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Aqueductal cerebrospinal fluid pulsatility in healthy individuals is 
affected by impaired cerebral venous outflow 

 
Abstract 

Purpose: To investigate cerebrospinal fluid (CSF) dynamics in the aqueduct 

of Sylvius (AoS) in chronic cerebrospinal venous insufficiency (CCSVI) 

positive and negative healthy individuals using cine phase contrast imaging. 

Materials and Methods: Fifty one healthy individuals [32 CCSVI negative 

and 19 age-matched CCSVI positive subjects] were examined using Doppler 

sonography (DS). Diagnosis of CCSVI was established if subjects fulfilled ≥2 

venous hemodynamic criteria on DS. CSF flow and velocity measures were 

quantified using a semi-automated method and compared with clinical and 

routine 3T MRI outcomes. 

Results: CCSVI was associated with increased CSF pulsatility in the AoS. 

Net positive CSF flow was 32% greater in the CCSVI positive group 

compared with the CCSVI negative group (p=0.008). This was accompanied 

by a 28% increase in the mean aqueductal characteristic signal (i.e. the AoS 

cross-sectional area over the cardiac cycle) in the CCSVI positive group 

compared with the CCSVI negative group (p=0.021).  

Conclusion: CSF dynamics are altered in CCSVI positive healthy individuals, 

as demonstrated by increased pulsatility. This is accompanied by 

enlargement of the AoS, suggesting that structural changes may be occurring 

in the brain parenchyma of CCSVI positive healthy individuals. 

 

Keywords: CSF dynamics, CCSVI, cerebral venous outflow, aqueduct of 

Sylvius, healthy individuals, lateral ventricle volume 

 



Introduction 

Recently it has been suggested that abnormalities of the venous system might 

be associated with multiple sclerosis (MS) (1-5). This has led some to 

postulate the concept of chronic cerebrospinal venous insufficiency (CCSVI) 

as an indicator of neurovascular pathology. However, a number of studies 

have shown that CCSVI also occurs in healthy individuals with unknown 

pathology (4,6,7), leading many to question its validity (8-13). Criticism has 

been levelled at the concept of CCSVI because it implies an abnormal 

cerebral venous drainage system. In reality, humans exhibit great variability in 

the venous system, making it difficult to differentiate what is normal from what 

is abnormal (14,15).  Hydrodynamic analysis of the cerebral venous outflow 

has shown that patients with MS exhibit increased hydraulic resistance to 

extracranial venous blood flow compared with healthy controls (16,17). 

Furthermore, several studies have shown that MS is associated with 

increased cerebrospinal fluid (CSF) pulsatility in the aqueduct of Sylvius (AoS) 

(18-20). Although Zamboni et al (19) observed increased CSF pulsatility in 

MS patients diagnosed with CCSVI, it is not known if the two phenomena are 

linked. Indeed, it may be that increased CSF pulsatility in MS patients is 

primarily due to ventricular enlargement associated with brain atrophy (21,22). 

 

In a similar manner to individuals with MS, patients with normal pressure 

hydrocephalus (NPH) appear to exhibit increased AoS pulsatility (23-28). 

Given that NPH is thought to be associated with venous hypertension in the 

dural sinuses (29,30), it may be that impaired cerebral venous outflow alters 

the dynamics of the intracranial CSF system, irrespective of any pathology. In 



order to test this hypothesis, we undertook a study involving 51 age-matched 

healthy individuals with no family history of MS.  The aim of the study was 

simply to evaluate whether or not CCSVI is associated with changes in the 

dynamics of the intracranial CSF system in healthy individuals without any 

known neurological condition. 

 

 

Materials and methods 

Patient population 

Fifty one healthy individuals [32 CCSVI negative and 19 CCSVI positive] were 

enrolled in this study. They were part of a larger study that investigated the 

relationship between CCSVI and conventional MRI characteristics in MS 

patients and healthy individuals (31).  Inclusion criteria were: age 18 to 75 

years, undergoing Doppler sonography (DS) and MRI scan with cine phase 

contrast imaging for CSF flow estimation. Relevant information relating to: 

vascular risk factors [body mass index (BMI), hypertension, heart disease and 

smoking] was also collected. The individuals also needed to qualify on a 

health screening questionnaire containing information about medical history 

(illnesses, surgeries, medications, etc.) and meet the health screen 

requirements for MRI on physical examination, as previously described 

(4,31,32).  Exclusion criteria were: pre-existing medical conditions known to 

be associated with brain pathology (e.g. cerebrovascular disease, positive 

history of alcohol abuse, etc.), history of cerebral congenital vascular 

malformations, type 1 diabetes, or pregnancy.  

 



All participants underwent clinical, DS and MRI examinations. The study was 

approved by the local Institutional Review Board and informed consent was 

obtained from all subjects. 

