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Abstract: It has been suggested by many supply chain practitioners that in 
certain cases inventory can have a stimulating effect on the demand. In 
mathematical terms this amounts to the demand being a function of the 
inventory level alone. In this work we propose a logistic growth model for the 
inventory dependent demand rate and solve first the continuous time 
deterministic optimal control problem of maximising the present value of the 
total net profit over an infinite horizon. It is shown that under a strict condition 
there is a unique optimal stock level which the inventory planner should 
maintain in order to satisfy demand. The stochastic version of the optimal 
control problem is considered next. A bang-bang type of optimal control 
problem is formulated and the associated Hamilton-Jacobi-Bellman equation is 
solved. The inventory level that signifies a switch in the ordering strategy is 
worked out in the stochastic case. 
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1 Literature review 

High level of inventory can stimulate demand in some retail contexts (Balakrishan et al., 
2004). Early evidence of this was presented in Wolfe (1968). The motivational effect was 
analysed from the marketing viewpoint in Levin at al. (1972) and subsequently by Baker 
and Urban (1988), Urban (1992, 1995) and Goh (1992). The idea is that large stock for 
certain products may generate higher demand. Baker and Urban (1988) were the first to 
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propose a power function of the instantaneous inventory level for the demand rate,  
r(x) = αxβ, where r(x) is the demand rate, x is the inventory level, α > 0, 0 < β < 1. In the 
same vein Urban (1992) dealt with the determination of the optimal lot size ordered and 
delivered at the beginning of each order cycle in the context of economic order quantity 
(EOQ) without the added restriction of zero ending-inventory. An analogous power form 
was suggested by Datta and Paul (2001) but with a variable parameter, α = α (k), to 
reflect the mark-up rate in the price. Berman and Perry (2006) presented an EOQ-type 
model with piecewise constant and exponential demand rates and included holding cost 
functions, h(x) = h0xγ, for arbitrary γ. In a comprehensive overview of the literature of 
inventory-level dependent demand models, Urban (2005) classified them into Type I 
models and Type II models. In Type I models, the demand rate is a deterministic function 
of the initial stock level, whereas in Type II models, the demand rate is a function of the 
instantaneous inventory level. The vast majority of the references in Urban have focused 
on Type II models with instantaneous replacement (no backlogging) and profit 
considerations. Inventory deterioration was considered in a paper by Urban (1995) and 
another by Giri et al. (1996). None of these works incorporated the optimisation of an 
objective in inventory planning. Feichtinger and Hartl (1985) dealt with the determination 
of optimal pricing policy and production rate with non-linear price-dependent demand 
over a finite horizon by using optimal control theory. Khmelnitsky and Gerchak (2002) 
proposed a deterministic infinite horizon optimal control model incorporating price, 
inventory costs and production costs. Alfares (2007) considered the inventory policy for 
an item with a stock-level dependent demand rate and a storage-time dependent holding 
cost. The holding cost per unit of the item per unit time was assumed to be an increasing 
function of the time spent in storage. Alfares finally determined the optimal order 
quantity and the optimal cycle time. Xu (2009) studied a single-product, dynamic, non-
stationary, stochastic inventory problem with capacity commitment, in which a buyer 
purchases a fixed capacity from a supplier at the beginning of a planning horizon and the 
buyer’s total cumulative order quantity over the planning horizon is constrained with the 
capacity. The objective of the buyer is to choose the capacity at the beginning of the 
planning horizon and the order quantity in each period to minimise the expected total cost 
over the planning horizon. Xu identified conditions under which a myopic ordering 
policy is optimal and derived an equation for the optimal capacity commitment. He then 
used the optimal capacity and the myopic ordering policy to evaluate the effect of the 
various parameters on the minimum expected total cost over the planning horizon. Sarkar 
et al. (2011) dealt with an economic production quantity (EPQ) model for both 
continuous and discrete random demand of merchandise taking into account items of 
imperfect quality reworked at a cost and maximised the associated expected integrated 
profit by standard analytical calculus method. Xu et al. (2011) studied an inventory 
system in which a supplier supplies a non-stationary Poisson demand using two mutually 
substitutable products over a selling season of T periods, with a single replenishment 
opportunity at the beginning of the season. Adopting a stochastic dynamic programming 
formulation, Xu et al. first proved the concavity of the value function, thereby facilitating 
the solution of the optimal replenishment quantities. Chen et al. (2012) considered a 
setting in which inventory plays both promotional and service roles, that is, higher 
inventories not only improve service levels but also stimulate demand by serving as a 
promotional tool. Specifically their study was the periodic-review inventory systems in 
which the demand in each period is uncertain but increases with the inventory level. 
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2 The demand rate function 

In this article we introduce an inventory-level-dependent function for the demand rate 
that is analogous to the logistic model for population growth used in population ecology 
(Tsoularis and Wallace, 2002). The logistic growth model has the form 

1 ,dx xx
dt D

α ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

where x is the current biological population and D is the carrying capacity which reflects 
the available environmental resources for sustaining the population. The growth rate is 
proportional to the difference between the available resources and the necessary 
resources for current sustenance. The factor α, is the intrinsic per capita growth rate. 

In the context of modelling inventory dependent demand we put forward the idea that 

if the actual demand is a continuous function of time, y(t), its rate of growth, ,dy
dt

 will 

evolve according to the current inventory, x(t), thus: 

1dy xx
dt D

α ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (1) 

Here D is the stock level where demand ceases to grow, reaching either a saturation point 
or is halted due to storage limitations. This imposes a limit on the growth in demand 
which can, for instance, be attributed to a saturating effect. As D is an arbitrary 
parameter, it can be large or small depending on the nature of the product being offered 

which is assumed to be replenished at a rate, u. The function, 1 ,xx
D

α ⎛ ⎞−⎜ ⎟
⎝ ⎠

 is concave 

and positive for all x (actual demand, y(t), is always increasing), and will be increasing 

( 0)xy >  for 
2
Dx <  and decreasing ( 0)xy <  for ,

2
Dx >  always at a decreasing rate 

( 0).xxy <  The maximum growth rate, 
2

,
4
Dα  occurs at .

2
Dx =  So for ,

2
Dx <  the 

demand rate behaves like a Type II model, as 2 classified by Urban (2005). The essential 
feature of (1) is that it captures in sequence growth, saturation and decline in sales as 
inventory levels become increasingly abundant. Aoki and Yoshikawa (2002) highlight 
the utility of logistic growth in various industrial sectors. Similar modes of product 
demand are described in Nahmias (1997). 

