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Abstract 

The world’s human population and an expanding agricultural frontier are exerting 

increasing pressure on the Earth’s systems that sustain life resulting in unprecedented 

levels of biodiversity loss. Carnivores, which play a key role in ecosystem function 

and integrity, are also particularly threatened by habitat loss and killing by humans in 

response to livestock predation. At the same time carnivores, particularly felids show 

a paucity of studies that suggests population assessments and long-term monitoring is 

an urgent matter. This thesis looks the how habitat loss, fragmentation and human 

persecution affects predators in an agricultural landscape with particular focus on a 

species of conservation concern: the small felid guiña (Leopardus guigna) considered 

vulnerable with a declining population trend. A cost-effective survey framework was 

developed, which shows existence of trade-offs for researchers and managers to 

improve population assessments. The drivers of decline of the guiña are assessed with 

an extensive camera-trap data set showing that the guiña can tolerate a high degree of 

habitat loss in agricultural land but requires the existence of large farms and high 

number of forest patches. Retribution killing does not seem to be a significant 

extinction driver, although there is uncertainty regarding the impact on the population. 

However, killing behaviour by farmers is predicted by encounters suggesting that 

poultry management is an effective mitigation measure. Predator specific predictors 

of killing by farmers were observed but a commonality to all is that knowledge of 

legal protection does not explain killing suggesting other measures must be taken. 

Integrating ecological and social knowledge allows us to tease apart the relative 

importance of different potential extinction pressures effectively and make informed 

recommendations as to where future conservation efforts should be prioritised. 
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1. Introduction 

 

1.1. Species extinction drivers 

The human population across the world, currently estimated at seven billion people, 

is thought to increase between two to four billion by 2050 (United Nations 2015). 

Undoubtedly, this will underpin a range of serious threats to ecosystems and species 

already in crisis. Human activities are currently driving the sixth mass extinction of 

species in geological history (Barnosky et al. 2011), with rates up to 1,000 times 

higher than estimated background rates (Pimm et al. 2014). Human activities on earths 

systems are on such a scale that recent work provides evidence of the existence, 

starting in the 17th century, of a new geological era the “Anthropocene” (Steffen et al. 

2011). Degradation of ecosystems and the subsequent loss of species by human 

activity during the last 50 years is unprecedented (Millennium Ecosystem Assessment 

2005).  

 

Biodiversity is measured at different scales such as genes, species, community and 

ecosystem diversity. Although there is still on-going research and debates regarding 

how diferent ecosystem functions influence ecosystem services, biodiversity is 

deemed as key for many ecosystem processes or functions which in turn provide some 

important ecosystem services for humanity such as provision of food and fuel (e.g. 

wood) and regulating functions such as soil formation, pest control, resistence to plant 

invasions, carbon sequestration, amongst others (Cardinale et al. 2012). Biodiversity 

has been stated as necessary to sustain humanitys’ wellbeing and economic 

development but is at risk if urgent measures are not taken to reverse and mitigate 
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degradation (Millennium Ecosystem Assessment 2005). The levels of biodiversity 

loss we are witnessing today are beyond a “safe operating space” for the future outlook 

of humanity (Rockström et al. 2009). In general, intrinsic species traits such as having 

a slow life history (e.g. low reproductive rate), being situated at the top of the food 

chain (e.g. predators), occurring at low density and having a small geographical range 

are associated with higher extinction risk (Purvis et al. 2000).  

 

Species specific traits predispose extinction risk and human-induced environmental 

modifications and direct resource use are also driving species losses. A suite of factors 

are responsible, including habitat destruction, degradation and fragmentation, 

overexploitation (e.g. unsustainable use), pollution, invasive species and climate 

change (Millennium Ecosystem Assessment 2005). They can have varying effects on 

a species and usually interact in complex ways that exacerbate the impacts (Brook, 

Sodhi & Bradshaw 2008). In general, growing human pressure from land-use change 

or intensification are predicted to be the biggest threats faced by biodiversity over the 

coming century (Sala et al. 2000). Land intensification can involve an increase in all 

the extinction drivers such as clearing of forest habitat for agriculture (e.g. Morton et 

al. 2006), creating road networks which give access to poachers or loggers to 

previously inaccessible areas (Laurance, Goosem & Laurance 2009). Furthermore, the 

spread of generalist invasive species can be increased by changes in habitat structures 

(e.g. Pauchard & Alaback 2004) or even the increase of domestic animals which 

compete and transmit disease to wildlife (e.g. Hughes & Macdonald 2013).  
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1.2. Agricultural landscapes and drivers of forest conversion 

Habitat loss and fragmentation, particularly of forest cover, is driven by the expansion 

of agricultural lands. The extent of crop land and pastures are now reaching ~ 40% of 

terrestrial landscapes (Foley et al. 2005). Furthermore, it is estimated that 40% to 70% 

of biodiversity rich biomes will be converted to cultivated land by 2050 (Millennium 

Ecosystem Assessment 2005). Subsequently, threats to species and ecosystems will 

continue to increase; mainly due to human demand for agricultural commodities 

(Hambler & Canney 2013). For example, the increasing demand for oil palm products 

that are used in an array of products for human consumption (e.g. food stuffs, 

toiletries, biofuels) is driving deforestation in Southeast Asia for the need to increase 

cultivated areas (Fitzherbert et al. 2008). Demand for meat and increasing livestock 

production is the main source of greenhouse gases and a major driver in clearing of 

forests to enable agricultural crops such as soy for livestock feed (McMichael et al. 

2007). In biodiversity rich tropical areas, the expansion of agricultural lands in 

detriment to forest cover is driven by complex synergies of economic and 

development policies, infrastructure, social drivers and expansion of “cash crops” that 

provide greatest benefit per unit of investment (Geist & Lambin 2002). To prevent 

further forest loss nations must implement efficient and sustainable use of existing 

landscapes (Lambin & Meyfroidt 2011) together with a network of protected areas 

(Hambler & Canney 2013). 

 

1.3. Monitoring landscape change and populations 

Monitoring is defined as a “process of gathering information about some system 

variable of state” (e.g. abundance, habitat cover) that may be of interest for the 
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evaluation of management decisions or scientific inquiry (Yoccoz, Nichols & 

Boulinier 2001). The extinction crisis of species and the increasing pressure of human 

induced landscape change requires long-term monitoring as an important step to 

propose timely conservation interventions, as well as enabling the evaluation of 

targets set by the Convention of Biological Diversity (CBD) at a global scale (Collen 

et al. 2013b). One important monitoring scheme is the Global IUCN Redlist Index 

that measures changes in extinction risk based on the IUCN Redlist of species which 

can provide necessary data for the evaluation on how effective conservation efforts 

have been. For example Hoffmann et al. (2010) showed that the extinction risk of 

vertebrates since 1980 would have been much higher if there had not been 

conservation measures in place. Monitoring of species with the Redlist Index can be 

assessed at local levels as well as at global scales. Both scales are assessed with equal 

threshold values and, due to the scale, national level assessments can provide more 

specific guidelines for conservation action (Collen et al. 2013a). An additional 

monitoring scheme that has been used globally to monitor biodiversity is the Living 

Planet Index (LPI), which uses data from vertebrate abundance trends at local or 

regional scales. The LPI can be robust and useful to monitor conservation efforts 

however some limitations are apparent such as data deficiency and an over 

representation of bird data (Collen et al. 2009). There are also several proposed 

monitoring methods to evaluate increasing human pressure on biodiversity such as the 

use of satellite imagery to monitor change in land use, effects of climate change on 

species and landscapes, impacts of invasive species, and ecological footprints 

amongst others (see Collen et al. 2013b). 
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Monitoring schemes that aim to gather data on specific taxa or areas of interest often 

lack clear statements regarding three fundamental questions: why are you doing it (i.e. 

clear aim and objectives), what is your target state variable that will tell you something 

useful about the system in order to fulfil aims and objectives, and lastly how you will 

go about doing it (Yoccoz, Nichols & Boulinier 2001). The definition and explicit 

account of the first two questions (i.e. why and what) are fundamental so that 

monitoring schemes can be effective, focused and scrutinized. In turn the how 

question (i.e. survey effort allocation) will ultimately ensure that the investment in 

monitoring provides accurate and precise returns in data quality, particularly in 

detecting trends of change (Jones 2013). For example higher precision targets or 

power to detect change could be established a priory dependant on specific goals of 

surveys (i.e. why and what questions) which will result in increasing survey effort. 

For example, to evaluate the decline of a critically threatened species there would be 

a need for higher precision of parameters compared to an abundant species of 

conservation concern for which less precise estimates might suffice (Guillera-Arroita 

& Lahoz-Monfort 2012). Any monitoring scheme must ensure that the sampling 

design and effort can account and correct for biases given spatial variation and 

imperfect detection (Yoccoz, Nichols & Boulinier 2001). For example, occupancy as 

a state variable is a useful metric to monitor species trends (i.e. dynamics) since it is 

cheaper than abundance based schemes, it corrects for imperfect detection and it can 

accommodate for spatial variation and environmental relationships (MacKenzie & 

Reardon 2013). 
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1.4. Habitat loss and fragmentation 

Habitat destruction, arising from the processes of loss (e.g. clearance for agriculture) 

and degradation (e.g. selective logging), poses the greatest threat to species and 

ecosystems (Hambler & Canney 2013). It is first important to understand what 

‘habitat’ is. Habitat refers to all the conditions that enable a species to occur in a 

particular area (Lindenmayer & Fischer 2007).  

 

Habitat loss occurs when continuous habitat (e.g. forest) is reduced in overall size, 

whereas fragmentation occurs when an area of habitat is subdivided into smaller units 

(Fahrig 2003; Lindenmayer & Fischer 2007). The differences between these two 

processes can be illustrated with the following example. A continuous patch of habitat 

can be either reduced by half its area but remain a single patch (i.e. loss) or subdivided 

into multiple patches with an equivalent area extent. The latter scenario represents 

habitat fragmentation, in addition to loss. These processes occur simultaneously when 

continuous habitats are modified and can have different impacts on the landscape 

configuration and species. Fragmentation studies show variable results because either 

fragmentation has not been well defined in the study design (Fahrig 2003) or they may 

be confounded by whether the focal species is a specialist or generalist, how it 

responds to habitat edges and ranging behaviour or dispersal patterns through the 

matrix (the non-habitat which surrounds patches) (Ewers & Didham 2006).  

 

In general terms, fragmentation will increase the number of patches in the landscape, 

reduce the mean size of the patch, and increase the isolation of patches (Fahrig 2003). 

By reducing the size of remnant patches, there can be an impact on the carrying 
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capacity of the habitat to sustain the original population particularly if the species is a 

habitat specialist and requires core habitat area away from the edge (Bender, Contreras 

& Fahrig 1998). The subdivision in many patches increases the edge of the habitat, 

which is the ecotone or transition between the original habitat and the surrounding 

new habitat (e.g. forest and grassland transition). For example, reproductive rates of 

specialist species may decrease due to increased nest predation at edges (Lahti 2001), 

or the penetration of the edge can lead to an increase in generalist species that increase 

competition with specialist species (Marvier, Kareiva & Neubert 2004). Furthermore, 

fragmentation can increase the isolation of patches which has negative implications 

for species that are restricted in movement but less so for ones that are able to cross 

surrounding habitat or the matrix (Fahrig 2003). For those species able to cross the 

matrix, favourable conditions might foster movement (e.g. refuge sites on route) and 

or provide resources (e.g. increased abundance of rodents due to grain production in 

agricultural lands) which can mitigate the impacts of fragmentation (Ewers & Didham 

2006).  

 

Fragmented landscapes can support source-sink population dynamics. Large 

populations in larger patches or higher productivity areas (i.e. higher abundance of 

prey, reproductive success, higher density) in the case of wide ranging territorial 

species (e.g. carnivores) can act as a source of individuals (i.e. sink) to smaller 

populations in smaller patches or to less productive areas; potentially structured as a 

metapopulation and fostering species persistence (Hambler & Canney 2013). Habitat 

connectivity could mitigate impacts of land conversion and possibly increase the 

carriying capacity of those landscapes (Fischer & Lindenmayer 2007). Not only 
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connectivity of good-quality habitat is relevant but also the focus on poor-quality 

habitat as they could significantly improve movement and persistence of populations 

in fragmented landscapes (Wiegand, Revilla & Moloney 2005). However, human 

induced extinction drivers such as hunting, illegal logging, fires, invasive species, 

competition from domestic animals, may all increase and act synergistically in 

fragmented landscapes as a result of making habitats more accessible (Brook, Sodhi 

& Bradshaw 2008). Hence, fragmented landscapes may also act as ecological traps, 

where species are drawn to them because of suitable habitat conditions (e.g. forest 

patches in agricultural lands) but their reproductive success and abundance is 

significantly lower than in non fragmented landscapes (Robertson & Hutto 2006). 

Finally, observable species richness or persistence in a fragmented landscape may be 

due to an “extinction debt” where there is a lag time between current patterns and the 

long-term impacts (Hambler & Canney 2013). 

1.5. Human behaviour and biodiversity 

The activities of human communities can have great impacts on relevant habitats or 

species of conservation concern in agricultural landscapes. For example poaching of 

wildlife within protected areas, by the surrounding communities, can drive local 

extinctions and reduce the effective size of the parks (Dobson & Lynes 2008) or 

degrade them by hunting, fires, logging and grazing of domestic livestock (Bruner et 

al. 2001). Hence it is widely recognised that without engagement and participation of 

local communities the fate of many species and habitats is even more uncertain. There 

are some examples where strict legal structures, based on scientific knowledge and 

empowerment of local communities, can foster sustainable extraction of resources 

(Castilla & Fernandez 1998) or incorporating local stakeholders in decision making 
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processes and implementation to safe-guard predators and livestock can provide 

improved conservation outcomes outside protected areas (Treves et al. 2006).  

 

Engaging with local communities to implement effective conservation measures 

ultimately requires a robust understanding of human behaviour (St John, Keane & 

MilnerǦGulland 2013). Social-psychology models of behaviour provide frameworks 

that suggest that an individual’s action is influenced by social norms or what is the 

socially expected behaviour, personal beliefs and attitudes, and the level of control 

people perceive they have over performing a particular act such as having the skill 

and tools (Manfredo & Dayer 2004). Research of attitudes towards environmental 

issues in conservation abound, but can be misleading because there is evidence that 

what people say can be different to what people do, hence assessing behaviour is 

warranted (Herberlein 2012). Unfortunately, resource use by communities can in 

many cases be illegal proving further difficulties in monitoring or understanding the 

prevalence of the overexploitation of resources. When activities are illegal 

respondents will sometimes tend to conceal their activities because of fear of 

punishment. However there are now methods that can provide information for key 

conservation questions such as what is being exploited, where, who and what are the 

behavioural drivers influencing the illegal activity. The choice of method will depend 

on the type of activity, prevalence, monitoring budget, and ability to detect the activity 

(Gavin, Solomon & Blank 2010). 
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1.6. Integration of social and ecological data for conservation 

Ultimately, biodiversity conservation requires not only understanding the ecological 

effects of habitat modifications and impacts on species but also the human dimension 

given the impact that our activities are having on the earth´s systems. Natural science 

is important but not enough to tackle the social and political complexities that 

surround conservation problems (Macdonald & Wills, 2013). It is imperative that 

social sciences be included in study programmes of conservation biology and also in 

conservation oriented research (Mascia et al. 2003). Biological conservation must 

integrate natural and social science if we are to find effective solutions of, for example, 

protected area effectiveness, resolve environmental conflicts such as land rights and 

generally guide decision making processes together with those communities directly 

involved so that conservation can have a real impact on reversing environmental 

degradation (Mulder & Coppolillo 2005). For example in resource management, there 

is an important body of evidence that a “systems” approach which relies on adaptive 

management that can link socio and ecological knowledge, can provide better 

outcomes in terms of resilience of human communities to unexpected circumstances 

and to the sustainable use of natural resources (Folke, Berkes & Colding 1998). For 

example, the management of an invasive species that has economic value to local 

stakholders can be most effective and accepted when general views of local 

stakeholders are taken into account (e.g. Marshall et al. 2011). Conservation planning 

excercises – where cost-effective priority targets such as representative habitats and 

species are identified in a landscape of conservation concern - can benefit from 

incorporating social data and the empowerment of communities in the decision 

making process to ensure a feasible plan for the implementation stage (Knight et al. 
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2013). Conservation targets will ultimately be driven or constrained by societal values 

and priorities regarding desirable outcomes or identified problems which, if oriented 

by scientific rigour and systematically assessed, can be greatly benefitial to establish 

cost-effective strategies (Pullin et al. 2013).  

 

In many instances conservation complexities arise from conflict between human 

groups (human-human conflict) that have different objectives regarding the 

managment of a particular species and or landscape (Redpath et al. 2013). There is an 

increasing trend of these type of conflicts worldwide which require new strategies, 

particularly involving social science, to foster long-term solutions of co-existence 

(Dickman 2010). The link between social and ecological data is particularly relevant 

when a species or guild of conservation concern comes into conflict with human 

communities, either from direct threat (e.g. Leopards killing people in India) or 

indirectly through economic losses (e.g. crop raiding by elephants). Managing wildlife 

conflict requires, not only the evaluation of mitigation measures, but an integration 

across disciplines to link risk factors of social (e.g. inequality and power, beliefs, 

distrust) and environmental (e.g. land use and management, human behaviour to 

protect assets) dimensions that can lead to different intensities of conflict which can 

ultimately provide knowledge for effective conflict reduction and co-existence 

strategies (Dickman 2010). 

 

1.7. Carnivores pose complex conservation challenges 

Mammalian Carnivores (Order Carnivora) are particularly vulnerable to extinction 

from direct human action by killing of predators and also from habitat degradation. 
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Carnivores personify the main problems that challenge conservation effectiveness 

(Gittleman et al. 2001). 

 

Carnivora comprises 287 extant species in 123 genera and 16 families (Ullas Karanth 

& Chellam 2009), including Felidae (cat family), Ursidae (bear family), Canidae (dog 

family), and Mustelidae (weasel family) amongst others. Body size can vary 

considerably, from very large Ursids such as brown bears (Ursus arctos), which weigh 

>160 kg, to very small felids, such as the rusty spotted cat (Prionailurus rubiginosus) 

at just 1 kg. Likewise, carnivores display a diverse range of traits and behaviours; they 

are distributed across all major continents (except non-native to Australia) and occupy 

a varied number of ecosystems, showing large variability in home range size and 

social structure (Gittleman et al. 2001).  

 

Carnivores occupy high trophic levels and can impact ecosystem processes. For 

instance, large carnivores can regulate herbivory by predation of large herbivores and 

also lower abundances of meso-carnivores which, in the absence of large carnivores, 

can have unexpected and sometimes negative ecological effects (Ripple et al. 2014). 

Furthermore, the elimination of predators from landscapes may cause unwanted 

effects in ecosystem integrity and function such as increase in herbivores with 

subsequent impacts on vegetation (Sekercioglu 2006; Bruno & Cardinale 2008) and 

the local extinction of a few predators can have comparable effects on ecosystem 

functioning to a large reduction in the diversity of plant species (Duffy 2003).  
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The extinction risk of carnivorous species is relatively high due to life history traits, 

environmental requirements and interaction with human communities. Predators in 

human-dominated landscapes, such as carnivorous mammals and birds of prey, are 

particularly prone to extinction because they are at the top of the food chain and have 

predominately slow life histories such as low reproductive rates (Purvis et al. 2000). 

Biological traits of carnivores, in general, predict to a large extent extinction risk of 

species but become more relevant in explaining variation when species are subject to 

higher human activity; suggesting an increase in extinction risk with expanding 

human density (Cardillo et al. 2004). Human density can reduce persistence of many 

species and even put at risk populations within protected areas due to wide-ranging 

behaviour of carnivores outside boundaries (Woodroffe 2000). Carnivorous mammals 

are particularly vulnerable in human dominated landscapes because of negative 

interactions with local communities, triggered by livestock predation (i.e. livelihood) 

and/or attacks on human lives (Treves & Karanth 2003; Inskip & Zimmermann 2009; 

Ullas Karanth & Chellam 2009; Inskip et al. 2014). Furthermore, retribution killing, 

defined as the elimination of carnivores in retaliation for livestock predation or attacks 

on people, is particularly worrisome if the species is of conservation concern given 

the potential population impacts of non-natural mortality (Chapron et al. 2008; Liberg 

et al. 2012). 

 

The fate of carnivores will ultimately depend on management and interventions in 

human-dominated landscapes aimed to ensure habitat suitability and reducing 

negative human interactions. Conservation must strive to find ways to establish co-

existence between carnivores and people, under the premise that some level of 
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predation and retribution killing will always occur (Treves & Bruskotter 2014). 

Mitigation measures can take many forms. Conflict areas can be identified, so targeted 

mitigation actions can be undertaken (Treves et al. 2004). These could include the use 

of predator deterrents (Shivik 2006), such as guard-dogs to reduce predation of 

livestock (Andelt & Hopper 2000), improving night holding facilities (Tumenta et al. 

2013) or grazing water buffalo alongside cattle to protect against puma and jaguar 

predation (Hoogesteijn & Hoogesteijn 2008).  

 

An in-depth qualitative understanding of the motivations and underlying political 

situations driving conflict is necessary for effective measures (Inskip et al. 2014) or 

finding ways to empower local communities to be part of the solution and not the 

problem (Sillero-Zubiri & Laurenson 2001; Treves et al. 2006). Most importantly, and 

specifically when retribution killing or just plain killing of carnivores is occurring, 

identifying the drivers of killing behaviour by individuals can be most useful for the 

implementation of conservation measures such as targeting specific social segments 

or orientate mitigation measures to be included in policy or behavioural change 

campaings(St John et al. 2012). 

 

The research undertaken on carnivores has been biased towards big cats and canids 

within the order, with relatively little attention having been paid to small cats, 

mustelids, civets and mongooses (Ginsberg 2001). Indeed, only around 15% of 

species have been the subject of serious scientific scrutiny (Ginsberg 2001), with those 

characterised by small geographic ranges and body size having received significantly 

less research (Brooke et al. 2014). This trend is exemplified by the felidae family, 
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from which 14 threatened species have had less than three in-situ studies published 

(Brodie 2009). In general, carnivores are hard to study due to their elusive behaviour, 

low density and nocturnal habits (Long 2008). Although this makes population status 

assessments a difficult tasks to undertake, such monitoring and research is important 

across geographic areas where threat levels are high, if we are to prevent further loss 

of species (Balmford, Green & Jenkins 2003). 

 

1.7.1. Methods to study carnivores 

Carnivores can be studied using a variety of ecological techniques and the choice of 

method will ultimately depend on the ecological question being evaluated and/or 

management objectives of the particular project. Survey methods can be can either be 

classified as ‘invasive’, where individuals are captured (e.g. to take biometric 

measurements, be tagged for future identification, or fitted with a radio-collar for 

monitoring purposes, tissue or blood samples for DNA), or ‘non-invasive’, where 

individuals are assessed remotely. Invasive methods tend to provide very detailed and 

high resolution data about individuals or, in some cases where sample sizes are large 

enough, species populations. For example, DNA from tissue or blood samples can be 

used to assess population structure (e.g. Napolitano et al. 2014) and telemetry can 

yield fine-scale information on habitat use (e.g. Dunstone et al. 2002). Although 

invasive methods provide high quality data, they are generally very expensive and 

difficult to carry out over large geographical areas.  