 

 

Doppler sonography 

Extra- and trans-cranial DS was performed on a color-coded DS scanner 

(MyLab 25; Esaote-Biosound, Irvine, California) equipped with a 5.0- to 10-

Mhz transducer to examine venous return in the internal jugular veins (IJVs) 

and vertebral veins (VVs). The DS examination was performed by 2 trained 

technologists who were blinded to the subjects’ characteristics. The detailed 

scanning protocol and validation were recently reported (4,33). Briefly, the 

following 5 VH (venous hemodynamic) parameters indicative of CCSVI were 

investigated: 1) Reflux/bidirectional flow in the IJVs and/or in the VVs in sitting 

and in supine positions, defined as flow directed towards the brain for a 

duration of >0.88 s; 2) Reflux/bidirectional flow in the deep cerebral veins 

defined as reverse flow for a duration of 0.5 s in one of the intra-cranial veins; 

3) B-mode abnormalities or stenoses in IJVs. IJV stenosis is defined as a 

cross-sectional area (CSA) of this vein ≤0.3 cm2; 4) Flow that is not Doppler-

detectable in IJVs and/or VVs despite multiple deep breaths, and 5) Reverted 

postural control of the main cerebral venous outflow pathway by measuring 

the difference of the CSA of the IJVs in the supine and upright positions. A 

subject was considered CCSVI-positive if ≥2 VH criteria were fulfilled, as 

previously proposed (1). We also calculated the VH insufficiency severity 

score (VHISS) as a measure of CCSVI severity (19). The overall VHISS score 



is the weighted sum of the scores contributed by each individual VH criterion 

(i.e. VHISS = VHISS1 + VHISS2 + VHISS3 + VHISS4 + VHISS5). The VHISS 

score is an ordinal measure of the overall extent and number of VH flow 

pattern anomalies, with a higher value of VHISS indicating a greater severity 

of VH flow pattern anomalies. The minimum possible VHISS value is 0 and 

the maximum 16. 

 

 

MRI acquisition and analysis 

All subjects were examined on a 3 Tesla GE Signa Excite HD 12.0 Twin 

Speed scanner (General Electric, Milwaukee, WI). All sequences were run on 

an 8-channel head and neck (HDNV) coil.  All analyses were performed in a 

blinded manner.  

 

MRI sequences included 3D high resolution (HIRES) T1-WI using a fast 

spoiled gradient echo (FSPGR) with magnetization-prepared inversion 

recovery (IR) pulse and cine phase contrast imaging for CSF flow estimation. 

Pulse sequence characteristics for 3D T1 sequence were: a 256 x 256 matrix 

and a 25.6 cm field of view (FOV) for an in-plane resolution of 1 x 1 mm2 with 

a phase FOV (pFOV) of 75% and one average.  Sequence specific 

parameters were: 1-mm thick slices with no gap, echo time/inversion 

time/repetition time (TE/TI/TR)=2.8/900/5.9 ms, flip angle (FA)=10°.  On 3D 

t1, the SIENAX cross-sectional software tool (version 2.6; 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA) was used to estimate normalized 

brain volume (NBV) and normalized lateral ventricular volume (NLVV), as 



previously described (34). Prior to segmentation, the 3D T1 WI was modified 

using an in-house developed inpainting tool to avoid the impact of T1 

hypointensities.  

 

 

CSF flow quantification was performed using a single slice cine phase-

contrast velocity-encoded pulse-gated gradient echo sequence (cine PC) with 

an TE/TR of 7.9/40 ms, a slice thickness of 4 mm, a velocity encoding of 20 

cm/s, and 32 phases acquired corresponding to the cardiac cycle (18). Other 

relevant scan parameters included a FA of 20°, FOV 10.0 cm, and a phase 

FOV of 100%. A sagittal T2-weighted fast SE sequence was also acquired as 

a localizer for the cine PC prescription, as previously described, with the cine 

PC sequence prescribed as an oblique axial slice through the AoS (18).  All 

subjects underwent the MRI exam during the same time of day (in the 

afternoon hours) to control for circadian variation. The cine PC sequence was 

acquired with the AoS in the center of the FOV, such that the wrap around 

artifact was present in the edges of the FOV, but did not overlap with the 

desired ROI. To ensure reproducibility, repeat scans were performed as 

described in Magnano et al (18).   

 

 

Cine phase contrast image analysis 

The net positive and net negative flows (NPF and NNF), together with the net 

flow (NF = NNF + NPF) were calculated, as previously described (18). Briefly, 

CSF flow data was processed using GE ReportCard software (version 3.6; 



General Electric, GE, Milwaukee, WI) and positive and negative velocities 

over all 32 phases were recorded. A semi-automated minimum area of 

contour change (MACC) program was used to correct the ROIs for each 

phase, as previously described (18). MACC automatically determined the 

edges of an ROI by selecting a surrounding iso-contour curve which marks 

the steepest overall gradient of image intensity values, with sub-voxel 

accuracy. NPF and NNF were calculated using only the phases which have 

positive and negative velocities, respectively (18). The respective CSF flow 

rates were calculated by multiplying the measured CSF velocities by the 

measured CSA of the AoS over the cardiac cycle. CSF flow measures are 

presented in microliters per beat (µL/beat, 1µL = 1mm3), while CSF velocity 

measures are presented in cm/s. CSF flow direction was calculated based on 

slice prescription such that flow through the AoS out of the slice (during 

diastole, towards the third ventricle) was given as positive, whereas flow into 

the slice (during systole, towards the fourth ventricle) was negative, as 

described previously (18). 