3 Problem formulation 

In this section we formulate the problem of maximising discounted net profit from the 
sale of products driven by demand obeying (1). We ignore setup costs and item 
deterioration and assume no backlogging and zero lead times. The objective is to 
maximise the present value of the net revenue (profit less inventory costs and order costs) 
over an infinite horizon. 
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We adopt the following notation: 

x(t) is the inventory level at time t 

x0 ∈ (0, D) is the initial inventory at time t = 0 

1 xx
D

α ⎛ ⎞−⎜ ⎟
⎝ ⎠

 is the inventory dependent demand rate 

u(t) is the order (production) rate per unit time up to a maximum rate U 

p is the fixed revenue per unit item 

h is the fixed inventory cost per unit item 

c is the fixed order (production) cost per unit item (c < p) 

r is the fixed discount rate 

α is the fixed coefficient regulating the demand rate per unit inventory item 
per unit time 

D is the maximum stock level possible or demand saturation inducing 
inventory 

x0 is the amount of inventory at the beginning of the planning period (t = 0). 

The problem is to maximise the present value of the total net profit: 

( )0

0

1rt xJ x e p x hx cu dt
D

α
∞

− ⎛ ⎞⎛ ⎞= − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫  (2) 

subject to the following state equation and constraints: 

0

( ) ( ) 1 ,

(0) ,
0 ( ) .

xx t u t x
D

x x
u t U

α ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

=
≤ ≤

 (3) 

Starting from an initial inventory, x(0) = x0, an optimal production schedule,  
0 ≤ u*(t) ≤ U, must be found for which the functional (2) attains its maximum value. The 
presence of the discount term, e−rt, in the integrand, and the boundedness of 

1 xp x hx cu
D

α ⎛ ⎞− − −⎜ ⎟
⎝ ⎠

 ensures convergence for the integral in (2). 

4 Derivation of the optimal control policy 

Applying standard procedure, as for instance in Kamien and Schwartz (2001), the 
Hamilton-Jacobi-Bellman (H-J-B) linear first order differential equation is obtained: 
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*
*

( )
( ) max 1 1

u t

x x dVrV x p x hx cu u x
D D dx

α α
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4) 

where V*(x) is the optimal net current value profit when the current inventory is x(t). It 
follows from (4) that the optimal control policy depends on the algebraic sign of 

*
:dV c

dx
−  

*

*
*

*

  if  

( ) 0  if  

0   if   

dVU c
dx

dVu t c
dx

dVu U c
dx

⎧
>⎪

⎪
⎪= <⎨
⎪
⎪

≤ ≤ =⎪
⎩

 (5) 

As long as the marginal inventory value, 
*

,dV
dx

 exceeds the order cost, c, the optimal 

policy is to order at the maximum rate, U, otherwise no orders are placed. When 
*

,dV c
dx

=  the choice of u is formally undetermined; any order policy in the range [0, U] 

does not affect the solution of (4). There are then two subsets of the inventory state space, 

one in which 
*

,dV c
dx

>  and another in which 
*

,dV c
dx

<  that are separated by a particular 

inventory value, x*, which is an accumulation point of the two subsets and at which the 
control may assume any arbitrary value. Once the inventory level exceeds x*, its marginal 
value drops below the order cost, c, and orders must cease until the inventory falls below 
x* and its marginal value begins to rise again by resuming orders. In order to establish the 
existence or otherwise of such threshold inventory level we turn to the calculus of 
variations. Since our problem is one-dimensional infinite horizon autonomous problem 
linear in u(t), we can eliminate u(t) from (3) and substitute the resulting expression in (2). 

Substitution for ( ) 1 xu t x x
D

α ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 in (2) yields: 

( )

( )( )

0

0

,

( )

rt

rt

J e L x x dt

e M x N x x dt

∞
−

∞
−

=

= +

∫

∫
 (6) 

subject to the constraints 

0(0) ,

1 1 ,

x x
x xx x U x
D D

α α

=

⎛ ⎞ ⎛ ⎞− − ≤ ≤ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (7) 
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where 

( ), ( ) ( )

( ) ( ) 1 ,

( ) .

L x x M x N x x

xM x p c x hx
D

N x c

α

= +

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

= −

 (8) 

Application of the Euler-Lagrange equation, ,rt rtd L Le e
dt x x

− −∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 gives 

2( ) 1 0xp c h rc
D

α ⎛ ⎞− − − − =⎜ ⎟
⎝ ⎠

 (9) 

Equation (9) is an algebraic equation in a single variable, x, and has a unique stationary 
solution, x*, given by 

* 1
2 ( )
D rc hx

p cα
⎛ ⎞+

= −⎜ ⎟−⎝ ⎠
 (10) 

Since p >c, * .
2
Dx <  The condition 

rc h
p c

α +
>

−
 (11) 

must be observed for x* to exist. (11) states that for an optimum inventory level to exist 

the intrinsic demand growth rate, α, must exceed the ratio, ,rc h
p c
+
−

 that involves all the 

monetary parameters of the problem and represents the fraction of the net income from 
selling a single item, p − c, that is absorbed by the accumulated interest on the order cost, 
rc, and the holding cost, h. 

The Euler-Lagrange equation as well as the Legendre condition, 
2

2
0,rt Le

x
− ∂

=
∂

 

provide necessary but not sufficient conditions for optimality. The sufficiency  
condition is furnished by proving the concavity of the integrand, ( , ).rte L x x−  Since both 
conditions 

2 2

2 2
2 ( ) 0,rt rt rtL Me e e p c

x x D
α− − −∂ ∂

= = − − <
∂ ∂

 

22 2 2

2 2
0,rt L L Le

x x x x
−

⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟− =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 

hold, the concavity of the integrand is proved. 
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The optimal solution to the optimisation problem defined by (2) and (3) is to move 
from x0 to x* as quickly as possible and then remain at x* thereafter. This is the so-called 
most rapid approach path (MRAP) approach. Spence and Starrett (1975) provide a 
detailed analysis of this approach in the autonomous case whereas Hartl and Feichtinger 
(1987) derive the Euler equation in the non-autonomous case (M and N are functions of 
time, t, as well as state, x). We offer a brief graphical proof of the optimality of MRAP 
below. 

Figure 1 shows two alternative paths from x0 to x*. 