 

A detailed description of non-invasive methods is provided in Long et.al. (2008). 

Techniques include surveys using scats (i.e. faeces; which can provide non-invasive 
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DNA and diet information), tracks (either on natural terrain or artificial tracks plates), 

hair samples (again, providing DNA) and camera-traps. Camera-traps are now widely 

deployed in mammal surveys (Rowcliffe & Carbone 2008; O'Connell, Nichols & 

Karanth 2010; Burton et al. 2015). They are particularly valuable for surveying elusive 

species because they can work independently in remote areas and perform effectively 

in comparison to alternative detection methods such as track plates (Gompper et al. 

2006; Long et al. 2007; Long 2008; Balme, Hunter & Slotow 2009).  

 

Camera-trap data can be used to study presence/absence, occupancy, abundance 

(where individuals can be identified via distinguishing features such as coat pattern), 

behaviour (using video settings) and activity patterns (O'Connell, Nichols & Karanth 

2010). In particular, the number of camera-trap occupancy studies is growing rapidly, 

with the majority of focal species being carnivores or ungulates (Burton et al. 2015). 

‘Capture histories’ describe the detection pattern of species at a site over repeated 

sampling occasions within a particular season. Occupancy models can then use this 

information to estimate the maximum likelihood of occupancy and detection 

probability parameters.  

 

Recent advances in occupancy modelling have improved the utility of presence-

absence data substantially, allowing the true proportion of the landscape that is 

occupied by a species to be quantified (Vojta 2005). The mathematical techniques 

allow researchers to correct for imperfect detection, which occurs when the species is 

present but not found and recorded (MacKenzie et al. 2006). Occupancy estimates are 

scale dependant, so it is important to determine what the size of the sample unit should 
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be, ensuring that it is biologically meaningful for the species (e.g. home range size). 

If a sample unit is too large, occupancy will be underestimated, and if it is too small, 

the area of occupancy will be overestimated (MacKenzie et al. 2006). Multi-season 

models also exist, which can be used to estimate occupancy dynamic parameters, 

describing how sample units change in status through time. This is a useful tool for 

monitoring of threatened species because survey methods to obtain data can be 

deployed over large geographical areas (Guillera-Arroita, Ridout & Morgan 2010). 

 

1.8. The guiña as a study species 

There are many global prioritization schemes that look at how to focus conservation 

efforts at a large scale (Brooks et al. 2006); however, conservation science needs to 

build on empirical studies to provide evidence in benefit of effective measures for 

threatened species at a local scale (Ginsberg 2001). The wild felid guiña (Leopardus 

guigna) is such an example. 

 

The guiña (Leopardus guigna) is a threatened wide-ranging forest dwelling felid. It is 

the smallest Neotropical cat at <2 kg and occurs in two distinct morphs, spotted and 

melanistic (Fig. 1.1). It is categorised as Vulnerable, with a declining population trend, 

by the International Union for Conservation of Nature (IUCN) as a result of habitat 

loss, retaliatory killings by people in response to poultry predation, increasing 

incidences of roadkill and disease transmission by domestic cats (Napolitano et al. 

2015). The IUCN Red List criteria used to classify the species as Vunerable were 

A2abc, C2a(i) ver 3.1, representing population decline, area of occupancy reduction, 



Chapter 1. Introduction 

37 
 

four of the six subpopulations having less than 1,000 mature individuals and the fact 

that overall threats are predicted to increase in the future.  

 

Figure 1.1 Camera-trap photos of spotted (top left and bottom) and melanistic (top 

right) guiña (Leopardus guigna), including a unique capture of a mother and cub 

(lower left). The photo on the lower right demonstrates how well the species is 

camouflaged and the relative scale of the felid in comparison to the understory 

vegetation (< 1 m). 

 

The guiña is a solitary species thought to require forest habitat with dense understory 

and the presence of bamboo (Chusquea spp.) (Nowell & Jackson 1996; Acosta-Jamett 

& Simonetti 2004). However, it is known to occupy remnant patches of fragmented 

forest remaining within agricultural areas (Sanderson, Sunquist & W. Iriarte 2002; 
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Acosta-Jamett & Simonetti 2004; Gálvez et al. 2013) and can use grassland or shrub 

for movement between habitats and perhaps foraging on habitat edges (Dunstone et 

al. 2002). The main prey base of guiña are small mammals (<1 kg) and birds, 

particularly from the flightless endemic tapaculo family (Freer 2004; Sanderson, 

Sunquist & Iriarte 2002). Guiña are skilled tree climbers, where it can take refuge 

during the day (Sunquist & Sunquist 2002), as well as predating on bird nests 

(Altamirano et al. 2013) or small arboreal mammals such as the long-tailed colilargo 

(Oligoryzomys longicaudatus), Chilean climbing mouse (Irenomys tarsalis), and the 

marsupial Monito del Monte (Dromiciops gliroides) (Moreira-Arce et al. 2015). As is 

true for many wild felids and carnivores in general, guiña activity patterns relate to 

activity of its prey (Delibes-Mateos et al. 2014). The guiña is mainly nocturnal, with 

increased activity during crepuscular periods (Delibes-Mateos et al. 2014; Hernandez 

et al. 2015). Although not much is known regarding fecundity, it is estimated that a 

female can have between 1-4 cubs (Nowell & Jackson 1996). There is no basic 

information available on reproductive success, survival or independence of cubs and 

dispersal to new territories. However, from my camera traping experience, I have only 

documented 1 cub from three distinct and independent events (large geographical 

separation) within the study area. 

 

The home range of the species has been estimated at 1.3-2.5 km2, based on 

information from seven individuals (Sanderson, Sunquist & W. Iriarte 2002), 0.3-2.2 

km2 from ten individuals (Dunstone et al. 2002) and 1.3- 4 km2 from five individuals 

within the study area of this thesis (Schüttler et al. unpublished data). Common to 
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most felids, there is some overlap between smaller home ranges of females with larger 

areas for males (Dunstone et al. 2002).  

 

The güiña is considered a pest by local human communities as it can predate on 

chickens (Silva-Rodríguez, Ortega-Solís & Jiménez 2007; Herrmann et al. 2013). 

Consequently, retribution killings have been recorded (Sanderson, Sunquist & W. 

Iriarte 2002; Gálvez et al. 2013), although the extent of persecution has never been 

formally assessed. Furthermore, household domestic dogs in rural areas have also 

reportedly killed guiñas (Sepúlveda et al. 2014). These sources of non-natural 

mortality, together with evidence of an historic population and genetic variability 

reduction (i.e. bottleneck), could eventually be a significant issue for the long-term 

persistence of the species (Napolitano et al. 2014). 

 

1.8.1. Study system 

The study was conducted in the Tolten catchment of the Araucanía region in southern 

Chile, at the northern limit of the South American temperate forest ecoregion 

(39º15´S, 71º48´W) (Armesto et al. 1998). The area falls within several global 

biodiversity conservation prioritisation schemes. It is part of the Chilean winter 

rainfall-Valdivian forests biodiversity hotspot, meaning that >50% of plants are 

endemic and habitat has been historically reduced to less than 30% of its original 

extent (Myers et al. 2000). In addition, it is also identified in conservation 

priorotization schemes such as last of the wild, frontier forests, endemic bird areas, 

centres of plant diversity and the Global 200 ecoregions of importance (Brooks et al. 

2006). The temperature of the study area has a yearly average of 11.5 °C and the 
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rainfall spans from 1000 and 3000 mm (Luebert & Pliscoff 2006). The natural forest 

vegetation of the study area is deciduous southern beech forest, characterized by 

Nothofagus obliqua, Laurelia sempervirens, Eucryphia cordifolia, Podocarpus 

saligna and Aextoxicon punctatum in lowland forests. As the altitude increases, the 

Nothofagus dombeyi, Nothofagus alpina, Laureliopsis philippiana and Araucana 

araucana become more dominant (Luebert & Pliscoff 2006). 

 

In particular, the system was chosen because it comprises two distinct geographical 

sections common throughout Southern Chile and guiña distribution: the Andes 

mountain range and central valley. Land-use in the central valley is primarily intensive 

agriculture (e.g. cereals, livestock, fruit trees) and urban settlements (Fig. 1.2), 

whereas farmland (which occurs < 600 m.a.s.l) in the Andes is less intensively used 

(e.g. unimproved grasslands) and is surrounded by tracks of continuous forest on steep 

slopes (Fig. 1.3). These two areas also represent variation with regards to habitat loss 

and fragmentation from the Andes Mountains to the Central valley where the status 

of the guiña is largely unknown (Sunquist & Sunquist 2002). In addition, I have 

previous research experience in the study area (Galvez et al. 2013) and it is part of 

long-term research plans of my local research institution. 
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Figure 1.2 Central valley part of the study area in the Araucanía region of southern 

Chile, showing remnant patches of native vegetation surrounded by intensive 

agricultural crops and livestock grazing. 

 

Native vegetation remains as a patchy mosaic in agricultural valleys. In fact, only 5% 

of forest vegetation remains after human colonisation from the late 19th century 

(Miranda et al. 2015). In the Andean valleys the same patchy mosaic vegetation is 

present, but mostly at elevations below 600 m.a.s.l. Continuous forests only persist on 

steep slopes at higher elevations not suitable for agricultural activities and climatic 

restrictions. All of the protected areas are located above 800 m.a.s.l. They are very 

important for delivering ecosystem services (e.g. protecting the water catchment) but 
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contribute less to biodiversity conservation because  endemic species rich areas are 

within lowland areas with native vegetation (Armesto et al. 1998). 

 

 

Figure 1.3 Andean mountain range study area in the Araucanía region of southern 

Chile, showing the narrow agricultural valleys surrounded by continuous tracks of 

native forest on higher elevation slopes. 

 

1.8.2. Landcover classification 

A lack of high quality landcover data is usually a limiting factor in ecological studies 

that look at relationships between habitat and species. For our study region, landcover 

maps were only available for the Andean agricultural valleys. Classification of the 

central valley was therefore needed. The study region (i.e. large area) delimination 
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took into account bioclimatic similiarity and study areas in particular (i.e. smaller 

areas) to represent the Central valley and Andean agricultural valleys. 

 

 

Figure 1.4 The spatial extent of the five satellite images (four Aster 15m resolution, 

2002, 2003, 2005, 2007 and one Landsat 8 at 30m resolution 2014) used to derive the 

supervised classification of landcover across the study region. Green lines and 

polygons were used as references to delimit study area. 

 

For studies investigating the impacts of fragmentation and habitat loss on species, the 

resolution of the map must be sufficiently high to pick up on the variation in the 

landscape at a scale which is biologically meaningful (Gustafson 1998). We classified 

landcover using a composite of four Aster images at 15 m resolution, from 2002-2007 

(downloaded from http://glovis.usgs.gov/), and a single Landsat 8 image of 30-m 
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resolution, from 2014, for the few small areas of the study region not covered by the 

Aster images (Fig. 1.4). A pixel resolution of 15 m equates to less than 0.0075% of 

the estimated average guiña home range size for the study area (MCP 95% mean = 

270 ±137 ha; Schüttler E. unpublished data). All the sample units used in our surveys 

were covered by the Aster images. Moreover, the landcover configuration across the 

sample units in the study region derived from the Aster images is not noticeably 

different from that in 2014 Google Earth images.  

 

Table 1.1 Extent and relative percentage of each landcover class across the study 

region in southern Chile. 

Landcover Area (km2) Percentage (%) 

Forest 5742.4 38% 

Shrub 2163.1 14% 

Agricultural land 4458.9 30% 

Exotic forest plantations 1309.5 9% 

Water 612.7 4% 

Bare ground 627.7 4% 

Urban 100.3 1% 

 

The resulting land cover shows how forest and agricultural land are the predominant 

landcover and forests increase towards the east in the Andes (Table 1.1 and Fig. 1.5). 
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Figure 1.5 Landcover classification of study area in southern Chile showing 

delimination of where our sample units were surveyed and protected areas in the 

Andes Mountains. The grey polygon to the left represents the central valley and the 

one to the right valleys within the Andes Mountains. For detailed methods on the land 

cover classification see Chapter 3. 

 

1.9. Outline of this thesis and research questions 

The issues faced by carnivores require an integrated view of ecological and social 

processes over large geographical areas, so a robust evidence-base can be established 

and used to inform effective conservation action. Furthermore, the elusive nature of 
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carnivores, and paucity of data for many species, means that improvement into how 

economic resources are used to survey threatened species is of utmost importance.  

 

The aim of this thesis was to investigate how the threats of habitat loss, fragmentation 

and human-wildlife conflict act and/or interact on the population dynamics of forest 

dwelling carnivores within human modified landscapes. Furthermore and for a 

particular species, the guiña, predict future conservation scenarios, practical 

management of landscapes, and contribute to necessary methods for long-term 

assessment of populations. A better understanding of how the species survives in the 

heavily modified anthropogenic landscapes of southern Chile will provide an 

evidence-base to support the development of future conservation interventions. 

 

In this thesis, I developed a mathematical cost function which can be used to improve 

survey effort allocation within an occupancy modelling framework. In addition, I 

explored the interaction between habitat loss, fragmentation and retribution killing as 

drivers of decline of the guiña. The thesis is composed of the three chapters, written 

as stand-alone independent research papers. 

 

Chapter 2 contributed to the literature on occupancy survey effort allocation for 

terrestrial mammals. Particularly, I tested whether the inclusion of specific camera 

trapping costs to survey effort allocation of occupancy estimates - not done previously 

- provide relevant trade-offs associated to the number of sites, number of repeat 

surveys (i.e. sampling occasions), and number of camera-traps needed to achieve 

statistical precision. Specifically, does survey effort allocation advice change for 



Chapter 1. Introduction 

47 
 

species of diferent característics such as abundance (i.e. rare versus common), 

detectability and home range areas? For this purpose a detailed camera-trap survey 

cost function was developed, linked to the statistical precision of parameters. The 

guiña, together with other elusive mammal case study species, are used as empirical 

examples of how the framework can be applied to data deficient and threatened 

species. 

 

Chapter 3 investigated the relative effects of habitat loss, fragmentation, and 

anthropogenic pressure on the guiña, species considered a forest specialist, by 

integrating ecological and social data into a common modelling framework. 

Specifically, I asked whether there is a level of habitat loss or fragmentation at which 

the occupancy dynamics (i.e. changes in occupied or unoccupied status) are negatively 

impacted (i.e. high turnover of occupied sites) and alternatively is human pressure 

having a neutral, equal or larger impact? The paper analyses a substantial camera-trap 

occupancy dataset, collected over four seasons, as well as data derived from remote-

sensed imagery and householder questionnaires. The study demonstrated the 

importance of taking an interdisciplinary approach to conservation in order to identify 

the key threats to mammals inhabiting a human-dominated landscape. 

 

Chapter 4 explored the prevalence of livestock predation experienced by 

householders (i.e. reported predation) across the study region, and aimed to identify 

factors that can predict when a farmer might proactively seek to kill a species as a 

consequence. Particularly whether socio-economic, knowledge of rules, reported 

predation, frequency of encounters, responses to hypothetical predation scenarios are 
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associated with killing species, under the expectation that different species will 

produce varying outcomes. To investigate human behaviours that are sensitive and/or 

illegal, we use the random response technique (RRT) method to question our human 

study participants. The findings highlight that knowledge of rules does not deter 

illegal behaviour and that predator-specific strategies must be undertaken to reduce 

persecution. 
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2.1. Abstract 

1. Camera-traps are an important tool for estimating occupancy for unmarked 

mammals. Cost-efficient effort allocation recommendations for occupancy 

surveys have focused on the trade-off between the number of sample units and 

sampling occasions, with simplistic accounts of associated costs which do not 

reflect well the reality of camera-trap based surveys. 

2.  Here we describe realistic camera-trap survey costs as a function of number of 

sample units, sampling occasions and camera-traps per sample unit, and link them 

to precision in occupancy estimation. We evaluate survey effort trade-offs for 

hypothetical species representing different levels of occupancy (ȥ) and detection 

(p) probability to identify optimal design strategies. We apply our cost function to 

three threatened species as working examples with parameters from existing 

literature. Additionally, we use an extensive camera-trap data set to evaluate 

independence between additional camera traps per sampling unit. 

3. The optimal number of sampling occasions that result in minimum cost decrease 

as detection probability increases irrespective if the type of species as rare (ȥ 

<0.25) or common (ȥ >0.5). Elusive species (p <0.25) with large home ranges 

(>10 km2) show the most expensive survey scenarios. A large number of 

combinations for different species types show realistic cost options with fewer 

sampling occasions and additional cameras. Camera-trap independence can be 

obtained when more than one camera trap is installed per sample unit.  

4. We identify trade-offs and provide managers and researchers with cost-efficient 

guidance for occupancy surveys based on camera-traps of unmarked territorial 
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mammals.  Efficient use of survey budgets ultimately contributes to the 

conservation of threatened and data deficient mammal species. 

 

Key-words: elusive species, imperfect detection, species management, threatened 

species, wildlife monitoring 

 

2.2. Introduction 

To conserve threatened species effectively, conservationists must first assess the 

status of populations to evaluate current or future decline trends. With financial 

resources generally in short supply, wildlife researchers and managers need to adopt 

cost-efficient monitoring survey protocols to gather baseline data to inform 

appropriate conservation interventions (Fryxell, Sinclair & Caughley 2014). 

Terrestrial mammals can be a particular challenge to survey due to their elusive nature, 

the fact that they often occur at low densities and, in many cases, are difficult to 

distinguish individually. As such, population status inferences where individuals are 

undistinguishable or unmarked rely frequently on presence-absence data. The value 

of presence-absence data has increased markedly in recent years as a result of 

significant developments in occupancy modelling techniques (Vojta 2005) including, 

for example, being able to account explicitly for the imperfect detection of elusive 

species (MacKenzie et al. 2006). 

 

Camera-traps are a widely used tool in ecology and conservation (Rowcliffe & 

Carbone 2008; O'Connell, Nichols & Karanth 2010; Burton et al. 2015). They are 

particularly valuable for surveying elusive mammals because they are non-invasive, 
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can work independently, compared to other methods such as telemetry, in remote 

areas and perform effectively in comparison to alternative detection methods 

(Gompper et al. 2006; Long et al. 2007; Long 2008; Balme, Hunter & Slotow 2009). 

Camera-traps have therefore been deployed in a broad array of circumstances, ranging 

from monitoring species populations and constructing mammal inventories in tropical 

forests (Tobler et al. 2008), through to evaluating the importance of logged forests for 

an elusive forest dwelling bear (Linkie et al. 2007) and assessing the impacts of habitat 

loss on carnivore guilds (Long et al. 2011). Additionally, the number of occupancy 

studies based on camera-trap data is growing rapidly, with the majority of focal 

species being carnivores or ungulates (Burton et al. 2015), possibly due to their elusive 

behaviour.  

 

Despite the abundance of camera-trap occupancy studies being conducted and 

published globally; there is a paucity of research examining how survey effort 

allocation to optimize statistical precision can be influenced by operational costs. In 

the context of occupancy modelling, survey effort guidelines have been developed to 

address the trade-off between the number of sample units (hereafter SUs) and 

sampling occasions (i.e. number of repeat visits to detect the species at a SU) 

(MacKenzie & Royle 2005; Field, Tyre & Possingham 2005; Bailey et al. 2007; 

Guillera-Arroita, Ridout & Morgan 2010; Guillera-Arroita & Lahoz-Monfort 2012). 

All these studies imply a very simplistic cost function, where total survey cost is 

proportional to the total number of survey visits (i.e. number of SUs x survey 

visits/SU). The underlying assumption in each case is that a field team member revisits 

an SU during each sampling occasion. MacKenzie & Royle (2005) go further and 
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account for extra initial set-up costs at each SU, acknowledging that the first sampling 

occasion at a SU may be more expensive than subsequent visits. This previous work, 

whilst useful, does not provide accurate recommendations for camera-trap surveys 

where the length of a survey can be extended (i.e. more “sampling occasions” 

conducted) without directly adding costs. This is because, once installed, camera-traps 

can work independently for periods of time between installation, maintenance checks 

and/or retrieval without a specific associated cost.  

 

Other important effort allocation trade-offs must be considered when surveying wide-

ranging territorial mammal species. Species with large home ranges might be difficult 

to detect due to non-random movement across a large area. In theory, additional 

independent camera-traps could reach the same level of detection probability with 

fewer sampling occasions (Long 2008), meaning a balance needs to be struck between 

the number of sampling occasions and number of camera-traps per SU. Similarly, 

species with low detection probability require longer surveys to achieve precise 

estimates (Shannon, Lewis & Gerber 2014) thus, where length of survey might need 

to be restricted by some user-defined criteria (e.g. 100 days maximum survey of all 

SUs), additional camera-traps may be required to compensate. The impact on survey 

costs of the trade-off between sampling occasions and number of detection devices 

(e.g. camera-traps) is yet to be evaluated in the literature. 

 

Here we provide effort allocation guidelines for cost-efficient occupancy studies of 

terrestrial mammals using camera-traps. We develop a detailed cost function for 

camera-trap surveys, which we parameterise with operational installation efficiency 



Chapter 2. Cost-efficient camera-trap occupancy surveys 
 

70 
 

values (e.g. minutes to install a camera-trap) provided by practitioners (e.g. wildlife 

managers, researchers). This is then used to consider trade-offs in survey effort 

allocation in terms of the optimal number of sampling occasions and number of 

camera-traps within a SU needed to achieve occupancy precision targets at minimum 

costs. We assess a range of occupancy and detection probability scenarios for species 

with different home range sizes, as well as considering two types of transport between 

SUs: vehicular and walking. We also discuss survey design alternatives, using three 

threatened mammals as working examples, illustrating how our cost function can be 

employed to identify cost-efficient strategies. For one of the case study species, for 

which an extensive camera-trap survey dataset exists, we additionally evaluate the 

deployment of multiple camera-traps per SU in terms of the similarity of their 

detection histories and how this varies with distance between devices. 

 

2.3. Methods 

2.3.1. Sample unit definition and survey length  

SU size directly influences the amount of time spent in the field, by increasing field 

team member movement time both within and between SUs. The size of the home 

range should determine the area of, and distance between, independent SUs so that 

interpretation of the occupancy parameter is useful for monitoring populations of 

territorial mammals over large geographic areas (MacKenzie et al. 2006). We can 

define a minimum distance between SUs ܦ௦ as the diameter of the circular area 

representing the typical home range size of the species ܴ:  

௦ܦ ൌ ටସோగ ሺͳ ൅  ,ሻ eqn 1ߙ
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where Į is an additional buffer (a proportion of home range size) that can be used as 

a conservative approach to account for home range size uncertainty and or extra space 

to facilitate variable camera placement within the SU (e.g. not in exact center) in order 

to maintain distance between adjacent units. 

 

The duration or length of a particular survey has several implications with respect to 

occupancy model assumptions. The total survey length L can be defined as the number 

of days over which all SUs are surveyed. A maximum length of survey, ܮ௠௔௫, should 

be set a priori and must be clearly justifiable based on the camera-trap survey 

objectives (Burton et al. 2015) and relevant modelling assumptions (e.g. compliance 

with population closure criteria, occupancy model assumptions where sites do not 

change in status for the duration of the survey; MacKenzie et al. 2006). In practice, to 

fit camera-trap data to the occupancy framework, the continuous data collected by the 

camera-traps can be divided into discrete replicate segments considered as sampling 

occasions K (but see Guillera-Arroita et al. 2011 for alternative ways to analyse 

continuous data in occupancy modelling). By defining the number of days per 

segment, we restrict the survey design to a maximum number of sampling occasions 

or ܭ௠௔௫, per SU, which complies with ܮ௠௔௫: ܭ௠௔௫ ൌ ௅೘ೌೣை  eqn 2, 

where O is the number days that are collapsed into a single sampling occasion. 

