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ABSTRACT  

The purpose of the present study was to evaluate; 1) whether there were differences in sprint 

times at 5, 10, 20, 30 and 40 m between rugby union and rugby league players; 2) determine 

the reliability and usefulness of linear sprint testing in adolescent rugby players. Data were 

collected on 28 rugby union and league academy players over two testing sessions, with three 

day’s rest between sessions. Rugby league players were faster at 5 m than rugby union 

players, with further difference unclear. Sprint time at 10, 20, 30 and 40 m were all reliable 

(CV = 3.1%, 1.8%, 2.0% and 1.3%) but greater than the smallest worthwhile change (SWC 

(0.2 x between-subject SD)), rating the test as marginal for usefulness. While the test was 

incapable of detecting the SWC we recommend that practitioners and researchers use 

Hopkins’ proposed method (22); whereby plotting the change score of the individual at each 

split (± TE expressed as a CV) against the SWC, and visually inspecting whether the TE 

crosses into the SWC is capable of identifying whether a change is both real (greater than the 

noise of the test, i.e., >TE) and of practical significance (>SWC). Researchers and 

practitioners can use the TE and SWC from the present study to assess changes in 

performance of adolescent rugby players when using single beam timing gates. 
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INTRODUCTION 

Physical testing is implemented in professional sports worldwide to assist in the 

prescription and evaluation of training interventions (27). The outcome of testing is used to 

profile individuals against norms for their position within the respective sports (12, 30). The 

data are used to provide valuable insights into factors that may contribute to and regulate 

exercise performance, and should be considered complimentary in guiding the  preparation of 

individuals to improve their physical potential; thus allowing them to tolerate the demands of 

training and match-play to  excel in their chosen sport (27). Following training interventions, 

individuals are commonly reassessed to understand to what extent the intervention has had an 

effect; this is often upon the completion of the pre-season preparatory phase before 

competition begins.  

It is also recommended that practitioners working with adolescent athletes should 

monitor changes in physical qualities (e.g., linear sprint times), to allow informed decisions 

to be made regarding the progression of athletes (30). Although assessment of interventions 

and player progression is common through sprint testing, understanding the error of the test 

and what constitutes a worthwhile change has not been investigated in adolescent rugby 

players.  

Linear sprint testing is common for athletes (3, 4, 17, 24, 32). It is assumed that 

distances of 5 to 10 m can be used to assess an individual’s ability to accelerate, while 

maximal velocities are considered to manifest between 20 and 40 m (3, 4, 32). While sprint 

time in isolation may not be considered a discriminate physical quality, it has been 

highlighted as influencing whether players start in Australian rules football (AFL), alongside 

measures of leg power, and high intensity running ability (32). To this end, it is used in the 

physical testing battery designed to distinguish the best American Football prospects in the 

draft (24). 



Improvements in sprint times following an eight week sprint training block in rugby 

league players demonstrated moderate (ES = -0.60) improvements at 10 m (pre = 1.84 s; post 

= 1.79 s; -2.62%) and 20 m (ES = -0.69; pre = 3.25 s; post = 3.17 s; -2.35%), and small (ES = 

-0.50) improvements at 40 m (pre = 5.55 s; post = 5.45 s; -1.94%) (29), demonstrating 

expected changes in sprint time with a specific sprint training intervention.   

Despite the importance placed upon sprint time, between day reliability is rarely 

reported, suggesting that both researchers and practitioners are unaware when a change is real 

(26). Hopkins (22) suggests that the use of the typical error (TE) alongside the smallest 

worthwhile change (SWC (0.2 x between-subject SD) based on Cohen’s d effect size 

principle) (10) allows practitioners to make well informed decision  as to whether a change is 

both real (greater than the noise of the test, i.e., >TE) and of practical significance (>SWC).  

This has been addressed in rugby union (14) over a distance of 10 m using three 

different starting techniques, with the authors concluding that there is only a marginal chance 

of reliably detecting a worthwhile change due to the TE (~ 0.02 s) being greater than the 

SWC (0.002 s). While the authors (14) state that the SWC needs to be established within a 

specific population, there appear to be a number of limitations in the method by which it is 

calculated, and therefore calls the results into question. The authors state that elite rugby 

union players demonstrate a coefficient of variation (CV) of 0.6% in sprint time (13), and 

proceed to use this in the calculation of SWC, stating that it is ~ 0.002 s. However, it appears  

the CV has been calculated from a 40 m sprint (13), questioning the usefulness of this in 

calculating the SWC for a 10 m sprint. Further, the authors use 10m sprint time data (1.75 s) 

from recreationally active physical education students (25), and not rugby players. Both the 

CV (0.6%) and 10 m sprint time (1.75 s) are then used to calculate a between-subject SD 

(1.75 x 0.6%) and multiplied by 0.2 to give the SWC. As it is suggested that both TE and 

SWC are population specific (26), it would seem that for a true understanding of the 



relationship between the TE and SWC in a 10 m sprint, the authors should have calculated 

the SWC within their own population to then give recommendations applicable to 

professional rugby union players.  

