rule out the existence of a pacemaker or other 

mechanism. The idea that emotion increases the accumulation of temporal information is 

consistent with other models of time perception including the internal clock model. In other 

words, the precise mechanism responsible for the effect of emotion on time perception – 

whether such effects are best explained by either a specific clock system or a common 

accumulator for the processing of both temporal and non-temporal information – has yet to be 

determined. 

Nonetheless, drift diffusion modelling has several features that make it an attractive 

approach for studying the effects of emotion on time perception and also, other types of 

perception. First, drift diffusion modelling is a powerful approach to modelling data from 

two-alternative forced choice tasks because it uses all the response data - both RTs and choice 

proportion (or accuracy) data. Second, drift diffusion modelling is a general, 

neurobiologically plausible modelling approach (e.g., Shadlen & Kiani, 2013) that is not 

restricted to the modelling of time perception data, specifically.  Finally, drift diffusion 

modelling has already proven useful in emotion research in helping to improve sensitive to 

detect effects in anxiety (White et al., 2010) and depression  (Pe, Vandekerckhove, & 

Kuppens, 2013). In short, the future application Drift Diffusion Modelling promises rich 

insights into the effects of emotion on perceptual decision making. 

In summary, I have provided evidence for the rapid accumulation of temporal 

information in spider fearful individuals and more broadly, evidence in favour of a sequential 
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drift-diffusion model of temporal discrimination (Balci & Simen, 2014). The results highlight 

the use of Hierarchical Drift Diffusion Modelling to aid understanding of the latent processes 

that underpin emotional psychopathology including phobia.  
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Footnote 

1For the purpose of comparison with previous research, I calculated the BP and WR 

following the procedure that I have used previously (e.g., Tipples, 2011) and then subjected 

the mean BP and WR (for the high and low fearful groups, separately) to a repeated measures 

ANOVA with stimulus type (spiders, birds) as the repeated measure. For high fearful 

individuals, there was a significant leftward shift in the mean BP for spiders (BP = 901) 

compared to birds (BP = 1104), F(1, 17) = 32.59, p < .0001, partial eta squared = .65 and 

also, worse temporal sensitivity for spiders (WR = .35) compared to birds (WR = .26), F(1, 

17) = 5.98, p = .02.  Inspection of boxplots indicated that the effect of stimulus type on 

sensitivity for high fearful individuals was due to the influence of 2 individuals with 

particularly poor sensitivity (WR > .6) – the ANOVA was no longer significant (p . 08) when 

the data of these individuals was removed. Exclusion of these individuals did not change the 

results of either the GEE analyses or the HDDM analyses and therefore, these individuals 

were retained for the HDDM and GEE analyses. For the low fearful individuals, all effects 

were non-significant (p > .1) with a similar mean BP for spiders (BP = 1088) compared to 

birds (BP = 1091) and also, a similar mean WR for spiders (WR = .24) compared to birds 

(WR = .24).  
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Table 1. Deviance information criterion (DIC) values for each fear group, for the drift rate 

and starting point parameter regression models. The Empty Model (EM) included random 

intercepts for the subjects and each of the diffusion parameters (v, t, z, and a). The fixed 

effects of stimulus type and duration were added to this model to create the Main Effects 

model (MEM). Finally, the stimulus X duration interaction term was added to the MEM to 

create the Full Model (FM). 

 

  Drift rates (v) 

Starting point parameter 

(z) 

Model High fearful Low fearful High fearful Low fearful 

Empty Model (EM) 10965 10557 10965 10557 

Main Effects Model (MEM) 8519 7100 10002 9310 

Full Model (FM) 8513 7104 9980 9310 
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Figure Captions 

Figure 1. The diffusion model for two-choice response times. The evidence accumulation 

process begins at a specific starting point (z) and subsequently follows an average increase or 

drift rate (v). When the accumulated evidence reaches the upper boundary a decision is made 

and a response is executed. The total RT includes both the decision time and Non-decision 

time (Ter). Non-decision time consists of both stimulus encoding and response execution 

processes. The distance between the two decision boundaries or boundary separation (a) and 

can be used as an index of response caution (larger values index greater response caution).  

Figure 2. The mean proportion of long responses as a function of stimulus duration, Stimulus 

type (birds, spiders) and group (high fearful, low fearful). 

Figure 3. The mean response times as a function of stimulus duration for both short and long 

responses. 

Figure 4. The mean posterior drift rate slope or difference (Spiders>Birds) for high and low 

fearful individuals. Error bars indicate 95% Bayesian credibility intervals (95% CrI).  

Figure 5. Mean posterior estimates of the starting point parameter (z) as a function of 

stimulus type and stimulus duration for high fearful individuals.  

Figure 6. Example of a model convergence plots of the trace (top left), autocorrelation 

(bottom left) and histogram posterior distribution (bottom right) for the fixed effect contrast 

Spiders>Birds.  

Figure 7. The observed and predicted proportion of long responses are plotted as function of 

stimulus type and stimulus duration for high fearful individuals (see text for details).  
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Figure 1. 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure 6. 
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Figure 7. 
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Appendix 

- - - - - - Insert Figure 6 about here - - - - - - 

- - - - - - Insert Figure 7 about here - - - - - - 

Model estimation and convergence . HDDM is a Bayesian statistical approach and 

therefore, it is necessary to specify priors. Following the recommendations for HDDM 

(Wiecki et al., 2013) I used informative priors to constrain parameter estimates to be within 

the range of plausible values estimated in previous research (Matzke & Wagenmakers, 2009).  

Each model was estimated without assuming dependence between the drift rate v, and the 

initial bias in the starting point parameter, z. To assess convergence I calculated the Gelman-

Rubin convergence statistic and carried out visual inspection (for each estimated parameter) 

of 3 plots of the: 1) trace 2) autocorrelation and 3) posterior distribution. The Gelman-Rubin 

statistic requires multiple MCMC runs in order to estimate the ratio of between-chain 

variance relative to within-chain variance. Chain stability is indicated by values close (+/− 

0.01) to 1. For all models, I carried out 5 runs composed of 50 samples as a burn-in (to 

increase chain stability) and a subsequent 5000 iterations to estimate the posterior distribution 

of each parameter.  For all models, the Gelman-Rubin statistic was close to 1 (+/− 0.01) and 

visual inspection of the 3 plots failed to reveal either 1) large jumps or asymmetry in the trace 

or 2) high levels (>.04) of autocorrelation (after 50 iterations) or 3) non-normality in the 

distribution of the posteriors.  To illustrate convergence, the three plots for the contrast 

Spiders>Birds for drift rates are displayed in Figure 6. Figure 7 shows the results of a 

posterior predictive check (Chapter 6; Gelman, 2014) - an attempt to assess the adequacy of 

the model by comparing fitted values to the actual data. To generate Figure 7, I estimated a 

HDDM that included the four key parameters (a, v, Ter, and z) for each high fearful 

individual for each stimulus duration and stimulus type (birds, spiders). The predicted values 
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were estimated by drawing 500 samples from the posterior distribution of that model. The 

data displayed in Figure 7 are averaged across the 500 samples.  

 

 


