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Hybrid Meta-heuristicswith VNS and Exact Methods: Application to
L arge Unconditional and Conditional Vertex p-Centre Problems
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Centre for Operational Research and Logistics (CORL), Department of Mathematiessitynof Portsmouth,
Lion Gate Building, Lion Terrace, Portsmouth PO1 3HF, UK
“Department of Industrial Engineering, Institut Teknologi Nasional, Bandui@440ndonesia
%Centre for Logistics & Heuristic Optimization (CLHO), Kent Business School,
University of Kent, Canterbury, Kent CT2 7PE, UK
“Department of Information Systems and Decision Sciences, Steven G. Millglgedof Business and
Economis, California State University-Fullerton, Fullerton, CA 92834, USA

Abstract Large-scale unconditional and conditional vertex p-centre problems are solved
using two meta-heuristics. One is based on a three-stage approach whereas the other relies on
a guided multi-start principle. Both methods incorporate Variable Neighbourhood Search
exact method, and aggregation techniques. The methods are assessed on the TSP dataset
which consist of up to 71,009 demand points with p varying from 5 toTkDthe best of our
knowledge, these are the largest instances solved for unconditional and conditiorgb-verte
centre problems. The two proposed meta-heuristics yield competitive results for both classes
of problems.

Keywords Large unconditional and conditional vertex p-centre problems, aggregation,

variable neighbourhood search, exact method.

1 Introduction

The vertex p-centre problem, also known as the minimax location problem, aims to
optimally locate p facilities among n potential sites and to assign demand points to these
facilities in order to minimise the maximum distance between demand points and their
nearest facility. Applications include the location of facilities in emergency services such as
police, fire, and ambulance stations. In the conditional p-centre problem some)(say q
facilities already exist and the objective is to locate p new facilities in addition to the existing

g facilities.A demand pointanbe served by the nearest facility whether it is new or existing.
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This problem is known as the (p) cgentre problem (see Drezner 1998jhen q = 0, the
problem becomes the unconditional p-centre problem (the p-centre problem for short) whose

formulation is given as follows:

Minimise r 1)
Subject to
Y, =1 Viel )
jed
ij =p (3)
jed
Y; -X;<0 Viel,jed (4)
r>Yd(.j)Y, Viel (5)
jed
Xje{01} Vjel (6)
Yij {01} Viel,jed @)
Where

(1,J) :setof demand points/customérs| ={1,...n}) and set of potential sites
(jed={L..M}) (i.e.:n=|I] andm =|3|), respectively
r : the maximum distance between a customer and its closest facility

d(,j) : the distance between customer i and potential site j (Euclidian distance is used in

our study);
p : the required number of facilities;
Y; =1, if customer i is served by a facility at site j and = 0 otherwise;

=1, if a facility is opened at potential sjtand = 0 otherwise;

The objective function (1) is to minimise the maximum distance between a customer and
its nearest facility. Constraints (2) guarantee that each customassigned to exactly one
open facility whereas constraint (3) restricts the number of open facilities to be exactly p
Constraints (4) ensure that customer i can only be allocated to an open facility €.&), X
Constraints (5) define the maximum distance between custoied its closest facility

Constraints (6) and (7) refer to the binary nature of the decision variables.

The p-centre problem is known to N&-hard problem (Kariv and Hakimi 1979). Though
this problem can be optimally solved for medium size instances4(000, p<100), as will
be shown in the computational result section (subsection 5.2), this problem is hard to solve

when the size is relatively large. The p-centre problem may consist of a large number of



customers as well as potential facility sites. For example, a problem which includes
individual private residences as customers may involve several thousands of demand points.
One way to model such a problem is to aggregate customers from n to m points Jrac<< n

the reduced (approximated) problem becomes easier to solve. However, aggregation reduces
the accuracy of the solution. In this paper, we propose two meta-heuristics. The first one
consists ofa three-stage approach, for solving large unconditional and conditional p-centre
problems. The first stage uses aggregation and an exact method whereas the second utilises
the information obtained in the first stage to define a problem which is then solved by a
Variable Neighbourhood Search (VNS). The third and last stage utilisea \@N8 to solve

the original (disaggregated) problem using the best solution obtained so dariratal

solution. The second approach is based on a guided muti-start where VNS and exact method
are incorporated. To the best of our knowledge, there is no published work for solving large
p-centre problems though a few studies were conducted for its counterpart the p-median
problem (see Hansen et al. 2009; Avella et al. 2012; Irawan and Salhi 2013; Irawan et al.
2013)

The contributions of this study include: (i) two powerful meta-heuristics that incorporate
aggregation technique VNS, and an exact method for solving, for the fitisbe, large
unconditional and conditional p-centre problems, (ii) a new scheme for aggregating demand
points for the unconditional and conditional p-centre problems, and (iii) a new distance
calculation method for aggregated p-centre problems, and (iv) new best and optimal solutions

for large instances for benchmarking purposes.

The paper is organized as follows. A brief review of the related literature is presented in
Section 2. The ingredients that make up the two meta-heuristics as well as the overall
respective algorithms are described in Section 3. This is followed by the detailed explanations
of the main steps in Section 4. The computational results are presented and analysed in
Section 5. The last section provides a summary of our findings and highlights some

suggestions for future research.

2 Literature Review

A review on the unconditional and conditional discrete p-centre problems is first presented
followed by highlights focussing on aggregation techniques for the p-centre problem in

particular.



2.1 Related work on the p-centre problem

The p-centre problem was first proposed by Hakimi (1964) who investigated an absolute
1-centre problem on a graph. Minieka (1970) presented a method to solve the problem when
p > 1. He suggested a basic algorithm based on solving a finite sequence of set covering
problems. The weighted case of the p-centre problem was initially studied by Kariv and

Hakimi (1979) who proved that the p-centre problem is NP-hard.

Tansel et al. (1982) proposed polynomially bounded procedures for solving p-centre and
covering problems oa tree network. A review of network location problems including th
p-centre problem is provided by Tansel et al. (1983a; 1983b). Drezner (1984) designed two
heuristics and an optimal algorithm to solve the p-centre problem for a given valua of
polynomial time in n. For relatively small p, Jaeger and Kariv (1985) introduced algorithms

for finding p-centres on a weighted tree.

Daskin (1995) suggested a useful and interesting recursive type algorithm using the Set
Covering Problem (SCP) for obtaining an optimal solution for the problem. The algorithm is
based on Mindka’s method and usesthe bisection technique that decreases the gap between
upper and lower bounds. Bozkaya and Tansel (1998) proposeahning tree approach on
cyclic networks. A unified limited column generation approach for facility problems

including the p-centre problem on trees was presented by Shaw (1999).

Efficient exact algorithms for the vertex p-centre problem were later proposed by Daskin
(2000) and llhan and Pinar (2001). The former formulated the problem as a maximum set
covering sub-problem and then Lagrangean Relaxation is used to solve the problem. The
latter proposed a method which consists of two phases namely the LP-Phase and the IP-Phase
where in Phase 1 sub-problems with a certain covering distance are systematically discarded.
Caruso et al. (2003) proposed an algorithm called Dominant whereas Mladenovic et al.
(2003) implemented efficient meta-heuristics (tabu search and variable neighbourhood
search) with excellent results. Elloumi et al. (20@%d Minieka’s technique incorporaig a

greedy heuristic and the IP formulation of the sub-problem for solving the problem optimally.

Al-Khedhairi and Salhi (2005) introduced enhancementaet®askin’s method (1995)
and llhan and Pinar (2001) with the aim in reducing the number of ILP iterations (calls to the
SCPs). In the first approach, the gaps in the distance matrix are sorted and efficiently
recorded whereas in the second approach, appropriate jumps in the covering distance are
explored. Cheng et al. (2007) suggested an efficient algorithm by modelling the network as



an interval graph. Chen and Chen (2009) introduced relaxation algorithms for both the
continuous and discrete p-centre problems by solving optimally smaller reduced problems
which are then augmented gradually by addkigustomers at a time where k is a parameter
that needs to be defined.