Figure 1 Alternative paths from x0 to x* 

 

We note first that 
0 0

( ( ) ( ) ) ( ( ) ( ) ),rt rte M x N x x dt e M x dt N x dx
∞ ∞

− −+ = +∫ ∫  which is a line 

integral. Assume that the path starts from the initial state, x0, and ends at x* < x0. We 

evaluate this line integral along two paths, γ1γ2 and γ3, that is, 
1 2

( ( ) ( ) )rt

γ γ

e M x dt N x dx− +∫  

and 
3

( ( ) ( ) ).rt

γ

e M x dt N x dx− +∫  Then we form the difference between these two line 

integrals: 

( ) ( )

( )

1 2 3

1 2 3

( ) ( ) ( ) ( )

( ) ( )

rt rt

γ γ γ

rt

γ γ γ

e M x dt N x dx e M x dt N x dx

e M x dt N x dx

− −

−

+ − +

= +

∫ ∫

∫
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This is a line integral around the closed curve γ1γ2γ3 in the counterclockwise (positive) 
sense, which, by application of Green’s Theorem, can be written as a double integral: 

( ) ( ) ( )
1 2 3

( ) ( )
( ) ( )

( )

rt rt
rt

γ γ γ

rt

e N x e M x
e M x dt N x dx dtdx

t x

dMe rN x dtdx
dx

− −
−

−

⎛ ⎞∂ ∂
⎜ ⎟+ = −
⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∫ ∫
 

The double integral expresses the difference between the values of two functionals along 
two different paths. The path γ1γ2 is the path that approaches x* most rapidly and will be 
the optimal one if the integrand is negative, that is if, 

( ) 0dMrN x
dx

+ <  

A similar argument applies when x0 < x*, provided that the reverse condition 

( ) 0dMrN x
dx

+ >  

now holds. 

In our problem, 2( ) ( ) 1dM xrN x p c h rc
dx D

α ⎛ ⎞+ = − − − −⎜ ⎟
⎝ ⎠

 is positive if x0 < x*, 

negative if x0 > x*, and 0 if x0 = x*. It is therefore optimal to get to x* from x0 at the 
maximum rate. If x0 > x*, the maximum rate can be realised by not placing any orders  

(u = 0) so that the inventory will decline at the rate, 1 .xx
D

α ⎛ ⎞− −⎜ ⎟
⎝ ⎠

 If x0 < x*, the 

maximum rate can be realised by placing orders at the maximum rate (u = U) so that the 

inventory will rise at the rate, 1 .xU x
D

− α ⎛ ⎞−⎜ ⎟
⎝ ⎠

 In short, If x0 = x*, x* must be maintained 

by placing orders at exactly the same rate the inventory changes, that is, 
*

* * 1 .xu x
D

= α
⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

In accordance to the MRAP we have: 

*

*
* * *

0

*

, 0

, 1

,

x u

xx x u x
D

x u U

α

⎧ > =
⎪

⎛ ⎞⎪= = = −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ < =⎩

 (12) 

The optimal policies outlined by (5) and (12) are of course equivalent. Implementation of 
(5) requires solving directly for the value function and (12) for the state equation. 
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5 Analytical solutions to the state equation (3) 

In this section, we derive general analytical solutions for the inventory variable for the 
two extreme values, 0 and U, of the control variable, u(t). However, the various solutions 
for u = U are only relevant for any initial inventory value, x0 < x*. Next we solve the 
differential equation (3) with u(t) = 0 and u(t) = U. Before we do so we are going to need 

the roots of the quadratic equation, 1 0 :xu x
D

α ⎛ ⎞− − =⎜ ⎟
⎝ ⎠

 

2

1

2

2

4

2
4

2

uDD D
x

uDD D
x

α

α

+ −
=

− −
=

 (13) 

5.1 Solution for 
4
αDU <  

In this case the roots x1 and x2 are both real. The differential equation has the following 
solution: 

( )2 0 1 2
1

0 2

0 1 2

0 2

4exp
( )

41 exp

x x x ux t
x x D

x t
x x ut
x x D

αα

αα

⎛ ⎞−
− −⎜ ⎟⎜ ⎟− ⎝ ⎠=

⎛ ⎞−
− −⎜ ⎟⎜ ⎟− ⎝ ⎠

 (14) 

Since 
1

0
x x

df
dx =

⎛ ⎞ >⎜ ⎟
⎝ ⎠

 and 
2

0,
x x

df
dx =

⎛ ⎞ <⎜ ⎟
⎝ ⎠

 x1 is an unstable equilibrium and x2 is an 

asymptotically stable equilibrium. The solution (14) is well defined for all  
x0 ∈ (0, x2)∪ (x2, D). At x0 = x2, the inventory remains at this level for ever. For any 
other initial inventory value the inventory will eventually settle towards x2. The presence 
of the stable equilibrium, x2, places certain restrictions on the location of the initial 
inventory value, x0. We examine all possible cases in detail and to that effect we calculate 
the time, t*, needed to reach x* from (14): 

( )( )
( )( )

*
1 0 2*

*
2 0 12

1 ln
4

x x x x
t

x x x xu
D
αα

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟− −⎝ ⎠−

 (15) 
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1 x2 < x0 < x*: the inventory can build up to x* level at time t*, where the optimal steady 

state order rate, 
*

* * 1 ,xu x
D

= α ⎛ ⎞
−⎜ ⎟

⎝ ⎠
 can be exercised thereafter. Since x2 and U are 

functionally dependent, U is subject to the following constraint: 
2

4 4
D D rc hU

p c
α

α
⎛ ⎞+

< − ⎜ ⎟−⎝ ⎠
 (16) 

2 x0 < x2 < x*: the inventory will be attracted asymptotically towards x2 before it gets to 
x* and will remain at this level thereafter. In this case x* is unattainable, as it can also 
be seen from the non-existence of a real value for t* in (15). 

3 x0 < x* ≤ x2: the inventory can eventually build up to the desired value, x*, at or 
before x2. The reverse condition to (16) holds in this case 

2

4 4 4
D D rc h DU

p c
α α

α
⎛ ⎞+

− ≤ <⎜ ⎟−⎝ ⎠
 (17) 

5.2 Solution for 
4
αDU <  

When 1 2, ,
4 2
D DU x xα

< = =  and the solution is: 

( )
( )

0

0

2
( )

2 2 2
D x DDx t
D x t Dα

−
= +

− +
 (18) 

The solution (18) is well defined in the time interval [0, ∞) for all 0 .
2
Dx ⎛ ⎤∈⎜ ⎥⎝ ⎦

 For 

0 ,
2
Dx D⎛ ⎞∈⎜ ⎟

⎝ ⎠
 the solution is defined on the time interval, 

( )0

20, .
2

Dt
x Dα

⎡ ⎞
∈ ⎟⎢ ⎟−⎢⎣ ⎠

 The 

inventory level, 0 ,
2
Dx =  is an unstable equilibrium. 

