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Abstract
Sound event detection in real world environments has attracted
significant research interest recently because of it’s applica-
tions in popular fields such as machine hearing and automated
surveillance, as well as in sound scene understanding. This pa-
per considers continuous robust sound event detection, which
means multiple overlapped sound events in different types of
interfering noise. First, a standard evaluation task is outlined
based upon existing testing data sets for the sound event classi-
fication of isolated sounds. This paper then proposes and evalu-
ates the use of spectrogram image features employing an energy
detector to segment sound events, before developing a novel
segmentation method making use of a Bayesian inference crite-
ria. At the back end, a convolutional neural network is used to
classify detected regions, and this combination is compared to
several alternative approaches. The proposed method is shown
capable of achieving very good performance compared with
current state-of-the-art techniques.
Index Terms: sound event detection, convolutional neural net-
work, Bayesian inference, segmentation.

1. Introduction
Continuous sound event detection is an extension of classifica-
tion methods which are trained to recognise isolated and well
separated sounds, allied with a segmentation technique to ex-
tract same-sound regions from continuous audio. Within the
sound event detection field, traditional features and methods in-
troduced from the speech recognition domain such as MFCCs
and HMMs have been shown to not perform as well as spec-
trogram image features and image classifiers [1] for classifica-
tion of noise-corrupted sounds. Deep learning has also been
applied in this field, achieving excellent results [2], [3], again
particularly for classification of noisy sounds. Previous research
has evaluated both deep neural networks (DNN) [2] and convo-
lutional neural networks (CNN) [3], with the latter achieving
slightly better performance on isolated sound event evaluation
tasks.

It is necessary to consider several aspects of real world en-
vironmental conditions for robust sound event detection, for ex-
ample overlapping sound events and background noises. In ad-
dition, when operating a system in real environments, usually it
is not possible to know a priori which sound events might occur
together or overlap. We also don’t know in advance what kinds
of noise will occur, nor know the signal-to-noise (SNR) ratio of
the sounds in the given noise environment.

For training purposes, the above classifiers are trained us-
ing data which in most cases (including the standard evalua-
tion task discussed in Section 4) is presented in individual files,

each of which contains an isolated sound event without added
noise. Several SIFs (spectrogram image features) are obtained
from each labelled sound, downsampled, and used to train a
CNN which is described in Section 2. Meanwhile testing ma-
terial should be much more realistic in being noisy, continuous
and overlapped. Unlike the evaluation of well-separated sounds,
continuous sound events need to be detected and isolated or seg-
mented first, and only then can be classified.

1.1. Contribution

The specific contributions of this paper are firstly to formulate a
standard evaluation task for robust, continuous and overlapping
sound event detection, constructed from the same underlying
data as the current standard evaluation task for isolated sound
event classification as used in [1, 4, 2, 3] (see Section 4.1).
Secondly, the current state-of-the-art SIF-based CNN classifier,
described in Section 2, is evaluated with an energy-based seg-
mentation front-end (Section 3.1). While this will be shown
able to perform reasonably well, early testing revealed that
some portions of the background noise were inherently simi-
lar to one or more sound classes. To reduce the influence of
these sounds on the final classification results, an adaptive back-
ground penalty is developed in Section 3.2. Finally, a novel
BIC segmentation method is proposed (Section 3.3) to isolate
individual sound regions prior to classification and evaluated in
Section 4.2, demonstrating excellent classification performance
overall.

2. SIF-CNN based classification system
2.1. Spectrogram image feature

Unlike speech, sound events contain more random time-
frequency structures which make the spectrogram look more
like an unstructured image to the human eye. Fortunately, both
DNN and CNN classifiers have been shown very capable of ex-
tracting discriminative information from spectrogram features.
The best performing SIF extraction process from [2, 3] is;

• Take FFT of highly overlapped window sequence to ob-
tain a spectrogram.

• Downsample the spectrogram by averaging frequency
regions.

• Smooth the downsampled spectrogram.

• Denoise by subtracting the minimum amplitude in each
smoothed frequency channel.