 

2.3.2. Accounting for survey costs 

The total cost of a camera-trap survey is a function of the number of SUs (S), the 

duration of the survey (and hence of the number of sampling occasions K), and the 
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number of camera-traps per SU (n). We can write the cost function in a general form 

as: ்ܥሺܵǡ ǡܭ ݊ሻ ൌ ைܥ ൅ ܵ ή ǡܭ௩ሺܥ ݊ሻ eqn 3, 

where ܥ௢ represents fixed costs and ܥ௩ is the cost of surveying one SU, which is 

dependent on K and n. By fixed costs we refer to those which are not associated with 

in-situ operations and particular to each project (e.g. maintenance of a field station or 

field vehicle, salaries of permanent staff and international flights). To be realistic, we 

assume that the survey team needs transport via a field vehicle (e.g. truck, boat). 

Hereafter we do not consider fixed costs because they do not affect the determination 

of the optimal design strategy (they are independent of the choice of K and n).  

 

In building our cost function ܥ௩, we consider four types of costs: ܥ௩ሺܭǡ ݊ሻ ൌ ǡܭଵሺܥ ݊ሻ ൅ ǡܭଶሺܥ ݊ሻ ൅ ଷሺ݊ሻܥ ൅ ǡܭସሺܥ ݊ሻ  eqn 4, 

where ܥଵሺܭǡ ݊ሻ is camera-trap operational cost within the SU (e.g. instalment, 

maintenance, retrieval), ܥଶሺܭǡ ݊ሻ relates to field logistics during the survey (e.g. travel 

to survey area, break times), ܥଷሺ݊ሻ comprises camera-trap equipment cost and ܥସሺܭǡ ݊ሻ is post-survey image processing cost.  

 

Operational cost ܥଵ consists of all the financial outlay connected with installing i, 

retrieving r and conducting maintenance service checks c for the camera-traps in a 

single SU, including costs associated with fuel consumption and personnel salaries. 

To calculate ܥଵ, we compute the time spent at a particular SU during installation ܪ௜, 
retrieval ܪ௥ or maintenance checks ܪ௖:  
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௫ܪ  ൌ ൜ ݊ݐ ൅ ௗሺ௡ିଵሻ௏ೢ ൅ ஽ೞ௏೤ ൠ eqn 5, 

where ݐሺ݅ǡ ǡݎ ܿሻ is the time (hours) spent handling the cameras, d is the travel distance 

between cameras within the SU (km), ௪ܸ is walking speed through habitat (km/h) to 

camera-traps within an SU, and ௬ܸ is the speed of travel between SUs (km/h), which 

can either be by vehicle (௬ܸ ൌ ௩ܸ) or walking (ܸ ௬ ൌ ௪ܸ). To account for distance 

walked when operations are entirely done on foot, we correct the last term in eqn 5 by 

multiplying by twice the diameter of the SU walked 
ଶ஽ೞ௏ೢ . This assumes that a field 

vehicle is left at the initial SU, the camera-traps are set up sequentially and then the 

same distance has to be walked again on the return journey back to the field vehicle, 

after the last SU has been installed. We also assume that i involves the preparation of 

a single camera-trap (i.e. loading batteries, memory card and checking overall 

function) and positioning of the camera-trap (i.e. placement in appropriate location 

within the SU) for the duration of the survey. Checking/changing batteries, lures, baits 

and memory cards with the camera-traps are in position equates to c, whereas r 

consists of data collection (e.g. downloading the memory card), note-taking and 

removal of camera-trap after the survey is complete.  

 

Once these times have been computed, the total operational cost is: ܥଵሺܭǡ ݊ሻ ൌ  ݉ ቄܪ௜ ൅ ௥ܪ ൅ ቔ௄ை௭ െ ͳቕ  ,௖ቅ eqn 6ܪ

where m is the combined salary per hour of a qualified field officer and a non-qualified 

field assistant. To reflect real-world security and work efficiency considerations, we 

assume that a field team is composed of at least two people: one qualified field officer 

(i.e. researcher, park ranger) who can work independently setting up camera-traps, 
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and a non-qualified field assistant (e.g. guide, tracker) who cannot set up camera-traps 

independently. The camera-traps may need to be checked more than once during the 

survey, hence the factor multiplying ܪ௖, where ݖ is the time interval in days between 

maintenance checks (we use ہǤ  to denote that the term ۂ
௄ை௭  is rounded down to the 

nearest whole number and minus the last sampling occasion as that cost is included in 

retrieval). In addition, if ܸ௬ ൌ ௩ܸ, then a term must be added to eqn 6 to account for 

fuel costs ஽ೞி೗ி೐  , where ܨ௟ is the fuel cost per litre and ܨ௘ is the fuel efficiency (km/l).  

 

Field logistics cost ܥଶ includes costs associated with travel from accommodation in 

the vicinity of the fieldwork region to the survey area and daily consumables (e.g. 

meals, break times). Before we can determine this value, we need to consider the total 

number of days working at a SU across the duration of the survey and then sum the 

daily fuel, food, and salary costs. First we compute the number of days spent working 

at a particular SU: 

ௌ௎ܪ ൌ  ቄு೔ାுೝାቔ಼ೀ೥ ିଵቕு೎ቅሺௐି஻ሻா  eqn 7, 

which includes amount of actual working time (hours) (from eqn 6) corrected for 

efficiency and net available work time during a particular day. W is the number of 

hours in a working day. B is the number of hours per day spent travelling and taking 

breaks, which we calculate as ͳ ൅ ௧ܦ ௠ܸΤ , where ܦ௧ is the daily return distance 

travelled between the field accommodation and survey area and ௠ܸ is the travel speed 

on a motorway or main road plus a break for an hour for lunch and rest. E is the 

estimated efficiency given normal field setbacks (a factor from 0 to 1). We can now 

compute the field logistic costs as: 
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ǡܭଶሺܥ ݊ሻ ൌ ܷܵܪ  ቄ݁ܨ݈ܨݐܦ ൅ ܩ ൅  ,ቅ eqn 8݉ܤ

where G is the cost of food and daily consumables, m is the combined salary of the 

fieldwork team members and 
஽೟ி೗ி೐  is the fuel cost to the survey area.  

 

Camera-trap equipment cost ܥଷ accounts for the expenditure related to purchasing 

camera-traps, batteries and memory cards:  ܥଷሺ݊ሻ ൌ  ,௔  eqn 9ܥ݊

where ܥ௔ is the cost of a single camera-trap unit, with its memory card plus batteries 

for the entire survey. 

 

Post-survey image processing cost ܥସ is calculated as:  ܥସሺܭǡ ݊ሻ ൌ ௡ήூ೏ή௄ήைήூ೎ூ೓  eqn 10, 

where ܫௗ is the average number of images taken by a camera-trap per day, ܫ௖ is the 

cost per hour of a trained researcher to process images and ܫ௛ is number of images 

processed per hour (including the identification of species and data entry into a 

database).  

 

2.3.3. Linking survey costs to estimator precision  

To evaluate survey design trade-offs, we need to link survey costs to estimator quality. 

This way we can identify the most cost-efficient survey effort allocation to achieve a 

given level of precision (or, alternatively, identify the best way to allocate a given 

amount of effort to maximize estimator precision). MacKenzie & Royle (2005) 

provide the following approximation for the variance of the occupancy estimator, ȥ: 



Chapter 2. Cost-efficient camera-trap occupancy surveys 
 

76 
 

ሺɗሻݎܽݒ  ൌ நௌ ቄͳ െ ɗ ൅ ଵି௣כ௣ିכ௄௣ሺଵି௣ሻ಼షభቅ  eqn 11, 

where p is the probability of detection in a sampling occasion at a SU where the 

species is present, and כ݌ ൌ ͳ െ ሺͳ െ  ሻ௄ is the cumulative probability of detection݌

after K sampling occasions. For our camera-trap survey scenario, the probability ݌ refers to the combined detectability of the ݊ camera-traps per SU. Assuming 

independence among the cameras, we have: ݌ ൌ ͳ െ ሺͳ െ  ,ଵሻ௡  eqn 12݌

where ݌ଵ is the probability of detection with a single camera-trap. 

 

The variance in eqn 11 reflects the precision that we can expect in our estimation of 

occupancy, and is a function of the number of SUs ܵ, number of survey occasions ܭ 

and number of camera-traps per site ݊. From eqn 3, and excluding fixed costs, we can 

write the number of SUs as: ܵ ൌ ஼೅஼ೡ  eqn 13. 

 

By substituting S of eqn 13 into eqn 11 we are able to relate survey design (i.e. S, K, 

n) and estimator precision (i.e. var(ȥ)) to total costs as follows:  ்ܥ ൌ ந஼ೡ௩௔௥ሺநሻ ቄͳ െ ɗ ൅ ଵି௣כ௣ିכ௄௣ሺଵି௣ሻ಼షభቅ eqn 14, 

and from here then calculate the required number of SUs within eqn 13. 

 

2.3.4. Final cost: standard design and vehicle hire. 

Equations 13 and 14 provide us with the number of SUs required for estimator 

precision. We assume a standard design where all SUs are surveyed for the same 
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amount of sample occasions across the duration of the survey (MacKenzie et al. 2006). 

For simplicity we assume that cameras are installed simultaneously in the survey area. 

In some circumstances the number of SUs which need to be surveyed (eqn 13) might 

exceed what is feasible with just one field vehicle (a fixed cost) which we assume can 

only accommodate the transportation of two field teams (four individuals). The 

employment of extra teams does not affect C1, C2, C3, C4 because these are calculated 

on a per SU basis. Nevertheless, it does impact on the number of field vehicles 

required to move multiple field teams around the study area to achieve a standard 

design. We therefore incorporate this into the cost-function as vehicle hire, rather than 

purchase, and treat it as a variable cost. For simplicity, we assume that the amount of 

time between the first and last visit to a camera-trap (for i, c or r) can be estimated as 

a proportion of  ܮ௠௔௫. For example, to achieve a standard design where all SUs are 

sampled simultaneously there might be a need to limit the time between the first and 

last camera installation to no more than 10 days. We can then determine the total 

amount of fieldwork days L as:  ܮ ൌ ௜ܮ௠௔௫ሼܮ  ൅ ቔ௄ை௭ െ ͳቕ ௖ܮ ൅  ,௥ሽ  eqn 15ܮ

 

where ܮ௜, ܮ௖ǡ and ܮ௥ are defined a priori proportions of  ܮ௠௔௫ – based on some 

management criteria - which ensure that all SUs are simultaneously surveyed for the 

same amount of time over the duration of the survey.  

 

First we need to determine the number of field teams needed to comply with L. The 

number of additional teams ܳ will reduce fieldwork days by 2+Q, where two accounts 
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for the number of teams with an existing field vehicle. We can express compliance of 

restrictions with: ܮ ൌ ௌήଵǤଵ଺ήுೄೆଶାொ  eqn 16, 

where S is the number of SUs determined from eqn 13,  ܪௌ௎ is the days spent at each 

SU (eqn 9) multiplied by 7/6 (1.16) to realistically include 1 day of rest per 6 days of 

work.  

 

From eqn 16, we can estimate the number of field teams needed by solving for Q: ܳ ൌ ௌήଵǤଵ଺ήுೄೆ௅ െ ʹ    eqn 17 

where the solution is rounded up to the nearest whole number when Q >0. When Q<0, 

the solution is set to 0 because extra field teams are not required.  

 

Hence final costs ܥி can be expressed as:  ܥி ൌ ்ܥ  ൅ ொଶ  ,eqn 18    ܮܬ

where  ்ܥ are total costs (eqn 14), Q/2 is the number of extra vehicles and J is the cost 

of vehicle hire per day. 

 

2.3.5. Cost function parameterization 

We parameterized our cost function based on information acquired from experienced 

camera-trap surveyors (e.g. researchers, wildlife managers, park rangers, postgraduate 

students) via an online quantitative questionnaire with closed questions. The 

questionnaire consisted of seven sections (Appendix 2.S3 in supporting information) 

relating to respondents general experience conducting camera-trap surveys, time spent 
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on various fieldwork operations, costs associated with fieldwork operations, costs of 

survey equipment and transport, post-survey processing of camera-trap data, and 

experience of conducting occupancy modelling using camera-trap data. A pilot 

exercise was carried out with seven initial respondents and, with no major 

modifications required to the questionnaire their responses were retained and included 

in the sample. The questionnaire was available online for 30 days between April and 

May 2015 via the Bristol Online survey platform (© University of Bristol). A link to 

the questionnaire was distributed in an opportunistic manner via several camera-

trapping forums, social media groups, as well as being sent directly to authors of 

camera-trap surveys published in journal articles. All cost values and currency 

provided by respondents were converted to US dollars using an online currency 

converter (http://www.xe.com). We parameterized our cost function with the means 

(or medians when outliers were prevalent) of the values recorded for each parameter 

(Appendix Table 2.S1 in Supporting Information). Appendix 2.S2 provides R code of 

the cost function with the parameters used which also allows for the parameterization 

for specific case studies. 

 

2.3.6. Survey design trade-off evaluation: hypothetical parameter values 

for species 

We applied the methods above (eqn 14 and 18) to assess survey effort trade-offs for a 

range of hypothetical species camera-trap survey scenarios. For this purpose, we 

chose the occupancy estimator quality target of var(ȥ) = 0.0056, which corresponds 

to a standard error of 0.075 in occupancy estimates. We deemed this as a reasonable 

general survey target for hypothetical species. We considered three levels of home 
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range size values, R = 3, 10 and 30 km2, to represent small (2-6 kg), medium (10-15 

kg) and large (>25kg) species respectively (Gittleman & Harvey 1982; Swihart, Slade 

& Bergstrom 1988). Within each of those home range size levels, we evaluated all 

combinations of occupancy ȥ and detection p probability based on the values 0.10, 

0.25, 0.5, 0.75 and 0.90. All detection probability values refer to p1 (eqn 12) which 

refers to the detection at one camera for one sample occasion. This range represents 

rare (ȥ <0.25) to common (ȥ > 0.50) species. Similarly, for detection, the values 

represent elusive (p <0.1) to conspicuous species (p >0.5). The number of days 

considered a sampling occasion was set at five, informed by our questionnaire results. 

 

For each scenario, we assessed survey costs for increasing number of sampling 

occasions K and independent camera-traps n per SU. Based on our questionnaire 

results (Table S1), we considered up to four camera-traps per SU and limited our 

evaluation of K to a maximum of 20, to keep total survey length below 100 days (ܮ௠௔௫ 

=100) which is within the average and mode of camera trap surveys conducted by 

users (Table S1). To ensure costs represent a standard design we used eqn 18 and set 

the proportion of ܮ௠௔௫ for i, c and r at 0.1, 0.15, and 0.30 respectively. Meaning that, 

for example, installation (i) of all cameras occurs in an amount of time equal to no 

more than 10% of  ܮ௠௔௫. We considered travel between SUs both via vehicle ௩ܸ and 

walking ܸ ௪ to examine the impact of this decision. Any survey that uses a mixture of 

these transport types would result in intermediate values as walking and vehicle travel 

represent the two extremes of a continuum. In total, 150 survey scenarios were 

compared (i.e. ȥ, p and R). We then identifyed which pair of K and n results in 

minimum cost and, for all other combinations, calculated how many times greater the 
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cost was compared to the minimum. For illustrative purposes, we classifyed these 

quantities into five categories: i) 1-1.5; ii) 1.5-2; iii) 2-3; iv) 3-5; and, v) over 5 times 

greater than minimum cost (Fig. 1 and 2). We excluded combinations of n and K 

where the required number of SUs to survey exceeded 400 as, in general, this would 

be logistically unrealistic. To evaluate the effect of p on cost per SU under different 

ȥ scenarios, we ploted the cost per SU of the identified minimum costs. All models, 

analyses and graphics were conducted with R version 3.2.0 R Core Team (2015). 

 

2.3.7. Worked examples for three case study territorial mammals  

To provide working examples for territorial mammals, we applied the cost function 

to three threatened carnivores that have been the focus of camera-trap occupancy 

surveys and represent proximate values of home range size R evaluated in the cost 

function (i.e. 3, 10, 30 km2): guiña (Leopardus guigna) (home range = ~3 km2) (E. 

Schüttler unpublished data), marbled cat (Pardofelis marmorata) (home range = 11.9 

km2) (Grassman et al. 2005), and sun bear (Helarctos malayanus) (home range >15 

km2) (Te Wong, Servheen & Ambu 2004). All three species are associated with forest 

habitat, are threatened or data deficient, and have occupancy and detection probability 

estimates, for one camera trap, available in the literature (Linkie et al. 2007; Johnson, 

Vongkhamheng & Saithongdam 2009; Gálvez et al. 2013). We ran the cost function 

using levels of occupancy, detection probability and the number of days considered a 

sample occasion reported in the cited studies. All other parameters of the cost function 

were kept fixed.  
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2.3.8. Independence of detection histories within SUs: the guiña study 

case 

To provide an empirical example of an evaluation of independence between multiple 

camera-trap capture histories – an assumption of eqn. 12 of the cost function – we 

interrogate the guiña case study in more detail, using data from a camera-trap survey 

which has been conducted in the temperate forest ecoregion of southern Chile 

(39º15´S, 71º48´W) (N. Gálvez unpublished data). A total of 145 SUs (4 km2) across 

agricultural land were randomly chosen from 230 potential SUs, each equivalent to 

the mean observed guiña home range size (Minimum Convex Polygon 95% mean = 

270 ±137 ha; Schüttler et al. in review). We conducted a total of four survey seasons 

(summer 2012, summer 2013, spring 2013, summer 2014), with two camera-traps 

installed per SU (mean distance apart =230 m ±182 SD) for 20-24 days. Sampling 

occasions were set to two-day blocks because individual cats do not stay longer than 

this in one place (Schüttler et al. in prep), meaning that each SU was surveyed for 10-

12 sampling occasions.  

 

To assess independence, we estimate a Jaccard similarity index for each pair of 

camera-traps in an SU via the detection and non-detection history for each sampling 

occasion (i.e. a binary response of “11, “01” or “10”). The Jaccard similarity 

coefficient was applied as we are interested in assessing similarity in detection within 

a SU; non-detections pairs (00 histories) were thus removed for analysis. Distance 

between each pair of camera-traps, and whether or not they were placed within 

contiguous habitat, were plotted against the index for each season.  
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2.4. Results 

The online questionnaire was completed by 53 respondents with experience in 

conducting camera-trap surveys in 35 countries, spread across all continents. 

Respondents had, on average, completed six camera-trap surveys (SE = 0.68), and 

most had finished their last survey during 2014. Out of the 28 parameter values 

included in the cost function, 20 were derived from the questionnaires (Table S1 in 

supplementary information).  

 

2.4.1. Trade-off evaluation: hypothetical species 

Our evaluation reveals that, for both types of transport (vehicular and walking) 

between SUs and across all ȥ-p scenarios, the combinations with fewest (K <3) 

replicate survey occasions and lowest number of camera-traps per SU (n <2), led to 

unrealistic solutions due to the large number of SUs required (>400) (Fig. 2.1 and 2. 

2). Minimum cost for walking-based surveys are ~20% more expensive than those 

using a vehicle, when comparing ȥ-p scenarios at each home range size. The 

expenditure per SU of minimum cost combinations decreases as detection probability 

rises for both types of transport between SUs and ȥ scenarios (Fig. 2.3). The highest 

cost per SU is at low p but with large variation. Across all ȥ scenarios, minimum costs 

per SU fell to ч500 USD per SU when p is >0.25, and variation was negligible after 

mid p (i.e. <0.5). Highest cost at low p is driven mainly by the number of SUs, hence 

camera trap equipment costs, needed for statistical precision. 

 

 



 

 
 

 

Figure 2.1 Cost (US dollars) of different camera-trap occupancy survey effort allocations, assuming vehicular transport is employed 

between sample units (SUs). Each tile represents a combination of number of sampling occasions K and number of camera-traps n per SU. 
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Tile colour reflects the cost required to achieve a target statistical precision (S.E. =0.075) in occupancy estimates (ȥ) for any given 

combination of home range size (3, 10, 30 km2), occupancy and detection (p) probabilities. All detection probability values refer to p1 (eqn 

12) which refers to the detection of one camera for one sample occasion. Costs are shown in relative terms, benchmarked against the cheapest 

combination indicated in blue: 1-1.5, green; 1.5-2, olive; 2-3, yellow; 3-5, light orange; >5 times greater, orange. Maximum number of K 

considered was 20 (assuming that each occasion is five days long and a maximum possible survey length is 100 days). 
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Figure 2.2 Cost (US dollars) of different camera-trap occupancy survey effort allocations, assuming the distance between sample units is 

walked. For details regarding the figure arrangement, please refer to the legend for Figure 1. 
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In general, and relative to each ȥ-p scenario, particularly expensive combinations are 

more frequent at high levels of K and n, predominantly where p and home range are 

greater in size. Cheaper cost combinations tend to be less frequent for larger p values 

and become progressively more restricted in range as ȥ increases, particularly for the 

10 and 30 km2 sized home ranges. Between ȥ scenarios, values of minimum cost are 

highest at mid ȥ (i.e. 0.5) and decrease towards 0.1 and 0.9 levels for both types of 

transport. In all ȥ-p scenarios, the values of minimum cost rise with increasing home 

range size. Indeed, at p levels of 0.1 and 0.25, the largest home range scenario is on 

average 4.7 (SD =1.5) times more expensive to survey than the smallest. This is in 

comparison to the largest being 1.5 (SD =0.5) more expensive than the smallest home 

range size scenario for higher p levels (i.e. >0.5). Within each ȥ scenario, minimum 

cost is negatively associated with detection probability, meaning that low p is the most 

expensive level. Low p, at each ȥ scenario, is 4 (SD =0.9), 10 (SD =β) and β1 (SD 

=6.4), times more costly than high p at 3 km2, 10 km2 and 30 km2 home range size 

respectively. Generally, the K required for minimum cost combinations decreases as 

p increases across all scenarios.  
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Figure 2.3 Range of costs (US dollars) per sample unit (SU) for all minimum cost 

occupancy (ȥ) and detection (p) probability combinations. Both type of transport 

between SUs (walking and vehicular) are compared. 

 

When multiple camera-traps are deployed per SU, minimum cost combinations occur 

for scenarios with the largest home range size and at higher ȥ, and result in the most 

efficient design in 38 of the 150 scenarios tested, all for either 10 or 30 km2 home 

range sizes (Fig. 2.1 and 2.2). At high ȥ and low p, all minimum cost combinations 

are reached with multiple camera-traps across all home range sizes and travel types. 
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At 30 km2, multiple camera-trap solutions were best across all ȥ scenarios where p 

<0.75. Across ȥ-p scenarios, cheaper combinations were, in general, reached at lower 

K than the specific minimum cost combination, but with multiple camera-traps. 