Salhi and Al-Khedhairi (2010Jmproved Daskin’s approach (1995) even further by
integrating heuristic information into exact methods. Tight upper bounds are obtaimed by
multilevel type meta-heuristic (Salhi and Sari, 1997) which are then used to derive promising
lower bounds. Davidovic et al. (2011) introduced a bee colony optimization heuristic
algorithm and a non-deterministic Voronoi diagram algorithm for the unconstrained and

constrained p-centre problem respectively.

Calik and Tansel (2013) proposeddouble boundd method based on two-element
restrictions that obtain the optimal solutiby solving a series of simple structured integer
programs. Lu and Sheu (2013) recently introduecezbust vertex p-centre model for locating
urgent relief distribution centres whereas Lu (2013) studied a generalized weighted vertex p

centre model that represents uncertain nodal weights and edge lengths.

Other studies related to the p-centre problem include Liu et al. (2010) who proposed a
non-density-based approach related to spatial data analysis, Barua and Sander (2014) who
devised a method to find dense co-located points, and Qu et al. (2014 who recently provided

exact/approximate solutions to find a set of allied or alienated points.

2.2 Related work on the conditional (p, g)-centre problem

Minieka (1980) introduced the conditional location problem where conditional centres and
medians on a graph were investigated. Drezner (1989) showed that conditional p-centre
problems can be solved by solving O(logpacenter problems, meaning thet effective
algorithm for the p-centre problem can be adapted for the conditional problem. Berman and
Simchi-Levi (1990) proposed an algorithm that requires the one-time solution of an
unconditional (p+1) center or (p+1) median for solving the conditigr¥l) center or (p+1)
median on networks. A method for solving minisum and minimax conditional location-
allocation problems with p 1 was developed by Chen (1990). Drezner (1995) introduced the

term “(p, g) locationproblem”.



A method for solving both the conditional p-median and p-center problems was studied by
Berman and Drezner (2008). One-time solution of an unconditional p-median and p-center
problem using the shortest distance matrix is used. Chen and Chen (2010) proposed a
relaxation-based algorithm for solving the conditional discrete and continuous p-centre
problem. Kaveh and Nasr (2011) investigated the conditional and unconditional p-centre

problem using a modified harmony search algorithm.

2.3 Aggregation techniquesfor the p-centre problem

This subsection provides an overview of aggregation techniques focusing on p-centre
problems. Hillsman and Rhoda (1978) classified aggregationseéntorthree types namely
source A, B, and C errors. The use of the approximate distance between an Aggregate Spatial
Unit (ASU) and a facility, instead of the true distance between a Basic Spatial Unit (BSU)
and a facility, leads to the existence of those errors. Casillas (1987) introduced two measures

to assess the accuracy of aggregated models namely the cost error and the optimality error.

Francis and Rayco (1996) and Rayco and Francis (1997) suggested aggregation schemes
for the p-centran the plane with rectilinear distances. Rayco et al. (1999) studied a grid-
positioning aggregation procedure for the centre problem with rectilinear distance. Their
procedurewhich consists of identical ‘diamonds’ of user-specified dimensions can also be
utilised to estimate the maximum errsg letting the aggregation error to be kept within
tolerablelimits. Fortney et al. (2000) compared alternative measures of geographic access to
health care providers using different levels of spatial aggregation and different cost

calculations.

Francis et al. (2004a) investigated a demand point aggregation analysis for a class of
constrained location models. Aggregation decomposition and aggregation guidelines for a
class of minimax and covering location problems were studied by Francis et al. (2004b)
They proposed a method to find an aggregation to attain a small error bound value. Later on,
Francis et al. (2009) provided an excellent review of aggregation methods for location
problems in general including the p-centre problem.



3 Methodsfor solving large p-centre problems

We propose two meta-heuristics for solving large p-centre problems namely a three-stage
approach (T8) and a guided multi-start based approach (GMA). Both methods incorporate
Variable Neighbourhood Search (VNS), exact method and aggregation techniques. The
former is an adaptation of the methods proposed by Irawan et al. (2014) and Irawan and Salhi
(2014) initially designed for solving large-scale p-median problems whereas the latter is a

new one.

3.1 A Three-stage Approach (TSA)

This method consists of three stages where the first agéearning process based on
the aggregated problem. The second stage uses the information obtained from the previous
stage namely the facility locations that act as the potential sites to solve aggregated problem
by VNS. The last stage is a post-optimisation procedure where VNS is used to solve the
original p-centre problem starting from the best solution obtained in the previous stage. In
each stage, the problems are solved by either CPLEX (g, s, p) or VNS (g, sre)Metieod
(9, s, p refers to the procedure ‘Method’ for locating ‘p’ facilities, serving ‘g’ customers, and
using ‘S’ potential sites. Figure 1 presents the main stages of the Three-stage Approach
(TSA). In this study, for the original problem, customer sites are used as potential facility
sites (i.e. M=n).

The first stage is similar to Phase 1 of Irawan et al. (2013) except that a more efficient
aggregation technique is used and an exact method is embedded into the search instead of

VNS. In this stage, a number of aggregated problems are constructed. We aggregate n BSUs
into m ASUs, with mk< n. We defined(k, J) asthe distance between the representative

point of the K ASU and the'] facility site. Consequently, each aggregated problemmhas
customers and m potential facility sites. Each aggregated problem is then solved byt an exac
method (n, m, p). The best way of solving the p-centre problem optimally is to utilise an
auxiliary problem such as the Set Covering Problem which will be revisited in Subsection
4.3. As this approach requires initial upper and lower bounds, we incorporate VNS to
generate such an input. The locations found by solving the aggregated problems are then

stored in a list L.



Initialization
Determine the values of mand T. Set L = {@} wherdenote a list of distinct facility
locations obtained from the solutions of the aggregated problems

Stage 1

Repeat the following steps T times=(1, ..., T)
(i) Aggregate n BSUs into m ASUs and construct m clusters by allocditiB§@s to their
nearest ASUSs.

(i) Calculate the distance between tHig\8U and the'j potential facility,d (K, j) , k=1,..,m;

j=1,...,m.
(iii) Solve the 't aggregated p-centre problem using an exact method (m,m,p)

Xi = (o-i,atz,...,oﬁo) be the obtained facility locations With)'it denoting the" facility
at iteration t and selt = LU X, .

Stage 2
(i) Construct [L| clusters by allocating all BSUs to the closest point in L.
(i) Compute the distanoﬁ(k, 1), k=1, |L;;=1,....|L.
(iii) Solve the aggregated p-centre problem by VNS (n, |L]|, p) using the best obtained fg
configuration from the previous stage as the initial solution
Stage 3

Solve the disaggregated p-centre problem (i.e. the original problem) by VNS (n,n,phasin
solution obtained from Stage 2 as the initial solution.

Fig. 1 The main steps of the Three-stage Approach (TSA

In Stage 2, the points in L are considered asphemising’ facility sites. This definea p-

centre problem which consists of n customers and |L| potential facility sites. This problem is

solved with a VNS (n, |L|, p)sing the best solution found in Stage 1 as the initial solution.

The solution obtained in this stage is then usestage 3 as a starting solution.

In the final staggthe original (disaggregated) p-centre problem is solveal\GYS (n,n,p

starting from the solution obtained from the previous stage. At this point, the VNS is used as

a post optimiser that is not expected to consume much extra computing time to solve the

problem given its initial solution is of good quality.



3.2 A Guided Multi-start Approach (GMA)

The main idea behind this method is to provide flexibility in revisiting the aggregated
problem so to produc@new solution configuration which is fed into a VNS. Similar to Stage
1 of TSA, n BSUs are aggregated into m ASUs, witksm. The aggregated problem is
solved by an exact methodn(m, p) producing an optimal facility configuration for the
aggregated problem. This set of facility locations is then used as an initial solution for the

original problem when applying the VNS. Figure 2 presents the main steps of GMA.