 

Statistical analysis 

Analysis was undertaken using the Statistical Package for Social Sciences 

(SPSS, IBM, Armonk, New York, USA) and in-house algorithms written in 

Matlab (Mathworks, Natick, Mass). The demographic and clinical differences 

between the CCSVI positive and negative groups were tested using the chi-

square test and Student’s t-test, while analysis of the MRI data was 

undertaken using the Mann–Whitney rank sum test. CSF flow differences 

between the study groups were evaluated using the Mann–Whitney rank sum 



test. In order to assess the impact of a CCSVI diagnosis on aqueductal 

behavior, for each subject we divided the sequential CSF flow signal by the 

sequential CSF velocity signal, to produce the aqueductal characteristic signal 

(ACS), shown in Figure 3, which represents the changes in the AoS cross-

sectional area throughout the cardiac cycle. This is identical to the cross 

sectional area of the AoS as calculated by MACC at each instantaneous 

phase of the cardiac cycle. Values of p<0.05 using a two-tailed test were 

considered statistically significant after the Benjamini-Hochberg (35) 

correction for multiple comparisons was applied. 

 

The following analysis techniques were also employed: 

 

1. Correlation matrices (Pearson’s r) were computed for the CCSVI 

positive and negative groups, to identify changes in the 

relationships between the variables within the dataset. Statistical 

significance was determined using a two-tailed Fisher r-to-z 

transformation. 

2. Singular value decomposition (SVD) analysis was used to visualize 

the differences between the CCSVI positive and negative groups, 

and also to generate sensitivity and specificity scores. 

 

In order to perform singular value decomposition (SVD) the data, we created 

a (m  3) matrix, Z, containing the data for both the CCSVI negative and 

positive groups. The columns of the Z matrix comprised the variables NNF, 



NPF and NLVV, which we mean-adjusted and standardized to unit variance. 

SVD was then performed on Z as follows: 

 

TVSUZ ..        (1) 

 

where: U is a (m  3) left singular vector (LSV) matrix with identical 

dimensions to Z; S is a (3  3) singular value (SV) matrix; and V is a (3  3) 

right singular vector (RSV) matrix. In U, the columns (LSVs) are orthogonal 

composites of the three original variables in Z, with the rows equating to the 

participants in the study. Plotting the individual LSVs against each other 

produced scatter plots of the orthogonalized data. By identifying the elements 

of U that belong to the CCSVI negative and positive cohorts, respectively, it 

was possible to perform cluster analysis. 

 

Results 

Demographic and clinical characteristics 

Table 1 shows demographic, clinical and conventional MRI characteristics of 

the CCSVI positive and negative groups. There were no significant age- or 

sex- differences between the CCSVI positive and negative subjects, with no 

significant difference between the NBV. No significant differences were found 

between the two groups regarding: BMI; hypertension; heart problems; and 

smoking habit. There were however significant differences for VH criteria 

score (p<0.0001) and VHISS score (p<0.0001) between the CCSVI positive 

and negative cohorts. 

 



Time series analysis 

Figures 1 and 2 present average time series signals for CSF flow and velocity 

in the AoS over a cardiac cycle. From these it can be seen that the CCSVI 

positive individuals exhibit increased pulsatility, in both the flow and velocity 

signals. While there was no significant difference between the CSF velocity 

signals for the two groups, the peak positive flow rate (towards the lateral 

ventricles) was significantly greater (p=0.023) in the CCSVI positive group 

compared with the negative group. Similarly, the mean ACS signal, shown in 

Figure 3, was significantly greater (p=0.021) in the CCSVI positive group 

compared with the negative group.    

 

Univariate analysis 

Table 2 shows the quantitative assessment and univariate analysis results for 

the respective MRI variables, with the subjects grouped according to CCSVI 

status. This reveals that although NLVV was increased in the CCSVI positive 

group, this increase was not significant. A statistically significant 32% increase 

in CSF NPF towards the lateral ventricles (p=0.008) was observed in the 

CCSVI positive group. A similar increase was observed in NNF towards the 

spine in the CCSVI positive individuals, but this did not reach significance. 

Likewise, the decrease in CSF NF in the CCSVI positive individuals did not 

reach significance. The 28% increase in the mean ACS value (p=0.021) in the 

CCSVI positive group compared with the CCSVI negative group was 

significant.  