In contrast, Gabbett (16) has been cited (28) as reporting interday TE of sprint times 

for 10, 20, 30 and 40 m in semi-professional rugby league players as 2.07%, 1.52%, 1.91% 

and 1.25% respectively. Upon review of the methods, all testing was completed intraday, 

suggesting that this data cannot be used to make decisions on changes in performance in 

rugby league players. 

Alongside between-day reliability, standardization of tests is necessary, with recent 

research reporting differences in 5 m sprint times with varying start positions; 30 cm, 50 cm 

and 100 cm behind the start (1). The authors report no significant difference (p = 0.175) 

between the 30 cm and 50 cm start position in 5 m sprint time, or initial timing gate error (p = 

0.397). The data provided demonstrate a small effect (ES = 0.52 ± 0.65) suggesting that 50 

cm start position improves sprint time compared to the 30 cm start position. Whilst the 

confidence interval associated with the effect size for initial error (ES = 0.43 ± 0.65) suggests 

that the differences are unclear (20). This suggests that whilst the differing start positions at 

30 cm and 50 cm, effect sprint time, they do not necessarily effect the accuracy of measures, 

therefore either can be used, as long as this is standardized across all testing.  

Due to methodological errors (14) and misinterpretation of TE data (28); it appears 

that between-day TE and SWC data need to be generated for linear sprint testing in rugby 

union and rugby league populations. This will allow practitioners to make informed decisions 

on testing data, and further allow researchers to report individual changes in response to 

training interventions. Furthermore, it has been suggested, that due to time constraints within 



professional sport, that it is acceptable to use the TE and SWC generated from a similar 

population to determine changes in athletic performance (7, 26)  

Therefore the purpose of the study was to calculate the TE and SWC of 5, 10, 20, 30 

and 40 m sprint splits to evaluate reliability and usefulness of linear sprint testing in 

adolescent rugby players. Further, the study aimed to identify the ability of the test to detect a 

practically important change, and to report reference TE and SWC values for adolescent 

rugby players. In addition, the study provides an example of how practitioners can interpret 

their data by using the TE and SWC to determine when a change is real. 

METHODS 

Experimental Approach to the Problem 

 Junior rugby union players from a professional regional academy in the UK, and 

junior rugby league players from a professional Super League club in the UK were assessed 

for 5, 10, 20, 30 and 40 m sprint time on two occasions at the same time of day, in similar 

environmental conditions with three day’s rest between sessions. Players refrained from 

physical activity for forty-eight hours prior to each testing sessions and maintained their 

normal dietary habits. Testing was completed on an outdoor 3rd generation (3G) playing 

surface with all participants wearing the same studded footwear on both occasions. 

Reliability of the test variables during the two sessions was assessed using the TE of 

measurement expressed as raw data and as a coefficient of variation (CV %). 

Subjects 

Twenty-eight junior rugby players (rugby union, n =14; rugby league, n =14) 

participated in the study (age 17.7 ± 0.6 years, height 180.9 ± 6.4 cm and body mass 85.9 ± 

9.4 kg) during mid-season. All players were familiar with the testing procedures and trained 



at the club two - three times per week including resistance training, aerobic conditioning, 

speed development and speed technique sessions. All experimental procedures were 

approved by the ethics committee with informed assent, and parental consent (for players 

under 18 years) obtained. 