Initialization
Determine the values of m and.dN Set f* = MAX_INT and X* = {J} where f* is the
best objective function value and d&note a list of the best facility configuration.

Main Steps
1. Seti=1.

2. Generate the solution by solving the (m, m, p) aggregated problems
(i) Aggregate n BSUs into m ASUs.

(i) Calculate the distance between tHeA8U and the'f potential facility, d(k, i),
k=1,..m; j=1,...,m.

(iii) Solve the aggregated p-centre problem using an exact method (m,m,p)are!
Xo be the objective function value and the solution configuration respectively

(iv) If fo <f* then set f*= § and X* = X.

3. Apply VNS for the disaggregated (original) p-centre problem usigmgsx}he initial
solution. Let f and X be the objective function value and the solution configuraj
respectively.

4. Seti=i+ 1 and set flag = false.

5. If (fy <) then

Set f*=f, X* = X1, and %= X,.
Set flag = true.
End If

6. If (i > Nmay then stop.

7. If (flag = true) then go to Step 3.
Else go to Step 2.

Fig. 2 The main steps of the Guided Multi-start Approach (GMA)

Firstly, the aggregated problem is constructed and solved by CPLEX (m, m, p). The obtained

facility configuration is then used as an initial solution for the disaggregated problem when

9



using VNS. In our implementation of VNS, we call a number of times the VNS procedure
(Cmax in our study) where in each run VNS is performed until thg"kneighbourhood is
explored without improvement. Once the process is completed, if there is an improvement we
continue with the VNS, otherwise we diversify by solving again the aggregated problem
leading to a new solution. This kind of multi-start is performed so to reduce the risk for the
search from getting stuck. This process continues until a prescribed number of iterations

(Nmay is performed.

Steps 2(ixo 2(iii) of GMA are similar to Stage 1(ip 1(iii) of TSA whereas Step 3 of GMA
is relatively similar to Stage 3 of TSA though the values of the parameters used are different.

This will be presented in the computational results section.

4 Description of the Main Steps of both Approaches

In the next subsections, we explain our aggregation and the distance calculation methods.
These are followed by the description of the exact method and the VNS. In the last subsection

the adaptation of our approadfor the conditional (p, q) centre problem is presented.

4.1 The aggregation method

The procedure to aggregate n BSht® m ASUs, used in Stage 1(i) of TSA and Step 2(i)
of GMA, is described in this subsection. The procedure is an adaptation of the methods
proposed by Irawan et al. (2014) and Irawan and Salhi (2014). The set mfAB&Js is
obtained as follows: (i) points are selected pseudo randomly wheweill be set accordingly
as it will be shown later; (ii) the remaining @j-are randomly chosen. This pseudo random

scheme is based on the construction of the cells which is presented in Figure 3.

In the first step, we construct square cells that will cover all demand points with & side
where we then delete empty cells. If the number of non-empty cells is not in the range of a
prescribed number of ASUs then the value ¢f revised and the first step is repeated again.
Once the specified number of the non-empty ¢ellss reached, a point is chosen randomly
from each cell to represent the aggregated point (ASU) within that cell. Finally, to increase
the diversity of the solutions, the remainimy-{ p) ASUs are randomly generated. The main

steps of the pseudo random scheme are given in Figure 4.
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Basic Spatial Unit (BSU) A A A a’?
A ad
. . . A 4 A :‘ - ‘. L] A ‘.
A Aggregated Spatial Unit A A, A A i =™
4 A A ‘. -. L A il
_(ASU) chosen randomly s wow gy < oY a[lal J “ T
in each cell R N *o Teal " %l ag
A A A = A “ o‘ ." = y o A
A x a4 = otz Bl 8 B

Fig. 3 The illustration of the pseudo random method (adapted from Irawan et al., 2014)

Step 1 Determine the values of m,andj.

Step 2

Step 2
Step 3

Step 4

Step 5

Step 6
Step 7

Step 8

Step 9

Initialise the length of the side of the cglés follows:

8 = (Xmax — Xmin)/\/”{—xmax — Xmin ]

Ymax — ¥Ymin

where X.ax and X, refer to the maximum and the minimum x coordinate of the po
respectively. Similarly, y.x and V. refer to the maximum and the minimum
coordinates, respectively.

Let p denote the number of non-empty cells, where p e [my(1-1), My].

Construct square cells of lengstwhich will cover all demand points where cell 1 has
bottom-left corner at %, , Ymin)- If (p e [my(1-3), my] then go to Step 8.

Let 5 andg, be lower and upper bounds of the length of the side of the celk, Se§
andg =&,/ 2.

Construct square cells of lengsh If p< my(1-)) then setsyy, = 8., & = &u/ 2 and repea
this step again, otherwise conduct the bisection method as follows.

Calculated = (oy +9))/2.
Construct square cells of lengthy. If p> my(1-A) and p< my then go to Step 8
otherwisejf p< my(1-1) thendy = & elsed. = J. Go to Step 6.

Allocate all demand points to their cells. Choose randomly a demand point in da
which makes up p aggregated points.

To complementm aggregated points, the remaining gindemand points are chosen
randomly.

Fig. 4 The main steps of our aggregation method (Adapted from Irawan et al., 2014)
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Another way of aggregating the demand points would be to first define initially n subsets
of one demand point each, then combine the closest pair of subsets into one bigger subset and
continue this way until the number of aggregated subsets is reduced to m. The 1-median point
for each of the m clusters could then be used to represent the ASU for that cluster. This
scheme, though interesting, took extremely long when tested on the large instances. For
example, the determination of the closest pair of subset on its own consumed more than 170
seconds for n = 71,009 instead of around 10 seconds for our method to aggregate the same
demand points. This new subset, if found in moderate time, could have been added to our

random-based cells subsets which we generated.

Observation

In the p-centre problem, the optimal solution can be obtained by solving the aggregated
problem. This occurs when all theritical’ demand points are included in the aggregated
points (ASUs). Figure 5 illustrates how the aggregated prollelds the optimal solution
where the original (disaggregated) problem consists of 16 demand points and the number of
facilities to be located is 2 (p=2). By solving it visually, it is clear that the facility locations
will be in the middle and the objective function valuejs We aggregate these 16 points
(n=16) to 8 pointsri=8) where all the critical points are included in the aggregated problem
Figure 5 also displays that the facility locations and the objective function value for the
aggregated problem are the saas¢he ones of the original problem. However, designing a
method that identifies theseritical” points is in itself a hard problem to solve.

O
o 10 e
w P
N o]
0 ‘ _
® The facility locations O The demand points

Fig. 5 lllustration of the aggregated problem yielding the optimal solution (p = 2)
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4.2 A new distance calculation method for aggregated p-centre problems

Let C’ denote the list of ASUs. To solve the aggregated p-centre problenamtkact
method or a VNS, the distance matrix between points imeéls to be calculated. For the p-
median problem, Current and Schilling (1987) introduced a method for eliminating source A

and source B errors. A distance between tReASU and the % facility is set as

dk,j) = Ziede(i, j) with Nk being the set of aggregated BSUs in tHeABU. We do not
use th@ method as the objective function is the minimax instead of the minisum.

We propose ano#r way which is more informative for the distance calculation. First, as
in Current and Schilling’s method, BSUs are aggregated into their nearest ASUs. The

maximum distances (r, k=1,...,|C’|) between ASUs and their aggregated BSUs are then

determined. Letd k, j) denote the true (real) distance between theABU and the

facility. The distanceﬂ(k, ]) is set asﬂ(k, = a(k, j)+ri. Figure 6 presents the illustration

of our distance calculation method where it is assumed that the demand at BSU knd i
i+2 has been aggregated as ASU k.