 



Correlation analysis 

Correlation analysis of the MRI data revealed that associations between 

NLVV and the CSF related variables in CCSVI positive subjects were 

generally weaker then in CCSVI negative subjects. For example, Figure 4 

presents a scatter plot of NNF verses NLVV, which in the CCSVI negative 

group exhibited a relatively strong negative correlation (r=-0.686, p<0.001), 

but was lost in the CCSVI positive group (r=-0.103, p=0.674) – a change that 

was significant using a Fisher transformation (p=0.018). Likewise, the strong 

positive correlations between the variables NPF and NLVV (r=0.761, 

p<0.001), and ACS and NLVV (r=0.720, p<0.001) in the CCSVI negative 

group were weaker in the positive group (r=0.404, p=0.086 and r=0.454, 

p=0.051). However, these changes were not significant.  

 

No significant correlation was observed between VHISS score and any of the 

MRI variables for either group, or indeed when both groups were aggregated 

together.  

 

Singular value decomposition cluster analysis 

SVD analysis was performed using just three variables NNF, NPF and NLVV 

(being a derived variable, NF was excluded from the SVD analysis). The 

results of this analysis are presented in Figure 5, which shows a plot of the 

first LSV against the third LSV. The LSVs are composite variables derived 

from the original variables, which have been orthogonalized. This analysis 

separates the CCSVI positive and negative groups relatively well, although 



there is some overlap. The two groups can be broadly separated by the 

straight-line equation: 

 

LSV3 = (2.6  LSV1) + 0.04      (2) 

 

Separating the groups using this equation yields sensitivity and specificity 

scores of 73.7% and 71.9% respectively (p=0.025). The singular values 

associated with the first, second and third LSVs were 11.008, 5.058 and 1.800 

respectively. This indicates that the first LSV explains 80.8% of the variance in 

the system, while the second and third LSVs explain 17.0% and 2.2% of the 

variance, respectively. The composition of the various LSVs is presented in 

Table 3, which shows the linear coefficients that must be applied to the each 

variable in order to reconstruct the respective LSVs. From this it can be seen 

that the coefficients relating to variables NNF and NPF are more dominant in 

the first and third LSVs, whereas the coefficient relating to NLVV is more 

dominant in the second LSV. 

 

  

Discussion 

The subject of CCSVI has been mired with controversy (8,36), with many 

researchers doubting that it is indicative of any pathology (8-13). However, 

there is growing evidence that restricted cerebral venous outflow is a 

phenomenon that is more prevalent in patients with MS, (1-3,5,37), even 

though it is also observed in both healthy individuals (4,6,7) and those with 

other neurological disease (4). While the reasons for this are unclear, it has 



been shown using cervical plethysmography (16,17) that MS patients 

diagnosed with CCSVI exhibit on average a 63.5% increase in the hydraulic 

resistance of the venous pathways from the brain to the heart compared with 

CCSVI negative healthy controls. As such, it raises intriguing questions as to 

whether the increase in aqueductal CSF pulsatility observed in MS patients 

(19) is associated with MS or CCSVI. If increased CSF pulsatility were purely 

an attribute of MS, then one would not expect the phenomenon to be present 

in CCSVI positive healthy controls.  

 

In an attempt to answer the above question, we undertook the present study, 

with the aim of establishing whether or not CCSVI is associated with altered 

intracranial CSF dynamics in healthy individuals with no known neurological 

pathology. From the results in Table 2 and figures 1-3 it appears that CCSVI 

is associated with changes in the aqueductal CSF flow dynamics in healthy 

individuals. In particular, NPF was significantly increased (p=0.008) in the 

CCSVI positive group compared with the CCSVI negative group. NNF was 

also increased, but this was not significant. Likewise, NF decreased in the 

CCSVI positive group, but this was not significant. Comparison between the 

aqueductal CSF flow curves published by Magnano et al (18) for both MS 

patients and healthy controls reveals similar curves to those for the healthy 

CCSVI positive and negative subjects in the present study, suggesting that 

increased aqueductal pulsatility may be primarily associated with impaired 

cerebral venous drainage rather than MS itself. Indeed, the fact that we found 

greatly increased NPF in CCSVI positive healthy individuals, just as Zamboni 

et al (19), Gorucu et al (20), Magnano et al (18) all observed in MS patients, 



further implies that the phenomenon may be biomechanical in nature, rather 

than due to neuronal damage/brain atrophy.  

 