 

 

Figure 2.4 Camera-trap occupancy survey effort scenarios and combinations for three 

threatened case study carnivore species: guiña (Leopardus guigna), marbled cat 

(Pardofelis marmorata) and sun bear (Helarctos malayanus). For details regarding the 

figure arrangement, please refer to the legend for Figure 1. Both walking and vehicular 

transport between sample units are evaluated, as well as various combinations of 

occupancy (ȥ) and detection (p) probability derived from the literature for each 
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species. Guiña (Leopardus guigna): 3 km2 home range (Schüttler et al. in review); 

occupancy and detection parameters with two days considered a sampling occasion 

(Fleschutz 2013). Marbled cat (Pardofelis marmorata): 11.9 km2 home range 

(Grassman et al. 2005); occupancy and detection parameters and five days considered 

a sampling occasion (Johnson et al. (2009). Sun bear (Helarctos malayanus): >15 km2 

home range (Te Wong, Servheen & Ambu 2004), occupancy and detection parameters 

and 15 days considered a sampling occasion (Linkie et al. (2007). 

 

2.4.2. Case study: territorial mammals 

Scenarios for the case study species illustrate the broad trends obtained for the 

hypothetical species, such as higher costs being associated with larger home range size 

and lower p, as well as reduction in required K with an increase in p (Fig. 2.4). The 

guiña and marbled cat do not yield minimum cost combinations with multiple camera-

traps, but the opposite is true for the sun bear in most scenarios. Lower cost 

combinations are reached with multiple camera-traps at lower K across all three 

species. 

 

The guiña study case reveals that most capture histories between cameras show no 

similarity (i.e. equal zero) and occur along the entire distance between camera-traps 

gradient (Fig. 2.5a). Histories which demonstrate some level of similarity (i.e. >0.00), 

the majority within an index of <0.5, are concentrated at distances between devices 

<300 m. The similarity index tends to decrease when camera-traps are >300 m apart. 

There is no difference in the similarity index between camera-traps positioned in 

contiguous and non-contiguous forest habitat (Fig. 2.5b).  
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Figure 2.5 Jaccard similarity index of the camera-trap occupancy survey capture 

histories for two devices per sample unit (SU), used when surveying guiña (Leopardus 

guigna) over four seasons. The index is plotted against: (a) distance between camera-

traps (m) within each SU, and; b) whether or not the two devices were set up within a 

contiguous habitat patch in the SU. 

 

2.5. Discussion 

Initial estimates of parameters (i.e. ȥ and p) are key to informing decisions about effort 

allocation in camera-trap occupancy surveys (MacKenzie & Royle 2005; Guillera-

Arroita, Ridout & Morgan 2010). Our work goes further, demonstrating the 

importance of accounting for camera-trap specific costs and species ranging behaviour 

to improve cost-efficiency in survey effort allocation. We have identified cost-

efficient solutions with trade-offs between number of camera-traps within a SU and 

the number sampling occasions, particularly for wide ranging species (i.e. home range 

>10 km2). 
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As established by the more simplistic cost functions already published in the literature 

(MacKenzie & Royle 2005; Guillera-Arroita, Ridout & Morgan 2010), in addition to 

our study, the optimal number of sampling occasions decreases as detection increases. 

This implies that precise occupancy estimates can be obtained with just a few sampling 

occasions for species which are detected easily. However, our results go on to show 

that the difference in the optimal number of sampling occasions between rare (ȥ 

<0.β5) and common (ȥ >0.β5) species is minimal.  

 

In general, highly elusive species (p <0.1) are the most expensive to survey. When 

elusive (p <0.25), rare species (ȥ <0.β5) appear relatively cheaper to survey compared 

to more common ones (ȥ >0.50), given the same target precision for occupancy 

estimation. Indeed, common species are costly to survey where they have occupancy 

estimates of 0.5 or 0.75 and are highly elusive (p <0.1). This pattern arises because we 

chose variance as our metric to represent occupancy estimator quality; the optimal 

number of sampling occasions drives p* (eqn 11) near 1, meaning that the variance 

approximates that of a binomial proportion, which is highest at mid-levels of 

occupancy. Consequently, keeping a given precision target across species type (i.e. 

rare or common) requires a larger sample size at occupancy estimates around 0.5. 

Different precision target criteria for common versus rare species could be used, 

depending on specific goals of the survey such as evaluating the decline of a critically 

threatened species that would need higher precision compared to an abundant species 

of conservation concern which less precise estimates might suffice (Guillera-Arroita 

& Lahoz-Monfort 2012).  
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Improvements in species detectability might mitigate the high cost associated with 

camera-trap occupancy surveys for elusive species. The steep drop in the value of 

minimum cost combinations for detection probabilities 0.1 to 0.25, across all 

scenarios, suggest that it would be worthwhile for practitioners to conduct a pilot 

exercise to test alternative designs with the aim of maximising focal species 

detectability prior to conducting a full survey. For instance, this may involve assessing 

how detection probability is influenced by microhabitat characteristics surround the 

camera-trap position in the SU, prevailing weather conditions (e.g. O'Connell et al. 

2006) or camera-trap settings (e.g. Hamel et al. 2013).  

 

For elusive species with large home range area requirements, it is generally more cost-

efficient to conduct occupancy surveys using multiple camera-traps over fewer 

sampling occasions, irrespective if they are rare or common. This is driven by the fact 

that it is more expensive in terms of extra work (i.e. time and salaries) and travel 

between/within larger SUs to undertake extra sampling occasions. For species with 

small/medium home range sizes and low detectability, a range of relatively cost-

efficient design combinations are available to practitioners, providing flexibility with 

respect to both the number of sampling occasions and camera-traps. Occasionally, 

field survey teams may face certain logistical constraints, such as needing to conduct 

short camera-trap rotations or confine work to periods of favourable weather. This can 

therefore be overcome by adopting an approach where multiple camera-traps are used 

per SU but the overall length of the survey is decreased. Another potential constraint 

which might be faced is the need to reduce number of sampling occasions to ensure 

occupancy modelling assumptions are more comfortably met for a particular species 

(Rota et al. 2009). 
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Our guiña case study shows that achieving independence between multiple camera-

traps positioned within a single SU is feasible for species with a small home range. 

However, we only evaluated the use of two camera-traps, and maintaining 

independence would become increasingly difficult with more devices. Moreover, care 

needs to be taken to ensure that they are not located so far apart that the camera-traps 

in adjacent SUs become too close, and thus loose independence (i.e. between SUs). 

Furthermore, an alternative function could be developed, similar to eqn 12 that relates 

p as a function of n, but accounts for potential dependence between additional cameras. 

All other methods would still apply. 

 

The three case studies evaluated here reveal how our cost function can provide 

practitioners with efficient survey allocation scenarios for surveying territorial 

mammals. For each species there are various trade-offs that warrant consideration, 

depending on the conservation context. For instance, monitoring guiña in agricultural 

landscapes is highly pertinent for the conservation of this threatened species (Gálvez 

et al. 2013), but could also prove cheaper than monitoring in hard to access national 

parks. Furthermore, detection probably is likely to be greater within remnant habitat 

patches in farmland, which will significantly reduce survey length and cost. Our 

knowledge of how marbled cats are distributed across Asia is lacking, and hindering 

conservation efforts (Johnson, Vongkhamheng & Saithongdam 2009). If field 

conditions or logistics constraints mean that survey length must to be kept short, our 

cost function show that there are a wide range of cost-efficient options available, 

centred on fewer sampling occasions and additional camera-traps. Likewise, sun bear 

surveys, which are required in forested areas outside protected lands (Linkie et al. 
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2007), could be most cost-efficient with using multiple camera-traps per SU. One 

important point to note is that our framework is developed for constant occupancy 

models (i.e. with no covariates). In many species-specific cases, practitioners might 

be interested in appraising the effects of environmental covariates or the impact of 

management interventions, which may require sampling more SUs for statistical 

reasons. This would be most expensive for elusive species, due to the costs associated 

with each SU (Fig. 3). Our cost function can be readily incorporated in the evaluation 

of survey design trade-offs for more complex models via simulations. 

 

Worldwide, around 15% of mammal species are data deficient and need urgently to 

have their extinction risk evaluated (Schipper et al. 2008). Our cost function provides 

practitioners with a valuable tool which can be used to inform the design of cost-

efficient camera-trap occupancy surveys, which are required to assess the conservation 

status of potentially threatened unmarked territorial mammals. While the evaluation 

here represents average field survey parameters, as reported by practitioners, it can be 

readily adapted to account for specific survey conditions and objectives. 
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2.8. Supporting Information 

2.8.1. Appendix 2.S1: Table 2.S1 

Table 2.S1. Description of constant parameters used to estimate camera-trap survey cost provided by users obtained from an on-line questionnaire 

and literature reference values. 
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Type Terms Parameter 
Number of 

respondentsa 

Average 

(SD) 
Median Mode Min Max 

Value 

used in 

the cost 

function 

Comments and units 

used in the cost 

function 

User experience 

Experience (years) - 53 5 (3) 4 3 1 15 - For reference use 

Number of completed 

surveys 

- 53 6 (5) 4 3 1 30 - For reference use 

 
Year last survey was 

conducted 

- 53 

 

- 

 

- 

 

2014 

 

2005 

 

2015 

 

- For reference use 

Field operation 

values 

Camera-trap installation 

time (mins) 

I 53 40 (36) 30 30 5 180 0.66 Average hours 

Camera-trap retrieval time 

(mins) 

R 53 15 (10) 15 10 2 45 0.25 Average hours 

 
Maintenance check time 

(mins)  

C 53 13 (11) 10 5 1 60 0.21 Average hours 

 
Time between 

maintenance checks (days)  

Z 32 17 (12) 15 15 1 50 10  

 
Overall survey length 

(days)  

Lmax 45 128 (94) 90 90 30 540 100c  

 
Duration of survey per 

sampling unit (days) 

- 51 58 (56) 45 30 6 300 - For reference use 

 
Time considered a 

sampling occasion (days)  

O 20 7 (5) 6 5 1 15 5 b Mode 
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 Length work day (hours)  W 53 8 (3) 8 8 1 15 8 Average hours 

 
Proportion of time spent 

on setbacks  

E 52 0.16 (0.12) 0.10 0.10 0.00 0.50 0.84 Efficiency =1-average 

 
Walking speed between 

sampling units (km/hour) 

Vw - - - - - - 3.5 Average km/hour 

 
Vehicle speed between 

sample units (km/hour) 

Vy 37 33 (12) 30 20 15 60 33 Average km/hour 

 
Vehicle speed on main 

road (km/hour) 

Vm 40 64 (27) 60 60 20 120 64 Average km/hour 

 Fuel efficiency (km/l) Fe - 8 (0.93) 8 8 6.3 9.7 8d Average km/l 

 

Distance between field 

accommodation and 

survey area (km) 

Dt 36 50 (52) 28 20 3 200 56 Median  km 

           

Field costs 

($USD) 

Salary of trained personnel 

(USD/hour) 

mtp 34 10 (8) 8 25 1 30 10 Average USD per hour 

Salary of field assistants 

(USD/hour) 

mfa 29 4 (4) 2 2 0 16 4 Average USD per hour 

 Food costs (USD/day)  G 44 16 (19) 10 10 1 109 16e Average USD per person 

 Petrol (USD/l) Fl 36 3 (4) 1 1 0 15 3 Average USD per l 

 
Cost of renting field 

vehicle (USD/day) 

J 23 86 (80) 50 50 12 350 86 Average USD per day 
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Camera units 

 

Cost of camera-trap 

(USD/unit)  

Ca 

 

46 

 

350 (214) 

 

257 

 

200 

 

80 

 

931 

 

350f 

 

Average USD per unit 

 

Post-survey 

image 

processing 

Number of images per 

camera-trap 

Id 43 21 (29) 12 17 0 144 21 Average per day 

Images processed per an 

hour  

Ih 29 396 (532) 100 100 4 2000 396 Average per hour 

 
Cost of processing images 

(USD/hour)  

Ic 

 

27 

 

12 (14) 

 

6 

 

16 

 

1 

 

60 

 

12g 

 

Average USD per hour 

 

Other 

Maximum time spent 

installing camera-traps  

(days) 

Li - - - - - - 0.10h Proportion of Lmax 

 

Maximum time spent 

maintaining camera-traps 

(days) 

Lc - - - - - - 0.15h Proportion of Lmax 

 

Maximum time spent 

retrieving camera-traps 

(days)  

Lr - - - - - - 0.30h Proportion of Lmax 

 
Extra buffer area around a 

sample unit (%)  

Į - - - - - - 0.25 Proportion of sample unit 

a) Included for parameter values evaluated via the questionnaire 

b) We use the mode of the criteria used to determine the number of days collapsed into one sampling occasion in occupancy studies 

c) We use 100 days as maximum length of survey which is within the average and mode. 
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d) Based on fuel efficiency figures for Jeep, Land Rover, Nissan, Subaru, Toyota and Suzuki petrol sport/pickup/utility vehicles, made between 1995 and 

2010. Source: US Department of Energy 2015  (http://www.fueleconomy.gov/) 

e) Food cost is doubled in cost function as the field team is assumed to comprise two individuals 

f) Includes the camera-trap, SD card and batteries 

g) Cost of trained personnel paid to identify species and enter data into a database 

h) The maximum number of days between the first and final camera-trap field activity for each operation type (i.e. installation, maintenance and retrieval), 

estimated as a proportion of maximum survey length (Lmax) 
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2.8.2. Appendix 2.S2: R code of the cost function and parameter values used for simulations 

 
buff <- 0.25   # proportion of buffer size / increase of sample unit 

i    <- 0.66   # hours spent installing a camera unit 

r    <- 0.25   # hours spent retrieving a camera unit 

c    <- 0.21   # hours spent conducting a maintenance check to a camera unit 

Fl   <- 3      # cost per litre of petrol   USD/lt 

Fe   <- 8      # fuel efficiency km/lt.   

mtp  <- 10     # salary per unit time (hr) of a trained researcher/personnel 

mfa  <- 4      # salary per unit time (hr) of a field assistant. 

d    <- 0.5    # return distance between cameras within the Sampling unit (km) 

z    <- 10     # number of days between maintenance checks. 

Id   <- 21     # average number of images taken by a camera per day 

Ic   <- 12     # cost per hour of trained personnel to process images 

Ih   <- 396    # number of images processed in an hour 

Ca   <- 350    # unit cost per camera (i.e. camera, batteries, memory card) 

W    <- 8      # total daily working hours 

Vw   <- 3.5    # walking speed (km/hr) 

Vv   <- 33     # vehicle speed within study area.   

Vm   <- 64     # motorway / main road velocity km/hr 

E    <- 0.84   # estimated efficiency given normal field setbacks "0" no time lost to field work problems, "1"  all 

of your time dedicated to normal field set backs 

Dt   <- 56     # return daily distance between field station and survey area 

G    <- 32     # daily cost of food and small field consumables for a team of 2 (minimum per sampling unit) 

J    <- 86     # daily cost of renting vehicle 

Lmax <- 100    # maximum length of survey in days 

Li   <- 0.10   # proportion of time of Lmax restriction designated to installing cameras 

Lc   <- 0.15   # proportion of time of Lmax restriction designated to checking/servicing cameras 

Lr   <- 0.30   # proportion of time of Lmax restriction designated to retrieving cameras 

varpsi <- 0.0056  # target SE of 0.075 

O <- 5 # number of days considered a sampling occasion 

 

 

 



 
 

107 
 

# COST EVALUATION FUNCTION 

getHx<-function(x,n,d,Vw,Vy,D){x*n+(d*(n-1))/Vw + D/Vy}  # eqn 5: for vehicle travel (Vy=Vv and D=Ds);  

                                                         #        for walking (Vy=Vw and D=2*Ds) 

Ctfunction <- function (psi, p, R, K, n, isV=T) {   # parameters that must be defined: psi,p, R, K, n 

  Ds <- sqrt(4*R/pi)*(1+buff) # eqn 1 

  Vy <- ifelse(isV,Vv,Vw)    # component of eqn 5 

  D  <- ifelse(isV,Ds,2*Ds)  # component of eqn 5 

  Cf <- ifelse(isV,Ds*Fl/Fe,0) # component of eqn 6 when vehicle travel between sample units. Cost of petrol. 

  Hi <-  getHx(i,n,d,Vw,Vy,D)  # component of eqn 6 for installation            

  Hr <-  getHx(r,n,d,Vw,Vy,D)  # component of eqn 6 for retriaval          

  Hc <-  getHx(c,n,d,Vw,Vy,D) * {ceiling(K*O/z)-1}  #component of eqn 6 for service checks 

  m  <-  mtp+mfa    # combined salary paid per hour of 1 field team 

  c1 <- Cf + m*(Hi + Hr + Hc)     #eqn 6         

  c4 <- n*Id*K*O*Ic/Ih            # eqn 10    

  c3 <-  Ca*n              # eqn 9  

  B  <- 1 + (Dt/Vm) # non camera processing times   (hr) 

  HSU <- (Hi + Hr + Hc)/(E*(W-B)) # eqn 7 

  c2  <-  HSU*(Dt*Fl/((Fe + G + (B*m)))) #eqn 8 

  pn  <-  1-(1-p)^n   # eqn 12 

  pnn <- 1-(1-pn)^K    # component of eqn  11 (p*) 

  Ct <- ((psi*(c1+c2+c3+c4))/varpsi)*((1-psi) + ((1-pnn)/(pnn-(K*pn*((1-pn)^(K-1))))))  # eqn 14  total cost without 

extra teams 

  S <- Ct/(c1+c2+c3+c4)  #eqn 13 

  Kmax <- ifelse(K*O<Lmax,K*O,F) # L max is set to 100 (eqn 2)   

  L <- Lmax*(Li+Lc*{ceiling(K*O/z)-1}+Lr) # eqn 15. Length of checks corrected for number of checks    

  Q <- max(0,ceiling((S*1.16*HSU/L)-2))   # eqn 17 corrected when Q <0.   

  Jq <- ifelse(Q/2<0,0,ceiling(Q/2))  # component of eqn 18 corrected for two teams per extra vehicle. Equivalent to 

Q/2.  

  CF <- Ct + Jq*J*L  #eqn 18.  Final costs considering vehicle rental for extra teams 

  myfilename<-ifelse(isV,"CostVehicle.txt","CostWalking.txt") 

  return (write(c(psi, p, R,  K, n, Q, Jq, S, Ct, CF, Kmax), file= myfilename, append=TRUE, ncolumns= 11)) 

} 

 

# SIMULATIONS 

## for a range of values of parameters 

psi <- c(0.1, 0.25, 0.5, 0.75, 0.9) 
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p <- c(0.1, 0.25, 0.5, 0.75, 0.9) 

R <- c(3, 10, 30)   

K <- 2:20 

n <- 1:4 

## OR for single parameter values ### 

#psi <- 0.1 

#p <- 0.1 

#R <- 3   

#K <- 20 

#n <- 1 

# simulate through all scenarios 

for (a in psi) { 

  for (b in p){ 

    for (c in R){ 

      for (y in K){ 

        for (j in n){ 

          CostV <- Ctfunction(a, b, c, y, j,isV=T) 

          CostW <- Ctfunction(a, b, c, y, j,isV=F) 

        }}}}} 
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2.8.3. Appendix 2.S3: Online questionnaire 
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3.1. Abstract 

1. Habitat loss and fragmentation as a result of land-use change are key threats to 

the long-term persistence of terrestrial mammals. Furthermore, some 

carnivorous mammals are threatened due to retribution killing by humans in 

response to livestock predation.  

2. We use a multi-season camera-trap occupancy modelling framework to assess 

the dynamics of a threatened felid case study species, guiña (Leopardus 

guigna), over an extensive landscape representing an agricultural-use gradient. 

Data used in the modelling were derived from four seasons of camera-trap 

surveys, remote-sensed images and face-to-face household questionnaires. 

Specifically, we examined how habitat loss, fragmentation and human 

pressures impact the species. Additionally, we investigated the general 

prevalence of illegal retribution killing by householders across the study region 

using Random response technique questioning. 

3. The occupancy dynamics of the case study species were mainly supported by 

Markov chain processes, indicating that the occupancy status of any given 

season depends on the previous one.  

4. The felid is elusive, with a low detection probability. 

5. Guiña can possibly tolerate a high degree of habitat loss as long as the 

landscape is not overly subdivided (i.e. land ownership) and that it may contain 

a high number of remnant habitat patches. Retribution killing, livestock 

predation events and human encounters with the species do not seem to drive 

species decline. 

6. Synthesis and applications. Human-dominated landscapes with large intensive 

farms can have conservation value for elusive carnivorous mammals, as long 
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as an appropriate network of habitat patches exist. Despite previous indications 

that human persecution is a factor contributing to the decline of the guiña, it is 

not the case in the study region. Conservation efforts should therefore be 

targeted towards ensuring remnant habitat patches in agricultural areas are 

retained, rather than investing in campains targeting change in human 

behaviour to mitigate retribution killing. Our study demonstrates the value of 

taking an interdisciplinary approach to assessing the threats to a carnivorous 

mammal, by integrating ecological and social knowledge into a single 

modelling framework. It has allowed us to tease apart the relative importance 

of different potential extinction pressures effectively and make informed 

recommendations as to where future conservation efforts should be prioritised. 

Key-words: Agriculture, camera-trap surveys, conservation, habitat fragmentation, 

habitat loss, human persecution, Leopardus guigna, occupancy dynamics, random 

response technique, retribution killing. 

 

3.2. Introduction 

Land-use change is one of the greatest threats facing terrestrial biodiversity globally 

(Sala et al. 2000). Long-term species persistence is being negatively influenced by 

habitat loss, fragmentation, degradation and isolation (Henle et al. 2004b). The 

impacts of these land-use change processes include, for example, declines in habitat 

specialist population sizes (Bender, Contreras & Fahrig 1998), increased predation 

and mortality due edge effects in highly fragmented landscapes (Lahti 2001), 

increased inter-specific competition between habitat specialists and generalists (e.g. 

Marvier, Kareiva & Neubert 2004) and reduced genetic variation (e.g. Napolitano et 

al. 2015b). In general, species with traits such as a low reproductive rate, low 
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population density, large individual area requirements or a narrow niche are more 

sensitive to habitat loss and fragmentation (Fahrig 2002; Henle et al. 2004a) and, 

therefore, have a higher risk of extinction (Purvis et al. 2000). Consequently, many 

territorial mammals are particularly vulnerable to habitat modification as a result of 

land-use change. 

 

Additionally, in human-dominated landscapes, mammal populations are threatened 

directly by the behaviour of people (Ceballos et al. 2005). For instance, larger species 

(i.e. mammals with a body mass >1 kg) are often persecuted because they are 

considered a pest, food source or a marketable commodity that can be traded 

(Woodroffe, Thirgood & Rabinowitz 2005). Carnivorous mammals are particularly 

vulnerable to retribution killing by people, normally in response to livestock predation 

or attacks on humans, presenting a highly complex management challenge for species 

of conservation concern (Treves & Karanth 2003; Inskip & Zimmermann 2009). 

Indirectly, mammals are also threatened by factors such as the introduction of invasive 

plant species, which reduce habitat complexity (Rojas et al. 2011), or domestic pets, 

which cause direct interference, predation or disease transmission (Hughes & 

Macdonald 2013). 

 

Increasingly and under future land use change scenarios, conservation of carnivorous 

mammals will require novel approaches outside protected areas (Di Minin et al. 2016). 

To mitigate effectively the threats faced by carnivorous mammals in human-

dominated landscapes, through targeted conservation interventions, practitioners and 

policy-makers need to understand the relative contribution that pressures such as 

habitat loss/fragmentation and persecution play in species population declines. This 
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necessitates an integrated and interdisciplinary research approach (Clark et al. 2001). 