The reasoning behind this distance representation is to computea only anoﬁ(k, i)

when the location of facility j changes. This is much quicker than simply taking the
maximum distance between the facility and all members of the ASU as this will need to be
carried out every time the location of facility is changed which can be computationally

excessive.

_ <> Potential facility site
j
;<> ()  Basic Spatial Unit (BSU)

@® Aggregated Spatial Unit (ASU)

d(k, j)=d K, j)+ri

Fig. 6 The distance calculation method for the p-centre problem

A preliminary study was also carried out to compare these two calculation methods. The
results showed that for the aggregated p-centre problem, the use of our proposed calculation

method provides much better solutions than the average distance based on Current and

13



Schilling’s method. In addition, the latter requires an excessive computational time due to the

issues mentioned above.

4.3 An exact method for solving the aggregated vertex p-centre problem

The size of the aggregated problem is small enough to be solved optimally using the Set
Covering Problem (SCP)-based approach as will be shown here. SCP aims to find the
minimum number of facilities and their locations so that each customer is served by a facility
within a given distance (or response time). [etdenote the given distance (covering
distance), the matrix A= {acan be defined as follows:

~_J1 if customer e | is coveredbyfacility j (ie.d;j < D)
% =0 otherwise

The SCP can be formulated as follows:

Minimise 2 X (8)
jed

Subject to
ZainjZ]. Vi el (9)
jed
Xj e{01} Vjel (120)

The objective function (8) is to minimise the number of facilities. Constraints (9) ensure that
each customer is served by at least one facility located within D whereas constraints (10)
refer to the binary variables.

To solve the p-centre prolbfe the SPC is solved recursively using a binary search
Efficient exact algorithms for solving the p-centre problem include, for example, Daskin
(1995; 2000), Ilhan and Pinar (2001), Elloumi et al. (2084)Khedairi and Salhi (2005),
and Salhi and Al-Khedairi (2010). Our algorithm is a hybrid of the last two where (i) a VNS
is used to obtain tight upper bound and its corresponding lower bound, (ii) an ordered list of
the distance matrix elements is construct@d a scheme that efficiently identifies the
nearest value in the distance matrix to the new coverage value found by the binary search
(i.e., value = (lower bound + upper bound)/2) is proposed, and (iv) a more effective stopping
criterion is adopted. The latter is based on detecting the empty gap between the final lower
and upper bounds. Figure 7 presents our SCP-based algorithm to solve the p-centre problem

optimally.
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In Step 1, to obtain a tight upper bound, a VNS is applied as it is also used in other phases
of this study and its description will be given in Section 4.4. The idea of sorting the distance
matrix in the vectoG, containing distinct elements only, is quite simple but very effective in
reducing the number of iterations needed to find the optimal solution as values of D in Step 6
that do not exist in G are not tried but their closest eleme@tisnused instead. In addition,
when there is no element in the vector G with distance value betwaed U there is no
need to continue the binary search unnecessanilguch a case (i.e., gap is empty), the
optimal solution is exactly the upper bound value (U). Note that in other implementations,
redundant iterations (i.e. solving more SCPs) could have been uddd-tlll < 1 if integer

values were required and U = L otherwise.

Step 1 Apply VNS to obtain the initial upper bound (U)

Step 2 Sort the distance matrix in ascending order in a vector G. Convert the distdnes
into integers (e.g. by multiplying by 1000 and then rounding the values) and remo
duplicates. Convert the value of the upper bound to an integer value in a similar wa

Step 3 Set the lower bound (L) taU, wherea is a parameter. Find a distance value in
vector G which is the closest to L and then update the valusvith the value found.

Step 4 Solve the SCP for the coverage distance L anddetthe number of facilities found.
If (z<p) then set U = L, L =U and repeat this step again.

Step 5 If there is element in G betweénandU then the optimal solution is U and the numf
of facilities found is z and then stop.

Step 6 Calculate D = U + L)/2. Find a distance value in the vector G which is the closest
and then update the value Df with the value found. Let,zdenote the number @
facilities found for the upper bound.

Step 7 Solve the SCP for the coverage distance D.
If (z> p) then set L = D, otherwise set U=D ap&z.
Step 8 If there is no element in G betwekmnd U then
the optimal solution is U and the number of facilities foung &nd then stop.

Else go to Step 6.

Fig. 7 Our proposed optimal method for solving the p-centre problem

The upper bound produced by the VNS in Step 1 can be a good solution as this may not be
too far from the optimal in most cases. Steps 2-5 of Figure 7 aim to get a tight lower bound

which can be obtained by setting the value: ofose to 1 (for example, 0-80.9). Note that
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the lower bound must also exist in the distance matrix, which is the closestoalieln

other words, the more powerful the VNS is, the higher. i L=aU happens to generate a
feasible solution when solving SCP, set U=L dathU again, and the process continues

until we have a proper range [L,U] from which the binary search starts. Steps 6-8 of Figure 7
are the usual steps of the bisection (binary search) method. Similar to the lower bound
generator, the coverage distance (D) has to be in the vector G, which is the closest to the
average ofL and U. This process stops when there is element in G between [L, U]. The

optimal solution is then taken to be U and the number of facilities fours] (&, < p).

Solving the p-centre problem with the above method yields interesting results. It runs
relatively much faster than the one using the classical p-centre formulation ((1)-(7)).

Observation

In special cases, it is worth noting that the optimal solution, U, might be obtained by
locating a number of facilities, = p, though yielding the same objective function values as
locating p facilities. This could occur in the following two cases.

() A facility with the largest radiugr,) happens to serve all its customers with the same
radiusas presented in Figure 8. Besides serving customer i, the facility located at customer i
serves the other three customers namely customer i+1, i+2, and i+3. The distance between
this facility and those three customers is the same whigh isigure 8 shows the p-centre
problem with p = 2 and 3 which give the same optimal solutign (in the case p = 3, we

try to split the largest circle obtained by solving the p = 2 problem. A facility is inserted at
customer i+1 and the facility located at customer i is moved to customer i+3. However, this
failed to reduce the maximum distancg)(between a customer and its nearest facility.
Therefore, the optimal solutions for p = 2 and 3 are the same. Note that this reasoning is not

valid in the continuous space.

p=2 . PR p=3 ‘
. i+3 - d\\ / i+3 -5
. . . R .
’ Q\ IO “ - \\\l\ . ’/ \‘
’ \ ] \ \ /7
II | \‘ I‘ . O ,‘ ,/ Ej\ ) ’ |\ . O,'
: ~e -
b+l [ i N0 J/ ' ol Q.
1 ! . ! ~—= .
Y i S A S (O Demand point
7/ /
O.._ \ Al ! .
i+2 IR\ S @ Facility location

Fig. 8 The case where the distance between a facility and all its customers is the same

(i) Let z, = p — s, wheres is the number of redundant (unneeded) facilitiess' I (s+1)

facilities have the same maximum distangg (r.e. there ares’ alternate optimal solutions).
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Here, the optimal solution is obtained from thosg) (facilities which is given in Figure 9

wheres'= 3 forp = 7 andz= 5.
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Fig. 9 The case where (s+1) facilities have the same maximum distace (r

There are three facilities whose biggest radiw® is the same which include facility j, j+2,
andj+4. Inserting up to 2 facilities (s = 2) does not necessarily reduce the optimal solution
when at least one furthest customer (from its facility) is still allocated to the same facility. In
this case, the optimal solution for p = 5 and 7 is the same resulting in two redundant
facilities.

4.4 TheVNSalgorithm

Variable Neighbourhood Search (VNS) was formally proposed by Hansen and
Mladenovic (1997) for the solution of the p-median problem. VNS incorpaadtesal search
which seeks local optima (intensification) and a systematic change of neighbourhood search
(diversification) which intends to escape from local optima. VNS was implemented for the
solution of the p-centre problem by Mladenovic et al. (2003) with good results. For more

information and applications of VNS, see Hansen et al. (2010).