For an initial inventory value, *
0 ,

2
Dx x≤ <  the time taken to reach x* is given by 

( )
*

0

2( ) 2
2

p c Dt
rc h x Dα

−
= +

+ −
 (19) 

 



   

 

   

   
 

   

   

 

   

    Deterministic and stochastic optimal inventory control 51    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

5.3 Solution for 
4
αDU <  

The roots are complex conjugates with positive real part, hence unstable. The solution to 
the differential equation in this case is: 

0 2

( ) tan( ),
2

2tan ,    
4

D Dωx t ωt

Dx Uω
Dω D

φ
α

α αφ =

α

= + +

−
= −

 (20) 

The solution (20) is periodic with period, ,π
ω

 and is well defined for all x0 ∈ (0, D) in the 

entire time interval, t ∈ [0, ∞), except at the discrete time instants, 

(2 1)
2 ,  0,1, 2,n

πn
t n

ω

φ+ −
= = …  

For *
0 ,

2
Dx x< <  the monotonicity of the tangent function guarantees that x* will be 

reached at time, t*, given by 

* 1 arctan
2 ( )

rc ht
ω ω c p

φ
⎛ ⎞⎛ ⎞+

= −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 (21) 

5.4 Solution for u = 0 

Finally, when u = 0, the solution is: 

0

0 0
( )

t

t

Dx ex t
x e D x

α

α

−

−
=

+ −
 (22) 

In this case the inventory will asymptotically drop to the asymptotically stable value,  
x = 0, as t → ∞, from any initial value, x0 ∈ (0, D). From an initial inventory value,  
x0 > x*, the time taken to reach, x*, is 

( )
( )( )

0*

0

( )1 ln
( )
x p c rc h

t
p c rc h D x
α

α α
⎛ ⎞− + +

= ⎜ ⎟⎜ ⎟− − − −⎝ ⎠
 (23) 
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6 Derivation of the optimal net profit 

In Section 4, we stated the H-J-B equation: 

*
*

( )
( ) max 1 1

u t

x x dVrV x p x hx cu u x
D D dx

α α
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

This is a first order ordinary linear differential equation which is normally solved by 

solving for the maximising u* in terms of x and 
*dV

dx
 first, and subsequently substituting 

the result into the equation to obtain a modified differential equation that must be solved 
with an appropriate boundary condition. Since u is a linear term however, an analytical 
expression for u is not obtainable. As we have already established that u can assume its 
two extreme values, 0 and U, two differential equations must be solved instead: 

*
1* *

1
( )

( ) max 1 1   for 
u t

x x dVrV x p x hx cU U x x x
D D dx

α α
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − + − − <⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (24) 

*
2* *

2
( )

( ) max 1 1   for 
u t

x x dVrV x p x hx x x x
D D dx

α α
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + − <⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 (25) 

To ensure the continuity of V(x*), it is sufficient that the condition, 
* * * * * *

1 2( ) ( ) ( ),V x V x V x= =  is satisfied, as well as the condition for switching the optimal 

policy, 
*

*
* * . ( )

x x

dV c V x
dx =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 is the current net optimal profit value when the current 

inventory is x*, given by 

( )

*
* *

* *

( ) 1 xp c x hx
D

V x
r

α ⎛ ⎞
− − −⎜ ⎟

⎝ ⎠=  (26) 

From (26) it is straightforward to verify that 
*

*
.

x x

dV c
dx =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 The present value of the 

value function (26) is * * *( ),rte V x−  where t* is the time the stock level, x*, is reached. 
The solutions to (24) and (25) are 

*
1 1 1

1

1( ) ( ) 1
( )

xV x g x cU hx p x dx k
g x D

α
⎛ ⎞⎛ ⎞⎛ ⎞= + − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∫  (27) 

*
2 2 2

2

1( ) ( ) 1
( )

xV x g x hx p x dx k
g x D

α
⎛ ⎞⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∫  (28) 
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where k1, k2 are integration constants to be determined from the conditions 

* *

* *
1 2  

x x x x

dV dV c
dx dx= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and * * * * * *

1 2( ) ( ) ( ),V x V x V x= =  the boundary, x*, and 

1( ) exp
1

rg x dx
xU x
D

α

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟⎛ ⎞− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫  (29) 

2 ( ) exp
1

rg x dx
xx
D

α

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫  (30) 

are the integrating factors worked out explicitly in Section 5. 

7 The stochastic inventory model demand growth function 

We now allow the demand to possess a certain degree of randomness and assume that 
after a small time interval, dt, the replenished inventory will on average have changed by 

the anticipated amount, 1 ,xu x dt
D

α
⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 with variance, σ2x2dt, we can write down a 

stochastic differential equation for the inventory dynamics 

1 xdx u x dt σxdw
D

α
⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (31) 

The parameter, σ, is the diffusion parameter and dw is the Wiener process, a normal 
random variable, N(0, dt). We have written (31) in a differential form as the derivative of 
dw is usually interpreted as white noise which cannot be formally integrated. A unique 
solution to (31) exists if both Itó conditions hold (Fleming and Rishel, 1975). The first is 
the linear growth condition 

( )

( )

1 1 | |

| | 1 | |

xu x K x
D

σx K x

α ⎛ ⎞− − ≤ +⎜ ⎟
⎝ ⎠

≤ +

 

and the other is the Lipschitz condition 

( )

1 2
1 2 1 2

1 2 1 2

1 1x xx x L x x
D D

σ x x L x x

α α⎛ ⎞ ⎛ ⎞− − + − ≤ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− ≤ −

 

 



   

 

   

   
 

   

   

 

   

   54 A. Tsoularis    
 

    
 
 

   

   
 

   

   

 

   

       
 

for some independent constants, K and L. Both conditions are met for bounded α, σ and 
u. The solution to (31) is the stochastic integral equation 

0 0

0 0

( ) 1 ,  (0) , (0) 0
t t

xx t x u x dt σxdw x x D w
D

α
⎛ ⎞⎛ ⎞= + − − + = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠∫ ∫  (32) 

Figure 2 shows ten sample paths and the mean inventory for x0 = 10, u = 10, α = 0.2,  
σ = 0.3, D = 400. 

Figure 2 Simulated solution of stochastic integral equation (32) (see online version for colours) 

 

8 The stochastic optimal control problem 

This paper looks next at the problem of discounted profit maximisation over an infinite 
horizon by selling a product for which inventory evolves according to (31). There have 
been a few important articles on optimal production involving white noise processes. 
Sethi and Thompson (1981) considered a convex production-inventory model which 
determines production rates over time to minimise an integral representing a discounted 
quadratic loss function with white noise in the dynamics of the inventory process. 
Bensoussan et al. (1984) considered an infinite horizon stochastic production planning 
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problem with a discounted quadratic function designed to minimise the squared deviation 
from a desired inventory and production level. Fleming et al. (1987) considered an 
infinite horizon stochastic production planning problem with demand assumed to be a 
continuous-time Markov chain. Sethi et al. (1992) considered an infinite horizon 
stochastic production planning problem with capacity and demand assumed to be finite 
state Markov chains and established the existence of a threshold inventory level, or 
turnpike level, such that production takes place when below or at this level and no 
production above it. Dohi et al. (1995) dealt with an optimal production planning 
problem with the same objective as Bensoussan et al. (1984) but with demand assumed to 
be a mean-reverting Markovian diffusion process. A paper that is close to the spirit of the 
present work is the work of Berling and Martinez-de-Albéniz (2011). These authors 
considered the problem of exogenous stochastic demand following a Poisson distribution 
and a variable replenishment price evolving as a geometric Brownian motion or  
Ornstein-Uhlenbeck process and focused on determining the optimal stock level as a 
function of a series of threshold prices. It is worth noting that none of the aforementioned 
papers allow for inventory-dependent demand, which is what we present in this paper. 

