
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Software Security Requirements Engineering: State of
the Art

Muthu Ramachandran

School of Computing, Creative Technologies and Engineering
Leeds Beckett University

Leeds LS6 3QS UK
Email: M.Ramachandran@leedsbeckett.ac.uk

Abstract. Software Engineering has established techniques, methods and tech-
nology over two decades. However, due to the lack of understanding of soft-
ware security vulnerabilities, we have not been so successful in applying soft-
ware engineering principles that have been established for the past at least 25
years, when developing secure software systems. Therefore, software security
can not be just added after a system has been built and delivered to customers as
seen in today’s software applications. This keynote paper provides concise
methods, techniques, and best practice requirements guidelines on software se-
curity and also discusses an Integrated-Secure SDLC model (IS-SDLC), which
will benefit practitioners, researchers, learners, and educators.

Keywords : Software Security Engineering, Software security requirements engineering,

Secured Software Development, SQUARE method, BSI, Touchpoint, SDL

1 Introduction

There is no doubt that the internet technology has revolutionised human lives, com-
munications, digital economy, socialisation, and entertainment. At the same time
demands for internet enabled applications grows rapidly. Almost all businesses, ap-
plications, entertainment devices, mobile devices, robots, large scale systems (air-
crafts, mission control systems), safety-critical systems, medical systems, internet of
things devices are internet enabled for various reasons such as online upgrade, dis-
tributed applications, team projects, and server connectivity. Therefore, there is ever
growing demand for secured applications and trust. Cyber attacks are increasing con-
tinuously from spam, phishing, identify theft, and others in much larger scale attacks
such as money laundering and cyber terrorism. Foritfy report (2009) says that there is
a real possibility that a cyber attack could disable command systems, bring down
power grids, open dam floodgates, paralyse communications and transport systems,
creating mass hysteria: Any or all of which could be the precursor to terrorist or mili-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository

https://core.ac.uk/display/42412569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:M.Ramachandran@leedsbeckett.ac.uk

tary attack. These are some of the threats since we (personal, govt. organisations,
companies, and business) mostly depend on computers and mobiles for communica-
tions and management.

This keynote paper aims to outline the importance of developing se-
cured software systems using a disciplined approach known as software secu-
rity engineering and it is also known as secure software development. In par-
ticular, this paper identifies key methods and techniques on software security
requirements engineering as it is the heart of developing secure software sys-
tems. This paper discusses clear best practice guidelines on software security
and discusses our Integrated-Secure SDLC (IS-SDLC) model which over-
comes current difficulties in identifying and visually representing security
process which have been elaborated from security requirements.

2 Why Software Security Engineering?

Software Engineering has established techniques, methods, and technology over two
decades. However, security issues are direct attributes of various software such as
applications, user interface, networking, distribution, data-intensive transactions, and
communication tools, etc. Current applications are being developed and delivered
where security has been patched as aftermath. Early commercial developers have
tackled security problems using firewalls (at the application level), penetration test-
ing, and patch management.

We are also faced with tackling fast growing information warfare, cybercrime,
cyber-terrorism, identify theft, spam, and other various threats. Therefore, it is im-
portant to understand the security concerns starting from requirements, design, and
testing to help us Build-In Security (BSI) instead of batching security afterwards.
McGraw [1] says a central and critical aspect of the computer security problem is a
software problem. This paper defines software security engineering as a discipline
which considers capturing and modelling for security, design for security, adopting
best practices, testing for security, managing, and educating software security to all
stakeholders.