First of all, it is important to determine the differentiated impacts of  habitat loss and 

fragmentation on a species, as the conservation actions required to alleviate the 

pressures associated with the two processes are likely to be different (Fahrig 2003; 

Lindenmayer & Fischer 2007). For instance, if habitat loss is the key driver then large 

patches may need to be protected to ensure long-term survival, whereas if 

fragmentation is the main threat then it might be that a certain configuration of remnant 

vegetation is better. Similarly, conservationists must assess whether or not human 

individuals/communities are having a detrimental effect on species populations, as 

well as quantifying the magnitude of the problem (St John, Keane & Milner-Gulland 

2013). Studies which examine human wildlife ‘conflict’ tend to focus on 

understanding: (i) patterns of livestock predation (e.g. Treves et al. 2004; Bagchi & 

Mishra 2006); (ii)  motivations and attitudes towards wildlife via in-depth qualitative 

methods (e.g. Inskip et al. 2014); or, (iii) ways that humans can co-exist with 

carnivores (Sillero-Zubiri & Laurenson 2001; Treves et al. 2006). However, despite 

this valuable body of work, there seems to be a paucity of interdisciplinary research 

that evaluates explicitly both ecological and social drivers of species decline in a single 

coherent quantitative framework, across a geographic scale pertinent to informing 

conservation decision-making and investment (Dickman 2010). 

 

Here we consider how the prime threats to carnivorous mammals may be assessed 

over a human-dominated landscape using the guiña (Leopardus guigna), an 

International Union for the Conservation of Nature (IUCN) Red Listed felid. 

Specifically, we examined how habitat loss, fragmentation and human pressures may 

interact and impact upon this forest dwelling species, using data derived from camera-
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trap surveys, remote-sensed images and questionnaires with householders across the 

study landscape. These factors were then integrated and evaluated within multi-season 

occupancy dynamics models. We argue that by combining such ecological and social 

knowledge, we can ultimately provide a more robust evidence-base for informing 

conservation efforts. 

 

3.3. Methods 

3.3.1. Study system  

The study was conducted in the Tolten catchment of the Araucanía region in southern 

Chile, at the northern limit of the South American temperate forest ecoregion 

(39º15´S, 71º48´W) (Armesto et al. 1998). The system comprises two distinct 

geographical sections common throughout Southern Chile: the Andes mountain range 

and central valley. Land-use in the latter is primarily intensive agriculture (e.g. cereals, 

livestock, fruit trees) and urban settlements, whereas farmland (which occurs < 600 

m.a.s.l) in the Andes is less intensively used and is surrounded by tracks of continuous 

forest on steep slopes and protected areas (>800 m.a.s.l; Fig. 3.1). The natural 

vegetation across the study region consists of deciduous and evergreen Nothofagus 

forest (Luebert & Pliscoff 2006), which remains as a patchy mosaic in agricultural 

valleys and as continuous forest tracts at higher elevations within the mountains 

(Miranda et al. 2015). 
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Figure 3.1 Distribution of landcover classes and protected areas across the study 

region in southern Chile, including the forest habitat of guiña (Leopardus guigna), our 

case study species. We have indicated the two zones within which the 145 sample 

units (SUs: 4 km2 each) were located, with 73 SUs in the central valley (left polygon) 

and 72 in within the Andes (right polygon). The positions of each SU are not shown 

to comply with the ethical guidelines associated with studying illegal human 

behaviour (i.e. guiña is protected by law). Illustrative examples of the variation in 

landscape configuration within SUs across the human-domination gradient are 

provided (bottom of image). 

 

The güiña is the smallest neotropical felid (<2 kg) and is categorised as Vulnerable by 

the IUCN (Napolitano et al. 2015a). The species is nearly endemic to Chile, as it is 
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very scarce within Argentina. It is thought to require forest habitat with dense 

understory and presence of bamboo (Chusquea spp.) (Nowell & Jackson 1996). 

However, the güiña is known to occupy remnant patches of fragmented forest 

remaining within agricultural areas (Sanderson, Sunquist & W. Iriarte 2002; Acosta-

Jamett & Simonetti 2004; Gálvez et al. 2013). The carnivorous felid is protected by 

law but considered as detrimental by rural communites as it can predate on chickens 

and retribution killings have been reported previously (Sanderson, Sunquist & W. 

Iriarte 2002; Gálvez et al. 2013), although the extent of persecution has not been 

formally assessed. Due to these attributes, the species makes an ideal case study to 

explore how habitat loss, fragmentation and human pressures may combine to 

influence the habitat patch occupancy dynamics of a territorial carnivorous mammal 

in a human-dominated landscape.  

 

3.3.2. Survey design 

3.3.3. Case study felid detection and non-detection  

A grid of 4 km2 potential sampling units (SUs) was laid at regular intervals across the 

study region, representing a gradient of forest habitat fragmentation due to agricultural 

use and human settlement below 600 m.a.s.l. The size of the SUs is equivalent to the 

mean observed guiña home range size (MCP 95% mean = 270 ±137 ha; Schüttler E., 

unpublished data). The minimum sampling effort required to achieve statistical 

precision (i.e. S.E. <0.075), in terms of the number of SUs and repeated sampling 

occasions, was estimated following Guillera-Arroita, Ridout & Morgan (2010) and 

using species specific parameter values from Gálvez et al. (2013). A total of 145 SUs 

were selected at random from the 230 in the grid, with 73 and 72 located in the central 

valley and Andes mountain valley respectively (Fig. 3.1). To estimate dynamic 
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parameters for the probability of habitat patches being occupied (colonised) or 

unoccupied (extinct), we conducted multi-season occupancy surveys. The Andean 

valleys were surveyed for four seasons (summer 2012, summer 2013, spring 2013, 

summer 2014), while the central valley was surveyed for three (the latter three 

seasons). Occupancy models provide a flexible framework that can accommodate 

missing observations and thus the missing season (MacKenzie et al. 2006). A total of 

four rotations (i.e. blocks of camera-traps) were used to survey all SUs within a 100 

day period each season. Detection and non-detection data were thus collected for 20-

24 days per SU. Sampling occasions comprised two-day blocks, because individuals 

do not stay more than this time in one place (Schüttler E., unpublished data), meaning 

that each SU was surveyed for 10-12 sampling occasions. Two camera-traps (Bushnell 

™trophy cam β01β) positioned 100-700 m apart were placed near the centre of each 

SU, in forest habitat, with a minimum distance of >2 km between camera-traps of 

adjacent SUs. Camera traps were placed at a height of 30-40 cm and a minimum 

distance 100 cm from detection zone. Most cameras were installed in narrow trails 

within forest fragments.  The detection histories of both camera-traps in a SU were 

pooled. A few camera-trap malfunctions or thefts were treated as missing 

observations. 

 

3.3.4. Habitat loss/fragmentation predictors of occupancy dynamics 

The extent of habitat loss and fragmentation was evaluated using biologically 

meaningful metrics which have been reported in the literature as being relevant to the 

guiña, using either field or remote-sensed landcover data (Table 3.1, Appendix 3.S1 

& Table 3.S1 in Supporting Information). The metrics were measured within a 300 ha 

circular buffer centred on the midpoint between both cameras in each SU. Landscape 
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subdivision was used as a proxy for human pressure and management variability 

(Theobald, Miller & Hobbs 1997; Hansen et al. 2005), based on the number of 

properties or land parcels recorded in each SU (CIREN 1999). 

 

3.3.5. Microhabitat predictors of occupancy dynamics 

The microhabitat surrounding a camera-trap might influence species activity (Acosta-

Jamett & Simonetti 2004), and was therefore surveyed within a 25 m radius around 

each camera-trap, as this is deemed to be area over which localised conditions may 

influence species detectability (Tables 3.1 & 3.S1). Five classes of percentage 

understory and bamboo cover (Braun-Blanquet 1965), and three classes of logging 

intensity and livestock activity, were recorded. In addition, we noted the presence and 

type of water resources during each season. The data from both camera-trap sites in 

each SU were pooled and median used when values differed. 

 

3.3.6. Human encounter/pressure predictors of occupancy dynamics 

We administered a questionnaire face-to-face (N = 233) with residents living in the 

one or two households closest to the camera-traps within each SU, from May to 

September 2013. The aim was to solicit information from residents of the study region 

regarding their socio-demographic/economic background, guiña encounters, the 

extent of livestock predation by guiña, tolerance of livestock predation, ownership of 

dogs on the land parcel and whether they had ever killed a guiña. As it is illegal to kill 

guiña in Chile (Law 19.473 Ministry of Agriculture) the Randomized Response 

Technique (RRT) method was used to ask this sensitive question (Appendix S2 in 

supporting information). Questionnaires were administered by NG who is Chilean and 

has lived in the study region for over 10 years. The questionnaire was piloted with 10 
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local householders living outside the SUs; feedback was used to improve the wording, 

order of questions and time scale that people could remember.   

 

We ascertained the general prevalence of guiña retribution killing across the study 

region via analysis of the RRT data. A total of 1000 bootstraps were conducted to 

obtain a 95% confidence interval. As this cannot be done at the spatial resolution of 

each SU (i.e. RRT provides the proportion of respondents independent of where they 

spatially occur), other variables were used to assess human encounters/pressure 

towards the case study species at this scale (Table 3.1, Appendix 3.S1 & Appendix 

3.S2). When more than one household was surveyed in a SU and responses were 

categorically different (i.e. one household report predation and the other did not) only 

the data from the household that report experiences was kept. When households report 

different values, the median between them was used. For number of dogs the median 

between households was used. 

 

3.3.7. Multi-season models and selection procedure 

The 15 potential model predictors were tested for collinearity and, in instances where 

variables were correlated (Pearson’s or Spearman’sŇrŇ>0.7), we retained the 

covariate that conferred greater ecological/social meaning and ease of interpretation 

(Tables 3.1 & 3.S1). All continuous variables, except percentages because they are 

already in a relevant scale, were standardized to z-scores. 

 

Table 3.1 Habitat loss/fragmentation, human encounter/pressure and microhabitat 

predictors evaluated when modelling occupancy (ȥ,), colonisation (Ȗ), extinction (İ) 

and detection (p) probability parameters of multi-season camera-trap surveys of guiña 
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(Leopardus guigna), an elusive and territorial small carnivore. Further details can be 

found in Appendix 3.S1, 3.S2 and Table 3.S1 in the Supporting Information. 

Parameter Predictor Abbreviation in models 

 Habitat loss/fragmentation  

ȥ, İ, Ȗ Percent of forest cover/habitat Forest 

ȥ, İ, Ȗ Percent shrub cover/marginal habitat Shrub 

ȥ, İ, Ȗ Number of forest patches PatchNo 

ȥ, İ, Ȗ Shape index forest patches  PatchShape 

ȥ, İ, Ȗ Forest patch size areaΏ PatchAreaW 

ȥ, İ, Ȗ Forest patch continuityΏ Gyration 

ȥ, İ, Ȗ Edge length of forest land cover class Edge 

ȥ, İ, Ȗ Landscape shape index of forestΐ LSI 

ȥ, İ, Ȗ Patch cohesionΏ COH 

 Human encounters/pressure  

ȥ, İ Land subdivision Subdivision 

ȥ,İ Intent to kill Intent 

ȥ,İ Predation  Predation 

ȥ,İ Frequency of predation FQPredation 

ȥ,İ, p Frequency of encounters§ FQEncounter 

ȥ,İ Number of dogs  Dogs 

 Microhabitat  

p Bamboo density (Chusquea spp.) Bamboo 

p Density of understory  Understory 

p SU rotation  Rotation 

p Intensity of livestock activity  Livestock 

p Intensity of logging activity  Logging 

p Water availability Water 

†Predictor excluded due to collinearity with percent of forest cover (Pearson’s ŇrŇ>0.7) 

‡Predictor excluded due to collinearity with number of forest patches (Pearson’s ŇrŇ>0.7) 
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§Predictor also fitted with detection probability 

 

We estimated occupancy (ȥ), detection (p), colonisation (Ȗ) and extinction (İ) using 

maximum likelihood and multi-season models (MacKenzie et al. 2006) in the software 

PRESENCE (Hines 2006). Model residuals of detection/non-detection data for each 

season were tested for the existence of spatial autocorrelation using Moran’s I 

(Dormann et al. 2007). We used a fixed band of 3 km from the midpoint of buffers, 

which amounts to an area three times larger than the home range of the case study 

species which we deemed a robust scale for evaluation. 

 

The model selection procedure involved increasing the complexity of models by 

fitting predictors for each parameter separately and evaluating the likelihood 

improvement with Akaike’s Information Criterion (AIC). Models that accounted for 

>0.8 of the AIC weight and were within <β ∆AIC were considered to have substantial 

support (Burnham & Anderson 2002), and thus the predictors were selected and used 

in the next step in a forward manner (e.g. Kery, GuilleraǦArroita & LahozǦMonfort 

2013). Firstly, we investigated whether seasonal dynamics occurred at random, 

followed a Markov Chain process or if there were no changes in ȥ. This allowed us to 

define a base structure that accounted for the seasonal dynamic in competing models 

of habitat loss/fragmentation and human encounters/pressures. Secondly, we fitted 

habitat loss/fragmentation, human encounter/pressures and microhabitat predictors 

(Table 3.1). In order to not over fit the models and risk spurious results (Burnham & 

Anderson 2002), and for comparison, we kept models with only one predictor per 

parameter. 
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Univariate detection models were fitted keeping ȥ, Ȗ and İ constant (e.g. ȥ(.), Ȗ(.), 

İ(.)). Keeping the best p model, we evaluated models that represented habitat 

loss/fragmentation effects on ȥ (Table 3.1), while keeping Ȗ and İ constant. The best 

ȥ and p models were then used to add further complexity to Ȗ and İ probability. For İ 

we fitted all predictors. However, we assumed that Ȗ is influenced by habitat 

loss/fragmentation predictors, not human encounters/pressure because the species 

would be lured to an area due to habitat conditions rather than by lower human 

pressure. We fitted İ followed by Ȗ, and then vice versa, following Kery et al. (2013). 

A constant or null model was included in all candidate model sets. In total 38 candidate 

models were compared to consider all model sets. Only a few models with 

convergence problems or implausible parameters (i.e. very large parameter and SE 

estimates) were eliminated from each model set. The final AIC-best model was 

evaluated for goodness of fit following MacKenzie and Bailey parametric bootstrap 

test for dynamic occupancy models in R package “AICcmodavg” with 5,000 

iterations. The predict function and derived parameter code in UNMARKED (Fiske 

& Chandler 2011) was used to plot significant predictors for each parameter and 

derived ȥ. 

 

3.4. Results 

3.4.1. Habitat loss/fragmentation predictors 

We excluded four habitat loss/fragmentation predictors due to collinearity with extent 

of forest cover and number of patches (Tables 3.1 & 3.S1). Across the study region, 

variation in the degree of habitat loss and fragmentation was substantial. Extent of 

forest cover in SU’s ranged from 1.8% to 76% with a mean of β7.5% (SD= 18.9), and 

shrub cover followed a similar pattern (range: 9.1% to 53.1%; mean= 26%; SD= 
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8.3%). The number of habitat patches per SU varied between 14 and 163, with a mean 

of 52.9 (SD=25.7), and patch shape was diverse, from highly irregular forms at 7.8 to 

less irregular forms at 1.3 (mean= 3.13; SD= 1.3). Some SUs include a relatively high 

length of edge with 48,405 m, whereas others had as little as 4,755 m. Land 

subdivision also presented quite a wide range from 1 to 314 properties with an average 

of 41.3 (SD= 37.2). 

 

3.4.2. Human encounter/pressure predictors and retribution killing 

A total of 233 respondents completed the questionnaire across the study region. The 

majority were between 46 and 67 years old and had lived in their property for 25 to 50 

years (average 35; SE= 0.09). Property sizes were 1-1200 ha in size, with a median of 

29 ha and an average of 98 ha (SE= 0.85). Respondents, on average, received a 

monthly income equivalent to US$ 558 (SE= 2.81) and had received 10 years of formal 

schooling (SE= 0.01). 

 

Reported encounters with the guiña were sparse. Nearly half of the respondents (N= 

116) reported seeing a guiña during their lifetime. On average, the sighting occurred 

17 years ago (SD= 15). However, in the last 4 and 10 years, only 10% and 21% of 

people respectively had encountered the case study species. Predation events were also 

uncommon. Only 16% of respondents (n= 37) attributed a livestock predation event 

in their lifetime to the guiña, with just 7% (n= 16) reporting that this had occurred in 

the past decade. Of the guiña predation events in the last 10 years, 81% (N= 13) were 

recorded in the Andes SUs. The number of people with an intent to kill the case study 

species was greater than those who had encountered it or suffered a livestock predation 

event; 38% (N= 89) of respondents stated that they would kill a guiña if two chickens 
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were predated, increasing to 60% (n= 140) if 25 chickens were predated. Furthermore, 

using the RRT method, we found that the proportion of respondents who had killed a 

guiña was 0.09 (SE= 0.08; 95% CI= 0.02-0.16). 

 

3.4.3. Occupancy dynamics 

During the study, there were 23,373 camera-trap days and 713 sampling occasions 

with detections (season 1=96; season 2= 185; season 3= 240; season 4= 192). The 

naïve estimate of occupied sites (i.e. sites with detection/total sites) was similar across 

all four seasons (0.54; 0.52; 0.58; 0.59) and between the central valley and Andes SU 

(both areas >0.5). No spatial autocorrelation was observed among SUs during any 

survey season, thus a correction parameter was not needed (season 1 I= -0.03 (Į = 

0.74); season 2 I= 0.05 (Į = 0.31); season 3 I= 0.05 (Į = 0.36); season 4 I= 0.07 (Į = 

0.17)). 

 

The seasonal dynamics of the guiña was mainly supported by Markov chain processes 

(model ID 1.0-1.6, Table 3.2), indicating that the occupancy status of any given season 

depends on the previous one. Model 1.1 was chosen as the base structure of the 

modelling procedure because it considers all parameters (i.e. ȥ, Ȗ, İ, p) and is 

supported by AIC. Detection probability in models 2.1-2.7 (Table 3.2) was best 

explained by a positive relationship (ȕ1 0.343; S.E= 0.055) with understory vegetation 

cover. SU rotation within the season was not supported, meaning that the rotational 

design did not affect overall results. Indeed, none of the other predictors for p were 

substantiated by the model selection. Occupancy in the first season (ȥ1) was best 

explained by forest cover (models 3.0-3.6; Table 3.2). Initial occupancy was higher in 

sites with less forest cover but with a minor effect (ȕ1 =-0.0363; SE = 0.0138) and 
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adding shrub cover only improved model fit marginally. Edge type fragmentation 

metrics and land subdivision were not supported as good predictors. 

 

Table 3.2 Multi-season occupancy dynamics models for guiña (Leopardus guigna). 

Detection (p) and occupancy (ȥ) probability were determined using a step-forward 

model selection procedure and Akaike’s Information Criterion (AIC). ∆AIC is the 

difference in AIC benchmarked against the best model, wi is the model weight, K the 

number of parameters, and -2*loglike is the log likelihood. Selected models for each 

parameter are highlighted in bold and included when fitting the next parameter. 

Models ID 1.0-1.6 evaluate seasonal dynamics to define the base model structure for 

the subsequent model selection procedure. We assess whether changes in ȥ do not 

occur (ID 1.6), occur at random (ID 1.5, 1.4), or follow a Markov Chain process (i.e. 

occupancy status of subsequent seasons is dependent on first season) (ID 1.0, 1.1, 1.2, 

1.γ). ȥ1 refers to ȥ in the first of four seasons over which the guiña was surveyed. 

 

ID  Fitted parameter ∆AIC  wi K -2*loglike 

Seasonal dynamics     

1.0 ȥ(.), Ȗ(.), {İ= Ȗ (1- ȥ)/ȥ}, p(season) 0.00 0.443 6 3982.93 

1.1 ȥ1(.), İ(season), Ȗ(season), p(season) 0.36 0.370 11 3973.29 

1.2 ȥ1(.), İ(.), Ȗ(.), p(season)  1.88 0.173 7 3982.81 

1.3 ȥ1(.), İ(.), Ȗ(.), p(.)  6.83 0.015 4 3993.76 

1.4 ȥ1(.), Ȗ(.),{İ= 1- Ȗ}, p(season)  41.78 0.000 6 4024.71 

1.5 ȥ1(.), Ȗ(season),{İ= 1- Ȗ}, p(season)  42.78 0.000 8 4021.71 

1.6 ȥ(.), {Ȗ= İ= 0}, p(season) 104.11 0.000 6 4087.04 

Detection/fitted with ȥ1(.), İ(season), Ȗ(season)    

2.0 p(season+Understory) 0.00 0.9999 12 3934.47 
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2.1 p(season+Bamboo)  18.48 0.0001 12 3952.95 

Occupancy/fitted with İ(season), Ȗ(season), p(season+Understory) 

3.0 ȥ1(Forest) 0.00 0.5515 13 3927.46 

3.1 ȥ1(Forest+Shrub)  1.24 0.2967 14 3926.70 

3.4 ȥ1(PatchNo) 4.00 0.0746 13 3931.46 

3.5 ȥ1(.) 5.01 0.0450 12 3934.47 

3.6 ȥ1(Subdivision) 5.69 0.0321 13 3933.15 

 

Extinction and Ȗ in models 4.0-4.18 and 5.0-5.12 (Table 3.3) reflected the same trends, 

irrespective of the order in which parameters were fitted. Extinction, rather than Ȗ, 

yielded predictors that improved model fit compared to the null model. Where 

predictors of Ȗ were fitted first (models 5.0-5.5), none of the plausible models (i.e. <2 

AIC) improved fit compared to the null model, indicating that it was only explained 

by seasonal differences. Predictors for Ȗ fitted second (models 4.7- 4.18) were better 

supported than the null model. However, this is an artefact of models 4.9-4.17 being a 

reduced fit of the best İ models (5.7 and 5.8). When İ was fitted second (models 5.6-

5.13), it was best explained by the number of habitat patches in the landscape and land 

division (models 5.7 and 5.8). The goodness-of-fit test run on the final model (5.6) 

suggested some evidence of lack of fit when looking at the global metric (P-

global<0.05), but inspection of survey-specific results show no evidence of lack of fit 

for any of the seasons (p > 0.05) except season 2 (p = 0.032). Inspecting the data from 

season 2, we find that the relatively large chi-square statistic value appears to be driven 

by just a few sites with unlikely capture histories according to the model (i.e. < 12). 

Given this, and the fact that data from the other seasons do not show lack of fit, we 

deem that the final model explains the data appropriately.  
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Table 3.3 Multi-season models of extinction (İ), and colonisation (Ȗ) probability, 

using a step-forward model selection procedure and Akaike’s Information Criterion 

(AIC), for guiña (Leopardus guigna). ∆AIC is the difference in AIC benchmarked 

against the best model, wi is the model weight, K the number of parameters, and -

2*loglike is the log likelihood. Selected models for each parameter are highlighted in 

bold. Order of parameter fitting was İ first and Ȗ second, then vice versa. ȥ1 refers to 

ȥ in the first of four seasons over which the guiña was surveyed, with changes in ȥ 

following a Markov Chain process. The models selected for ȥ and p are indicated in 

Table 3.2. 