Procedures 

Linear sprint: Sprints were assessed at 5, 10, 20, 30 and 40 m using single beam 

timing gates (Brower Timing Systems, IR Emit, USA). Single beam timing systems have 

been reported to increase the likelihood of false signals, whereby the infrared beam is broken 

by limbs rather than the torso (15). Despite this it has been suggested that this becomes 

negligible as distance increases, and that practitioners must place a cost to benefit upon 

testing technology (15). Distances were measured out using a 50 m tape measure. Marks were 

left on the 3G pitch to ensure the identical placement of speed gates between sessions. These 

distances were chosen to enable assessment of initial and maximal sprint capabilities as used 

by Barr et al. (4). Following a standardized warm up consisting of light jogging, dynamic 

stretches and submaximal sprint efforts, players completed three maximal sprints with three 

minutes rest between attempts. Subjects started each sprint from a two-point start, precisely 

50 cm behind the first timing gate, with players instructed to set off in their own time and run 

maximally through the final 40 m timing gate. Players were verbally encouraged to run as 

fast as possible through the 40 m timing gate, and only decelerate after this. The best of the 

three times for each split was taken for analysis with times measured to the nearest 0.01 s on 

each occasion. 

Statistical Analysis 

Data are presented as either mean ± SD or means with 90% confidence intervals (90% 

CI) where specified. Data analysis was completed in the following order;  



1) Data were examined to determine if any between code differences existed to ensure 

findings were applicable to both rugby union and rugby league.  

2) Differences between consecutive trials were examined to determine if any learning 

effects existed.  

3) between-day reliability for consecutive trials was determined, alongside the SWC, 

and test rating.  

Parts 1 and 2 were examined using magnitude based inferences (20), with between 

code effects examined using a pooled SD as groups were independent, whilst consecutive 

trials used SD of trial 1 to ascertain short-term reliability. Between code and consecutive trial 

differences were measured to assess if split times were lower, similar, or greater than the 

SWC or smallest practical difference (SPD). The probability that the magnitude of the 

difference was greater than the SWC/ SPD was rated as <0.5%, almost certainly not; 0.5-5%, 

very unlikely; 5-25%, unlikely; 25-75%, possibly; 75-95%, likely; 95-99.5%, very likely; 

>99.5% almost certainly. Differences less than the SWC/ SPD were described as trivial. 

Where the 90% Confidence Interval [CI] crossed both the upper and lower boundaries of the 

SWC/ SPD (ES±0.2) the magnitude of the difference was described as unclear.  

If any between code differences were identified for a split time it was removed from 

reliability analysis, as it would not accurately reflect the TE and SWC for a specific rugby 

code. 

Part 3 between-day reliability was determined by calculating TE as follows; 

Sdiff / √2 

with Sdiff as the standard deviation of the difference score (21) using a Microsoft Excel 

spreadsheet (19) and, expressed as raw TE (seconds) and as a CV (%). It is important to 



acknowledge that having the best reliability does not mean a variable is the most useful at 

measuring something valuable, as a number of physiological measures have high reliability 

but may not be sensitive to measurement tools (23). Despite this a CV <5% was set as the 

criterion to declare that a variable was reliable as previously reported (6, 9). The usefulness 

of the test was assessed by comparing the SWC with the TE (23). It is important to 

understand that in tests where the TE is greater than the SWC, the test is considered as not 

sensitive, as the detection of biological change is not possible due to the associated error in 

measuring the test. If the TE was less than the SWC the test was considered as “good”; if the 

TE was similar to the SWC this was considered as “OK”; and where the TE was greater than 

the SWC the test usefulness was considered as “marginal” (22).  

 

RESULTS 

Between code differences. The differences in sprint time at each split demonstrated 

that rugby league players were likely faster than rugby union players at 5 m, with further 

comparisons unclear (Table 1). Five meter splits were removed from the between-day 

reliability analysis so that the findings were applicable to both rugby union and rugby league. 

 

***Insert Table 1 near here*** 

 

Reliability. Sprint time at each split interval is shown in table 2, with table 3 

displaying the TE and CV%. Effect size’ demonstrated small (-0.28) improvements in sprint 

time between trials for 10 m. Further comparisons revealed no differences between trials 1 

and 2. TE was considered reliable for all distances (<5%). 



***Insert Table 2 near here*** 

***Insert Table 3 near here*** 

 

Test Usefulness. The TE values for all split times were greater than the SWC, giving 

the test a rating of marginal for usefulness (Table 3).  

 

DISCUSSION 

Due to the emphasis placed on the evaluation of acceleration and maximal speed 

derived from linear sprint testing in team sports (3, 4, 17, 24, 32), we investigated the 

reliability and usefulness of a 40m linear sprint test in adolescent rugby players. The main 

finding from the present study was that 10, 20, 30 and 40 m time are reliable when using a 

single beam timing system, with players starting 50 cm behind the start of a sprint; with CV 

values corresponding to 3.1%, 1.8%, 2.0% and 1.3%, respectively. Further findings show that 

short acceleration (5 m) ability is greater in rugby league than rugby union players, and that 

code specific TE and SWC need to be generated for this distance.  