Software engineering has well established framework of methods, techniques, rich
processes that can address small to very large scale products and organisations
(CMM, CMMi, SPICE, etc), and technology [modelling (UML), CASE tools, and
CAST tools, and others]. Software Engineering has also been well established quality
models and methods, reuse models and methods, reliability models and methods, and
numerous lists of other techniques. The so called -lities of software engineering long
has been contributed as part of quality attributes (Quality, Testability, Maintainability,
Security, Reliability, Reusability). These attributes can’t be just added on to the sys-
tem as they have to be built in from early part of the life cycle stages (a typical soft-
ware development lifecycle include starting from requirements engineering (RE),
software specification, software & architectural design, software development (cod-
ing), software testing, and maintenance. Security has become highly important attrib-
ute since the development of online based applications. Software project management

has well established techniques and breadth of knowledge including global develop-
ment (due to emergence of internet revolution and people skills across the globe), cost
reduction techniques, risk management techniques, and others. Nowadays, most of the
current systems and devices are web enabled and hence security needs to be achieved
right from beginning: need to be identified, captured, designed, developed and tested.
Ashford [2] reports UK business spends 75% of the software development budget on
fixing security flaws after delivering the product. This is a huge expenditure and it
also creates untrustworthiness amongst customers.

Allen et al. [3] state that the one of the main goals of Software Security Engineer-
ing is to address software security best practices, process, techniques, and tools in
every phases and activities of any standard software development life cycle (SDLC).
The main goal of building secured software which is defect free and better built with:

• Continue to operate normally in any event of attacks and to tolerate any failure
• Limiting damages emerging as an outcome of any attacks triggered
• Build Trust & Resiliency In (BTRI)
• Data and asset protection

In other words, secured software should operate normally in the event of any at-
tacks. In addition, it involves the process of extracting security requirements from
overall system requirements (includes hardware, software, business, marketing, and
environmental requirements) and then also further refined and extracted security and
software security requirements from software and business requirements. Then the
refined software security requirements can be embedded and traced across the soft-
ware development life cycle (SDLC) phases such as requirements, design, develop-
ment, and testing. This has not explained well in security related literatures so far.
This provides a clear definition of eliciting software security requirements.

3 Software Security Requirements Engineering

Requirements are the starting point, responsible for any system, legal and contractual
issues, governance, and provide full functional perspective of the system being de-
veloped. Requirements Engineering is a discipline in its own right, which provides
process, tools, techniques, modelling, cost estimation, project planning, and contrac-
tual agreements. There are wealth of requirements engineering methods, techniques,
best practice guidelines, and tools [4-7]. However, due to the nature of increased de-
mands for security-driven applications, current techniques are inadequate for captur-
ing security related requirements effectively. Firesmith [8 & 9] reports that poor re-
quirements are the main reasons for cost and schedule overruns, poor functionality
and delivered systems that are never used. Requirements are classified into two major
parts such as functional requirements which deal with the functionality of the system
and non-functional requirements which deal with constraints, quality, data, standards,
regulations, interfaces, performance, reliability, and other implementation require-
ments. Studies [4-7] have shown that requirements engineering defects cost 10 to 200

times to correct the system after implementation. Therefore, it is paramount to get the
requirements correct, concise, and unambiguous.

Capturing business security requirements is a collaborative effort involves many

stakeholders such as business analysts, software requirements engineer, software ar-
chitect, and test managers. Security requirements should provide a clear set of securi-
ty specific needs and expected behavior of a system. The main aim is to protect sys-
tems assets (data and files) and unauthorised access to the system from intentional
attacks to the application software systems and other forms of internet based security
attacks such as spam, denial of service, identity theft, viruses, and many other forms
of intentional attacks that emerges every day. Security remains a software problem as
the number of threats and vulnerabilities reported to CERT (Computer Emergency
Response team) [10 & 11] of 2493% increase between 1997 (311 cases reported),
2006 (8064 cases reported), and as of 30th April 2015 (3192 cases reported).