We consider the objective of maximising the expected net profit from selling a 
product with fixed price, p. Holding costs are incurred continuously at constant rate, h, 
per item and the fixed ordering cost per item is c. There is no backlogging and the lead 

times are zero. The retailer calculates the gross return, 1 ,xp x
D

α ⎛ ⎞−⎜ ⎟
⎝ ⎠

 based on the 

expected demand. The net undiscounted profit is then, 1 .xp x hx cu
D

α ⎛ ⎞− − −⎜ ⎟
⎝ ⎠

 Our 

objective is to maximise the expected value of the net discounted profit with discount 
rate, r, over an infinite horizon: 

( )0 0
( )

0

max 1 (0)rt
u t

xV x E e p x hx cu dt x x
D

α
∞

−
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= − − − =⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∫  (33) 

subject to the stochastic differential equation (32), shown again below: 

01 , (0) , , (0) 0xdx u x dt σxdw x x D w
D

α
⎛ ⎞⎛ ⎞= − − + = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (34) 

and the control constraint: 

0    u U≤ ≤  (35) 

The second order derivative of the concave profit function is continuous and is therefore 

bounded by the polynomial growth condition, 1 (1 ),xp x hx xu K x u
D

α ⎛ ⎞− − − ≤ + +⎜ ⎟
⎝ ⎠

 for 

some constant K (Fleming and Rishel, 1975). We assume that ,hp
α

>  that is, the price is 

larger in magnitude than the holding cost to demand growth parameter ratio so that 
holding inventory is cost effective if the growth in demand is sufficiently high. 
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The H-J-B equation (Malliaris and Brock, 1982) for the stochastic control problem is 
a differential equation for the current value, V(x): 

2
2 2

2( )

1max 1 1
2u t

x x dV d VrV p x hx cu u x σ x
D D dx dx

α α
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (36) 

The second order linear differential equation (36) is linear in u. The optimal control 

decision, u*, will then depend on the sign of :dV c
dx

−  

*

0  if  

[0, ]  if  

  if   

dV c
dx

dVu u U c
dx

dVU c
dx

⎧ <⎪
⎪
⎪= ∈ =⎨
⎪
⎪

>⎪⎩

 (37) 

The optimal control law (37) suggests that the set of inventory states is divided into two 

distinct regions separated by a boundary on which the marginal profit, ,dV
dx

 equals the 

unit order cost, c, and where x attains a specific value, x*. The problem then is to 

determine the stock level, x*, at which 
*

.
x x

dV c
dx =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 If the stock happens to exceed the 

specific value, x*, the optimal policy is to place no orders (u* = 0) until the stock reaches 
x*, whereas if the stock level has fallen below x*, the optimal ordering policy is to order 
the maximum possible quantity (u* = U) until the stock reaches x*. Once the stock level 

hits x*, any admissible ordering policy, u* ∈[0, U] is acceptable since 
*

 .
x x

dV c
dx =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

Due to the random disturbance present in the system, the inventory will momentarily 
move away from x*, but the extreme order policy, u* = 0 or u* = U will kick in to restore 
the inventory level back to x*. Since the choice of control does not affect the solution of 

(36), the optimal control, 
*

* * 1 ,xu x
D

α
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 could be used to eliminate the drift in the 

stochastic differential equation (34). Excursions from x* would then be drift-free 

geometric Brownian motions of the form, 
2

*( ) exp ( )
2
σ tx t x σw t⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 with expected 

value [x(t)] = x* and zero variance. 

9 The solution to the H-J-B equation when D → ∞ 

In this section we solve the optimal control problem when D is for practical purposes 
infinite so the demand growth is linear, as the solution will aid us in getting the solution 
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for finite D. When the demand saturation level, D, is infinite, the term, 
2

,x
D

α  drops out 

from both the profit function and the diffusion process. The inventory dynamics is now 

( ) 0,   (0) ,  (0) 0dx u x dt σxdw x x wα= − + = =  (38) 

and the profit functional is 

( ) ( )*
0 0

( )
0

max (0)rt
u t

V x E e p x hx cu dt x xα
∞

−
⎡ ⎤
⎢ ⎥= − − =
⎢ ⎥⎣ ⎦
∫  (39) 

The H-J-B second order differential equation is in this case given by 
2 * *

2 2 *
12

1 ( ) ( )
2

d V dVx u x rV h p x cu
dxdx

σ α α+ − − = − +  (40) 

We produce two separate solutions to the H-J-B equation, one with solution, *
1 ( ),V x  

when u* = U and 
*

0,dV c
dx

− >  and another with solution, *
2 ( ),V x  when u* = 0 and 

*

0.dV c
dx

− <  Continuity and differentiability of the solution at the threshold value, x*, 

requires that the boundary conditions 

( ) ( )

* *

* *

* * * *
1 2

* *
1 2

2 * 2 *
1 2
2 2

x x x x

x x x x

V x V x

dV dV
c

dx dx

d V d V
dx dx

= =

= =

=

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (41) 

be met. These conditions will be exploited to provide analytical forms for the current 
value function at the threshold inventory level, x*. 

9.1 The H-J-B equation for u* = U 

The H-J-B equation is: 
2 * *

2 2 *1 1
12

1 ( ) ( )
2

d V dV
x u x rV h p x cU

dxdx
σ α α+ − − = − +  (42) 

x = 0 is an irregular singular point of the second order differential equation but every 
other point, x ≠ 0, is an ordinary point. We can therefore use a Taylor series expansion, 

*
1

0

( ) ( ) ,n
n

n

V x a x ξ
∞

=

= −∑  for the solution around any admissible state, ξ ≠ 0. We transform 

powers of the variable, x, and rewrite the coefficients as polynomials of powers of (x − ξ) 
thus: 
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2 2 2( ) 2 ( ) ,
( ) ( ),

( ) ( )( ) ( )

x x x
U x U x
h p x cU h p x cU h p

ξ ξ ξ ξ
α αξ α ξ
α α ξ ξ α

= − + − +
− = − − −
− + = − − + + −

 

Inserting the Taylor series into the differential equation we obtain: 

( )