In this study, VNS is used to solve the (m, m, p), the (n, |Lpna),the (n, n, p) centre
problems in the TSA. In Stage 1 of TSA and Step 2 of GMA, VNS is utilised to solve the (m,
m, p) centre problem to obtain the upper bound (UB) for the exact method. The (n, |L|, p)
centre problem is solved by VNS in Stage 2 of TSA where the promising facilities found in
the previous stage are considered as the potential sites. In the last stage (Stage 3) of TSA and

Step 3 of GMA, VNS is applied on the original (disaggregated) p-centre problemn, n, p

Initial VNS implementation

Our VNS is based on the implementation proposed by Mladenovic et al. (2003) which is

summarised in Figuré@O. Let iy, refer to the customer whose largest distance to its nearest
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facility while B denotes the list of customers which are located withifram customer
(d(i, im) < rm). The set of neighbourhood structures)(M = 1, 2, ..., kmax iS defined by
swappingk times a randomly chosen facility location (say at custamexhere ine B) with

one facility chosen randomly in the current solution.

In the local search, the vertex substitution heuristic was implemented. For each facility
(=1,...,p), its best substitution point (the point in B) is obtained by tleegure “Move”
(see Mladenovic et al. 2003) using the best improvement strategy. Customers are then

allocated to their nearest facility. This process is repeated until there is no improvement.

1. Choose randomly an initial solutionpy{y, calculate ¥, determine 4, and set k = 1
Xnow= Xoess Mow= 'm and how= im.
2. Repeat the following steps until k 7
() Shaking process
Forj= 1tok
Choose randomly a facilityin() in B (i.e., d(how IN) < fiow), and swap it with g
random one inp%y . Calculate g and determinejpy.
(i) Local search
Apply the vertex substitution heuristic withox as an input. The heuristic retur
the solution Yoz, Mowz and howz: S€t Xow=Xnowz: Mow= Mnowz @8N how= Inowz-
(iif) Move or Not
If (r now<rm) S€t ¥est= Xnows 'm = fnow Im = lhowand k=1
Else set Yow= Xvest Mmow= m, Inow= Iimand k= k+1.

Fig. 10 A VNS implementation for the p-centre problem

An enhanced VNS implementation

We enhance the shaking process of the algorithm with thénaieducing the computing
time while enhancing the quality of the solution. Instead of choosing a facility randomly from
the current solution f¥,), we choose a facility (say facility j) whose radius (the maximum
distance between a facility and its customer) is the lafggstWe then move this facility to
a customer site (customar) served by facilityy where d(h, in) < r,. We also restrict the
location of customer in not to be too close to customerhis concept of using forbidden
regions is shown to be effective when solving the multi-source Weber problem, see Gamal
and Salhi (2001). Here, we set (in) > ry/2. Figure 11 illustrates our neighbourhood

structure.
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\ O customer (the furthest customer)

i ®  The facility which serves Customey i

The area of the set B

Neighbourhood area

Fig. 11 The restricted but guided neighbourhood

In case there is no customer in the neighbourhood area, the shaking process is conducted by
using the procedure of Step 2(i) of Figut®. A preliminary study showed that our
neighbourhood structure reduces the computing time and improves the quality of the solution.

Figure 12 presents the enhancement of the VNS algorithm.

Initialization

Set the initial solution. Choose p points randomly for Stage 1, while for Staayas 3 take the
best solution from the previous steps.

Repeat Cnax times the following steps:
Step1Setk=1
Step 2 Shaking

Do the following step k times

e Move the facility which serves customey o a customer site randomly in th
neighbourhood. If there is no customer site in the neighbourhood apply Step
Figure 10. Determine the objective function and identify the corresponding fu
customer.

Step 3 Local Search
Apply the vertex substitution heuristising the best improvement strategy.
Step 4 Move or Not

If there is an improvement, update the solutions and set k= 1 elsek = k+

Step 5 If k < knaxthen go to Step 2.

Fig. 12 The enhanced VNS for solving the p-centre problem

Let cnax denote the number of cycles (times) the VNS is executed. The valigahd
kmax are set depending on the problem to be solved (i.e., the (m,m,p), the (noilLthm®,

(n,n,p) centre problem). The setting of the parameters will be presented in the computational
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results section. The shaking process uses the neighbourhood structure described above while

the local search remains the vertex substitution heuristic.

4.5 Adaptation of the methods for the (p, g) centre problem

Both TSA and GMA, which are developed for the p-centre problem, are easily adapted to

solve the (p, q) centre problem (i.e., the conditional p-centre problem). The revised

approackswhich we refer to TSAq and GMA( consist of the following modifications.

a) The aggregation method (subsection 4.1)

b)

The g existing facility locations are considered as the aggregated poimtsIk€ p
aggregated points are added pseudo randomly’tasCdescribed earlier while the

remaining (mp-q) points are chosen randomly.

The exact method (subsection 4.3)
Let Q be the set of existing facilities (QJ).
To solve the (p, Jgcentre problem optimally, we add constraints (11) to equations (8)

(10) to ensure that the g existing facilities are always in the solution.
X j =1 VjeQ (11

The addition of constraints (11) into the p-centre formulation makes the problem

relatively much easier to solve.

The WNS (subsection 4.4)

We fix the existing facilities in the solutions in both the shaking and the local search. In

other words, the existing facilities cannot be removed from the solution.

o The shaking
If customer j, (the furthest customer) is not served by one of the existing facilities, we
then use the enhancement procedure in the shaking process. Otherwise the shaking
process is performed by the procedure of Step 2(i) of Figure 10 with the following
additional rule: when a facility is randomly chosen from the current solution (say
facility j), facility j cannot be one of the existing facilities (ijeg Q).

o The local search
Because the existing facility locations are always part of the solution, the

implementation of the best improvement strategy does not include these facilities.
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5 Computational Results

We carried out a computational study to assess empirically the performance of our
sdution methods when solving both the unconditional and the conditional p-centre problems
The code was writtefin C++.Net 2010 and used the IBM ILOG CPLEX version 12.5
Concert Library. The code was executedad?C with an Intel Core i5 CPU 650@ 3.20GHz
processor, 4.00 GB of RAM and under Windows 7 (32bit).

The TSP dataset is used in our testing. These can be downloaded from

http://www.tsp.qatech.edu/world/countries.Hltmlor http://www.kent.ac.uk/kbs/researah/

research-centres/clho/datasets.htie classify this dataset into two types: small and large

datasets. The small dataset consists of Oman Data (n = 1,979), Canada Data (n = 4,663), and
Tanzania Data (n = 6,117) whereas the large one comprises Sweden Data (n = 24,978)
Burma Data (n = 33,708), and China Data (n = 71,009). For most instances of the small
dataset, the optimal solutions can be obtained for both the unconditional and conditional p-
centre problems using the exact method described in Section 4.3. In other words, for these

small instances we compare the performance of our methods against the optimal solution.

5.1 Parameter settings and notations

Following a preliminary study, the following parameters are selected as follows: m = 500
and 400 for TSA and m 1,000 and 800 for GMA for small and large datasets respectively.
The number of aggregated points was made dependent on the size of the original problem as
it influences the quality of the solution. The higher this vad ehe higher the chance of
obtaininga better solution. However, the computing time required also increases with m.

We also sef. = 0.05 meaning that the number of aggregated points generated by the
pseudo random method to be in the range [70, 75]% with y = 0.75 for the large dataset and
[95, 100]% with y = 1 for the small dataset. The remaining points are generated randomly. In
this study, the value of y is the same for both TSA and GMA.