In traditional RE, security requirements are considered to be a part of non-function

properties and are considered an aspect of implementation strategies such as password
protection, authentication, firewalls, virus detection, denial-of-service attacks, etc.
Therefore, security needs to be considered as highly specific set of requirements for
every functional requirements that has been identified, and has to be applied through-
out the life cycle so that we can achieve build in security (BSI). In addition current
RE methods have considered mostly what the system must do, but what the system
must not do. This is the key issue that will be considered when selecting RE methods
for software security. Moreover, in Software security RE methods, there are more
stakeholders than traditional RE methods have considered such as social engineers,
security specialist, business process modeling experts, service computing specialists,
and users. Often attackers look for defects in the system, not the system features and
functionalities. A number of techniques have emerged to address RE from an attack-
er’s perspective:

• Attack patterns are similar to design patterns which has been designed to

study attacks from destructive mode, Allen et al. [3] and BSI [12].
• Misuse and abuse cases are a set of use cases from an attackers perspective,

McGraw [1]
• Attack trees provide a formal mechanism for analysing and describing vari-

ous ways in which attacks can happen from an attacker’s perspective. Simply
represent attacks against a system in a tree structure, with the goal as the root
node and different ways of achieving that goal as leaf nodes, Schneier [13-
14] and Ellison and Moore [15]

• Microsoft SDL provides support on threat modelling which describes a set of
security aspects by defining a set of possible security attacks. This has an in-
tegral part of Microsoft’s SDL method, Howard and LeBlanc [16]

• Building Security In (BSI) method [12], process, design principles, and tech-
niques provided by McGraw [1] and others which is now officially supported

by the US department of Homeland security. Some of the design principles
include:

o Correctness by Construction (CbyC)
o Securing the Weakest Link
o Defense in Depth
o Failing Securely
o Least Privilege
o Separation of Privilege
o Economy of Mechanism
o Least Common Mechanism
o Reluctance to Trust
o Never Assuming that your Secrets are Safe
o Complete Mediation
o Psychological Acceptability
o Promoting Privacy

• The SEI’s (Software Engineering Institute) has identified a method known as
SQUARE (Secure Quality Requirements Engineering) [17] which is to elicit
and prioritise requirements and its consists of nine steps as follow:

─ Agree on definition
─ Identify security goals
─ Develop artefacts
─ Perform risk assessments
─ Select an elicitation technique
─ Elicit security requirements
─ Categorise security requirements
─ Prioritise security requirements
─ Inspect security requirements
─ Clear identification of requirements of the whole applications system and

extract security requirements. Interact with stakeholders to clarify security
requirements and the technology they want to use, and cost implications.

• OCTAVE method by Caralli at al. [18], Alberts and Dorofee [19] and Woody and
Alberts [20] provides clear activities on security requirements:
o Identify critical assets
o Define security goals
o Identify threats
o Analyze risks
o Define security requirements

• Other methods include CLASP [21] and S-SDLC [22] and have given detailed
descriptions by Ramachandran [23]

Chen [24] distinguishes the key difference between software security engineering
with that of robustness for software safety engineering. Software security engineering
deals with engineering approach to software development with an aim to engineer and
implement security features whereas robustness deals with engineering software for
safety critical systems. Therefore, we need to identify, analyse, and incorporate secu-

rity requirements as part of the functional requirements process. Belapurkar et al. [25]
have identified a list of some high-level areas for each security specific functional
requirements as follows:

• Identification should address how a system recognises the actors/entities (humans
or systems) interacting with the system.

• Authentication should address how a system validates the identity of entities
• Authorisation should address what privileges are to be set to an entity interacting

with a system
• Non-repudiation should address how a system prevents entities from repudiating

their interactions with the system functionality
• Integrity should address how a system protects information from any intentional or

unintentional modifications and tampering
• Auditing should address how a system allows auditors to see the status of the secu-

rity controls in place
• Privacy should address how a system prevents the unauthorised disclosure of sensi-

tive information
• Availability should address how a system protects itself from intentional disrup-

tions to service so that it is available to users when they need it.

Software security requirements are not only a set of constraints on the software sys-
tems but they satisfy required governance and provides protection and trust. This
means that we need far more newer techniques such as attack patterns, misuse and
abuse cases as part any requirements process.

