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Abstract: This article considers the deterministic singular optimal control 
problem of profit maximisation for inventory replenished at a variable rate and 
depleted by demand which is assumed to vary with price and stock availability. 
Optimal policies for the product order rate and price are derived using the 
maximum principle. Several initial inventory regions are identified as potential 
inventory states for feasible profit optimisation. Bounds on the maximum  
price for maximising net profit or minimising loss are obtained. Numerical 
simulations accompanied by phase diagrams are performed to support the 
theoretical findings. 
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1 Literature review 

The main premise of this article is that the demand for a particular product is allowed to 
increase linearly as more stock on display becomes available. An increase in the  
shelf space can influence customers. An empirical evidence of this phenomenon was 
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presented by Wolfe (1968). Balakrishnan et al. (1994) used an extension of a standard 
inventory-dependent demand model from the literature, and provided a convenient 
characterisation of products that require early replenishment. They demonstrated that the 
optimal cycle time is largely governed by the conventional trade-off between ordering 
and holding costs, whereas the reorder point relates to a promotions-oriented cost-benefit 
perspective. They next showed that the optimal policy yields significantly higher profits 
than cost-based inventory policies, underscoring the importance of profit-driven 
inventory management. Optimal ordering strategies adopting the economic order quantity 
(EOQ) were addressed by Baker and Urban (1988), Urban (1992, 1995) and Gerchak and 
Wang (1994). Xu and Li (2008) concerned with the joint management problem of 
production control and dynamic pricing to balance the finished goods inventory and 
market demand in a make-to-stock manufacturing system using a long-run average profit 
criterion. In the system, the production rate was random, with a controllable mean rate, 
and the demand was Markov, with a changeable mean rate which depended on the sale 
price. The management issue was how to dynamically adjust the production rate and the 
selling price to maximise the long-run average profit. They discovered that the optimal 
policy of dynamic pricing and production control over an infinite horizon was a matter of 
thresholds. An effective algorithm was also suggested. Sana et al. (2009) introduced a 
model dealing with an EOQ or economic production quantity (EPQ) model where the 
effect of ‘advertising’, ‘sales price’ and ‘stock-display’ was investigated. It was 
developed both for deteriorating and ameliorating items in the light of capacity constraint 
for storage facility and the limitation of the budget for advertising. The associated 
average profit function was maximised by calculus method and was also illustrated by 
some numerical data for the test problem. Roy et al. (2010) considered a stochastic 
economic production lot size (EPLS) model with price sensitive demand when the price 
is random. They investigated a production model with finite replenishment and 
maximised the profit over a finite time horizon allowing shortages. Sahoo at al. (2010) 
developed a deterministic model with constant deterioration and demand rate a function 
of the selling price. The model was solved allowing for inventory shortages and time 
dependent holding costs. Chang et al. (2010) dealt with the problem of determining the 
optimal selling price and order quantity simultaneously for the EOQ model for items with 
deterioration. They also assumed that the demand rate was dependent on both the selling 
price and the limited stock level on display and derived algorithms to maximise profit. 
Saha et al. (2010) considered day-to-day time-based competition, with the unit selling 
price of a high-tech product declining significantly over its short life cycle. In this paper, 
the authors introduced dynamic pricing to traditional EPQ models for time and price 
sensitive products with the objective of maximising total profit and proved that the total 
profit is a concave function of selling price within fixed planning horizon. A solution 
procedure was presented to determine optimal prices, optimal number of production 
cycles, optimal lot size and optimal profit simultaneously. Shah and Soni (2011) analysed 
a continuous review inventory system with an objective to determine an (r, Q) policy 
which minimises the cost function. In their study they considered the demand rate, 
holding cost and shortage cost are sensitive to imprecise selling price. The proposed 
model assumed that shortages are allowed and completely backlogged and the lead time 
is fuzzy in nature. In a stochastic setting, Wei and Zhao (2011) dealt with the optimal 
pricing decision problem of a fuzzy closed-loop supply chain with retail competition 
where the fuzziness is associated with the customer demands, the remanufacturing cost 
and the collecting cost. By using game theory and fuzzy theory, the optimal decision on 
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wholesale price, retail prices and remanufacturing rate were explored respectively under 
the centralised and the decentralised decision scenarios, and the expressions for them 
were also established. Shi et al. (2011a) developed a mathematical model to maximise the 
overall profit of a manufacturing system by simultaneously determining the selling price, 
the production quantities for brand-new products and remanufactured products, and the 
acquisition price of used products. Through a numerical example, the impacts of the 
uncertainties of both demand and return on the production plan, selling price, and the 
acquisition price of used products were analysed. Shi et al. (2011b) also studied a 
manufacturing system with uncertain demand with the objective to maximise the 
manufacturer’s expected profit by jointly determining the production quantities of  
brand-new products, the quantities of remanufactured products and the acquisition prices 
of the used products, subject to a capacity constraint. Salvierri et al. (2014) presented a 
stochastic version of the economic lot sizing problem with pricing. The control variables 
of the stochastic problem are the production quantities and cycle lengths for each product. 
The recourse variables are the sales prices and the external purchase quantities in each 
production cycle. A solution method based on simulation, decomposition, and column 
generation was proposed and tested using a number of designed experiments. The method 
was found to produce very close to optimal solutions quickly. 