2 2 2
2

1 2
0

1
0

( 1) ( 1) ( 1)( 2) ( )
2 2

( )( 1) ( )

( )( ) ( )

n
n n n

n

n
n n n

n

n n a n n a n n a x

U n a n a ra x

h p x cU h p

σ σ ξσ ξ ξ

αξ α ξ

α ξ ξ α

∞

+ +
=

∞

+
=

⎛ ⎞−
+ + + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

+ − + − − −

= − − + + −

∑

∑  

Setting coefficients on both sides equal to 0, the first two inhomogeneous terms are: 
2 2

2 1 00 : ( ) ( )n a U a ra cU h pσ ξ αξ ξ α= + − − = + −  

2 2 2
2 3 2 1 11: 3 2( )n a a U a a ra h pσ ξ σ ξ αξ α α= + + − − − = −  

The two initial coefficients, a0 and a1, can in principle, be determined by the appropriate 
boundary conditions. From them we obtain the third and fourth coefficients, a2 and a3: 

2 0 12 2 2 2 2 2
( ) ( )cU h p t Ua a aξ α αξ

σ ξ σ ξ σ ξ
+ − −

= + −  (43) 

2

3 1 22 2 2 2 2 2
( ) 2( )

3 3 2
h p r Ua a aα α αξ σ ξ
σ ξ σ ξ σ ξ
− + − +

= + −  (44) 

The remaining coefficients, an, are calculated from the following recursive relationship: 

( ) ( )2 2
1

2 2 2

2 2 ( 1) 2( 1)
,   2

( 1)( 2)
n n

n

n r n n a n n U a
a n

n n

α σ σ ξ αξ

σ ξ
+

+

+ − − − + + −
= ≥

+ +
 (45) 

9.2 The H-J-B equation for u* = 0 

In what follows the generic point ξ is replaced by x*. For u* = 0 the  
H-J-B equation is the inhomogeneous second order Euler equation: 

2 * *
2 2 *2 2

22
1 ) ( )
2

d V dV
x x rV h p x

dxdx
σ α α− − = −  (46) 

This can be solved, by the standard method of variation of parameters to give: 

( )( )
1 2

3
*

2 1 2
1 2

( )( )
3 3

h p xV x k x k xρ ρα
ρ ρ
−

= + +
− −

 (47) 
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where k1, k2 are integration constants to be determined from the appropriate boundary 
conditions, and the exponents, ρ1 and ρ2 are given by 

( )

( )

22 2 2

1 2

22 2 2

2 2

2 2 8
1,

2

2 2 8
0

2

r

r

σ α σ α σ
ρ

σ

σ α σ α σ
ρ

σ

+ + + +
= >

+ + + +
= <

 (48) 

At x = 0, we impose the natural boundary condition, *
2 (0) 0,V =  and consequently the 

term, k2, associated with the negative root, ρ2, must be forced to equal zero. We present 
two different solutions for *

2 ( ) :V x  

1 ρ1 ≠ 3: 

( )( )
1

3
*

2 1
1 2

( )( )
3 3

h p xV x k xρα
ρ ρ
−

= +
− −

 (49) 

There is only one unknown parameter, k1, to be determined in (49). To that effect we 

use the condition, 
*

2 .
dV

c
dx

=  We have then 

( )
( )( ) ( ) 1

*

2** 1*2
1 1

1 2

3( )

3 3
x x

h p xdV
c k x

dx
ρα

ρ
ρ ρ

−

=

−⎛ ⎞
= = +⎜ ⎟⎜ ⎟ − −⎝ ⎠

 (50) 

whence, 

( ) ( )
( )( ) ( )1 1

2*
1 3* *

1
1 1 1 2

3( )

3 3

h p xck x x
ρ ρα

ρ ρ ρ ρ
− −−

= −
− −

 (51) 

Inserting (51) into (49) we obtain the final form of the value function 

( )( ) ( )( ) ( )
13 * 3 3* *

2 *
1 2 1 1 1 2

( ) 3( )( )
3 3 3 3

h p x x cx p h xV x x
x

ρα α
ρ ρ ρ ρ ρ ρ

⎛ ⎞− −⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠
 (52) 

Finally, we need to determine the threshold value, x*. We have 

( )( ) ( ) ( ) 1

*

2 * * 2*2
2 1 1 12

1 2

6( ) 1
3 3

x x

d V h p xa k x
dx

ρα ρ ρ
ρ ρ

−

=

⎛ ⎞ −
= = + −⎜ ⎟⎜ ⎟ − −⎝ ⎠

 (53) 

However, by virtue of (53), a2 is also given by 

( )
( )* *

2 22 * 22 *

( )h p c ra V x
x x

α α
σ σ

− +
= +  (54) 
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Equating (53) to (54) and solving the quadratic equation in x* we have 

( ) ( )( )
( )

2 2 2
2 1 1*

2
1

3

3 ( )

c p h c c rc
x

r p h

ρ σ ρ α α σ ρ

σ ρ α

− + − − − −
=

+ −
 (55) 

x* exists if 2 2 2
1 1( ) 0.c p h c c rcσ ρ α α σ ρ+ − − − − >  We prove that this is indeed so 

next. Since (pα − h) ρ1 > 0, it is sufficient to prove that the inequality, 
2 2 2

1 1( ) 0,c c c rcσ ρ α σ ρ− + − >  is also always valid. There are two roots to the 

quadratic equation, 2 2 2
1 1( ) 0,c c c rcσ ρ α σ ρ− + − =  which are given by 

2 2 2 2

2

( ) 4
.

2
rσ α σ α σ

σ
+ ± + +

 Since by definition, ρ1 > 0, only the positive root is 

relevant for the proof, namely 
2 2 2 2

12

( ) 4
.

2
rσ α σ α σ

ρ
σ

+ + + +
<  It immediately 

follows then that the inequality, 2 2 2
1 1( ) 0,c c c rcσ ρ α σ ρ− + − >  always holds. The 

existence of x* is therefore conclusively proved. 