While the CV% at 10, 20, 30 and 40 m demonstrates good reliability, the test was 

unable to detect the SWC at any of the split distances, as the TE was consistently greater than 

the calculated SWC giving the test a usefulness of marginal. This suggests that when 

practitioners interpret sprint times in adolescent rugby players, the reliability and usefulness 

of the test must be accounted for when inferring whether a change in performance has 

occurred.  



The TE at each split in the present study ranged from 0.05 – 0.08 s suggesting that the 

error is consistent across the distance of a sprint. However when expressed as a CV%, the TE 

generally decreases with sprint distance, suggesting that sprinting over longer distances (> 

20m) is more reliable in adolescent rugby players. Similar associations between error and  

distance have been reported when measuring linear speed with a lazer based device, and are 

in agreement with the current study, with the lazer reliable at distances of 10 m or greater (5). 

The small difference between session one and two in 10 m split time may highlight variations 

in the timing, magnitude and application of mechanical horizontal force that is required to 

accelerate (8). Recent recommendations have been made regarding optimising acceleration 

capabilities in elite rugby union and league players with horizontally orientated resistance 

exercises to maximise horizontal force production, thus improving acceleration ability (11).  

Despite the usefulness of sprint times at each split being rated as ‘marginal’, Hopkins 

(22) has proposed a method whereby plotting the change score of the individual (± TE 

expressed as a CV%) against the SWC is capable of visualising when a change has occurred 

(figure 1). A change is only called clear when the change score (± TE expressed as a CV %) 

is outside of the SWC; where the TE crosses into the SWC this is called unclear. This method 

allows practitioners to determine that a change is greater than the SWC with a 75% 

probability which has been deemed acceptable in the applied setting (14, 18, 26); allowing 

better informed judgements on the changes in performance of their athletes on an individual 

level, and when assessing the effectiveness of training programs. 

***Insert Figure 1 near here*** 

With the current reliability data in mind, it is now possible for researchers to plot 

individual changes for participants in studies involving adolescent rugby union and league 

players to determine if players improved both beyond the TE and practically (>SWC). For 



example Till et al., (31) reports seasonal improvement of 0.03 s (1.82 ± 0.06 s to 1.79 ± 0.07 

s; p ≤ 0.05) and 0.04 s (1.83 ± 0.09 s to 1.79 ± 0.11 s; p ≤ 0.05) over 10 m, and 0.05 s (3.14 ± 

0.10 s to 3.09 ± 0.11 s; p < 0.01) and 0.06 s (3.15 ± 0.21 s to 3.09 ± 0.20 s; p ≤ 0.05) over 20 

m in under 18 and under 20 annual age categories respectively in rugby league players. Using 

these data and the pre-test SD as the standardiser all improvements in sprint times were small 

(under 18s, 10 m ES = -0.50, 20 m ES = - 0.50; under 20s, 10 m ES = -0.44, 20 m ES = -

0.29) over a season. Despite this, the readers are unaware of improvement, stability or 

decreases in performance at an individual level, which in the applied setting is arguably more 

important, especially when making recommendations regarding long term career progression, 

development, and in the evaluation of training interventions. 

Although the present study is the first to report between-day reliability for a linear 

sprint test in junior rugby union and rugby league players, some limitations exist that if 

addressed could further improve the reliability associated with linear sprint tests using a 

single beam timing system. Standardization of the start position with regards to shin angle 

and stance width may reduce variation during the initial sprint. Furthermore air temperature 

and wind speed were not measured in the present study, both of which impact upon air 

resistance and sprint speed (2). Finally, increasing the sample size and number of trials is 

known to increase the precision of the TE in reliability studies (21), which was not possible 

in the present study due to time constraints and player availability. 

In conclusion, the present study investigated the between-day reliability of a linear 

sprint test in junior rugby union and rugby league players. The findings demonstrate that 

junior rugby league players are faster over 5 m than junior rugby union players, with further 

differences at 10, 20, 30 and 40 m unclear. Between-day reliability of 10, 20, 30 and 40 m 

was acceptable (< 5%), but greater than the SWC at each split rating the test as marginal. We 

recommend that practitioners and researchers use the TE alongside the SWC to make an 



informed decision on whether a change is both real (greater than the noise of the test, i.e., 

>TE) and of practical significance (>SWC), as proposed by Hopkins (22). 