In this paper the demand rate is a composite function of both inventory and price. It is 
linear with respect to the inventory and a convex function of the product price.  
Datta and Paul (2001) analysed a multi-cycle replenishment inventory system with the 
demand rate being determined by price and stock level and treated the mark-up rate and 
number of orders as the decision variables. They assumed that demand rate was given by 
d(x, k) = f(k)xβ, where 0 < β < 1and k is the mark-up rate and two different expressions 
for f(k); f(k) = ae–bk, a form adopted by Gallego and Rysin (1994) and f(k) = ak–b, a form 
used by Arcelus and Srinivasan (1987). Demand with linear price dependence with profit 
maximisation using a quadratic performance was also investigated by Jørgensen and Kort 
(2002). The convexity introduced in the demand growth model in this work allows for a 
more gradual slowdown in the demand rate as price increases compared to the linear case 
in Jørgensen and Kort (2002. The objective in this article is to maximise the net profit 
from selling the product incorporating linear holding and ordering costs over a finite 
horizon with restrictions on both order rate and price. A similar objective in an infinite 
horizon setting was used by Khmelnitsky and Gerchak (2002), who did not however 
factor in demand-price interdependence but instead treated the demand rate as function of 
both inventory and time. The contribution of this work is the synthesis of optimal 
replenishment and pricing policies towards achieving the objective of maximising net 
profit from selling a single product whose stock display and pricing affects demand for it. 
Upper bounds are imposed on both the benchmark maximum price and order rate. Three 
regimes are identified in which the replenishment rate is either at its maximum or lowest 
and product pricing is adjusted continuously towards realisation of the stated objective. 

2 The optimal control model 

The demand for an item is a separable function of the inventory in stock at time t, x(t), 
and the price, p. Specifically, the demand rate, d(x, p), is given by 
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2( , ) ( )d x p ax b p= −  (1) 

where a is a suitably chosen demand growth parameter and b is the maximum product 

price possible, p ≤ b. The demand rate will increase as x increases, 0,d
x

∂
>

∂
 and will 

decline as p increases, 0,d
p

∂
<

∂
 with demand ceasing to grow altogether when either  

x = 0 or p = b, d(0, p) = d(x, b) = 0. As price increases, the demand rate will decline with 
the available stock, 

2

0.d
p x

∂
<

∂ ∂
 

The inventory evolves according to the differential equation 
2( , ) ( )x u d x p u ax b p= − = − −  (2) 

where u is the order (replenishment) rate, limited to a maximum rate, U, 0 ≤ u ≤ U,  
0 ≤ p ≤ b and x(0) = x0. 