• Detect high energy frames and their immediate context
to form a rectangular time-frequency image for classifi-
cation.
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Figure 1: Diagram of the CNN classifier using SIF features.

The final image for CNN classification has a dimension of 52×
40, where 52 is the number of downsampled frequency channels
and 40 defines the context size, in overlapped frames.

2.2. Convolutional neural network

CNNs are generally known to be good at learning structures
in images, and this has been demonstrated in image process-
ing [5, 6], speech recognition [7, 8] and similar domains. In this
machine hearing application, a typical CNN structure is used,
namely 5-layers (2 convolutional layers, 2 subsampling layers
and 1 full connected layer), with 52× 40 = 2080 input dimen-
sionality and 50 output classes from the final fully connected
(FC) layers. Apart from where noted, the structure, shown as a
block diagram in Fig. 1 is as described in [3].

3. Energy detector and BIC separation
3.1. Energy detector

We only select and detect high energy frames plus context from
the continuous sound files. This is reasonable in that we also
only use the high energy frames for training (i.e. the classifi-
cation features are the high energy frames and their immediate
context, as described in Section 2). In operation, any frame is
detected whose energy exceeds a threshold and is also the maxi-
mum over the 80 frames before and 80 frames after. The thresh-
old is set relative to the long term average energy, to confer a de-
gree of noise resistance, and the hold-off period is designed to
ensure that loud sounds spanning multiple frames do not dom-
inate over quieter sounds occurring elsewhere. The feature im-
ages, which are centred on the detected frames, are classified by
CNN for recognition. This is a low-complexity detector, but is
also effective in practice, surprisingly even for noisy conditions.

The CNN classifier yields a posterior probability vector Pi,
for each detected high energy region, where i = 1...50. Index
j = arg max(Pi), i = 1...50 identifies the highest probabil-
ity class, but this is only accepted if Pj > Pth, otherwise this
sound event is classed as noise. The influence of Pth is dis-
cussed in Section 4.2.

3.2. Penalty on background probability

In order to reduce the influence of background noise, one tech-
nique is to classify all frames using the CNN to obtain a back-
ground probability distribution. We define Pij where i = 1...50
being the class number and j = 1...N is the frame num-
ber where N is the total number of frames. Then we define
Pck = ΣjPij/N where k = 1...50 to denote the average prob-
ability of each class k. Now, when we need to detect frame j,
instead of using Pkj = max(Pij), i = 1...50, we compute

Pkj = max(Pij − λ(Pci − ΣlPcl/50)), i = 1...50, λ = 0.2

and compare this against Pth as before. If Pkj > Pth, we
detect frame j as sound event class k, otherwise we assume it is
background noise. Thus, if the background probability Pck is
very high, which means this class k is very likely to be found in
the background noise of this sound file, the output probability
Pkj will be reduced and this frame may not actually be detected
as class k in the end, but instead as another class. Again, this
technique will be evaluated in Section 4.2 and shown to perform
better than the energy detector alone, when tested with the same
classifier and same test material.

3.3. BIC separation

The final contribution of this paper revolves around the need
to segment continuous audio prior to classification, and pro-
poses a novel segmentation method based on Bayesian infer-
ence. During testing, each frame of input sound contains back-
ground noise (apart from the ’clean’ condition) and 0, 1 or more
sound classes. High energy frames are very important decision
points for classification as we have seen, but the classification of
these frames applies the classification result to all frames within
a detected audio region. The high energy frames themselves do
not necessarily reveal the start and end points of a particular
sound - especially when noise corrupted. Thus we develop a
segmentation heuristic which is inspired by speaker region sep-
aration techniques for diarization [9]. This Bayesian inference
criteria (BIC) decides in a probabilistic sense between two alter-
native hypotheses that are namely whether an input array z fol-
lows a single Gaussian distribution or can be separated into two
parts x and y that follow two different Gaussian distributions.
The criterion determines which hypothesis is a better match to
the underlying data, on the assumption that the sounds can be
represented by Gaussian distributions, and that these differ for
different sounds. If H0 and H1 denotes these two hypotheses,
we can define,

∆B = BIC(H1)−BIC(H0)

= Nlog|Σz| −
1

2
λ(d+ d(d+ 1)/2)logN

− Nylog|Σy| −Nxlog|Σx| (1)

where N , Nx and Ny are the lengths of arrays z, x, and y
(N = Nx + Ny) while d is the feature dimension and the
penalty term for the model complexity, λ, is set to 1.0 for all
evaluations. Next, we compute ∆B for every possible x and
y within limits. If max(∆B) > 0, then hypothesis H1(x
and y follow two Gaussian distributions separately) is true
and t = arg max(∆B) marks a separation point whereas if
max(∆B) <= 0, then hypothesis H0 is true and there is no
partition in array z.