Being encased in a rigid enclosure, the brain employs a complex intracranial 

fluid regulatory mechanism to compensate for increased blood flow during 

systole. This system compensates for the transient increase in arterial blood 

entering the cranium during systole, by displacing an approximately equal 

volume of CSF through the foramen magnum into the spinal column (38). It 

does this by employing a sophisticated windkessel mechanism to smooth 

blood flow through the cerebral capillary bed (39,40); something that appears 

to be sensitive to changes in the cerebral venous system (41-43). Indeed, it 

has been postulated that the venous system plays an important role in 

regulating the dynamics of the intracranial fluid system (44). While the 

mechanisms involved are poorly understood, it can be hypothesized that 

impairment of cerebral venous outflow is likely to induce retrograde 

hypertension in the dural sinuses, as Zamboni et al (45) observed; something 

that might reduce intracranial compliance resulting in altered CSF behaviour 

(43). Evidence supporting this model comes from Luetmer et al (23), Schroth 

& Klose (24), Gideon et al (25), Kim et al (26), El Sankari et al (27) and 

Bradley (28), all of whom found CSF pulsatility in the AoS to be markedly 

greater in NPH patients compared with controls. Given that reduced 

intracranial compliance (29,30,46,47), induced by venous hypertension, is 

thought to be involved in NPH (29,30,48,49), this suggests that impaired 

venous outflow is capable of altering the intracranial CSF dynamics, just as 

we observed in the CCSVI positive healthy individuals. Further evidence to 



support this opinion comes from an interventional study by Zivadinov et al 

(50) in which percutaneous transluminal venous angioplasty was shown to 

reduce aqueductal CSF pulsatility in MS patients diagnosed with CCSVI. 

Although abnormal CSF dynamics and their relation to health verses disease 

status is beyond the scope of this article, it is noticeable that their role in 

neurodegenerative disease is becoming increasingly contemplated (51). 

 

One interesting finding of our study was that CCSVI appeared to be 

associated with a weakening in the correlation between the aqueductal CSF 

pulse variables and NLVV. In healthy individuals there is normally a strong 

correlation between lateral ventricle size and aqueductal CSF flow (52). 

However, in the CCSVI positive group we found the correlations between 

NNF, NPF, ACS and NLVV to be markedly weaker than that in the CCSVI 

negative group. While the reasons for this are not understood, it may be that 

structural changes are at work. Evidence supporting this opinion comes from 

the ensemble mean ACS over the cardiac cycle. This signal is derived by 

dividing each CSF flow signal, by the corresponding CSF velocity signal and 

therefore represents the changes in the AoS area throughout the cardiac 

cycle. The mean ACS is significantly different in both groups, with the mean 

aqueductal area being substantially larger in the CCSVI positive group 

compared with the CCSVI negative group. From this it can be concluded that 

the increased CSF pulsatile flow in the CCSVI positive group is facilitated 

more by enlargement of the AoS than any increase in CSF velocity.     

 



This study is not without limitations. First, the number of the enrolled healthy 

individuals was relatively small and therefore further studies should extend 

our findings using a larger sample size. Second, the diagnosis of CCSVI was 

established only by using DS, while recent studies suggest that increased 

sensitivity and specificity of CCSVI diagnosis, can be achieved using a variety 

of non-invasive and invasive imaging approaches (53). Lastly, the effect of 

altered CSF pulsatility on long-term neurologic outcomes is unknown, and 

only longitudinal studies will be able to provide further insight on this important 

question. 

 

In conclusion, the results of the study suggest that CCSVI is associated with 

intracranial biomechanical changes in healthy individuals. Indeed, such was 

the magnitude of the changes observed that it was relatively easy to 

discriminate, using SVD analysis, between the CCSVI positive and negative 

groups using just the three variables NNF, NPF and NLVV. Given that 

impaired cerebral venous outflow has been shown to be associated with MS 

(16,17), this implies that similar changes in intracranial CSF dynamics 

observed in MS patients (18-20), might be primarily due to the presence of 

CCSVI rather than due to neuronal damage.   



 

References 

1. Zamboni P, Galeotti R, Menegatti E, et al. Chronic cerebrospinal 

venous insufficiency in patients with multiple sclerosis. J Neurol 

Neurosurg Psychiatry 2009;80(4):392-399. 

2. Simka M, Kostecki J, Zaniewski M, Majewski E, Hartel M. Extracranial 

Doppler sonographic criteria of chronic cerebrospinal venous 

insufficiency in the patients with multiple sclerosis. Int Angiol 

2010;29(2):109-114. 

3. Al-Omari MH, Rousan LA. Internal jugular vein morphology and 

hemodynamics in patients with multiple sclerosis. Int Angiol 

2010;29(2):115-120. 

4. Zivadinov R, Marr K, Cutter G, et al. Prevalence, sensitivity, and 

specificity of chronic cerebrospinal venous insufficiency in MS. 

Neurology 2011;77(2):138-144. 

5. Zivadinov R, Galeotti R, Hojnacki D, et al. Value of MR Venography for 

Detection of Internal Jugular Vein Anomalies in Multiple Sclerosis: A 

Pilot Longitudinal Study. AJNR Am J Neuroradiol;32(5):938-946. 

6. Wattjes MP, van Oosten BW, de Graaf WL, et al. No association of 

abnormal cranial venous drainage with multiple sclerosis: a magnetic 

resonance venography and flow-quantification study. J Neurol 

Neurosurg Psychiatry 2011;82(4):429-435. 

7. Centonze D, Floris R, Stefanini M, et al. Proposed chronic 

cerebrospinal venous insufficiency criteria do not predict multiple 

sclerosis risk or severity. Ann Neurol 2011;70(1):51-58. 