ID  Order of fitted İ and Ȗ parameters ѐAIC wi K -2*loglike 

Extinction first/ ȥ1(Forest), p(season+Understory)     

4.0 İ(season+PatchNo), Ȗ(season)  0.00 0.4692 14 3920.10 

4.1 İ(season+Subdivision), Ȗ(season) 0.36 0.3919 14 3920.46 

4.2 İ(season+PatchShape), Ȗ(season) 5.15 0.0357 14 3925.25 

4.3 İ(season+Predation), Ȗ(season)  5.24 0.0342 14 3925.34 

4.4 İ(season), Ȗ(season) 5.36 0.0322 13 3927.46 

4.5 İ(season+FQencounter), Ȗ(season) 5.92 0.0243 14 3926.02 

4.6 İ(season+FQPredation), Ȗ(season) 7.24 0.0126 14 3927.34 

Colonisation second/ȥ1(Forest), p(season+Understory)  

4.7 İ(season+PatchNo), Ȗ(season)  0.00 0.1877 14 3920.10 

4.8 İ(season+Subdivision), Ȗ(season) 0.36 0.1568 14 3920.46 

4.9 İ(season+Subdivision), Ȗ(season+PatchShape) 0.79 0.1265 15 3918.89 

4.10 İ(season+PatchNo), Ȗ(season+PatchShape) 1.29 0.0985 15 3919.39 

4.11 İ(season+Subdivision), Ȗ(season+PatchNo) 1.63 0.0831 15 3919.73 

4.12 İ(season+PatchNo), Ȗ(season+Edge) 1.84 0.0748 15 3919.94 

4.13 İ(season+PatchNo), Ȗ(season+Forest)  1.98 0.0698 15 3920.08 

4.14 İ(season+Subdivision), Ȗ(season+Edge) 2.16 0.0638 15 3920.26 

4.15 İ(season+ Subdivision), Ȗ(season+Forest) 2.20 0.0625 15 3920.30 
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4.16 İ(season+Subdivision), Ȗ(season+Forest+Shrub) 3.50 0.0326 16 3919.60 

4.17 İ(season+PatchNo), Ȗ(season+Forest+Shrub) 3.60 0.0310 16 3919.70 

4.18 İ(season), Ȗ(season) 5.36 0.0129 13 3927.46 

Colonisation first/ȥ1(Forest), p(season+Understory)    

5.0 İ(season), Ȗ(season) 0.00 0.3303 13 3927.46 

5.1 İ(season), Ȗ(season+PatchShape)  0.96 0.2044 14 3926.42 

5.2 İ(season), Ȗ(season+PatchNo) 1.55 0.1522 14 3927.01 

5.3 İ(season), Ȗ(season+Edge) 1.89 0.1284 14 3927.35 

5.4 İ(season), Ȗ(season+Forest) 1.95 0.1246 14 3927.41 

5.5 İ(season), Ȗ(season+Forest+Shrub) 3.41 0.06 15 3926.87 

Extinction second/ȥ1(Forest), p(season+Understory)    

5.6 İ(season+PatchNo+Subdivision), Ȗ(season) 0.00 0.8275 15 3913.45 

5.7 İ(season+PatchNo), Ȗ(season) 4.65 0.0809 14 3920.10 

5.8 İ(season+Subdivision), Ȗ(season) 5.01 0.0676 14 3920.46 

5.9 İ(season+PatchShape), Ȗ(season) 9.80 0.0062 14 3925.25 

5.10 İ(season+Predation), Ȗ(season) 9.89 0.0059 14 3925.34 

5.11 İ(season), Ȗ(season) 10.01 0.0055 13 3927.46 

5.12 İ(season+FQEncounters), Ȗ(season) 10.57 0.0042 14 3926.02 

5.13 İ(season+FQPredation), Ȗ(season) 11.89 0.0022 14 3927.34 

 

An increase in the number of habitat patches and reduction in land subdivision resulted 

in lower İ (ȕ1= -0.900; S.E.= 0.451 and ȕ1= 0.944; S.E. = 0.373 respectively; Fig. 3.2). 

Human encounters/attitudes predictors, such as livestock predation occurrence or 

intent to kill, were not supported as extinction drivers (Table 3.3). Occupancy 

estimates were high across seasons with derived seasonal estimates of 0.78 (SE =0.09), 

0.64 (SE =0.06), 0.80 (SE =0.06) and 0.83 (SE =0.06). 
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Figure 3.2 Predicted effects (blue lines) of forest cover, understory density, number 

of habitat patches and land subdivision on multi-season occupancy model parameters 

for guiña (Leopardus guigna). The grey lines indicate the 95% CI associated with the 

parameter values of the final selected model [ȥ1(Forest), p(season+Understory), 

İ(season+PatchNo+Subdivision), Ȗ(season)] where: a) is the estimated occupancy 

probability (ȥ) against forest cover; b) detection probability (p) against understory 

density; c) extinction probability (İ) against the number of patches; and, d) extinction 

probability (İ) against land subdivision. 

 

3.5. Discussion 

The guiña is an elusive forest specialist. As such, one might predict that the species 

would be highly susceptible to both habitat loss and fragmentation (Henle et al. 2004a; 

Ewers & Didham 2006). The uncertainty associated with occupancy at higher levels 

of forest cover (Fig. 3.2) suggests that the guiña is reliant on the spatial extent of 
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available habitat.  However, our results also indicate that the species can tolerate 

extensive habitat loss and can persist in areas with very low forest cover. Telemetry 

studies in the same study area confirm that the species uses permanent territories in 

agricultural landscapes and uses an array of patches of forest habitat (Schüttler E., 

unpublished data). Indeed, results highlight that intensive agricultural landscapes can 

be useful for conservation of the guiña and should not be dismissed as unsuitable. The 

dynamics of occupied and unoccupied sites across the study region are driven by 

fragmentation and human pressure through land subdivision. Ensuring that plenty of 

remnant habitat patches are retained in the landscape, and land subdivision is further 

prevented so that existing large farms are preserved, could ultimately safeguard the 

long-term survival of this threatened felid, rather than only focusing on the protection 

of large patches of habitat in agricultural landscapes or surrounding continuous forests 

in the Andes.  

 

Retributive killing predominately occurs when the felid enters chicken coups (Gálvez 

et al. 2013). Although previous studies have suggested that human persecution may 

be a factor contributing to the decline of the guiña (Nowell & Jackson 1996; 

Sanderson, Sunquist &  Iriarte 2002), retributive killing in the study region and our 

sample units in particular, seems low. Despite the fact that the species occupies a large 

proportion of the landscape across seasons, people rarely encounter the felid and rates 

of reported poultry predation are low. This elusive behaviour is reflected and 

reinforced by the low camera-trap detection probability we reported. However, 

twenty-one respondents (9%) admitted to killing a guiña over the last decade and we 

do not know the quantity of cats killed (i.e. not measured in this study). In addition, 

identification of individual cats from camera-trap images is unfeasible (F. Blair 
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unpublished data), meaning that it is not currently possible to estimate changes in 

abundance through time or conduct population viability analyses. Consequently, we 

were unable to determine whether this low prevalence of retribution killing is having 

a detrimental impact on the population size of the species. However, there is evidence 

that guiña populations have suffered significant population reductions in the recent 

past (Napolitano et al. 2014). Where evidence suggests that retributive persecusions 

may be having an adverse impact on populations, conservation interventions to reduce 

persecution should be of benefit to carnivores, particularly measures which prevent 

females from being targeted (Chapron et al. 2008). Measures particularly aimed at 

deterrents near chicken coups or improvement of the closures should be cost effective. 

Understanding which human attributes might predict killing of a guiña would be 

valuable for informing social marketing campaigns (i.e. to target specific groups or 

behavioural attributes) aimed at altering human perceptions and behaviour towards the 

species and improvement of poultry management practices (Veríssimo 2013). 

 

Following farming trends globally, larger properties in the agricultural areas of 

southern Chile are generally associated with high intensity production, whereas 

smaller farms are mainly subsistence-based systems (Carmona et al. 2010). It is 

therefore interesting, but perhaps counterintuitive, that we found occupancy to be 

higher where land subdivision is lower given the high intensity nature of large farms. 

However, native vegetation in non-productive areas, including ravines or undrainable 

soils with a high water table, is normally spared within agricultural areas (Miranda et 

al. 2015), and these patches of remnant forest can provide adequate refuge, food 

resources and suitable conditions for reproduction for a small carnivores (e.g. Schadt 

et al. 2002). It is likely that a greater number of small farms can increase human 
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persecussion as a result of higher human density (e.g. Woodroffe 2000; Woodroffe & 

Ginsberg 2000) or drive higher pressure on natural resources from an increase in 

households (e.g. Liu et al. 2003). An increase in the number households has been 

shown to reduce the quality of remaining habitat patches as a result of frequent timber 

extraction, livestock grazing (Carmona et al. 2010) and could lead to an increase in 

competition/interference by domestic animals and pets (Silva-Rodriguez, Ortega-Solis 

& Jimenez 2010; Silva-Rodríguez & Sieving 2011, 2012; Sepúlveda et al. 2014). A 

current factor driving the subdivision of land and degradation of remnant forest 

patches across agricultural areas is the growing demand for residential properties 

(Petitpas 2010) facilitated by Chilean law which dictates that land subdivision can 

occur at a minimum plot size of 0.5 ha. Furthermore, it is common practice for sellers 

and buyers to completely eliminate all understory vegetation from such plots (Rios C., 

personal communication), which is a key component of habitat quality.  

 

Our results therefore suggest that land subdivision, and the associated processes 

outlined above, are likely to be the main threat to the guiña in the region at a landscape 

scale. Conservationists should thus engage with householders, land-use planners and 

developers proactively to advocate actions such as lower intensity grazing or 

preservation of remnant habitat patches in the landscape, which will improve 

understory cover and quality. Regulatory guidelines and enforcement may also be 

required (e.g. Hansen et al. 2005). For example, government agencies may need to 

subsidise farmers to fence of some of forested areas on their land. Conservation 

measures such as these should prove to be more effective than investing limited 

conservation resources on retributive killing mitigation when this is deemed of low 

prevalence.  



Chapter 3. Ecological and social threats to carnivores 
 

143 
 

 

This case study highlights the value of using multi-season modelling techniques to 

evaluate and differentiate between the effects of habitat loss and fragmentation by 

contrasting factors that explain occupancy versus changes in status (i.e. extinction, 

colonisation), corrected for imperfect detection of an elusive species. Fragmentation, 

with a high number of forest patches retained in the landscape, is a more important 

predictor of occupancy than the real extent of habitat. Indeed, our findings imply that 

these remnant patches play a key role in supporting this territorial carnivore in areas 

where there has been substantial habitat loss and, perhaps, might even reduce the 

extinction threshold for the species (Fahrig 2002). However, future research should 

also evaluate if the occupancy dynamics shown by the guiña might be expressing 

potential maladaptive behaviour where these remnant patches in agricultural 

landscapes are attractive sinks but might be acting as ecological traps which negatively 

impact reproductive success (Robertson & Hutto 2006). Particularly, there is a need 

to further understand the mechanisms and processes by which human pressures 

increases as land is further subdivided so that detailed guidelines can be provided. 

Furthermore, studies of the effects of habitat loss and fragmentation could be 

confounded by time, and it is possible that we are not yet observing the impacts of 

habitat loss (Ewers & Didham 2006). However, this is unlikely to be the case in this 

study system as over 67% of the original forest cover was lost by 1970 and, since then, 

deforestation rates have been low (Miranda et al. 2015). An important future analytical 

step to support conservation action for the guiña will be to integrate our statistical 

models with spatial landcover data to predict how extinction probability is distributed 

in the landscape (Ewers, Marsh & Wearn 2010) which, in turn, can be used to identify 

habitat networks in need of protection.  
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The research presented here demonstrates the benefits of integrating ecological and 

social knowledge into a single modelling framework to gain a more systematic 

understanding of the drivers of species decline in a human-dominated landscape. It 

has allowed us to tease apart the relative importance of different threats to a 

carnivorous mammal and make informed recommendations as to where future 

conservation efforts should be prioritised over a large landscape.  
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3.8. Supporting Information 

3.8.1. Appendix 3.S1: Generation of the habitat loss/fragmentation 

predictors used to model multi-season occupancy dynamics of 

guiña (Leopardus guigna)  

 

A total of ten habitat loss/fragmentation predictors were chosen for inclusion in the 

analyses, based on various hypothesis related to how habitat factors may influence 

guiña detectability, occupancy, colonisation and extinction probabilities. Landcover 

classification was carried out using a composite of four Aster images at 15 m 

resolution from between 2002 and 2007. Native forest cover within the study region 

did not change significantly between 1983 and 2007 (Petitpas 2010; Miranda et al. 

2015). In addition, the current extent and configuration of forest across the sample 

units (SUs) has not altered perceptibly when compared visually with up-to-date 

Google Earth imagery from 2014. The study region was categorised into nine 

landcover classes (list them here…) using a supervised classification with maximum 

likelihood estimation, based on field data from 738 training points. A further 738 

points were used to verify classification accuracy, which was ‘almost perfect’ (Kappa= 

0.81 (SE= 0.017); (Landis & Koch 1977; Congalton 1991). Image processing and 
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classification were conducted in ERDAS Imagine 2014 (Hexagon Geospatial, 

Norcross, GA, USA) and ArcMap v.10.1 (ESRI, Redlands, CA, USA).  

 

We extracted forest extent, continuity and length of edge as habitat compositional 

metrics (Table 3.1 & Table 3.S1) using FRAGSTATS 4.1 (McGarigal et al. 2002). As 

shrub can be considered a marginal habitat for the guiña (Dunstone et al. 2002; 

Sanderson, Sunquist & W. Iriarte 2002; Acosta-Jamett & Simonetti 2004), we also 

measured the extent of shrub cover to evaluate possible additive effects with habitat 

cover (Table 3.1 & Table 3.S1). Habitat configuration was evaluated using metrics 

such as the landscape shape index (Table 3.1 & Table 3.S1).  

 

We tested all predictors for collinearity. For correlated variables (Pearson’s or 

Spearman’sŇrŇ >0.7), we retained the covariate that conferred greater 

biological/social meaning and ease of interpretation (Table 3.1). Amount of habitat, 

rather than configuration, is highly relevant for species survival (Fahrig 2002) and 

previous research has indicated that this is likely to be true for the guiña specifically 

(Gálvez et al. 2013). We therefore prioritised extent of habitat against other 

compositional metrics (e.g. mean patch size area). All continuous variables were 

standardized to z-scores, except percentage values as they are already in a suitable 

scale.  
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3.8.2. Appendix 3.S2: Generation of the human encounter/pressure 

predictors used to model multi-season occupancy dynamics of 

guiña (Leopardus guigna)  

A total of five human encounter/attitude predictors were chosen for inclusion in the 

analyses, based on various hypothesis related to how human factors may influence 

guiña detectability, occupancy, colonisation and extinction probabilities (Tables 3.1 

& 3.S1). These were derived using a questionnaire (a translated version can be 

requested from the corresponding author).  

 

The questionnaire consisted of six sections. The first part included socio-

demographic/economic questions relating to age, amount of schooling, livelihood 

activities and income. The next section focussed on questions regarding killing wild 

animals, including species with protected (e.g. puma/ guiña) and non-protected status 

(e.g. introduced wild boar). To prevent any bias in responses, our questions included 

all native carnivores known to occur across the study region, as well as free-roaming 

domestic dogs. As killing of protected species is an illegal activity, we employed the 

randomized response technique (RRT) method described in St John et al. (2010; 

2012). A dice was used a randomization tool; respondents were asked to provide a 

truthful answer if they rolled a one, two, three or four, must answer “yes” if they rolled 

a five (irrespective if it is true answer or not) and must answer “no” if the dice landed 

on six. The time period used to provide context to the question was ‘over the last ten 

years’, which was deemed most appropriate after the pilot exercise. Trial runs were 

conducted with non-sensitive questions to ensure rules were understood and being 

followed by the respondents. Special care was taken to ensure that the interviewer 

could not see the number on the rolled dice. 
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The third part of the questionnaire asked respondents to report livestock losses via 

predation over the past year, or an alternative time period they could quantify. In the 

fourth section, participants were probed about their knowledge of whether the hunting 

of each species was permitted or illegal, as well as asking how frequently the species 

were encountered during an alternative time period they could quantify. A fifth section 

aimed to evaluate scenarios of predation with a hypothetical livestock holding of 100 

sheep and chickens. Respondents were asked what behaviour they would display 

towards the carnivores occurring in the study region after a specific level of predation 

(2, 10, 25, 50, >50 sheep or chickens) has been experienced. For sheep predation, we 

assessed the puma (Puma concolor) and domestic dogs (Canis familiaris), and for 

chicken predation we asked about guiña and Harris hawk (Parabuteo unicinctus). 

Respondents were offered a choice of possible actions that fell into the following 

categories: improvement of management through the use of enclosures, calling 

wildlife authorities to alert them to the presence of the species, non-lethal capture and 

handover to the authorities, use of predator deterrents and control via killing. The final 

section centred on the management of livestock, particularly sheep and chickens, in 

relation to behaviour such as enclosing livestock at night, the distance of the closure 

from household, the number of domestic dogs/cats associated with the property and 

how they are managed overnight (e.g. free-roaming, tethered), as well as how often 

they are fed and the type of food they are given. 

 



 

 
 

3.8.3. Appendix 3.S3: Table 3.S1 

Table 3.S1: Description of habitat loss/fragmentation, human encounter/attitude and microhabitat predictors used when modelling 

occupancy (ȥ), colonisation (Ȗ), extinction (İ) and detection (p) probability parameters of multi-season camera-trap surveys of guiña 

(Leopardus guigna). Further details can be found in Table 3.1. 

 

Predictor 
Abbreviation 
in models 

Description  

Habitat loss/fragmentation   

Percent forest cover Forest Area-edge metric that measures habitat loss as the extent of forest cover in a sample unit (0-100). Forest 
cover was obtained by pooling old-growth and secondary forest landcover classes, which are both 
considered to be suitable guiña habitat ((Nowell & Jackson 1996; Acosta-Jamett & Simonetti 2004). 

Percent shrub cover Shrub Area-edge metric that measures the extent of shrub cover in a sample unit (0-100). The spatial 
configuration is not assessed because shrub is a marginal habitat. 

Number of forest patches PatchNo Area-edge metric that measures the number of habitat patches (0-∞).  

Shape index forest patches PatchShape Shape metric that measures the complexity of habitat patch shape compared to a square, weighted for 
the entire landscape. As the index value increases, that habitat patch shape is more irregular (1-∞). 

Forest patch size areaΏ PatchAreaW Area-edge metric that measures mean habitat patch area (0-∞) weighted for the entire landscape. It 
provides a landscape centric perspective of patch structure. 

Forest patch continuityΏ Gyration Area-edge metric that measures habitat patch continuity (0-∞). It can be interpreted as the average 
distance an organism can move within the habitat before an edge is encountered (McGarigal et al. 2002). 
The value increases with greater habitat patch extent. 



 

158 
 

Predictor 
Abbreviation 
in models 

Description  

Edge length of forest Edge Area-edge metric that measures the total length (0-∞) of habitat patch edge across a sample unit. This 
can be used instead of density because we are comparing sample units of the same size (McGarigal et 
al. 2002). The value rises with increasing edge. 

Landscape shape index of forestΐ LSI Aggregation metric that compares the landscape level edge of the habitat to one without internal edges 
or a square (0-100). This is a measure of the level of fragmentation in a sample unit. 

Patch CohesionΏ COH Aggregation metric that measures the physical connectedness (0-1) of habitat cover by measuring the 
aggregation of patches.  

Land subdivision Subdivision Measures the number of land tenure divisions (i.e. owners) in a sample unit (0-∞). We expect higher 
subdivision to represent greater anthropogenic preassure from factors such as logging and presense of 
domestic dogs which were not measured directly in each sample unit (e.g. (Theobald, Miller & Hobbs 
1997; Hansen et al. 2005; Western, Groom & Worden 2009).  

Human encounters/attitudes    

Intent to kill Intent Intent to kill the guiña by households in a sample unit (categorical: yes= 1, no= 0). This measure 
describes a hypothetical response by the respondent to the predation of two chickens. It is a highly 
conservative indicative measure of tolerance to livestock predation before retribution killing is 
considered.  

Predation  Predation Occurrence of chicken predation by the guiña in a sample unit (categorical: yes= 1, no= 0). 

Frequency of predation FQPredation Frequency of chicken predation by the guiña in a sample unit. Predation events were scaled to yearly 
frequency (0-∞). 

Frequency of encounters§ FQEncounter Numbers of encounters householders have had with the guiña, scaled to a yearly frequency (0-∞). 
Frequency of encounters is also used to fit detection probability as a proxy for the elusiveness of the 
species.  

Number of dogs Dogs Maximum number of free-roaming dogs, owned by the household, at night in proximity to the camera-
traps (0-∞). We assume this value to be a conservative proxy to dog activity and an index of 
interference/competition by dogs.  We also fitted extinction probability with free roaming dogs as they 
have been documented to interfere and kill wildlife in Chile (Silva-Rodriguez, Ortega-Solis & Jimenez 
2010; Silva-Rodríguez & Sieving 2012), therefore we included average number of free roaming domestic 
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Predictor 
Abbreviation 
in models 

Description  

dogs of nearby households (from our questionnaire Appendix S3) as a potential source of mortality. 
Because the guiña is mainly nocturnal (Delibes-Mateos et al. 2014; Hernandez et al. 2015) we excluded 
households that restrain dogs at night.  
 

Microhabitat§   

Bamboo density  
(Chusquea spp.) 

Bamboo Bamboo density (Chusquea spp.) within a 25 m radius of each camera-trap, recorded in five categorical 
percentage classes (Braun-Blanquet 1965).  

Density of understory  Understory Understory vegetation density within a 25 m radius of each camera-trap, recorded in five categorical 
percentage classes (Braun-Blanquet 1965).  

SU rotation  Rotation Each SU was included in one of four consecutively sampled rotations of camera-traps during each 
season. 

Intensity of livestock activity  Livestock Livestock activity was visually estimated next to each camera-trap, using three categories (high, medium 
or low intensity, based on signs such as presence of animals, grazed vegetation, trampled paths and 
manure). 

Intensity of logging activity  Logging Logging activity was visually estimated next to each camera-trap, using three categories (high, medium 
or low intensity, based on signs such as active firewood piles, clearings, logging paths, fresh stumps and 
fallen logs). 

Water availability Water The availability of water was recorded as either present or absent at the patch level during each season 
(categorical: yes= 1, no= 0). 

†Predictor excluded due to collinearity with percent of forest cover (Pearson’sŇrŇ>0.7) 

‡Predictor excluded due to collinearity with number of forest patches (Pearson’sŇrŇ>0.7) 

§Predictors fitted only with detection probability at the forest patch level 
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4.1. Abstract 

1. Human activities are driving the extinction of predators. Most species populations 

rely on habitats within human-dominated landscapes because protected areas are 

not sufficient to secure long-term survival. Predators that kill livestock in 

agricultural areas are often killed by farmers, which can have negative implications 

for the both the species and ecosystem integrity. 

2. We assessed the prevalence of predator killing behaviour by farmers for a suite of 

native and introduced predators via a questionnaire. We did this using the 

randomised response technique (RRT), a method designed to pose sensitive 

questions to people, as the killing of carnivores often illegal. Furthermore, we 

evaluated a range of potential explanatory variables which might predict killing 

behaviour.  