4 Integrated Security Software Development Lifecycle Process

The above discussed drawbacks and requirements for a concise method, lead us to
develop a model that integrates various activities of identifying and analysing soft-
ware security engineering into software development process, and this new process
and its activities is shown in Figure 1. However, this paper focuses on only software
security requirements specific activities. According to this model, SSRE (software
security requirements engineering) consists of identifying standards and strategies of
the organisation with regards to requirements elicitation (including analysis, valida-
tion, verification), conducting risk management and mitigation, and identifying soft-
ware security requirements consists of a further sub-processes of defining security,
identifying security strategies, conducting areas and domain scope analysis, business
process modeling and simulation, identifying security issues, applying use cases and
misuse cases, attack patterns.

Fig. 1. Integrated secure software development engineering life cycle (IS-SDLC)

Likewise, this model also provides security-specific processes for identifying security
threats during design, development, testing, deployment, and maintenance. There are
a numerous number of good design principles that can be found in a vast majority of
software design literatures. However, the following is a list of some of the key design
principles that are highly relevant to software security design and are part of our IS-
SDLC model:

• Principles of least privilege states to allow only a minimal set of rights (privileges)
to a subject that requests access to a resource. This helps to avoid intentional or in-
tentional damage that can be caused to a resource in case of an attack.

• Principles of separation of privilege states that a system should not allow access to
resources based on a single condition rather it should be based on multiple condi-
tions which has to be abstracted into independent components.

Security Design
Threat model
Input data types
Security use cases
Security architecture
Security Design principles
Principle of least privilege
Principle of separation of privilege
Defence in depth
Fail securely
Design for security
 Observation
State transition
Service monitoring & reporting

Requirements Engineering
Standards & strategies
Risk management
RE elicitation, analysis, & verifica-
tion
Design independent
Unambiguous
Precise, understandable
Traceable , verifiable
Software security RE
 Definitions
 Security strategies
Areas analysis
Domain scope analysis
Business process modeling &
simulation
Security issues
Use cases
Attack patterns
Misuse cases

Secure Development
Coding standards
Four layer security implementation model (CAA-
encr/decry-transaction security-data security)
Centralised security components/modules
Design for security techniques implementation
Security builds and configuration
Known security vulnerabilities
Security exception handlers

Security Testing
Software security testing
Penetration testing
Fuzz testing
Cleared security testing
Security bug tracking

Secure Deployment
Secure management proce-
dures
Monitoring requirements
Security upgrade procedures
Software defined networking
(SDN)
Software defined cloud compu-
ting
Software defined enterprise
security
Service-oriented architecture
(SOA)

Secure Maintenance
Security logs
Security incident details
and reporting

Incorporate Security
Standards
Security process
Requirements priority,
risk mgnt, preventive
measures, RE matrix
Coding standards – C,
Java

• Design by incorporating known CVE
• Design for resilience for which we have team up with IBM [26] to develop a resili-

ence model which supports system sustainability along side with Building Trust
and Security In (BTSI)

• Select software security requirements after performance simulation using BPMN
(Business Process Modeling Notation) and is described in detail by Ramachandran
[27]

SSRE activities in our IS-SDLC supports security in software defined networking
(SDN), Cloud computing services (Software as a service (SaaS), Platform as a Ser-
vice (PaaS), and Infrastructure as a Service (IaaS), Enterprise security includes cloud
service providers and service consumers, and design for security principles and tech-
niques. This the unique contribution of this model and for the body of knowledge in
software security research.

5 Software Security Requirements Engineering Method as part
of IS-SDLC

Software development and secure software development involve many stakehold-
ers and business leaders and their coordination is critical for delivering secure soft-
ware systems. The various stakeholders is shown in the Figure 2.