 

 

PRACTICAL APPLICATIONS 

Both researchers and practitioners can use the current findings to ensure that 

individual changes in performance at 10, 20, 30 and 40 m during a linear sprint are monitored 

effectively. The method proposed can be used to demonstrate individual responses to training 

interventions alongside group-mean data to improve the dissemination of research findings. 

This can be done in the applied setting by plotting the change score at each split (± TE 

expressed as a CV) against the SWC, and visually inspecting whether the TE crosses the 

SWC.  
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Figure 1. An example of a change in performance of an athlete. Data are percentage 

change (± CV as error bars) with the grey area representing the smallest worthwhile 

change. Both the black and white circle represent percent changes in 10 m sprint time of 

3.8%. The black circle change is greater than both the TE (3.05%) and the SWC 

combined, therefore represents a 75% probability that the change is greater than the 

SWC. The white circle demonstrates that a larger TE (3.75%) would not allow the 

practitioner to detect a change as the TE crosses into the SWC. 



 

Table 1. Linear speed testing split times at 5m, 10m, 20m, 30m & 40m, for rugby union and rugby league players 

 5m 10m 20m 30m 40m 

Rugby Union (s) 1.04 ± 0.04 1.80 ± 0.06 3.12 ± 0.10 4.36 ± 0.16 5.57 ± 0.22 

Rugby League (s) 1.01 ± 0.03 1.79 ± 0.04 3.10 ± 0.06 4.30 ± 0.10 5.57 ± 0.11 

ES [90% CI] -0.74 [- 1.37; - 0.12] -0.24 [- 0.87; 0.38] -0.12 [- 0.75; 0.50] -0.22 [-0.85; 0.40] 0.04 [- 0.59; 0.66] 

Probability  

(greater/ similar/lower) 

split time 

(1/ 7/ 92) (12/ 33/ 55) (19/ 39/ 42) (13/ 35/ 52) (33/ 41/ 26) 

Inference 
RL likely lower split 

time 
Unclear Unclear Unclear Unclear 

* ES = effect size; 90% CI = confidence intervals 

 

 

 

 

 

 

 

 



 

Table 2. Linear speed testing split times at 10m, 20m, 30m & 40m, combined mean (±SD) and differences between sessions used to 

determine between-day reliability. 

  10m 20m 30m 40m 

Session 1 (s) 1.81 ± 0.06 3.12 ± 0.10 4.34 ± 0.14 5.55 ±0.19 

Session 2 (s) 1.79 ± 0.06 3.10 ± 0.09 4.35 ± 0.15 5.58 ± 0.17 

Combined Sessions (s) 1.80 ± 0.06 3.11 ± 0.09 4.34 ± 0.14 5.57 ± 0.18 

Difference [90% CI] -0.02 [-0.04; 0.01] -0.01 [-0.04; 0.01] 0.01 [-0.03; 0.05] 0.03 [-0.01; 0.06] 

ES [90% CI]  -0.28 [- 0.67; 0.11]  -0.11 [- 0.36; 0.14]  0.06 [- 0.20; 0.32] 0.14 [- 0.03; 0.30] 

Probability  

(greater/ similar/lower) 

split time 

(2/ 35/ 63) (2/ 71/ 27) (19/ 76/ 5) (26/ 74/ 0) 

Inference 
Session 2 possibly 

lower 

Possibly trivial 

differences 

Likely trivial 

differences 

Possibly trivial 

differences 

* ES = effect size; 90% CI = confidence intervals 

 

Table 3. Measures of reliability for linear speed testing at 10m, 20m, 30m & 40m 

  10m 20m 30m 40m 

TE (s) [90% CI] 0.05 [0.04; 0.07] 0.06 [0.05; 0.07] 0.08 [0.07; 0.11] 0.07 [0.06; 0.09] 

TE CV% [90% CI] 3.05 [2.50; 3.96] 1.82 [1.49; 2.36] 1.95 [1.60; 2.53] 1.33 [1.09; 1.73] 

SWC (s) (%) 0.01 (0.67) 0.02 (0.59) 0.03 (0.67) 0.04 (0.64) 

Test Rating Marginal Marginal Marginal Marginal 

*TE = typical error of measurement; 90% CI = 90% confidence intervals; TE CV% = typical error of measurement expressed as a coefficient of 

variation; SWC = smallest worthwhile change 

 



 

 

 

 

 

 

 

 

 

 

 