8. Doepp F, Paul F, Valdueza JM, Schmierer K, Schreiber SJ. No 

cerebrocervical venous congestion in patients with multiple sclerosis. 

Ann Neurol 2010;68(2):173-183. 

9. Doepp F, Wurfel JT, Pfueller CF, et al. Venous drainage in multiple 

sclerosis: a combined MRI and ultrasound study. Neurology 

2011;77(19):1745-1751. 

10. Mayer CA, Pfeilschifter W, Lorenz MW, et al. The perfect crime? 

CCSVI not leaving a trace in MS. J Neurol Neurosurg Psychiatry 

2011;82(4):436-440. 

11. Khan O, Filippi M, Freedman MS, et al. Chronic cerebrospinal venous 

insufficiency and multiple sclerosis. Ann Neurol 2010;67(3):286-290. 

12. Wattjes MP, Doepp F, Bendszus M, Fiehler J. ["Chronic cerebrospinal 

venous insufficiency" in multiple sclerosis - is multiple sclerosis a 

disease of the cerebrospinal venous outflow system?]. Rofo 

2011;183(6):523-530. 

13. Baracchini C, Atzori M, Gallo P. CCSVI and MS: no meaning, no fact. 

Neurol Sci 2012. 

14. Beards SC, Yule S, Kassner A, Jackson A. Anatomical variation of 

cerebral venous drainage: the theoretical effect on jugular bulb blood 

samples. Anaesthesia 1998;53(7):627-633. 

15. Schummer W, Schummer C, Bredle D, Frober R. The anterior jugular 

venous system: variability and clinical impact. Anesth Analg 

2004;99(6):1625-1629, table of contents. 



16. Zamboni P, Menegatti E, Conforti P, Shepherd S, Tessari M, Beggs C. 

Assessment of cerebral venous return by a novel plethysmography 

method. J Vasc Surg 2012;56:677-685. 

17. Beggs C, Shepherd S, Zamboni P. Cerebral venous outflow resistance 

and interpretation of cervical plethysmography data with respect to the 

diagnosis of chronic cerebrospinal venous insufficiency. Phlebology 

2012;DOI: 10.1258/phleb.2012.012039:1-9. 

18. Magnano C, Schirda C, Weinstock-Guttman B, et al. Cine 

cerebrospinal fluid imaging in multiple sclerosis. J Magn Reson 

Imaging 2012;36:825-834. 

19. Zamboni P, Menegatti E, Weinstock-Guttman B, et al. The severity of 

chronic cerebrospinal venous insufficiency in patients with multiple 

sclerosis is related to altered cerebrospinal fluid dynamics. Funct 

Neurol 2009;24(3):133-138. 

20. Gorucu Y, Albayram S, Balci B, et al. Cerebrospinal fluid flow dynamics 

in patients with multiple sclerosis: a phase contrast magnetic 

resonance study. Funct Neurol 2011;26(4):215-222. 

21. Dalton CM, Brex PA, Jenkins R, et al. Progressive ventricular 

enlargement in patients with clinically isolated syndromes is associated 

with the early development of multiple sclerosis. J Neurol Neurosurg 

Psychiatry 2002;73(2):141-147. 

22. Dalton CM, Miszkiel KA, O'Connor PW, Plant GT, Rice GP, Miller DH. 

Ventricular enlargement in MS: one-year change at various stages of 

disease. Neurology 2006;66(5):693-698. 



23. Luetmer PH, Huston J, Friedman JA, et al. Measurement of 

cerebrospinal fluid flow at the cerebral aqueduct by use of phase-

contrast magnetic resonance imaging: technique validation and utility in 

diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 

2002;50(3):534-543; discussion 543-534. 

24. Schroth G, Klose U. Cerebrospinal fluid flow. III. Pathological 

cerebrospinal fluid pulsations. Neuroradiology 1992;35(1):16-24. 

25. Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen 

O. Cerebrospinal fluid flow and production in patients with normal 

pressure hydrocephalus studied by MRI. Neuroradiology 

1994;36(3):210-215. 

26. Kim DS, Choi JU, Huh R, Yun PH, Kim DI. Quantitative assessment of 

cerebrospinal fluid hydrodynamics using a phase-contrast cine MR 

image in hydrocephalus. Childs Nerv Syst 1999;15(9):461-467. 

27. El Sankari S, Gondry-Jouet C, Fichten A, et al. Cerebrospinal fluid and 

blood flow in mild cognitive impairment and Alzheimer's disease: a 

differential diagnosis from idiopathic normal pressure hydrocephalus. 

Fluids Barriers CNS 2011;8(1):12. 

28. Bradley WG, Jr., Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P. 

Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid 

flow measurements at MR imaging. Radiology 1996;198(2):523-529. 

29. Bateman GA. Vascular compliance in normal pressure hydrocephalus. 

AJNR Am J Neuroradiol 2000;21(9):1574-1585. 