3. A total of 233 farmers completed the questionnaire which included sections on 

predator-killing behaviour, knowledge of hunting laws and whether it was 

permissible to kill a predator, encounter rates with predators, the number of 

livestock predated per year, reported behavioural responses to a hypothetical 

livestock predation event and various socio-demographic/economic 

characteristics.  

4. The majority of respondents correctly stated the hunting laws of individual species, 

with the exception of the domestic dog. Reported encounter rates were low for 

felid species, high for canids and birds of prey. Farmers reported that the main 

predators of sheep were pumas and domestic dogs, whilst for poultry it was the 

guiña, foxes and hawks. The proportion of farmers admitting to killing predators 
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was highest for hawks (0.46, SE= 0.08), foxes (0.29, SE= 0.08) and dogs (0.30, 

SE= 0.08). 

5. Knowledge of hunting laws did not explain killing behaviour by farmers, with 

legal protection not acting as a deterrent. Across the suite of predators, killing 

behaviour was predicted by the dependency of a farmer on his land parcel for their 

livelihood, frequency of predator encounters, levels of livestock predation and 

hypothetical behavioural response of killing a predator. However, the combination 

of these predictors that are significant for a species varied. Respondents who 

depend upon agricultural activities for their livelihood and report higher encounter 

frequency were more likely to kill the guiña, the only predator of conservation 

concern in the landscape. 

6. Synthesis and application: Information campaigns focused on hunting laws are 

unlikely to make an important contribution to effective conservation strategies 

within the study region. For the guiña and foxes, interventions aiming to improve 

poultry management might reduce killing behaviour towards these species. For 

hawks, information campaigns highlighting the pest control benefits of the species 

are likely to be more successful. Domestic dogs are contentious predators and 

efforts to advocate responsible ownership should reduce sheep predation and thus 

dog lethal control. Studies such as this, which explicitly assess people’s behaviour 

towards a range of predators across a large geographical area, are a necessary first 

step to developing informed and effective conservation interventions with local 

communities. 

Key-words: agriculture, behavioural intent, carnivores, conservation, illegal 

behaviour, Leopardus guigna, livestock predation, predator control, random response 

technique, retribution killing. 
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4.2. Introduction 

Human activities are driving the unprecedented levels of biodiversity loss we are 

currently experiencing globally (Barnosky et al. 2011). Predators inhabiting human-

dominated landscapes, such as carnivorous mammals and birds of prey, are 

particularly prone to extinction because of their slow life histories (Purvis et al. 2000). 

The anthropogenic threats they face are diverse, arising from activities such as land-

use change, habitat degradation, hunting for meat or trade, and retribution killing after 

livestock predation events or attacks on people (Ceballos & Ehrlich 2002; Treves & 

Karanth 2003; Cardillo et al. 2004; Woodroffe, Thirgood & Rabinowitz 2005; Inskip 

& Zimmermann 2009)).  

 

Historically, human persecution of predators has been responsible for species 

population declines and contributed to extinction events (Woodroffe 2001). Killing 

individual mammals, particularly females, can have profound effects on the long-term 

local persistence of a species (Chapron et al. 2008). Furthermore, eliminating 

predators from landscapes may have knock-on impacts on ecosystem integrity and 

function (Sekercioglu 2006; Bruno & Cardinale 2008; Ripple et al. 2014). Human 

persecution is, therefore, often a focus of conservation interventions.  

 

Understanding what drives a person to behave in a manner that is detrimental to 

conservation efforts, such as the killing of predators, is important if practitioners or 

policy-makers are to develop successful strategies to alter the behaviour or stop it 

occurring in the future. In recent years there has been a proliferation of studies 

examining people’s attitudes towards specific environmental issues. However, these 
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can be misleading because the attitudes people express rarely translate into a 

corresponding behaviour (Herberlein 2012). From a conservation perspective, 

behaviour is evaluated more frequently using social-psychology models that account 

for factors including subjective norms (the social pressures people perceive to engage 

or not in a behaviour) and the level of control people perceive they have over 

performing a particular act (in terms of the required skills or resources), in addition to 

personal beliefs and attitudes (Manfredo & Dayer 2004). Another layer of complexity 

comes from the fact that some conservation relevant human behaviours are also highly 

sensitive or illegal, making them hard to investigate as potential research participants 

may not wish to engage in a study for fear of punishment (St John, Keane & Milner-

Gulland 2013). 

 

In this paper we incorporate the randomised response technique (RRT), a method used 

explicitly to ask sensitive questions, into a questionnaire, with the aim of estimating 

the prevalence of predator killing by people living across an extensive agricultural 

landscape. While such assessments have been conducted in the past on carnivores, 

they have always been relatively localised in their scale (St John et al. 2012; St John, 

Mai & Pei 2014). We examined the proportion of our respondents who have killed 

nine legally protected predators, benchmarking these evaluations to those for three 

species the public is permitted to control via lethal means and free-roaming domestic 

dogs. 

 

Additionally, we determined whether there are particular factors that can used to 

predict whether or not a person will exhibit persecution behaviour across the suite of 

predators. We selected our potential explanatory variables from six categories that 
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represent different hypotheses, supported by existing literature, regarding what might 

drive a farmer to kill a predator: (i) socio-demographics/economics characteristic such 

as age, amount of schooling, livelihood activities and annual household income, as 

these can be associated with attitudes towards predators (Romanach, Lindsey & 

Woodroffe 2007) and behaviour (St John, Edwards-Jones & Jones 2010); (ii) 

economic loss as a result of livestock predation (Treves & Bruskotter 2014); (iii) the 

frequency of opportunistic encounters, which may facilitate the hunting of a predator 

(Sanderson, Sunquist & W. Iriarte 2002; Romanach, Lindsey & Woodroffe 2007); (iv) 

a lack of knowledge of the legal protection policies in place to preserve predators 

(Treves & Karanth 2003); (v) the perceived behavioural control the farmer has to kill 

a predator (i.e. if he/she has the skills and/or resources to carry out the behaviour) 

(Williams et al. 2012; Marchini & Macdonald 2012); and, (vi) behavioural intent, 

which has been used in the past as a proxy for estimating rates of large carnivore 

killing (Marchini & Macdonald 2012) and predation tolerance (Romanach, Lindsey & 

Woodroffe 2007). 

 

The fate of most predators will ultimately depend on management and interventions 

within human-dominated landscapes (Sunquist & Sunquist 2001; Cardillo et al. 2004), 

meaning that an in-depth understanding of the prevalence and drivers of killing 

behaviour is necessary to provide a robust evidence-base for the development of 

effective conservation interventions. Here we examine how killing behaviour can vary 

between species, and the implications this has for mitigation strategies. 
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4.3. Methods 

4.3.1. Study system and sampling 

The study was conducted in the Tolten catchment of the Araucanía region in southern 

Chile, just at the northern limit of the South American temperate forest ecoregion 

(39º15´S, 71º48´W) (Armesto et al. 1998). The system comprises two distinct 

geographical sections common throughout southern Chile: the Andes mountain range 

and the central valley. Land- use in the latter is primarily intensive agriculture (e.g. 

cereals, livestock, fruit trees) and urban settlements, while in the Andes mountain 

agricultural lands become less intensively farmed (i.e. extensive livestock production 

and forestry) and are within narrow valleys surrounded by continuous forest tracks on 

high slopes which also include protected areas (Fig. 4.1). A grid of 4 km2 potential 

sampling units (SUs) was laid across the study region, representing a gradient of forest 

habitat fragmentation due to agricultural use and human settlement below 600 m.a.s.l. 

A total of 145 SUs were selected at random from the 230 in the grid, with 73 and 72 

located in the central valley and Andes mountain valley respectively (Fig. 4.1).   
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Figure 4.1 Landcover classes and protected areas of the study region (Araucanía 

Region of southern Chile). We have indicated the two zones within which the 145 

sample units (SUs: 4 km2 each) were located, with 73 SUs in the central valley (left 

polygon) and 72 in within the Andes (right polygon). The positions of each SU are not 

shown to comply with the ethical guidelines associated with studying illegal human 

behaviour. Illustrative examples of SUs across the gradient are shown (bottom of the 

figures). In each SU one or two households were surveyed. 

 

The questionnaire (Appendix 4.S1 in supplementary information) was administered 

face-to-face with residents living in one or two households per SU during May to 

September 2013. N. Gálvez, who has lived in the study region for over 10 years, 
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delivered all the questionnaires to ensure there were no discrepancies between SUs, or 

any cultural/language barriers with respondents.  

 

4.3.2. Study species 

Our questionnaire focussed on all native predators which occur across the study region 

and will hunt small domesticated ruminants and/or poultry: (i) puma (Puma concolor), 

the largest predator present in Chile and known to predate ruminants (Murphy & 

Macdonald 2010); (ii) guiña (Leopardus guigna) is the smallest wild felid in the 

neotropics with a distribution restricted primarily to Chile and known to predate 

poultry (Sanderson, Sunquist & W. Iriarte 2002; Gálvez et al. 2013); (iii) culpeo fox 

(Lycalopex culpaeus), a canid which will predate both small ruminants and poultry 

(Macdonald & Sillero-Zubiri 2004); (iv) chilla fox (Lycalopex griseus), another canid 

which will predate both small ruminants and poultry (Macdonald & Sillero-Zubiri 

2004); (vi) Harris hawk (Parabuteo unicinctus); (vi) variable hawk (Geranoaetus 

polyosoma); and, (vii) chilean hawk (Accipiter bicolor). All the raptors are known to 

predate poultry (Jimenez 1986). To reduce the bias associated with respondents 

misidentifying species, we treated both canid species as ‘foxes’ and all diurnal birds 

of prey as ‘hawks’ in the analyses. Additionally, we included: (viii) the lesser grison 

(Galictis cuja), reported to predate on poultry (Silva-Rodríguez, Ortega-Solís & 

Jiménez 2007); and, (ix) Molina’s hog-nosed skunk (Conepatus chinga), which is 

considered a nuisance, rather than a predator of livestock. All nine of these native 

predators are protected by Chilean law, meaning that hunting them is prohibited. The 

only threatened species is the guiña (Table 4.2). 
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To examine whether the killing behaviour of respondents alters, dependent on if 

species is legally protected and or not, we also included three introduced species which 

people are allowed to hunt without restriction: (i) hare (Lepus capensis); (ii) rabbit 

(Oryctolagus cuniculus); and, (iii) wild boar (Sus scrofa). Once again, we group the 

hare and rabbit together for analyses and refer to them as ‘lagomorphs’. Free roaming 

domestic dogs (Canis familiaris) are an increasing problem in rural areas as they 

predate not only wildlife (Sepúlveda et al. 2014), but also livestock, especially small 

ruminants (Murphy & Macdonald 2010). Currently, dogs are not mentioned in the 

Chilean hunting law and, as such, they are not legally protected when roaming on 

private lands and ownership of the dog is unknown. We therefore included dogs in our 

survey to evaluate if people behave differently when it is a domestic species, closely 

associated with human activities, that predates on livestock. 

 

4.3.3. Questionnaire development 

The aim was to solicit information from the human inhabitants of the study region 

regarding their socio-demographic/economic background, predator encounters, the 

extent of livestock predation, tolerance of livestock predation, whether a retribution 

killing had ever been undertaken, and ownership of dogs on the land parcel. The 

questionnaire consisted of six sections. The first part included socio-

demographic/economic questions relating to age (years), amount of schooling (years), 

livelihood activities (categorical) and annual household income (continuous). Before 

the data were analysed, the dependency of residents on their land parcel for their 

livelihood was converted into one of three categories: 1= did not depend on their land; 

2= indirectly dependant on agricultural practices but received a salary from 
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neighbouring farms; and, 3= income depended mainly on agricultural activities on 

their land such as growing crops and livestock. 

 

The second part consisted of the questions regarding killing wild animals. Because of 

the sensitive nature of the questions, we employed the randomized response technique 

(RRT) method described in St John et al. (2010; 2012). A dice was used a 

randomization tool; respondents were asked to provide a truthful answer if they rolled 

a one, two, three or four, must answer “yes” if they rolled a five (irrespective if it is 

true answer or not) and must answer “no” if the dice landed on six. The time period 

used to provide context to the question was ‘over the last ten years’, which was 

determined after the pilot exercise. Respondents during pilots stated that these events 

were highly memorable and the time period was deemed most appropriate. During 

questionnaires, trial runs were conducted with non-sensitive questions to ensure rules 

were understood and being followed by the respondents. Special care was taken to 

ensure that the interviewer could not see the number on the rolled dice. 

 

The third part of the questionnaire asked respondents to report livestock losses via 

predation over the past year, or an alternative time period they could quantify and we 

could then convert to an annual measure. The same alternative time period was asked 

for encounters with the predators. In the fourth section, participants were probed about 

their knowledge of whether the hunting of each species was permitted or illegal, as 

well as asking how frequently the species were encountered (number of encounters 

per unit of time). The hunting law in Chile (Number 19.473 of the Ministry of 

Agriculture) – the only official regulatory framework that dictates species under 

protection and sets quotas for species that are allowed to hunt - has been in effect since 
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1991 and there is constant dissemination of the rules via statutory agricultural 

agencies. Domestic dogs are not included in this law, and in practice, they are not 

protected from shooting when in private property. Responses to the questions on 

knowledge of hunting rules were categorised prior to data analysis as follows: 0= 

considered hunting of the species to be prohibited; 1= did not know; or, 2= considered 

hunting of the species to be permitted. 

 

A fifth section aimed to evaluate scenarios of predation with a hypothetical livestock 

holding of 100 sheep and chickens. Respondents were asked what behaviour they 

would display towards the carnivores occurring in the study region after a specific 

level of predation (2, 10, 25, 50, >50 sheep or chickens) has been experienced. For 

sheep predation, we assessed the puma and domestic dogs, and for chicken predation 

we asked about guiña and ‘hawks’. In order not to bias responses, respondents were 

offered a choice of possible actions that fell into the following categories: 

improvement of management through the use of enclosures, calling wildlife 

authorities to alert them to the presence of the species, non-lethal capture and handover 

to the authorities, use of predator deterrents and control via killing. Prior to analysis, 

we grouped scenario responses into three categories of increasing negative behaviour 

towards the predator species: 0= would remain passive and do nothing; 1= would carry 

out some sort of non-lethal or active management; or, 2= would carry out lethal control 

of the predator. To assess if farmers had access to the necessary skills and firearms 

required to hunt predators, we asked participants whether anyone in the household 

participates in sport hunting. 
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The final section centred on the current management of livestock, particularly sheep 

and chickens, in relation to behaviour such as enclosing livestock at night, the distance 

of the enclosure from the household, the number of domestic dogs/cats associated with 

the property and how they are managed overnight (e.g. free-roaming, tethered), as well 

as how often they are fed (meals per unit time) and the type of food they are given 

(categorical). A pilot was carried out with 10 local householders living outside the 

SUs, and feedback from this exercise helped to improve the wording and order of 

questions. 

 

4.3.4. Data analysis 

All data analyses were conducted in R version 3.2.0 (R Core Team 2015). For each 

species, the proportion of respondents who admitted to having killed at least one 

individual was estimated using the Hox and Lensvelt-Mulders model (Hox & 

Lensvelt-Mulders 2004), based on the following parameters: 

ߨ ൌ ߣ െ ݏߠ  

where ߨ is the estimated proportion of people in the sample who have undertaken the 

behaviour, ߣ is the proportion of respondents who said “yes”, ߠ is the probability of 

the answer being a forced “yes”, ݏ is the probability a respondent had to answer the 

question truthfully. A total of 10,000 bootstraps samples were run to calculate 95% 

confidence intervals, accounting for sample and RRT method uncertainty. All 

continuous predictors were z-transformed to standardise the scale of effects. Before 

exploring which of our explanatory variables may predict killing behaviour, we 

checked them for collinearity using a Spearman’s rank correlation coefficient matrix; 

where Spearman’sŇrhoŇ>0.7, one of the two variables was removed from the 

analysis. The RRlog function in the R package RRreg (version 0.5.0) was used to 
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conduct the multivariate logistic regression with the forced response model. For each 

species, we fitted a logistic regression model with the potential predictors of killing 

behaviour and evaluate their significance with likelihood ratio tests (G2).  

 

4.4. Results 

The questionnaire was completed in full by all 233 respondents, who were farmers, 

residing in households across the study region (Table 4.1). Most respondents were 

male (80%), had grown up in a rural area (80%), and live at their property full-time 

(97%). Only one farm was very large in size (1,200 ha), with the median being 29 ha. 

Respondents had 10 years of formal schooling on average, with 50% of people having 

received between 7 and 12 years of education. A high percentage of farmers (82%) 

reported that their dogs were left free to roam at night. The mean number of dogs per 

household was 3 (SE= 0.013; min= 1; max= 28). 

 

Table 4.1 Socio-demographics/economic characteristics and livestock holdings of 

farmers, living within the agricultural landscapes of the Araucanía region in southern 

Chile, who completed our questionnaire (N= 233). 

Socio-demographic/economic 

characteristics 
Mean SE Median Minimum Maximum 

Property size (ha) 98 0.85 29 1 1200 

Time living at the property (years) 35 0.09 35 1 87 

Age (years) 56 0.06 55 22 87 

Amount of schooling (years) 10 0.01 10 0 18 

Household income (USD per month) 558 2.81 341 59 5,934 

No. of small ruminants 14 0.07 10 0 170 

No. of chickens 23 0.09 18 0 120 
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Pumas, guiñas and the lesser grisson are rarely encountered by respondents, whereas 

hawks, foxes and lagomorphs are the most frequently observed species. Indeed, most 

of the farmers report seeing lagomorphs and hawks everyday (Table 4.2). The majority 

of respondents knew how the hunting law related to each species, with the exception 

of domestic dogs (Table 4.2).  

 

The reported predators of sheep were puma (43% of farmers have experience livestock 

loss from the felid), domestic dogs (41%) and, to a much lesser extent, foxes (6%) 

(Fig. 4.2a). The number of sheep killed per year was similar across predators, with 

most respondents stating less than 10 are lost on average. However, there were some 

outliers, where dogs had killed substantial numbers of livestock. The main reported 

poultry predators were hawks (75%), foxes (50%) and guiña (16%) (Fig. 4.2b).  

 

Table 4.2 Knowledge of how the Chilean hunting law relates to each of the predators 

in our study, and frequency of encounters with each species, as reported by our 

questionnaire respondents (N= 233) living within the agricultural landscapes of the 

Araucanía region in southern Chile. International Union for the Conservation of 

Nature (IUCN) Red List status is provided as an indication of conservation status. 

‘Foxes’ refers to both culpeo and chilla foxes. ‘Hawks’ refers to all diurnal birds of 

prey. ‘Lagomorphs’ refers to rabbits and hares. 

Species 

IUCN 
Red List 

status 

Hunting is 
legally 

permitted 

Respondent knowledge 
of legal hunting status 
for each species (%)  

Respondent  
encounters with species 

(per year) 

Correct  
Do not 
know  

 
Mean (SE) Median 

Puma LC No 99 1  1.8 (0.02) 0.2 
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Guiña V No 79 17  0.2 (0.00) 0.0 

Foxes LC No 94 3  41.2 (0.34) 12.0 

Hawks LC No 78 15  204 (0.70) 360.0 

M.H.N. Skunk  LC No 70 20  23.7 (0.21) 12 

Lesser grison  LC No 62 30  2.8 (0.10) 0.0 

Domestic dog - Yes 28 26  81.8 (0.57) 12.0 

Lagomorphs - Yes 77 10  319.0 (0.45) 360.0 

Wild boar - Yes 55 13  6.4 (0.11) 0.0 

 

 

 

 

Figure 4.2 The number of reported attacks to (a) sheep and (b) poultry by predators 

per year, as stated by our questionnaire respondents (N= 233). The survey was 

conducted within the agricultural landscapes of the Araucanía region in southern 

Chile. The percentage of respondents reporting predation by each species is provided 

to left of each respective boxplot. 
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Across all our hypothetical predation scenarios, a significantly larger proportion of 

respondents said they would kill domestic dogs, compared to pumas (Fig. 4.3). 

Furthermore, the proportion of farmers stating that they would kill domestic dogs was 

relatively high (>0.6) across scenarios in contrast to the other predators, although rate 

of increase between low (two livestock loss) and high predation (>25 individuals 

killed) was greatest. For all predators, the proportion of respondents that would kill a 

predator remained constant after 25 animals had been predated. 

 

 

Figure 4.3 The proportion of questionnaire respondents (N= 233) who state they 

would kill a carnivore in response to the number of livestock predated in a hypothetical 

scenario. The survey was conducted within the agricultural landscapes of the 

Araucanía region in southern Chile. The baseline for each scenario was that a farmer 

had a total of 100 sheep or chickens, and experienced losses of 2, 10, 25, 50 and >50 
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individuals as a consequence of predation. The puma and domestic dog are assumed 

to be the sheep predators, whereas hawks and guiña are the poultry predators. 

 

The proportion of respondents who have killed each species varied (Fig. 4.4). For the 

puma, the 95% confidence intervals overlap zero from very low number of “yes” 

responses, suggesting that the behaviour might be either insignificant, non-existent in 

the past decade within our sample. Only a small proportion of farmers report killing a 

guiña, while estimates for domestic dogs, foxes and hawks are greater. There are large 

differences in the proportion of respondents killing species that they are allowed to 

hunt legally; hunting of lagomorphs is widespread, but this is not the case for wild 

boar. 

 

 

 

Figure 4.4 The proportion of questionnaire respondents (N= 233) who report they 

have killed at least one individual for each predator species in the past decade. The 

survey was conducted within the agricultural landscapes of the Araucanía region in 
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southern Chile. The species are grouped according to whether or not killing individuals 

is permissible under Chilean hunting law or not. Confidence intervals were obtained 

from 10,000 bootstraps. 

 

A total of seven potential predictors of killing behaviour were retained after the 

collinear variables were excluded: (i) annual household income; (ii) the dependency 

of residents on their land parcel for their livelihood; (iii) number of chickens; (iv) 

correct knowledge of the Chilean hunting law; (v) predator encounter frequency; (vi) 

levels of livestock predation experience; and, (vii) hypothetical behavioural response 

towards predation of two livestock animals. The five most frequently reported 

predators were evaluated: puma, guiña, foxes, hawks, and domestic dogs (Fig. 4.2) 

 

The predictors of killing behaviour varied depending on the species being examined 

(Table 4.3). For guiña, the probability of respondents having hunted an individual 

increased with dependency on their land parcel for their livelihood and more frequent 

encounters with the species. The former was also true for foxes. Hawk killing 

behaviour was positively related to encounter rate and the hypothetical behavioural 

response. In the case of domestic dogs, farmers were more likely to have hunted and 

killed them if livestock predation levels experienced were high and in line with their 

hypothetical behavioural response.  

 

Table 4.3 Significant predictors (p <0.05) of predator killing behaviour amongst 

questionnaire respondents (N= 233) within the agricultural landscape of the Araucanía 

region in southern Chile. The probability of a person exhibiting killing behaviour was 

estimated using an adapted multivariate logistic regression suitable for forced 
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randomised response technique (RRT) data. For each predator species, a model was 

run with seven predictors: age (years), annual household income (USD), level of 

dependency on their land parcel for their livelihood (categorical), number of chickens 

kept as livestock, correct knowledge of how the Chilean hunting law relate to the 

predator (categorical), frequency of encounters with the predator (encounters/year), 

annual levels of livestock predation by the predator (animals lost/year) and the farmers 

hypothetical behavioural response to having two out of 100 livestock animals killed 

by the predator (categorical). Only significant predictors are shown. 