In Stage 1 of TSA, the number of iteration$ &ffects the number of promising facilities
which also affects the quality of the solution. The possibility of obtaiaiggod solution
increases when T is high, but this requiagglatively longer computing time. Here, we set
T=10. When solving the aggregated problem by the exact method, the parametsts to
be determined for getting the lower bound which is based on the upper bound obtained by the
VNS (L = alU) as suggested by Salhi aAttKhedhairi (2010)We seta = 0.5 and 0.8 for the
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unconditional and conditional problems, respectively. This means that the gap between the
upper and lower bounds of the conditional problem is eigthan the one of the

unconditional case. In the GMA, the value gf.Ns set to 5.

In the VNS, we setkx= min{max{p,10},20} whereashe parameter setting of4is given
in Table 1.

Table 1 Parameter setting of.g« for the VNS method

The type of the problem TSA GMA
(m,m,p) problem

Small and large dataset 1 1
(n,[L],p) problem

Small and large dataset 5 -
(n,n,p) problem (Stage 3)

Small dataset min{max{p,10},20} 5

Large dataset 5 1

The results of our experiments are presented in several tables using the followingsiotation

e n: number of demand points

e p: number of new facilities to be located

Z: objective function value with Z* and Z** being the optimal solution for the

unconditional and conditional problems respectively.

e EM : Exact Method.

e Time: computational time in seconds.

e Deviation®o): this is the percent gap from the best known solution (or optimal if it
exists) and is computed as:

Zc _Zb

b

Deviationzloi{ J , Where Z and % correspond to the Z value obtained with method

’c’ and the best Z (or optimal Z) value respectively.

The next two subsections present experiments on the unconditional and the conditional p-

centre problems respectively.

5.2 Computational results on the unconditional vertex p-centre problems

For the small dataset, each instance is solved with p varying from 5 to 100 with a step of 5
totalling 24 instances whereas we vary the value of p from 25 to 100 for the large dataset with
an increment of 25 totalling 12 instances. For small dataset, we also give the average results

with their respective standard deviations based on 10 runs.
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Small dataset

The performance of our methods (TSA and GM#k the small datases compared
against the optimal solution (Z*) obtained by the exact method which is described in Figure
6, see Table 2.

Table 2 Statistical Results for the small unconditional p-centre problems (based on 10 runs)

1ati *
- ME(;(ti((:)td Dew(%t(lezg f(r(;oTZ Z_l\_/;IAue ZGV'\ilKe Avg Time (Seconds)
z* TSA GMA Avg Std Avg Std |EM@) TSA  GMA
Oman Data (n = 1,979)

5 1,876.83 0.000 0.000 1,876.83 0.000 1,87683 0.000 67.50 36.49 78.46
10 1,160.70 0.000 0.000 1,160.70 0.000 1,160.70 0.000 52.53 30.29 59.57
15 867.52 0.000 0.000 867.52 0.000 867.52 0.000 36.65 38.92 63.29
20 750.53 0.000 0.000 762.97 8.582 764.74 7.491 38.90 70.12 66.36
25 638.79 0.000 0.000 642.83 3.852 641.69 1.020 30.31 81.10 62.22
50 380.90 1.798 0.000 395.31 6.507 382.21 2.331 30.47 127.45 127.59
75 284.80 1.926 0.000 303.29 6.589 289.74 1.735 27.64 147.60 103.67

100 220.32 6.176 1.773 237.69 1.983 225.48 3.019 45.09 181.67 15242
Canada Data (n = 4,663)

5 16,836.61  0.000 0.000 16,842.78 5.315 | 16,845.87 3.255 | 1,031.14 124.71  310.73
10 10,498.81  0.000 0.000 10,498.81 0.000 | 10,504.32 17.424 | 630.57 129.47 288.37
15 8,295.93 0.000 0.000 8,299.87 12459 | 8,358.78 71.781 | 465.87 226.95 367.17
20 7,023.87 0.000 0.000 7,030.85 22.082 | 7,088.87 66.990 | 417.31 365.00 477.64

25 5,965.76  0.745 0.000 6,090.21 47.605 | 6,073.15 71.381 | 409.11 363.72 426.21
50 3,955.06  0.439 0.000 4,086.80 83.779 | 3,978.48 17.069 | 508.30 342.38 33358
75 3,069.32  2.765 2.765 3,208.67 84.152 | 3,168.54 14.488 | 57554 325.61 279.10
100 2,543.89 1.635 1.635 2,685.69 78.784 | 2,589.17  7.108 47185 378.03 276.70
Tanzania Data (n = 6,117)
5 2,917.86  0.000 0.000 2,918.43 1.805 2,918.43 1.805 3,725 543.74 1,324.64
10 1,902.12  0.000 0.000 1,915.88 12.293 | 1,929.79 33982 | 11,366 366.25 883.26
15 1,527.98 1.400 0.475 1,558.23  8.919 1,564.66 21517 | 35,875 727.24 1,142.96
20 1,278.30 0.318 1.002 1,293.42 11538 | 1,309.82 12965 | 25,375 1,120.98 1,39805
25 1,152.05 1.114 1.114 1,178.33  9.692 1,184.32  10.021 | 362,943 934.22 1,152.35
Z(TSA)  Z(GMA)

50 N/A 806.23 806.23 820.18 11.051 824.71 820.74 N/A 637.26  903.44
75 N/A 663.53 663.74 679.38 9.903 676.17 671.85 N/A 585.96  719.04
100 N/A 579.75 566.18 596.81 12.974 588.02 589.02 N/A 618.42 686.61

Average 0.872 0.417 19.330 17.399 21,148 317.24 446.40

The specification of the computer used to obtain the optimal solution for Tanzania Data
(n=6,117) is slightly different as we need a greater capacity of memory (RAM). Here, we
used a PC Intel Core 2Duo 2.6GHz, 8 GB of RAM to solve these problems optimally.
According to Dongarra (2013) transformation, this computer is approximately 80% faster
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than the one that we used to execute other instances. In Table 2, for Tanzania data, the
computing time required to obtain the optimal solution has been adjusted accordingly. The

optimal solutions of this instance for p = 100 could not be obtained due to memory issue.

Table 2 shows that both TSA and GMA are able to find the optimal solutions whg p
In general, GMA performs slightly better than TSAta®und the optimal solutions in 15 out
of 21 instances while TSA produces 11. Regarding the deviation from the optimal solution,
GMA also yields a relatively small average deviation (0.417%) compared to the one of
TSA (0.8726). This deviation increases with p and n. The effect of the increase of p appears
to be more significant than the one of n. For both methods, the average computing time is

found to be relatively much smaller than that of the exact method.

Large dataset

The computational results of our methods on large p-centre problems are given in Table 3.
For these problems we do not have the optimal solutions or other results that we can compare

with. We just analyse the deviation (%) and the computing time between TSA and GMA.

Table 3 Computational Results for the large unconditional p-centre problems

Best Deviation (%) Time (Seconds)

P known (Z)  TSA GMA TSA GMA

Sweden Data (n = 24,978)
25 1,329.37 6.6185  0.0000 10.80 1,300.90
50 925.71 3.8950 0.0000 621.42 1,499.67
75 759.02 0.1445 0.0000 919.13 1,080.59
100 685.77 0.7063  0.0000 652.09 897.27
Burma Data (n = 33,708)
25 1,183.80 0.0000 0.0000 725.08 839.85
50 823.27 0.0000 0.5110 1,164.58 1,072.08
75 683.94 2.8109 0.0000 769.46 1,105.56
100 593.48 1.2540 0.0000 552.04 1,823.30
China Data (n = 71,009)
25 4,428.72 1.4251 0.0000 7,837.74 7,543.40
50 3,107.56 2.1134 0.0000 7,603.29 7,536.78
75 2,554.32 0.0000 0.3072 7,538.15 7,524.98
100 2,168.97 1.7211  0.0000 7,499.61 6,818.05
Average 1.9286 0.0639 2,991.12 3,253.53

When solving large p-centre problem, the local search (vertex substitution heuristic) of the

VNS used to solve the original (disaggregated) problem is slightly modified to reduce the
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computing time. Here, the substitution points are in the area B (see Figure 11) and their
distance to customep,iis less than(1-p/100). For the large datasete also limit the
computing time of the VNS in Stage 3 of TSA to 1.5 hours and in Step 3 of GMA to 0.5
hours. In general, the methods run relatively fast (more or less 3,000 seconds on average).
Similar to the results of the small dataset, GMA is found to be superi@A asit produces

a smaller average deviation (0.0639).