30. Bateman GA. The pathophysiology of idiopathic normal pressure 

hydrocephalus: cerebral ischemia or altered venous hemodynamics? 

AJNR Am J Neuroradiol 2008;29(1):198-203. 

31. Zivadinov R, Cutter G, Marr K, et al. No Association Between 

Conventional Brain MR Imaging and Chronic Cerebrospinal Venous 

Insufficiency in Multiple Sclerosis. AJNR Am J Neuroradiol 2012. 

32. Dolic K, Weinstock-Guttman B, Marr K, et al. Risk factors for chronic 

cerebrospinal venous insufficiency (CCSVI) in a large cohort of 

volunteers. PLoS One 2011;6(11):e28062. 

33. Dolic K, Marr K, Valnarov V, et al. Sensitivity and specificity for 

screening of chronic cerebrospinal venous insufficiency using a 

multimodal non-invasive imaging approach in patients with multiple 

sclerosis. Funct Neurol 2011;26(4):205-214. 

34. Zivadinov R, Heininen-Brown M, Schirda CV, et al. Abnormal 

subcortical deep-gray matter susceptibility-weighted imaging filtered 

phase measurements in patients with multiple sclerosis: a case-control 

study. Neuroimage 2012;59(1):331-339. 

35. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a 

practical and powerful approach to multiple testing. Journal of the 

Royal Statistical Society B 1995;57(1):289-300. 

36. Beggs C. Multiple sclerosis appears to be associated with cerebral 

venous abnormalities. Ann Neurol 2010;68(4):560-561. 

37. Zivadinov R, Marr K, Cutter G, et al. Prevalence, sensitivity, and 

specificity of chronic cerebrospinal venous insufficiency in MS. 

Neurology 2011;77:138-144. 



38. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of 

pulsations in communicating hydrocephalus. Pediatr Neurosurg 

2002;36(6):281-303. 

39. Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous 

manifestations of pulse wave encephalopathy: windkessel dysfunction 

in normal aging and senile dementia. Neuroradiology 2008;50(6):491-

497. 

40. Bateman GA. Pulse-wave encephalopathy: a comparative study of the 

hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. 

Neuroradiology 2002;44(9):740-748. 

41. Bateman GA. Magnetic resonance imaging quantification of 

compliance and collateral flow in late-onset idiopathic aqueductal 

stenosis: venous pathophysiology revisited. J Neurosurg 

2007;107(5):951-958. 

42. Bateman GA. Arterial inflow and venous outflow in idiopathic 

intracranial hypertension associated with venous outflow stenoses. J 

Clin Neurosci 2008;15(4):402-408. 

43. Beggs CB. Venous Haemodynamics in Neurological Disorders: An 

Analytical Review with Hydrodynamic Analysis. BMC Medicine. BMC 

Med (in press). 

44. El Sankari S, Czosnyka M, Lehmann P, Meyer ME, Deramond H, 

Baledent O. Cerebral Blood and CSF Flow Patterns in Patients 

Diagnosed for Cerebral Venous Thrombosis - An Observational Study. 

J Clin Imaging Sci 2012;2:41. 



45. Zamboni P, Galeotti R, Menegatti E, et al. A prospective open-label 

study of endovascular treatment of chronic cerebrospinal venous 

insufficiency. J Vasc Surg 2009;50(6):1348-1358 e1341-1343. 

46. Miyati T, Mase M, Kasai H, et al. Noninvasive MRI assessment of 

intracranial compliance in idiopathic normal pressure hydrocephalus. J 

Magn Reson Imaging 2007;26(2):274-278. 

47. Mase M, Miyati T, Kasai H, et al. Noninvasive estimation of intracranial 

compliance in idiopathic NPH using MRI. Acta Neurochir Suppl 

2008;102:115-118. 

48. Williams H. The venous hypothesis of hydrocephalus. Med Hypotheses 

2008;70(4):743-747. 

49. Williams H. A unifying hypothesis for hydrocephalus, Chiari 

malformation, syringomyelia, anencephaly and spina bifida. 

Cerebrospinal Fluid Res 2008;5:7. 

50. Zivadinov R, Magnano C, Galeotti R, et al. Changes of Cine 

Cerebrospinal Fluid Dynamics in Patients with Multiple Sclerosis 

Treated with Percutaneous Transluminal Angioplasty: Case-control 

Study. J Vasc Interv Radiol 2013;24(6):829-838. 

51. Nedergaard M. Neuroscience. Garbage truck of the brain. Science 

2013;340(6140):1529-1530. 

52. Zhu DC, Xenos M, Linninger AA, Penn RD. Dynamics of lateral 

ventricle and cerebrospinal fluid in normal and hydrocephalic brains. J 

Magn Reson Imaging 2006;24(4):756-770. 

53. Dolic K, Siddiqui AH, Karmon Y, Marr K, Zivadinov R. The role of 

noninvasive and invasive diagnostic imaging techniques for detection 



of extra-cranial venous system anomalies and developmental variants. 