Fig. 2. Stakeholders in Integrated Secure-SDLC (IS-SDLC)

The previous section has provided a brief account of various methodologies [1-27]
for eliciting requirements for software security. Most common best practices are:

1. Eliciting and extracting requirements for software security explicitly with

visual notations
2. Prioritising software security requirements
3. Risk assessment and mitigation for software security requirements
4. Design and implement software security requirements
5. Providing SDLC life-cycle support

Existing methods lack heavily on incorporating social engineering to study soft-

ware security requirements (learning from real experiences), security-specific busi-
ness process modeling, performance simulations of the security-specific business
processes, service computing, current and emerging technologies such as cloud com-
puting, software-defined networking architecture, and software-defined enterprise
security, and emerging vulnerabilities, and cyber attacks. This leads us to develop an
integrated-secure software development model supporting software security require-
ments to be assessed and implemented explicitly in our method as presented in the
Figure 1. Ramachandran [23] provides a comparative analysis of various SSRE meth-

IS-
SDLC

Business
leaders B2B

Manager
s

B2C
Manager

s

System
engineer

s

IT
Manager

s

Network
and

Internet
Specialit

s
Software
Defined
Security
(SDN)
experts

Enterprise
security

specialist

Software
Require
ments

Engineer
s

Software
Architec

t

Security
Specialit

s

Software
Engineer

s

Marketi
ng

manager
s

ods based on our evaluation criteria used and this will help organization and engineers
to choose appropriate method that is suitable for the system being developed. Based
on the experience with IS-SDLC model in various projects, this paper has identified a
set of best practice guidelines and recommendations on SSRE and SSE in general.

6 Best Practice Guidelines

For secured systems, this paper identifies a set of common guidelines that are appli-
cable to most of the secure software development:

1. Develop a list of security requirements checklists and classify them as: critical,
medium, and moderate.

2. Bring in requirements inspection team to conduct the security requirements valida-
tion process

3. Identify, elicit, analyse, and manage security requirements
4. Specify and model misuse cases and derive security requirements from misuse cas-

es
5. Cross-check operational and functional requirements against security requirements
6. Establish an organisational security culture (e.g, check to make sure proper use of

email systems do’s and don’ts).
7. Apply business process Modelling and simulation using BPMN tools such as

Bonita soft which provides clear performance attributed for all selected security-
specific processes.

7 Conclusion

Software security engineering offers several best practices, techniques, and meth-
ods to develop systems and services that are built for security, resiliency, sustainabil-
ity. However, software security can not be just added after a system has been built and
delivered to customers as seen in today’s software applications. This keynote paper
provided concise techniques and best practice requirements guidelines on software
security and also discussed an Integrated-Secure SDLC model (IS-SDLC), which will
benefit practitioners, researchers, learners, and educators.

References

1. McGraw, G (2006) Software security: building security in, Addison Wesley, USA
2. Ashford, W (2009) http://www.computerweekly.com/Articles/2009/07/14/236875/on-

demand-service-aims-to-cut-cost-of-fixing-software-security.htm
3. Allen, J. H., et al. (2008) Software security engineering: a guide for project managers, Ad-

dison Wesley, 2008

http://www.computerweekly.com/Articles/2009/07/14/236875/on-demand-service-aims-to-cut-cost-of-fixing-software-security.htm
http://www.computerweekly.com/Articles/2009/07/14/236875/on-demand-service-aims-to-cut-cost-of-fixing-software-security.htm

4. Jacobson, I (1992) Object oriented software engineering: use case driven approach, Addi-
son Wesley

5. Kotonya, G and Sommerville, I (1998) Requirements Engineering: Processes and Tech-
niques, Wiley.

6. Lamsweerde, van A (2009) Requirements Engineering: From system goals to UML mod-
els to software specifications, Wiley, UK.

7. Sommerville, I and Sawyer, P (1998) Requirements Engineering: A good practice guide,
Wiley.

8. Firesmith, D (2007) Engineering Safety- & Security-Related Requirements ICCBSS Tuto-
rial, SEI, Carnegie Mellon University, 27 February.