The objective is to select an order and pricing policy so as to maximise the net profit 
over a finite horizon T: 

( )
,

0

( , )
T

u p
sup pd x p hx cu dt

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠
∫  (3) 

where c is the unit order cost and h is the unit holding cost, c < b. 
The Hamiltonian is defined as 

( )2 (0)
min max min( , , , ) ( ) ( ) ( ) i ix u p p ax b p hx c uf f f f pλ λ λ β= − − − + − = + −H  (4) 

where λ is the costate variable measuring the shadow price of the inventory variable, x 
(Chiang 1992). The Pontryagin maximum principle conditions are 

0 and 0  optimality conditions
u p

∂ ∂
= =

∂ ∂
H H  (5) 

x∂
∂

−=
Hλ  trajectory of )(tλ  (6) 

( ) 0 transversality conditionTλ =  (7) 

The maximum principle conditions (5) are necessary but not sufficient for maximising 
the Hamiltonian. Arrow’s sufficiency theorem must be applied to the Hamiltonian to 
ensure sufficiency by proving the concavity of the Hamiltonian (Kamien and Schwartz 
1971). Arrow’s theorem states that the maximised Hamiltonian, H*, must exist for all x 
and be concave in x for all t. In the autonomous case like this one, the Hamiltonian is 
constant on the optimal trajectory. 
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The optimality condition, 0,
u

∂
=

∂
H  cannot be strictly applied because the 

Hamiltonian is linear in u. Since ,c
u

λ∂
= −

∂
H  this is a case of bang-bang control insofar 

as the optimal ordering policy is concerned. We have then for the optimal ordering 
policy, u*: 

*
0  if 

indeterminate if 
  if 

c
u c

U c

λ
λ

λ

<⎧
⎪= =⎨
⎪ >⎩

 (8) 

The second optimality condition, 0,
p

∂
=

∂
H  yields the optimal pricing policy 

* 2
3

bp λ+
=  (9) 

From (6) we have 
2( )( )h a p b pλ λ= − − −  (10) 

The price, p, must be, by definition, non-negative. This restriction leads to the 
identification of four distinct regions A, B, C, and D. Each region is dealt with separately. 

2.1 Region A 

* *

2 2

,   0,   0
2

,  

b p u

x ab x ab h

λ

λ λ

≤ − = =

= − = +
 

Solving the two differential equations is a straightforward matter: 
2

0( ) ab tx t x e−=  (11) 

2

1 2 2( ) ab th ht k e
ab ab

λ ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (12) 

where k1 is the integration constant, 1 2(0) .hk
ab

λ= > −  

The Hamiltonian on the optimal path is 

( ) ( )2 2
0 1( , )* x h ab x x h k abλ λ= − + = − +H  

In this region the optimal policy is to allow inventory to deplete without replenishment, 
by pricing it low. For the costate variable to keep increasing, 2 0,h abλ λ= + >  or 
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2( ) .ht
ab

λ ≥ −  Since ( ) ,
2
btλ ≤ −  the following key restriction on the maximum price, b, 

must be met within region A: 
1
32hb

a
⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

 (13) 

2.2 Region B 

* *

2 3

2,   ,   0
2 3

4 4( ) ,  ( )
9 27

b bc p u

ax ax b h b

λλ

λ λ λ

+
− < ≤ = =

= − − = − −
 

The solution to the costate differential equation is given by the implicit expression 

1
2 3

2 2
2 ( )ln (4 ) ( )

( ) ( ( ) ) ( ( ) )

T

t

b b t ah T t
t b t b t b
γ γ λ

λ γ λ λ γ γ
⎛ ⎞− + −

+ = −⎜ ⎟+ − − − − +⎝ ⎠ ∫  (14) 

where 
1
33 2

2
h

a
γ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (15) 

and k2 is the integration constant. Since in this region λ(t) assumes values between 
2
b

−  

and c the transversality condition, λ(T) = 0, may be utilised to determine k2. By virtue of 
the transversality condition region B is the terminal region. 