5.3 Computational resultson the conditional (p, g) centre problems

Our modified approaasfor solving the conditional p-centre problem are also assessed on
the TSP dataset that was tested on the unconditiogahtpe problem. The existing
facilities in the (p, q) centre problem are taken from the solutions (the optimal solution for
small instances) produced by solving the p-centre problem in the previous subsection. For
instance, for the (p=10, g=5) centre problem, the existing 5 facility locations are the solution
of the (p=5) centre problem. We compare the objective function of the (p=10, q=5) centre
problem to the unconditional (p=)L8entre problem. When the exact method is used, the
value of the objective function of the (p=1f%5) centre problem is obviously worse than or
eqgual to the one of the£15) centre problem.

The above setting will demonstrate how much loss was produced by restricting some of
the facilities when solving the new p-centre problem. In other words, with such a setting the
solution of the latter acts as a lower bound for the conditional problem. From a managerial
view point, this could also be used to evaluate whether or not to close some of these already
opened facilities and replacing them by the new optimal (or best) ones if necessary. Another
experiment, which can also be performed, would be to take g locations randomly from the
optimal locations of the p-centre problem and solve the (p-g,q) conditional problem. This will
enable us to see the effect of the subset of the optimal facilities within the p-centre problem

and how much the additive property in the p-centre is violated.

Small dataset

The computational results of TSAq and GMAQ on the small TSP dataset are presented in
Tables 4 and 5 where the deviation (%) between the optimal solution found by the exact
method (EM) for the (p, q) problems is presented. The tables also show the performance of

TSAqQ and GMA(Q based on the deviation (%) and the computing time (in seconds). Tables 4
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and 5 present the computational results on the small (p, q) problems for the small and the

large values of p respectively.

Table 4 Computational Results on small (p, g)-centre problems for small p (10 runs)

Deviation from

0 a _— 7% (best) (%) Z value TSAq Z value GMAq Avg Time (seondg
TSAqg GMAq Avg Std Avg Std EM TSAg GMAq
Oman Data (n=1,979)
5 5 1,455.35 0.000 0.000 1,455.354 0.000 1,455.354 0.000 15 26 69
10 5 1,019.08 0.000  0.000 1,019.077  0.000 1,019.077  0.000 | 29 64 102
5 10 1,109.55 0.000  0.000 1,109.554  0.000 1,109.554  0.000 9 22 41
15 5 779.70 0.000  0.000 779.698 0.000 779.698 0.000 | 26 110 120
10 10 883.33 0.000  0.000 883.333 0.000 883.333 0.000 8 65 86
5 15 827.65 0.000  0.000 827.647 0.000 827.647 0.000 8 66 82

20 5 676.13 0.000 0.000 683.841 4.062 680.186 4.819 23 103 134
15 10 759.58 0.000 0.000 759.580 0.000 759.580 0.000 7 102 115

10 15 817.35 0.000  0.000 817.347 0.000 817.347 0.000 7 55 65

5 20 736.71 0.000  0.000 736.711 0.000 736.711 0.000 6 53 64
Canada Data (n=4,663)

5 5 13,622.13 0.000 0.000 | 13,622.133 0.000 | 13,622.133 0.000 | 66 76 179

10 5 9,661.06 0.000 0.000 9,661.062  0.000 9,675.167 44.604 | 85 425 779

5 10 10,250.66 0.000 0.000 | 10,250.664 0.000 | 10,250.664 0.000 | 49 87 140

15 5 7,254.92  0.000 0.000 7,254.922 0.000 7,254.922 0.000 83 720 1,023
10 10 8,968.54 0.000 0.000 8,968.541 0.000 8,968.541 0.000 48 397 499
5 15 8,130.41 0.000 0.000 8,130.413 0.000 8,130.413 0.000 34 209 263

20 5 6,447.44 1.344 1.344 6,549.629  49.110 6,560.537 49.944 | 93 538 697
15 10 7,244.33 0.000 0.000 7,244.327 0.000 7,244.327 0.000 70 558 800
10 15 7,262.08 0.000 0.000 7,262.078 0.000 7,293.942 100.761| 36 323 403
5 20 6,892.35 0.000 0.000 6,892.347 0.000 6,892.347 0.000 29 274 338

Tanzania Data (n=6,117)

5 5 2,540.56  0.000 0.000 2,540.560 0.000 2,540.560 0.000 80 417 995

10 5 1,705.95 0.000 0.000 1,705.954 0.000 1,711.037 10.728 | 181 1,037 1,853
5 10 1,874.17 0.000 0.000 1,874.166 0.000 1,874.166 0.000 49 158 271

15 5 1,454.94  0.000 0.000 1,461.835 12.609 1,474.225  25.146 | 797 1,228 1,663
10 10 1,625.24 0.000 0.000 1,625.235 0.000 1,625.235 0.000 52 1,250 1,608
5 15 1,512.63 0.000 0.000 1,512.632 0.000 1,512.632 0.000 35 219 275

20 5 1,206.12 1.026 1.563 1,228.947 10.871 1,233.200 9.367 | 922 996 1,245
15 10 1,397.82 0.567 0.000 1,406.245 1.591 1,427.460 21.422 | 56 1,015 1,287
10 15 1,460.69 0.000 0.000 1,460.974 0.601 1,461.686 0.689 37 439 542
5 20 1,274.38 0.000 0.000 1,274.380 0.000 1,274.380 0.000 23 189 223

Average 0.10 0.10 2.63 8.92 99 374 532
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Table 5 Computational Results on small (p, g)-centre problems for large p (10 runs)