9. Firesmith, D (2003) Engineering security requirements, Journal of Object Technology,
Volume 2, No. 1, 2003

10. CERT-SEI, www.cert.org
11. CERT-UK, https://www.cert.gov.uk/
12. BSI (2013) Attack patterns articles, https://buildsecurityin.us-

cert.gov/articles/knowledge/attack-patterns
13. Schneier, B (1999) Attack Trees: modelling security threats, Dr Dobbs Journal, December,

http://www.schneier.com/paper-attacktrees-ddj-ft.html
14. Schneier, B (2000) Secrets and Lies: Digital Security in a Networked World. New York,

NY: John Wiley & Sons
15. Ellison, R.J. and Moore, A. P (2003) Trustworthy Refinement Through Intrusion-Aware

Design (CMU/SEI-2003-TR-002, ADA414865). Pittsburgh, PA: Software Engineering In-
stitute, Carnegie Mellon University, 2003.

16. Howard, M and LeBlanc, D. C (2002) Writing Secure Code (2nd ed.). Redmond, WA: Mi-
crosoft Press.

17. Mead, N. R et al. (2008) Incorporating Security Quality Requirements Engineering
(SQUARE) into Standard Life-Cycle Models, SEI Technical Note CMU/SEI-2008-TN-
006, http://www.sei.cmu.edu

18. Caralli, R. A et al. (2007) Introducing OCTAVE Allegro: Improving the Information Secu-
rity Risk Assessment Process, TECHNICAL REPORT, CMU/SEI-2007-TR-012

19. Alberts, C and Dorofee, A (2002) Managing Information Security Risks: The OCTAVESM
Approach, Addison Wesley

20. Woody, C and Alberts, C (2007) Considering Operational Security Risk during System
Development”, C Woody, C Alberts, IEEE Security & Privacy, pp. 30-43

21. CLASP (2006) OWASP CLASP Version 1.2,
http://www.lulu.com/items/volume_62/1401000/1401307/3/print/OWASP_CLASP_v1.2_f
or_print_LULU.pdf

22. S-SDLC: Introducing Secure Software development Life Cycle (S-SDLC), Infosec Insti-
tute, http://resources.infosecinstitute.com/intro-secure-software-development-life-cycle/

23. Ramachandran, M (2012) Software Security Engineering: Design and Applications, Nova
Science Publishers, New York, USA, 2012. ISBN: 978-1-61470-128-6,
https://www.novapublishers.com/catalog/product_info.php?products_id=26331

24. Chen, A. Jia (2004) Security engineering for software (SES), CS996-CISM,
isis.poly.edu/courses/cs996-management/Lectures/SES.pdf

25. Belapurkar, A., et al. (2009) Distributed system security: issues, processes and solutions,
Wiley.

26. Ramachandran, M., Chang, V., and Li, C-S (2015) The Improved Cloud Computing Adop-
tion Framework to deliver secure services, Emerging Software as a Service and Analytics -

http://www.cert.org/
https://www.cert.gov.uk/
https://buildsecurityin.us-cert.gov/articles/knowledge/attack-patterns
https://buildsecurityin.us-cert.gov/articles/knowledge/attack-patterns
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.sei.cmu.edu/
http://www.lulu.com/items/volume_62/1401000/1401307/3/print/OWASP_CLASP_v1.2_for_print_LULU.pdf
http://www.lulu.com/items/volume_62/1401000/1401307/3/print/OWASP_CLASP_v1.2_for_print_LULU.pdf
http://resources.infosecinstitute.com/intro-secure-software-development-life-cycle/
https://www.novapublishers.com/catalog/product_info.php?products_id=26331

ESaaSA 2015 in conjunction with 5th International Conference on Cloud Computing and
Services Science - CLOSER 2015, http://closer.scitevents.org/ESaaSA.aspx

27. Ramachandran, M (2014) Enterprise Security Framework for Cloud Data Security, Book
chapter "Delivery and Adoption of Cloud Computing Services in Contemporary Organiza-
tions, Chang, V (ed.) IGI GlobalGraham, D (2006) Building Security In,
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/548-BSI.html

	1 Introduction
	2 Why Software Security Engineering?
	3 Software Security Requirements Engineering
	4 Integrated Security Software Development Lifecycle Process
	5 Software Security Requirements Engineering Method as part of IS-SDLC
	6 Best Practice Guidelines
	7 Conclusion
	References