The mathematical relationship between x(t) and λ(t) can be established by solving 

2

3
2

4 4( )
9 9
4 4( ) ( )
27 27( )

ax axbdx
a h ad h b b

b

λ

λ λ λ
λ

− − −
= =

− − − −
−

 

whence ,x Kλ =  where K is a constant determinable by boundary conditions. The 
Hamiltonian is given by 

34( , ) ( ) .
27
ax b h xλ λ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
H  

Within B there exist two distinct sub-regions; B1 where ( ) 0,
2
b tλ− < <  and region B2 

where 0 < λ(t) ≤ c, with the transversality condition delineating the common boundary 
between the two areas. The inventory dynamics within each sub-region is discussed 
below: 
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• B1: the costate must keep increasing from negative values towards 0. For this to 

occur 34 ( ) 0,
27
ah bλ λ= − − >  or b – λ < γ. Since λ(t) < 0 throughout, the following 

restriction on the maximum price, b, must be imposed in B1: 

b γ<  (16) 

The pricing range in this region is 0, .
3
b⎛ ⎤

⎜ ⎥⎝ ⎦
 

• B2: the costate must keep decreasing from positive values towards 0. For this to 

occur 34 ( ) 0,
27
ah bλ λ= − − <  or b – λ > γ. Since λ(t) ≤ c throughout, the following 

restriction on the maximum price, b, must be imposed in B2: 

b c γ≥ +  (17) 

The pricing range in this region is 2, .
3 3
b b c+⎛ ⎤

⎜ ⎥⎝ ⎦
 

2.3 Region C 

* *

2 3

2,   ,   
3

4 4( ) ,  ( )
9 27

bc b p u U

ax ax U b h b

λλ

λ λ λ

+
< ≤ = =

= − − = − −
 

This region is adjacent to B2 and for B2 to be reached λ(t) must decrease, so the condition 
(17) applies here as well. The (x, λ) system however, possesses the unique equilibrium: 

2
9

4
Ux

a
b

γ
λ γ

=

= −

 (18) 

The Jacobian matrix possesses two real eigenvalues, equal in magnitude but of opposite 

sign, 2 2
1 2

4 4, .
9 9
a aμ γ μ γ= = −  The equilibrium is a saddle point, and so it is unstable. 

The perturbations, ( , ),x λ  from the equilibrium ( , )x λ  obey 

2

1

2Ux xμ λ
γ

λ μ λ

= +

=

 

with solutions 
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2

1

0 0

0

( ) ( )
3 3

( ) .

t

t

U Ux t x e t
h h

t e

μ

μ

λ λ

λ λ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

=

 

The phase plane equation representing the slope of the phase path is 

1

2

.
2

d
Udx x

μ λλ

μ λ
γ

=
+

 

Figure 1 Phase paths around the saddle equilibrium 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− γ

γ
b

a
U ,

4
9

2
 

c 

λ~  

x~  

x
U
h ~3~

=λ

Optimal path 

 

The slopes of the asymptotic isoclines are 0 and 3 .h
U

 The stable manifold is the 0λ =  

axis and the unstable manifold is the straight line 3( ) ( ).ht x t
U

λ =  As t → –∞ ( )x t → ±∞  

and ( ) 0.tλ →  As ,   ( ) ( )
3
Ut x t t
h

λ→ +∞ →  and ( ) .tλ → ∞  Figure 1 displays the four 

possible phase paths. Only the path below the x -axis that crosses the λ -axis at c and the 

x -axis at 2
9

4
U

aγ
 is the optimal trajectory away from the C region towards the B2 region. 

The initial inventory values, x0, that qualify for such transition are those with values 

greater than 2
9

4
U

aγ
 whereas the shadow price must not exceed b – γ. As illustrated in 

Figure 1 there exists a whole range of solutions x(t), λ(t) for the given system but only 

one trajectory that satisfies the condition 2
9( ) , ( )

4
Uc x

a
λ τ τ

γ
= =  for some time, τ, τ ≤ T. 