BMC Med 2013;11:155. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 

Table 1. Demographic, clinical and whole brain volume characteristics in 

healthy CCSVI positive and negative individuals. 

 CCSVI 

negative 

(n = 32) 

CCSVI 

positive 

(n = 19) 

 

Significance 

(p value) 

Female gender, n (%) 21 (65.6) 9 (47.4) 0.200 

Age in years, mean (SD) 44.3 (14.8) 44.5 (19.1) 0.967 

BMI, mean (SD) 25.7 (5.3) 27.1 (5.3) 0.317 

Hypertension, n (%) 2 (6.3) 0 (0.0) 0.266 

Heart Disease, n (%) 5 (15.6) 2 (10.5) 0.609 

Current Smokers, n (%) 3 (15.0) 0 (0.0) 0.143 

Ever Smokers, n (%) 13 (65.0) 6 (13.0) 0.285 

Type 1 Diabetes, n (%) 0 (0.0) 0 (0.0) 1.000 

VH criteria score, mean (SD) 0.66 (0.48) 2.37 (0.60) <0.001 

VHISS score, mean (SD) 1.31 (1.06) 4.42 (1.43) <0.001 

NBV, mean (SD) 1531.4 

(86.0) 

1509.2 

(74.8) 

0.340 

CCSVI - chronic cerebrospinal venous insufficiency; BMI – body mass index; VH – 

venous hemodynamic; VHISS – venous hemodynamic insufficiency severity score; 

NBV – normalized brain volume.  

The differences between the study groups were tested using the student’s t-test and 

chi-square test. 

 

 

 



Table 2. MRI characteristics in healthy individuals. 

 

 CCSVI 

Negative 

(n = 32) 

CCSVI 

Positive 

(n = 19) 

 

Significance 

(p value) 

 

Effect Size 

Cohen’s d 

NNF (L/beat), mean (SD) -27.6 (19.5) -33.3 (16.9) 0.092 0.304 

NPF (L/beat), mean (SD) 23.6 (22.0) 31.2 (13.6) 0.008 0.391 

NF (L/beat), mean (SD) -4.0 (7.5) -2.1 (8.9) 0.080 0.245 

Mean ACS (mm2), mean (SD) 1.0 (0.5) 1.3 (0.5) 0.021 0.585 

NLVV (mL), mean (SD) 37.5 (21.5) 44.1 (18.3) 0.147 0.322 

 

CCSVI - chronic cerebrospinal venous insufficiency; NNF – net negative CSF flow; 

NPF – net positive CSF flow; NF – net CSF flow (i.e. NNF+NPF); NLVV – normalized 

lateral ventricle volume. 

 

The differences between the study groups were tested using the Mann-Whitney U-

test, and Cohen’s d test. 

 

 

 

 

 

 

 

 

 



Table 3. Composition of respective left singular vectors (LSVs) used in 

the singular value decomposition (SVD). 

 

 NNF NPF NLVV 

First LSV 0.0566 -0.0535 0.0467 

Second LSV -0.0402 0.1015 0.1648 

Third LSV -0.4194 -0.3468 0.1113 

 

NNF – net negative CSF flow; NPF – net positive CSF flow; NLVV – normalized 

lateral ventricle volume. 

 

NB. The values in the table are the linear coefficients that must be applied to the 

component variables in order to reconstruct the respective LSVs. 

 

 

 



 

Figures 

 

 
 

 

 

Figure 1. Ensemble mean aqueductal CSF flow signal over a cardiac cycle for 

both the CCSVI positive and negative groups. Between groups difference in 

positive amplitude (p=0.023) and negative amplitude (p=0.044). The phases 

of cycle where the difference between the signals is significant (p<0.050) are 

8-14, 21 and 26-32. (Error bars represent one standard deviation.) 

 

 

 



 

 

Figure 2. Ensemble mean aqueductal CSF velocity signal over a cardiac cycle 

for both the CCSVI positive and negative groups. Between groups difference 

in positive amplitude (p=0.136) and negative amplitude (p=0.316).  A 

statistically significant difference between the signals (p<0.050) is only 

observed for phase 32 of the cycle. (Error bars represent one standard 

deviation.) 

 

 

 

 

 

 

 



 

 

 

Figure 3. Sequential ensemble mean ACS over a cardiac cycle for both the 

CCSVI positive and negative groups. Between groups mean ACS, p=0.021. 

The phases of cycle where the difference between the signals is significant 

(p<0.050) are 8-10, 14-15, 18-28 and 30-32. (Error bars represent one 

standard deviation.) 

 

 

 

 

 

 

 



 

 

Figure 4. Scatter plot of NNF verses NLVV for the CCSVI positive and 

negative groups. CCSVI negative group (r=-0.686; p<0.001) and CCSVI 

positive group (r=-0.103; p=0.674). 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5. Singular value decomposition (SVD) cluster analysis results (derived 

using the three variables NNF, NPF and NLVV) (p=0.025). 

 

 

 

 