Species Predictors Coefficient (SE) ѐG2  (p-value) 

Guiña Land parcel dependency  

Encounter frequency 

4.14 (3.35)  

5.37 (4.01) 

5.80 (0.01) 

8.57 (<0.00) 

Foxes Land parcel dependency  0.72 (0.34) 4.91 (0.02) 

Hawks Encounter frequency  

Hypothetical behavioural response 

0.61 (0.30)  

1.07 (0.41) 

4.22 (0.03) 

8.17 (<0.00) 

Domestic dog  Predation level  

Hypothetical behavioural response 

3.60 (1.87)  

2.93 (2.18) 

6.67 (<0.00) 

12.58 (<0.00) 

 

4.5. Discussion 

In general, securing the long-term survival of predator populations in human-

dominated landscapes requires effective conservation interventions (Linnell, Swenson 

& Anderson 2001). Before such measures can be implemented successfully, we must 

first understand what interactions are occurring between people and the species of 
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interest, as well as quantifying the prevalence of potentially detrimental human 

behaviours and gaining an appreciation of what might be driving them.  

 

Over three quarters of our questionnaire respondents knew how the hunting law in 

Chile related to each of the native predators occurring across the study region. The 

two exceptions, where people’s knowledge was incorrect the majority of the time, 

were wild boar and domestic dogs. In both these cases, farmers believed that the 

species was illegal to hunt when, in fact, this is not the case. Our results demonstrate 

that knowledge of the hunting law and how it relates to a predator was not a significant 

predictor of killing behaviour. As such, people are not being compliant and the law 

may not be acting as a deterrent. This apparent disregard of the law is likely to be 

confounded by a lack of on-the-ground enforcement and low (perceived) risk of 

sanctions (Rowcliffe, de Merode & Cowlishaw 2004; Marchini & Macdonald 2012). 

Events where people get prosecuted for killing wildlife in Chile are scarce. While it 

may be impossible to eliminate all illegal human behaviours in a conservation context, 

improving tolerance and encouraging co-existence should be viable. For example, this 

could be mediated through information-based campaigns focused on promoting the 

positive benefits associated with the presence of predators in the landscape, rather than 

just dissemination of the legal situation (Slagle et al. 2013; Bruskotter & Wilson 2014).  

 

Across the suite of predators, killing behaviour occurs where people are more 

dependent on their land parcel for their livelihood, encounters with the predator 

species are greater, predation levels are higher, and/or reflects their hypothetical 

behavioural response. However, the significant predictors did vary between species. 

Farmers who depend on income derived from their property were most likely to kill 
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guiñas and foxes. Poultry production in these farming systems is mostly used as a 

subsistence source of protein, and is not directly related to income (which was not a 

significant predictor), and it appears that these rural households are more likely to 

defend their resources against these predators. For guiña and hawks, the frequency of 

encounters people have had with the species predict past killing acts. The guiña is the 

only threatened predator (Table 2) that is found within the agricultural landscape, and 

it is probable that their low encounter rate explains the relatively low prevalence of 

killing (Fig 4.4). In contrast, hawk encounters are reported as occurring very 

frequently (Table 4.2) and prevalence of killing hawks is substantially higher than for 

guiña (Fig. 4.4). Furthermore, the hypothetical response to predation is a good 

predictor of the killing of hawks and domestic dogs (Fig. 4.3).  

 

Presented with the hypothetical scenario of a guiña predating on chickens, many 

farmers report that they would kill the offending animal, yet this was not a significant 

predictor of actual killing behaviour. This mismatch serves to highlight the negative 

attitudes people have towards the guiña in rural areas (Herrmann et al. 2013). If 

encounter rates were greater, our results suggest that the prevalence of guiña killing 

behaviour may be higher. People normally kill guiñas when caught inside the chicken 

coup (Sanderson, Sunquist & W. Iriarte 2002; Gálvez et al. 2013), so predator 

mitigation strategies should aim to reduce encounters with farmers through improving 

poultry management practices. Particularly night enclosures, for when the guiña is 

most active (Hernandez et al. 2015), are usually made from scrap pieces of wood that 

are easily trespassed by such a small cat (Gálvez & Bonacic 2008).  
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The only species for which reported livestock predation levels predict killings are 

domestic dogs. The hypothetical behaviour response of farmers to predation by dogs 

was the least tolerant across of the species, and was also a significant predictor of 

lethal control. Our findings, combined with anecdotal evidence from informal 

conversations with the respondents suggest attitudes towards domestic dogs in rural 

areas are very negative. Farmers continually mentioned domestic dogs as their main 

livestock predation “problem”. Moreover, they described how people from urban 

settings, mainly from “animal rights groups”, block potential solutions from statutory 

agencies, such as legislation in place which allows them to protect their livestock from 

domestic dogs by lethal control. This reflects the fact that more than two thirds of the 

questionnaire respondents are under the incorrect impression that domestic dogs are 

protected by Chilean hunting laws (Table 4.2). Based on the proportion of individuals 

who report having killed at least one dog in the previous 10 years, it appears that they 

believe or perceive that they have to take matters into their own hands. Policy-makers 

need to address this matter assertively. A comparable situation is found with tigers in 

Bangladesh, where the failure of the authorities to minimise livestock losses and 

human deaths has meant that killing predators has become a socially acceptable 

behaviour (Inskip et al. 2014). The difference here is that free roaming domestic dogs 

are not endangered predators, but are mostly uncontrolled pets from households. It is 

therefore a human-human conflict, given the vast majority of farmers do not tether or 

shut up their dogs overnight. As in other parts of Chile, farmers could become part of 

the solution by campaigning for more responsible ownership (Sepúlveda et al. 2014), 

which could reduce animal cruelty and improve dog welfare, as well as reducing 

livestock losses. 
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Predators will always come into contact with livestock in human-dominated 

landscapes, meaning that some level of predation is inevitable. Strategies need to focus 

on the mitigation of livestock losses by improved management but, most importantly, 

direct them to build tolerance in the farmers who are most likely to kill predators if the 

opportunity arises to do so (Treves & Bruskotter 2014). As shown here, tolerance to 

predation does not seem achievable as a result of disseminating information about 

legal protection. For example, it is likely that tolerance of hawks could only been 

increased through information campaigns which advocate the benefits and importance 

of birds of prey on the dynamics of rodents considered pest populations in agricultural 

land (e.g. Slagle et al. 2013). Involving local communities in the development of 

management strategies and solutions is crucial to fostering coexistence with predators 

(Treves et al. 2006) and a broader understanding of the social and environmental 

complexities of conflict, such as inequality, beliefs, values and land use and 

management amongst others, are needed to foster co-existence (Dickman 2010). 

Studies such as this, which explicitly assess people’s behaviour towards a range of 

predators across a large geographical area, are a necessary first step to developing 

informed and effective conservation interventions with farmers residing in agricultural 

regions.  
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4.8. Supplementary Information 1 

4.8.1. Appendix 4.S1 Questionnaire 2 

Respondent type 
Resident landowner where cameras were installed             (1)_______ 
Non-resident landowner where cameras were installed      (2)_______ 
Neiboring farm where cameras were set up                           (3)_______ 
Resident agricultural worker                                                       (4)_______ 
Other  ______________________                                                (5)_______ 

Questionnaire N°:  

DATE  

GRID ID:  

GENDER  

RRT YES NO  YES NO  YES NO  YES NO  YES NO 

1   3   5   7   9   

2   4   6   8   10   

Have you killed species in the last 10 years? 11   

 3 
INFORMACIÓN DEL HOGAR 

12 What is the size of your property? há      

13 How long have you lived here? Where are you 
originally from? 

 

14 What is your age?                                         

15 What is your level of schooling?  

16 How many children do you have?  

17 Please classify in order of importance for your 

overall income, the following economic 

activities? 

____Crops                   ___ Livestock                  ____Forestry 

____Urban Services                   _____Agricultural services            _____Tourism 

____Subdivision of land  for residential development            _____ Other______ 
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18 What is your average monthly income?  

 4 

Loss of domestic animals due to predation Bovine Ovine Chickens Otras Birds Other 

19 What are your ANIMAL holdings during the year      

20 In the last 10 years, how many animals have you 
lost because of the PUMA?  If higher frequency, 
how frequent? and if further in the past, how many 
and when?  

     

21 Same for the Guiña.     

22 Same for the fox.     

23 Same for the Harris Hawk.     

24 Same for domestic dog.     

25 Same for skunk     

26 Same for weasel.     

27 Other?      

 5 

 
Wildboar Puma Guiña FOX 

HARRIS 
HAWK 

DOMESTIC 
DOG 

SKUNK WEASEL RABBIT 

28 From your knowledge, hunting the 
ANIMAL is prohibited 
(0) DON’T KNOW 
(1) NO 
(2) YES 

         

29 How frequently do you observe (or a sign 
or sound) of this ANIMAL on your 
property? MONTHLY, YEARLY 

         

 
30 

Let’s suppose that you have 100 Sheep  
Let’s suppose that you have 100 Chickens  

(1) Call authorities 
(2) Intent to hunt/kill it 

(4) Scare off 
(5) Nothing 

(6) Observe 
(7) Management 
(8) Nothing 
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(3) Capture and call 
authorities 

2 10 25 50 >50 

31 What do you think you would do if the  PUMA  kills 

X/100 Sheep 

     

32 What do you think you would do if a DOG or group 

of DOGS kills X/100 Sheep 

     

33 What do you think you would do if the GUIÑA  kills 

X/100  Chickens 

     

35 What do you think you would do if the Harris hawk  

kills X/100  Chickens 

     

36 Does someone from your family hunt for sport? Yes______                                           NO______ 

37 Do strangers enter the property to hunt, with or without permission? Yes______                                           NO______ 

38 How frequent? MONTHLY, YEARLY  

39 Do you know what they hunt?  

  Ovine Chickens Others Dogs Cats 

40 How do you keep your animals at night? 
(1) Closed housing 

(2) Open corral 
(3) Open field with dog 
(4) Open field without dog 
(5) Other, how? 

      

41 At what distance do you keep your animals at night? meters       

42 How many DOGS/CATS do you have?     A. B. 
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43 What do you do with your DOGS/CATS at night?  
(1)Closure;           (2) Tied                (3) FREE ROAMING      (0)  
OTHER 

Size of dogs: A. B. 

44 With what do you feed your pet? 
(1) Comercial pellet 
(2) Kitchen scraps 
(3) Mix of pellets/kitchen scarps 
(4) Grain 
(5) Nothing 
(6) Mix of grain/kitchen scraps 
(7) Other 

   Freq. A. B. 

 

6 
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5. Discussion 

 

The aim of this thesis was to contribute to our understanding of the impacts of human 

land-use and behaviour on threatened species. By focussing on a large agricultural 

landscape where land conversion, subdivision of land and further loss of forests are 

current and latent processes, we can inform much needed interventions based on 

evidence gathered at a pertinent scale for a carnivore of conservation concern 

(Ginsberg 2001). Many wild felids are currently declining as a result of anthropogenic 

pressures (Macdonald, Loveridge & Nowell 2010). The guiña (Leopardus guigna), 

listed as Vulnerable on the  International Union for the Conservation of Nature 

(IUCN) Red List, has proved to be an interesting case study to evaluate how habitat 

loss, fragmentation and human behaviour can influence the dynamics of a territorial 

mammal. 

 

It is clear that the interaction of these drivers offers complex lessons. The guiña case 

shows that species that can tolerate unexpected levels of habitat loss, can perhaps 

persist in the landscape if another set of conditions are met. Results of this thesis 

support the idea that there is wide variability in threshold values in terms of percentage 

of habitat cover – level at which a species will not persist or will non-linearly decline 

– and complexity regarding the responses of species at multiple scales and levels of 

human intervention (Lindenmayer & Luck 2005; Fischer & Lindenmayer 2007; Swift 

& Hannon 2010). In this case, it seems dynamics are largely driven by anthropogenic 

pressure from land subdivision and access to multiple patches, rather than by a habitat 

cover threshold value. There is a tendency for species to react negatively to habitat 
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loss, but evidence of the effect of fragmentation has been shown to go both ways 

(Fahrig 2003). In addition, mammals do tend to respond significantly higher to 

landscape level variation than other taxa possibly due to higher mobility (Thornton, 

Branch & Sunquist 2011), which can also compensate for loss of habitat (Swift & 

Hannon 2010). The guiña study case supports the idea that if  a species is not largely 

impacted by habitat loss, possibly due to its mobility, it is the configuration (i.e. 

fragmentation) and human pressure that impacts the dynamics in the landscape. Areas, 

where there is high subdivision of land and many small patches, could be acting as 

ecological traps if source-sink dynamics are operating in the landscape (Robertson & 

Hutto 2006). In other words, individuals may be attracted to highly subdivided areas 

that maintain a suitable habitat configuration, but are exposed to higher anthropogenic 

pressures and thus are more likely to migrate (i.e. leave area unoccupied), experience 

unsuccessful reproduction or are killed by farmers. The prevalence of guiña killing by 

farmers, althought lower than other predators, does show uncertainty as to the impact 

on the population. However, it does predict that encounters with the species are likely 

to result in death. Hence, we might expect that the likelihood of encounters might 

increase as land subdivision increases (e.g. higher density of households); however 

this should be explored in future work. 

 

For conservation actions to be effective, research must be oriented to identify and 

prioritise where efforts should be targeted (Pullin et al. 2013). Occupancy models 

provided higher support for habitat loss/fragmentation variables rather than human 

pressure except for land subdivision. Thus human pressure measured at specific 

households possibly did not pick up specific signals of increased pressure, hence 
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further research must focus on how different threats increase as land subdivision 

increases. Focus on these factors could contribute to further understanding the impact 

of landscape modification on biodiversity (Fischer & Lindenmayer 2007). 

Furthermore, the impact of landscape modification is often species-specific (Fahrig 

2003), hence research of all native and domestic predators as a relevant guild for 

ecosystem processes (Sekercioglu 2006; Bruno & Cardinale 2008; Ripple et al. 2014), 

and how they are influenced by landscape modification, interspecifc interactions (e.g. 

competition) and human pressure, is warranted in order to guide integrated and 

effective conservation plans. 

 

This thesis shows the complexities of conservation threats to a species in a human 

modified landscape. It does offer a view that data collected over time and integrating 

ecological and social data can provide perspective as to where conservation 

interventions may have a larger impact in the face of uncertainty and complexity that 

is intrinsic to biological and human systems. The conservation of many carnivores, 

particularly small wild felids, could greatly benefit from such research (Dickman 

2010). 

 

5.1. Cost-efficient occupancy surveys of territorial mammals 

Carnivore populations are difficult to assess because of their cryptic nature 

(Macdonald 2001). Chapter 2 shows that surveying elusive species (i.e. low detection 

probability) appropriately, in order to gain reliable data on occupancy status, is 

expensive. The cost function provided in the paper gives practitioners and researchers 

a tool with which they can assess trade-offs regarding how many sample units to 
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survey, how long each unit should be surveyed for, and how many cameras should be 

installed to achieve statistical precision and minimum cost. Furthermore, it facilitates 

the analysis of a range of feasible and relatively cheap survey methodological 

scenarios that are available if a project is subject to specific constraints. For example, 

elusive species need to be surveyed for longer, irrespective if a species is common or 

rare, which can be difficult if there are logistical limitations such as a small budget, 

the need for short camera-trap rotations or if the sampling units are not easy to access. 

In circumstances like these, Chapter 2 shows the value of deploying additional 

cameras per sample unit, particularly for species with larger home ranges, as this can 

compensate for the time spent surveying.  

 

To date, research on carnivores has focused mainly on common and large species. 

Indeed, there is a paucity of studies on small to medium carnivores, particularly felids 

(Brooke et al. 2014). A total of 14 threatened felids have had less than 10 studies 

published on them, including the bay cat (Pardofelis badia), black-footed cat (Felis 

nigripes), guiña, andean cat (Leopardus jacobitus), flat-headed cat (Prionailurus 

planiceps) and fishing cat (Prionailurus viverrinus) (Brodie 2009). All these species 

require research to assess their conservation status and ascertain how human activities 

are causing their decline (Macdonald, Loveridge & Nowell 2010). It is my hope that 

the cost function in Chapter 2 will be used in the future to support and develop cost-

efficient surveys to monitor small elusive carnivorous species. 

 

Moreover, the cost function has been developed in R, with the programming code 

being openly accessible, so that it can be adapted and advanced by other researchers. 
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For example, it could be modified to suit camera-trap surveys where the aim is to: (i) 

generate species abundance estimates as individuals can be recognised and mark-

recapture methods applied  (Royle et al. 2009); (ii) use random encounter models that 

can estimate abundance without individual recognition (Rowcliffe et al. 2008); or, (iii) 

estimate relative abundance (i.e. frequency) (Burton et al. 2015). 

 

5.2. Drivers of guiña decline and the identification of future 

conservation priorities 

As shown in Chapter 3, guiñas can occur in areas with a high degree of habitat loss, 

with their dynamics (i.e. changes in occupancy) being best explained by landscape 

level variables such as number of remnant forest fragments remaining and the extent 

of land subdivision into farming properties. Our results suggest, therefore, that guiñas 

can survive and move between forest fragments in agricultural areas. This is not to 

say that habitat extent is not important for the species, but rather that it might have a 

wider niche-breadth than has been assumed previously within the literature, where it 

has been presumed to be a native forest specialist (Sanderson, Sunquist & W. Iriarte 

2002; Dunstone et al. 2002; Acosta-Jamett & Simonetti 2004). 

 

Both Chapters 3 & 4 shows that the prevalence of guiña killing by local human 

communities is relatively low compared to other predators, having less influence on 

the species than landscape modification. Chapter 4 highlights that farmers are most 

likely to kill a guiña if they rely on their land for subsistence or have encountered the 

species more frequently. Nonetheless, the population level impact of this source of 

non-natural mortality could still have unwanted negative effects in the long-run, 
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especially if female individuals are killed (see Chapron et al. 2008), so the situation 

does need to be monitored periodically.  

 

Moving forwards, conservationists must no longer dismiss agricultural areas 

characterised by large farms as unsuitable for the guiña. The continued expansion of 

large-scale farming is a global phenomenon driven by food security, economic benefit 

and technology, from which Chile does not deviate (Deininger & Byerlee 2012). As 

a matter of fact, one of the Chilean government’s principal aims is to become a major 

producer and exporter of agricultural products (Villalobos, Rojas & Leporati 2006). 

This undoubtedly means that the agricultural frontier will expand to the detriment of 

forest habitats (Lambin & Meyfroidt 2011). Conservationists thus need to 

preferentially focus their efforts on protecting remnant habitat fragments in such 

regions wherever possible. For instance, while deforestation rates are low and stable 

across the study region (Miranda et al. 2015), the small remaining patches of forests 

in the flat agricultural areas of southern Chile are continually threatened with 

conversion to pasture or crop land or are degraded/reduced due to logging activity 

(Echeverria et al. 2008). Currently, it is likely that the geophysical characteristics of 

the land, as well as abandonment of unproductive land, is providing the remnant 

patches of suitable vegetation required by the guiña for persistence within agricultural 

regions (Pan et al. 2001; Díaz et al. 2011). Characteristics that prevent economically 

viable land-use conversion include high clay content soil types, high water tables and 

ravines with steep slopes.  

 



Chapter 5. Discussion 
 

200 
 

Conservation orientated land-use policy and planning in agricultural regions should 

promote and incentivise actions, such as lower intensity grazing within remaining 

native patches and the retention of forest fragments, through initiatives such as the 

protection of riparian buffer zones via legal means or payments for ecosystem 

services. Government agencies may need to subsidise farmers to fence off some 

forested areas on their land or to improve livestock management practices. For the 

guiña specifically, a “land sparing” approach where high yield agriculture protects 

remnant habitats from further expansion (Phalan et al. 2011), might be most effective 

conservation strategy. Furthermore, the demand for land subdivision needs to be 

reduced or mitigated, which would probably require the development of regulatory 

guidelines and enforcement (e.g. Hansen et al. 2005)  

 

As demonstrated in Chapter 4, the killing of guiñas by humans can be explained by 

higher encounter rates with the felid. Areas in the landscape where subdivision is 

lower could also reduce the likelihood of people interacting with the species. 

Encouraging local communities to improve poultry enclosures, which are typically 

poorly constructed, could be advantageous and relatively easy to implement by 

holding workshops via farmers associations. These could focus on the benefits of 

predators as a good strategy for tolerance (e.g. Bruskotter & Wilson 2014), given that 

legal protection of most species does not seem to deter people from hunting and killing 

individuals. However, a solid understanding of which species is the most charismatic 

in the eye of the target audience is needed before any significant investment is made 

in such a campaign (Verissimo, MacMillan & Smith 2011). 
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Drivers of species population declines and extinction can act in synergistic, complex 

and sometimes unexpected ways (Brook, Sodhi & Bradshaw 2008). Chapter 3 

identifies the importance of low land subdivision for the survival of the guiña, but it 

is still unclear what factors make the matrix hospitable, or not, and how this might 

vary in response to the number of farm properties within the landscape. For example, 

the spraying of agrochemicals is common practice in large intensively managed farms, 

which could have potential toxic effects on species inhabiting the area (Berny 2007). 

Levels of interspecific competition may also alter as the resident carnivores change 

their patterns of resource-use in modified landscapes (Creel, Spong & Creel 2001). 

For the guiña specifically, assessing co-occurrence with domestic cats could be 

valuable, as the latter is known to transmit deadly or debilitating diseases to the 

already threatened felid (Mora-Cabello 2011). Additionally, an evaluation of the 

potential for hybridisation might be needed, as has been observed between Scottish 

wild cats and domestic cats (e.g. Macdonald et al. 2010), althought genetic distance 

(i.e. different genus between species) might be a providing a natural barrier. 

 

All the conservation measures, research and policy discussed above, particularly for 

large farms which are concentrated along the central valley (Miranda et al. 2015), 

could support existing gene flow between three out of the five geographically and 

genetically distinct guiña management units (Napolitano et al. 2014). The migration 

rates from the Lake District group, which our study region sits within, are significantly 

higher than between other management units (Napolitano et al. 2014). Moreover, 

migration is directed from the Lake District group towards the central and northern 
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groups, which are the most threatened by low genetic diversity (Napolitano et al. 

2014) and climate change (Cuyckens, Morales & Tognelli 2014). 

 

5.3. Final remarks 

There is a paucity of empirical data on the effects of habitat loss and fragmentation 

on carnivores (Sunquist & Sunquist 2001). Furthermore, very few studies integrate 

data on both the social and ecological possible drivers of species population decline 

in a framework. In this thesis, I have done this within a robust and transparent 

modelling framework, allowing us to tease apart the relative importance of different 

threats at a local scale. In turn, this has permitted us to make informed 

recommendations as to where effective conservation efforts should be prioritised in 

the future. The ability of the guiña to survive in intensively farmed areas, and the fact 

that interactions with local communities are infrequent, is good news for the 

conservation of the species. However, there is genetic evidence of significant 

population reductions in the past (Napolitano et al. 2014). The guiña might have lost 

some of its nine lives as a result of anthropogenic pressures, but effective conservation 

informed by high quality research and monitoring should secure its persistence in the 

long-term. 
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