This solution implicitly depends on the initial state inventory x0 as well as the finite time 
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horizon T. Thus the costate value is in fact λ(t) = λ(x0, t, T). The pricing range in this 

region is 2 2, .
3 3

b c b γ+⎛ ⎞−⎜ ⎟
⎝ ⎠

 

In this region the optimal Hamiltonian constant is given by 

34( , , ) ( ) ( ).
27

ax U b h x U cλ λ λ⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

H  

2.4 Region D 

* *,   ,   , ,b p b u U x U hλ λ> = = = =  

Region D must be ruled out as part of the optimal policy because the inventory and the 
shadow price grow linearly in time, both starting from positive values, and consequently 
the transversality condition (7) cannot be met. Besides the demand has grown to a halt 
and the inventory grows linearly which is altogether unrealistic. As such, none of the 
other three regions, A, B or C, are accessible from D. 

3 Theoretical implementation of the control policies 

If the shadow price is negative it is not profitable to replenish the stock (u* = 0) and the 
price is set low (p* = 0) in order to get rid of the stock. When the shadow price assumes 

values in the range ,
2
b b γ⎡ ⎤− −⎢ ⎥⎣ ⎦

 variable pricing kicks in, with maximum replenishment 

only when c < λ < b. Region B is the terminal region being the only one for which the 
transversality condition (7) is met. The transitions A → C → B and C → A → B are both 
precluded by the continuity property of the costate variable. There are therefore two 
possible regional transitions, A → B1 and C → B2. The time of transition from region A, 

where the restriction on the maximum price, 2 ,
3

b γ
≤  holds, to B1, 1

,A Bt →  is determined 

from (7) with 
1

( ) .
2A B
btλ → = −  The time of transition from region C, where the restriction 

on the maximum price, b > γ + c, holds to B2, 2
,C Bt →  is determined again from (7) with 

2
( ) .C Bt cλ → =  No transition will occur when 

2
b cλ− < <  as in this case the inventory is 

already in region B. Numerical solutions to the differential solutions have to be carried 
out backwards as the optimal control is cast as a two-point boundary problem. The 

optimal solution to the objective functional, ( )*
0

,
0

( ,0) ( , ) ,
T

u p
V x sup pd x p hx cu dt

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠
∫  

can be worked out easily in any region by solving the trivial differential equation, 
*

*V
t

∂
− =

∂
H  for constant H*, in each region. 
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4 A numerical implementation of the control policies 

We fix the main parameters, a = 0.1, h = 0.05, c = 0.6, U = 10. Then from (15) we get 
1
33 2 1.5.

2
h

a
γ ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 We provide optimal solutions for two different regional transitions: A 

→B1 and C →B2. 

4.1 A → B1 

Let 
1
320.9 1,hb

a
⎛ ⎞= < =⎜ ⎟
⎝ ⎠

 so that condition (13) is upheld. Let the length of the finite 

planning horizon be T = 36. The condition (16), b < γ, within region B1 is supplanted by 
(13). We work out the numerical solution to the costate differential equation, 

30.40.05 (0.9 ) ,
27

λ λ= − −  working backwards from λ(36) = 0 to 
1

( ) 0.45,
2A B
btλ → = − = −  

where 
1

18.5.A Bt → =  The costate curve is depicted in Figure 2. 

Figure 2 λ(t) in region B1 between 
1

18.5A Bt → =  and T = 36 (see online version for colours) 
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In region A the costate variable is explicitly given by λ(t) = (λ(0) + 0.6173)e0.081t  
– 0.6173. At t = 18.5, λ(18.5) = –0.45, hence λ(0) ≈ –0.58 < –0.45, so condition (13) is 
met. The analytic solution for the costate variable in region A is λ(t) = 0.0373e0.081t  
– 0.6173, shown in Figure 3. 
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Figure 3 λ(t) in region A between t = 0 and 
1

18.5A Bt → =  (see online version for colours) 
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The pricing policy is to set the price at 0 whilst in region A and adjust it upwards 
gradually from 0 to 0.3 whilst in region B1. For an initial inventory, x0, in A, the optimal 
Hamiltonian in this region is 2