2 ρ1 = 3: 

In this case, 2

3
rσ α= +  and 2 2 ,

3
r

r
ρ

α
= −

+
 and there is a different solution to the 

inhomogeneous Euler equation given by 

( )
* 3

2 12
22

( ) ln
33

p h p hV x x k xα α
ρρ

⎛ ⎞− −⎜ ⎟= + −
⎜ ⎟−−⎝ ⎠

 (56) 

where the term, 2
2 ,k xρ  has been dropped again for the same reason as for the case  

ρ1 ≠ 3. The term, x3 ln x → 0 as x → 0, according to L’Hospital’s rule, and presents 
no problem. We have again 

( )
( )

( )
*

* 2 2* * *2 2
12

22

( ) 3( )3 ln
33x x

dV p h p hc x k x x
dx

ρ α α
ρρ=

⎛ ⎞⎛ ⎞ − −⎜ ⎟= = + −⎜ ⎟⎜ ⎟ ⎜ ⎟ −−⎝ ⎠ ⎝ ⎠
 (57) 

whence, 

( ) ( )
* 2

1 2* 2 2

( ) ln
3 3 33

c p hk x
x

ρα
ρ ρ

⎛ ⎞−
= + −⎜ ⎟⎜ ⎟− −⎝ ⎠

 (58) 

We have then the current value function 

( )
* 3

2 2 ** 2

1( ) ln
3 33

c p h xV x x
xx

α
ρ

⎛ ⎞
⎛ ⎞− ⎛ ⎞⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

 (59) 
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Finally, solving 
( )*

2 * * *
2 2

2 2 * 22 *

( )( ) ,
x x

d V rV xc p h
dx x x

α
σ σ=

⎛ ⎞ − +
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 for x*, we obtain 

* ( 3 3 3 )(9 5 )
(3 )(9 4 )( )

cr p c h rx
r r p h

α α α
α α α
+ + − +

=
+ + −

 (60) 

The threshold inventory level, x*, varies inversely with the diffusion parameter, σ, 

exhibiting a hyperbolic relationship of the form, * 1~ .x
σ

 This indicates that large 

random perturbations in the interactive inventory-demand system call for a switch in the 
optimal ordering strategy when the stock falls considerably. Also higher ordering costs, c, 
lead to higher threshold inventory levels. Figure 3 displays an instance of this relationship 
for r = 0.03, p = 2.5, α = 0.2, h = 0.1, c = 0.25, for σ ∈[0, 1]. 

Figure 3 Threshold inventory-diffusion inter-dependence (see online version for colours) 

 

10 The solution to the H-J-B equation when D < ∞ 

Again in this section we solve the H-J-B equation twice, first for u* = U, and then for  
u* = 0. 
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10.1 Solution to the H-J-B equation for u* = U 

The equation when u* = U is: 

2 * *
1 12 2 *

12

1 1 1
2

d V x dV xσ x U x rV hx p x cU
dx D dx D

− α α
⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − = − − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (61) 

x = 0 is an irregular singular point of the second order differential equation (61), but 
every other point, x ≠ 0, is an ordinary point. We can therefore use a Taylor series 

expansion, *
1

0

( ) ( ) ,n
n

n

V x a x ξ
∞

=

= −∑  for the solution around any non-zero inventory state,  

ξ ≠ 0. We transform powers of the variable, x, and rewrite the coefficients as Taylor 
series expansions thus: 

2 2 2

2

2

( ) 2 ( ) ,

1

2( ) 1 ( ) 1 , 1

2( ) 1 ( ) 1

x x ξ ξ x ξ ξ
xU x
D

ξ ξ xx ξ x ξ U ξ hx p x cU
D D D D

p ξ ξx ξ p h x ξ hξ p ξ cU
D D D

α

α α α α

α α α

= − + − +

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − − + − − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − + − + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Inserting the transformed coefficients into (61) and equating the coefficients of like 
powers on both sides we obtain for n = 0: 

( )

*

2 02 2 *2 *

( ) 1 xc p h
Dra a

σ xσ x

α ⎛ ⎞
− − +⎜ ⎟

⎝ ⎠= +  (62) 

10.2 Solution to the H-J-B equation for u* = 0 

For u* = 0 the equation becomes 

2 * *
2 22 2 *

22

1 1 1
2

d V x dV xσ x x rV hx p x
dx D dx D

− α α⎛ ⎞ ⎛ ⎞− − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (63) 

The solution to the homogeneous version of (63) 

2 * *
2 22 2 *

22

1 1 0
2

d V x dVσ x x rV
dx D dx

− α ⎛ ⎞− − =⎜ ⎟
⎝ ⎠

 (64) 
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is found by substitution of the Frobenius series, *
2

0

( ) ,n
n

n

V x a xβ
∞

+

=

=∑  into (64), which 

yields the indicial equation: 

( )2
0 0( 1) 2 2 0,   0a σ r aβ β αβ− − − = ≠  

which has the same roots, ρ1, ρ2 as those given by (48). 
There are two linearly independent solutions to the homogeneous equation (64): 

( )

( )
1

12
1

1 
22 21

2
1

2 1
( ) 1

2 8
!

n n

mρ n

nn

m

ρ m
Dσ

x x x
σ rσ

n m
σ

α

φ
α

∞
=

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟= +
⎜ ⎟⎛ ⎞⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∏
∑

∏
 (65) 

( )

( )
2

22
1

2 
22 21

2
1

2 1
( ) 1

2 8
!

n n

mρ n

nn

m

ρ m
Dσ

x x x
σ rσ

n m
σ

α

φ
α

∞
=

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟= +
⎜ ⎟⎛ ⎞⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∏
∑

∏
 (66) 

To test the convergence of (65) and (66) we conduct the ratio test. For (65) 

( )

( )
1

2 22 2

2

2lim 0
2 8

( 1) 1

n

ρ nx
Dσ σ rσ

n n
σ

α

α
→∞

+⎛ ⎞− →⎜ ⎟ ⎛ ⎞⎝ ⎠ + +⎜ ⎟+ + +⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and for (66) 

( )

( )
1

2 22 2

2

2lim 0
2 8

( 1) 1

n

ρ nx
Dσ σ rσ

n n
σ

α

α
→∞

+⎛ ⎞− →⎜ ⎟ ⎛ ⎞⎝ ⎠ + +⎜ ⎟+ + −⎜ ⎟
⎜ ⎟
⎝ ⎠
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Both φ1(x) and φ2(x) are therefore convergent. 
The Wronskian, W(x), of the two linearly independent solutions is given by Abel’s 

formula 

2 2
2 2

2
2

2 1
( ) exp

α α x
σ Dσ

x

xαx
DW x dx x e

σ x

′⎛ ⎞⎛ ⎞′ −⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟′= =
′⎜ ⎟

⎜ ⎟
⎝ ⎠

∫  

which does not vanish anywhere except at x = 0. 
The particular solution to the inhomogeneous equation (63) is then 

1 1 2 2( ) ( ) ( ) ( ) ( )x x x x xψ φ ψ φΦ = +  

where 

( )

( )

( )

1

1 2

1 1
( ) ,   ( )

x x

x xpαx hx hx pαx x
D D

ψ x dx ψ x dx
W x W x

φ
′ ′⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠′ ′= =
′ ′∫ ∫  (67) 

The functions ψ1(x) and ψ2(x) are power series expressions obtained by straightforward 
term by term integration. 