Deviation from

0 q - 7% (best) (%) Z Value TSAq Z Value GMAq Avg Time (seconds)
TSAg GMAg Avg Std Avg Std EM TSAg GMAq
Oman Data (n=1,979)
40 10 41256 6.653 0.000 | 440.013 0.000 | 418.733 3.251 9.19 67.88 109.99
35 15 426.34 0.000 0.000 | 436.571 4.467 | 431.179 6.242 6.17 94.86 11291
30 20 449.47 0.000 0.000 | 449.679 0.276 | 449.572 0.25 6.58 125.11 124.25
25 25 482.74 0.000 0.000 | 486.274 3.670 | 486.299 3.644 6.80 101.09 120.00
65 10 293.27 4.483 0.000 | 311.051 6.006 | 296.722 4.482 10.47 86.57 116.67
60 15 303.12 1.086 0.820 | 306.413 0.000 | 305.702 0.254 6.73 80.08 109.39
55 20 31393 0.731 0.731 | 317.261 1.090 | 316.339 0.234 6.82 123.77 94.52
50 25 305.61 0.264 0.264 | 308.228 4.068 | 306.503 0.286 8.43 113.88 117.44
90 10 223.44 4.693 0.351 | 238.160 1.487 | 227.137 4.686 15.27  109.19 117.39
85 15 233.93 1.493 0.000 | 242.234 4.070 | 236.037 2.267 13.62 109.34 123.15
80 20 236.16 1915 1.045 | 244.025 2.670 | 418.733 3.251 7.37 114.11 127.89
75 25 23393 2.011 2.011 | 238.832 0.324 | 418.733 3.251 9.67 127.14 148.66
Canada Data (n=4,663)
40 10 4,166.60 1.076  2.086 | 4,245.347 16.830 | 4,364.470 147.235| 86.38 381.89 403.28
35 15 4,537.65 0.000 0.000 | 4,612.338 26.242 | 4,691.431 181.905| 56.61 184.17 267.66
30 20 4,481.35 2.475 2.649 | 4,620.685 35.394 | 4,665.977 50.814 | 48.97 709.84 904.47
25 25 4,787.28 0.000 0.000 | 4,838.B3 80.308 | 4,876.919 95.221 26.14  405.14 479.97
65 10 3,175.65 3.066 1.850 | 3,478.710 145.154| 3,390.607 125.136| 71.80 206.95 271.91
60 15 3,175.65 3.066 0.905 | 3,281.104 22.046 | 3,286.649 42.958 91.66 385.89 483.67
55 20 3,355.26 1.466 1.466 | 3,430.062 11.616 | 3,432.061 17.933 47.82  492.61 585.90
50 25 3,452.86 0.847 1.123 | 3,500.850 14.357 | 3,531.332 27.200 31.04 540.14 622.60
90 10 2,557.45 1.096  1.147 | 2,654.247 76.372 | 2,636.070 61.829 | 174.01 309.73 365.07
85 15 2,583.06 6.259 0.757 | 2,744.742 0.000 | 2,718.696 55.554 63.57 189.07 284.73
80 20 2,584.68 0.081 0.694 | 2,630.598 52.800 | 4,364.470 147.235| 62.51 465.36 607.59
75 25 2,664.01 0.336 0.041 | 2,699.424 25.465 | 4,364.470 147.235| 57.87 446.00 572.93
Tanzania Data (n=6,117)
40 10 833.33 2.801 2.000 | 871.031 11.051| 874.852 16.509 | 2,439.99 620.53 731.33
35 15 863.13 1.241 2249 | 887.311 8.686 | 891.758 11.926 95.10 672.39 901.48
30 20 91241 2.358 2.846 | 944.417 7.347 | 962.771 22.630 36.31 638.70 813.21
25 25 988.41 0.906 1.173 | 1,006.810 7.655 | 1,010.999 7.234 25.47  480.35 606.26
65 10 641.18 7.175 5.843 | 708.005 10.008 | 695.142 11.099 | 13,577.62 486.29 606.89
60 15 655.96 6.138 5.038 | 708.544 4.873 | 704.362 10.321| 761.81 533.03 713.81
55 20 674.33 3.512 5151 | 719.904 11.877| 737.759 19.913| 166.13 559.98 709.87
50 25 687.18 3.611 3.128 | 724.688 12.124 | 732.942 17.266 51.53 599.97 747.71
90 10 542.88 7.846 7.846 | 603.568 8.626 | 596.950 6.632 | 55,460.22 506.06 671.65
85 15 551.01 7.411 8.428 | 608.369 11.037 | 608.965 9.354 | 4,391.66 538.73 714.99
80 20 560.26 7.135 7.465 611.578 11.730 | 874.852 16.509 | 1,144.41 546.73 709.92
75 25 577.83 6.760 7.032 | 625.573 4.702 | 874.852 16.509 88.72 532.25 675.18
2.78 0.80 17.90 36.06 2,199.01 352.36 440.95
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The results show that solving p-centre problems using the exact method (EM) requires
more than twice the computing time than solving (p, q) problems. One of the reasons is that
when solving the SCP the (p, q) problems constraints (11) make the problem easier to solve
by restricting the number of combinations (feasible set).

Table 4 shows that both TSAq and GMAqQ are able to find the optimal solutions for most
instances. In general, GMAQ performs better than TSAg asoduces a smaller average
deviation from the optimal solutions. Table 5 shows that our methods run much faster than
the exact method especially with large n and small g. Similar to the previous results, GMAq
also performs better than TSAqQ. It is observed that it is quite hard to find the optimal

solutions when p is relatively large.

Some observations

The comparison between the optimal results of the p-centre and (p, q) centre problems
using the exact method are also shown in Table 4. The objective function value (Z) of a more
restricted and less restricted problems appears to be smaller than the one in the middle. For
instance, the Z value for (p=2+5) and p=5, q=20) centre problems are smaller than that
of (p=10, q=15) problem for all instances. Figure 13(a) shows the bell-shape pattern of the
deviation (%) from the (p, q) problems to the (p = 25) centre problem. To get more detailed
results reflecting the effect of the g value on the objective function value of the (p, q) centre
problem, we solved the (p, q) problems on the Oman data optimally varying g = 0 to 24 in
increments of 1 keeping p+g=25. Thexisting facilities are set to the optimal solution of
(p=0q) centre problem. Figure 13(b) presents the pattern of the Z value on the (p, qhgroble
which confirms the statement that a more restricted or less restricted problems yield a smaller

Z value.

Large dataset

Tables 6 presents the computational results ddrand GMAQ on large (p, q)-centre
problems. There is no known optimal solution for these problems. Due to their large sizes, as
in the unconditional problems experiments, we also limit the computing time of the VNS in

Stage 3 (the post-optimisation) of TSAqQ to 1.5 hours and in Step 3 of GMAQ to 0.5 hours.
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Table 6 Computational Results for the large (p, q)-centre problems

Best Kwown Deuation (%) Time (seconds)
P a (Zo) TSAq GMAq TSAQ GMAq
Sweden Data (n = 24,978)
25 25 1,101.14 0.00 0.00 680.50 954.14
50 25 819.89 0.00 1.883 874.99 908.75
25 50 874.48 0.00 0.308 495,61 847.36
75 25 706.32 0.00 2.448 768.94 1,233.95
50 50 763.40 0.00 1.279 554.22 667.55
25 75 726.10 0.00 0.000 445.62 660.98
Burma Data (n = 33,708)
25 25 970.82 1.29 0.000 960.33 1,299.26
50 25 704.94 0.00 4.510 1,036.94 987.60
25 50 755.17 0.00 2.406 607.95 1,200.04
75 25 619.36 0.00 2.996 1,390.19 1,119.48
50 50 641.18 0.00 1.941 670.27 854.59
25 75 647.22 0.00 0.166 461.88 766.13
China Data (n = 71,009)
25 25 3,637.15 1.74 0.000 7,313.58 7,512.75
50 25 2,752.35 0.00 0.278 7,288.20 7,515.19
25 50 2,937.21 0.00 0.891 7,279.92 7,297.55
75 25 2,310.13 5.54 0.000 7,328.08 7,511.97
50 50 2,539.07 2.72 0.000 7,283.31 7,514.36
25 75 2,504.44 0.00 0.011 7,264.37 7,363.80

Average 0.63 1.06 2,928.05 3,123.08

Contrarily to the previous results, TSAg generally performs better than GMAqQ when
solving large (p, q) centre problems. The average deviation of TSAq is 0.63% which is about
40% smaller than the one of GMAQ (1.06%).
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6 Conclusion and suggestionsfor futureresearch

Two meta-heuristics based on data aggregation, an efficient implementation of an exact
method, and the use of a VNS is proposed to solve large unconditional and conditional vertex
p-centre problems. The first approach called the three-stage approach (TSA) consists of three
stages. The first stage a learning process incorporating demand point aggregationrand a
exact method. The second stage uses a VNS to solve the disaggregated problem with the
facilities identified from the previous stage as potential facility sites. A post-optimisation is
performed, as the third stage, using the same VNS but on the original problem instead. The
second approacks a guided multi-start approach (GMA). This is designed to provide
flexibility in revisiting the aggregated problem several times so to produce a new and diverse

solution configuration which is then fed into the VNS.

According to the computational results on the TSP dataset, our methods perform quite
well and run relatively fast. For the small datasekx ®,117), the methods find the optimal
solution on some instances for both the unconditional and conditional problems. These
optimal values are obtained by our modified version based on set covering and new attributes
to enhance its efficiency. These optimal solutions could be used for benchmarking purpose as
well. In most cases, GMA performs better than TSA as GMA yields a smaller average

deviation except for the conditional large dataset.

This research could be worthwhile expanding and adapting to other related problems such
as clustering of large datasets with higher dimension as part of data mining.
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