0 0 1 0( ) ( ) 0.003 ,* x x h k ab x= − + = −H  and the optimal value 

is 1

*
0 0 0( ) 0.003 0.056 ,A BV x x t x→= − = −  signifying a financial loss by getting rid of 

inventory at zero price. For an initial inventory, x0 = 740, this loss amounts to 
approximately V*(740) = –0.056 * 740 ≈ –41.44. In region B1 the inventory continues to 
decline but at variable selling price. The inventory level at the transition point is around 
x(18.5) ≈ 165 units. In region B1 the decline slows down settling to an approximate final 
value of x(36) ≈ 57. The optimal Hamiltonian in region B1 is H* ≈ –2.235 amounting to a 
further net loss of V*(165) = –2.235 * (36 – 18.5) ≈ –39. The net aggregate loss for the 
transition A → B1 is V*(740) + V*(165) ≈ –80.44, which represents the minimum possible 
(optimal) net loss given the parameters used. 

4.2 C → B2 

Let b = 3 > c + γ = 0.6 + 1.5 = 2.1, so condition (17) is met and let the initial inventory be 

again 0 2
9 90740 100.

0.94
Ux x

aγ
= > = = = If the region B2 is to be accessible from C, λ(0) 

must be less than 1.5,bλ γ= − =  otherwise the costate variable cannot reach λ = c = 0.6 
at the time of transition 

2
,C Bt →  as Figure 1 roughly illustrates. Let λ(0) = 1.4, and the 

inventory begins to decline to keep up with demand whilst being replenished at the 
maximum rate, U = 10. The time of transition to region B2 as well as the inventory level 
at the same time are found numerically, 

2 2
17.6,   ( ) 103.C B C Bt x t→ →≈ ≈  Figure 4 depicts 

the phase path (x, λ) in region C. 
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Figure 4 Phase space path (x, λ) in region C (see online version for colours) 
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The pricing policy range is (1.4, 2).The optimal Hamiltonian constant in region C is  
H* ≈ 15.9, yielding a net profit of V*(740) = 15.9 * 17.6 ≈ 279.84. At time 

2
17.6C Bt → ≈  

region B2 is entered, replenishment ceases and the inventory continues to  
decline reaching x(20.2) ≈ 45 at T = 20.2 where λ(20.2) = 0. The pricing range in B2  
is (1, 1.4], and the optimal Hamiltonian constant is H* ≈ 15.9, yielding a net profit of 
V*(103) = 15.9 * (20.2 – 17.6) ≈ 41.34. The net aggregate profit for the transition C → B2 
is V*(740) + V*(103) ≈ 279.84 + 41.34 ≈ 321.18. The final Figure 5 depicts the phase path 
(x, λ) in region B2. 

Figure 5 Phase space path (x, λ) in region B2 (see online version for colours) 
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5 Discussion 

In this work we have formulated an optimal inventory control problem and outlined its 
full solution when the demand is simultaneously dependent on both stock and price and 
the order rate as well as the maximum price are bounded. The key findings of this paper 
were the three regions singled out as being feasible starting points for net profit 
maximisation along with pricing restrictions within each one of them. The subdivision of 
the state-space was based on the value of the costate variable representing the imputed 
value of one unit of stock. In each region a specific bound on the maximum price was 
imposed in order to achieve the formulated objective. The bounds assigned involved all 
three parameters of the problem; a, the rate of increase in demand with increasing stock, 
h, the unit holding cost, and c, the unit order cost. Such restrictions enable the retailer to 
set the benchmark maximum price accordingly, given the current inventory level and the 
imputed value of one unit of stock, so that net profit maximisation is realised. 

Our results were obtained numerically for the most part. The linear dependence of 
demand on inventory facilitated the analysis somewhat. A more appropriate form could 
be concave, for instance axβ, 0 < β < 1, allowing for variable returns to the inventory 
level. In this case calculation of the key transition states between regions would be  
solely reliant on numerical analysis although the optimal laws would be qualitatively 
unchanged. Yet another form could be one that induces saturation in the demand rate 
when the inventory level reaches some a priori designated high value. It is certainly a 
worthwhile research program to improve on and extend the work presented here. 
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