The general solution to the inhomogeneous equation (63) is then 

*
2 1 1 2 2( ) ( ) ( ) ( )V x k x k x xφ φ= + +Φ  

where k1 and k2 are coefficients to be determined by the appropriate boundary conditions. 
We assume that the function *

2 ( )V x  coincides with its counterpart (49) for D → ∞. It 
follows from this assumption that k = 0, hence 

*
2 1 1( ) ( ) ( )V x k x xφ= +Φ  

At the threshold point, 
*

*
* 2,   ,

x x

dV
x c

dx
=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 hence 

( )
( )

*

1 *
1

c x
k

xφ

′−Φ
=

′
 

Thus, the desired solution to the inhomogeneous equation (63) assumes its final form 

( )
( )

*
*

2 1*
1

( ) ( ) ( )
c x

V x x x
x

φ
φ

⎛ ⎞′−Φ⎜ ⎟= +Φ⎜ ⎟′⎜ ⎟
⎝ ⎠

 (68) 
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To ensure continuity of the function at x*, we use again the boundary conditions (41): 

( )
( )

*

2 *
2

22

*

* *
22 2 *2 *

( ) 1

x x

d V
a

dx

xc p h
Dr V x

xx

α

σσ

=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
− − +⎜ ⎟

⎝ ⎠= +

 (69) 

Also 

( )
( )

*

2 *
2

22

*

1*
1

( ) ( )

x x

d V
a

dx

c x
x x

x
φ

φ

=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞′−Φ⎜ ⎟ ′′ ′′= +Φ⎜ ⎟′⎜ ⎟
⎝ ⎠

 (70) 

Equating (69) and (70) we obtain a single equation in one unknown, x*: 

( )
( ) ( )

( )
( )

( )
*

* *
1 12 2* 2 * 2 *

1

*

2 *

( ) ( )

( ) 1
0

c x r rx x x x
x x x

xc p h
D

x

φ φ
φ σ σ

α

σ

⎛ ⎞′−Φ ⎜ ⎟′′ ′′− +Φ − Φ⎜ ⎟′ ⎜ ⎟
⎝ ⎠
⎛ ⎞

− − +⎜ ⎟
⎝ ⎠− =

 (71) 

Solution of (71) through a root-finding scheme should furnish the strategy threshold 
point, x*, with any prescribed accuracy. 

11 Discussion 

In this paper we have solved first the deterministic optimal control problem of discounted 
net revenue maximisation for inventory driven by demand rate following logistic growth 
for various regimes of the order rate. We have also obtained the optimum stock level that 
stabilises demand. We have opted for a logistically driven demand rate motivated by the 
ubiquity of the logistic equation in other areas of research. Montroll (1978) has argued 
that production of a product or an industry typically grows drawing the logistic curve. An 
obvious implication of the logistic growth of an individual product is that if the product 
enjoys high demand a high order rate for this product is a natural response. Also to keep 
the control problem autonomous and singular we have used a linear order cost function as 
opposed to a more traditional polynomial form. We have not considered stock 
deterioration which might introduce an explicit time dependence in the model, as for 
instance in the case of perishable goods, and render the control problem non-autonomous 
but solely stock dependent deterioration can be easily incorporated. Losses from 
deterioration directly proportional to the present stock, θx, result in a reduction to the 
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optimum switch level in (10) by the amount .
2 ( )

Dc
p c
θ

α −
 This is reasonable as 

maintaining a lower stock makes up for the reduction in the net profit due to increased 
order rates. 

The MRAP can be calculated when the holding cost function is of the form, h(x) = 
h0xγ, as in Berman and Perry (2006), or inventory deterioration is expressed as a non-
linear function of the inventory, or when the demand rate is a generalised logistic, for 

instance, 1 ,xx
D

βα ⎛ ⎞−⎜ ⎟
⎝ ⎠

 but the resulting Euler-Lagrange is a transcendental equation in x 

which may possess more than one real root. The optimal path would be the MRAP from 
the existing inventory level to one of the roots. 

Another and perhaps the most interesting research avenue is the problem  
of pricing. We have used a fixed price, p, in our model but demand and price  
are traditionally interdependent. There are three ways the price variable can enter the 
model: 

1 as an invertible function of demand rate alone, for instance, ( )p F yλ=   
(Gallego and Van Ryzin, 1994), in which case the autonomy of the optimal control 
problem is maintained 

2 as another decision variable with its own state equation evolving in time 

3 as a control parameter directly affecting demand as in Jørgensen and Kort (2002). 

This paper also solves the stochastic optimal control problem of maximising the net profit 
from selling an item that is subject to stock-dependent demand and random perturbations 
due to variations in the inventory and/or demand. The associated H-J-B equation is 
formulated and solved in two different cases: 

1 when the stock level, D, that imposes a zero rate on demand growth, is finite 

2 when D is infinite. 

It is interesting to note that the deterministic version (no random perturbations) of the 
problem in case (2) (D → ∞), does not allow the determination of a switch inventory 
state, x*. As the control variable appears linearly within the equation, the optimal strategy 
is to employ the extreme values of control to construct the optimal strategy. One strategy 
is to allow the inventory to drop (no orders) if it happens to be above a threshold level 
and the other strategy is to build the inventory up to the threshold as fast as possible 
(maximum possible order) when it falls below the threshold. Once the threshold level, 
where the marginal profit equals the order cost per unit item, is attained the order rate 
should be such that the level is maintained on average. An explicit analytical expression 
for the threshold was only possible for infinite D (case 2). For finite D (case 1) the H-J-B 
equations assume power series solutions that can deliver the threshold value by appealing 
to numerical methods. We have found that the threshold level increases with a decrease 
in uncertainty present in the inventory dynamics, which reasonably suggests that it is 
more profitable to let the inventory drop to low levels when random fluctuations are 
persistently large. 

 



   

 

   

   
 

   

   

 

   

    Deterministic and stochastic optimal inventory control 67    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Finally, it is worth pointing out that for very small noise values, σ, Fleming and 
Souganidis (1986) have proposed a power series for the form of the value function, 

0

( ) ( ).n n
n

V x v xσ
∞

=

=∑  Substitution of this series into the H-J-B equation and collecting 

terms with the same orders of σ yields a series of differential equations, with v0(x) being 
the current value function for the unperturbed problem. 

Subsequent equations are first-order linear differential equations in vn with 
coefficients depending on vn–1. The equations for vn can be then solved recursively. 

The novel contribution of this work is the determination of an optimal inventory level 
modified by a stock-dependent demand rate of logistic nature, evolving either 
deterministically or stochastically. This is important in practice for planning inventory 
levels that maximise net profit, in the presence of possible uncertainty in demand. 
However, there are some key limitations in the existing model. The most important 
limitation is the assumption of a constant price. We focus on introducing price dynamics 
as an additional factor directly affecting demand in our future research. 
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