In this task, z is actually an array of features, while d is
the dimension of the features and N is the number of frames
in the array. Here we use 39-dimension MFCC features (13
MFCCs, ∆s and ∆∆s) for segmentation – however we do not
use MFCC data for classification. This process will result in at
most one possible separation point. If we advance the window
forward at the desired resolution and repeat the process, we will
get all possible separations from the entire array of continuous
audio.

Finally, the energy detector described in Section 3.1 is ap-
plied to the detected segments using the same criteria: the high-
est energy frames in each segment are detected. Within one



Table 1: Precision, recall and F1 of the CNN classifier using
only energy detector for feature selection, for a range of differ-
ent probability thresholds.

Pth 0.9 0.8 0.7 0.5 0.3 0.1
Precision 92.2 84.6 78.8 68.7 65.0 64.8
Recall 62.7 71.3 75.8 80.9 82.3 82.3
F1 74.7 77.3 77.3 74.3 72.6 72.5

segment, the features have similar statistical distributions (in
an MFCC sense) and are thus more likely belong to the same
sound event, and this is naturally represented by the highest en-
ergy region (bearing in mind also that the energy trace has been
smoothed as part of the spectrogram processing). The follow-
ing section will now evaluate each of these segmentation and
detection processes in turn.

4. Experiments and Results
4.1. The evaluation task

The sound material contains 50 different sound event classes
with 80 files per class, randomly selected from the Real World
Computing Partnership (RWCP) Sound Scene Database in Real
Acoustic Environments [10] according to selection criteria
in [1]. Of the 80 files, 50 are randomly selected to be the train-
ing set (50× 50 = 2500) and the remainder (30× 50 = 1500)
used for evaluation.

The process for forming the test is that we first create 100
separate 1-min long empty files. Then we add 15 random sound
events into each file at random time points. Finally, we choose
one type of background noise to add to each file randomly from
four different NOISEX-92 noises (specifically “Destroyer Con-
trol Room”, “Speech Babble”, “Factory Floor 1” and “JetCock-
pit 1”). Given 4 different noise conditions (clean, 20dB, 10dB
and 0dB SNR), there are now 400 multi-sound testing files in
total. The classifier used in this paper is implemented using
the CNN toolbox with 5 layers in total as specified in Sec-
tion 2.2 [11].

To evaluate our system, we define precision as P = M/N ,
whereM is the number of sound events we detect correctly, and
N is the number of all the detection we make, as well as recall
R = K/1500, where K is the total number of sound events
we detect among the 1500 events per noise condition. Besides
this, we combine both scores to derive a single overall metric
F1 = 2/(P−1 +R−1).

4.2. Results and discussion

The baseline score will be that obtained using only an energy
detector allied with the CNN classifier. For simplicity, we will
reproduce only the average performance of the 4 different noise
SNRs (clean, 20dB, 10dB and 0dB SNR), withF1 results shown
in Table 1 for different values of Pth.

Looking at the table, we can see that the best F1 is achieved
at a Pth of 0.8 or 0.7, however the best Precision has a higher
Pth and the best recall is at a lower Pth.

Next, we apply the probability penalty to the CNN output
with results as shown in Table 2. Again the best F1 score has
a Pth around 0.7 to 0.8, whereas the best precision and recall
are also at the extremes of the table. Clearly, the Pth setting is
operating as a tradeoff between the two conflicting demands of
better recall or better precision.

Finally, we explore the BIC separation method as a front-

Table 2: Precision, recall and F1 of the CNN classifier, with a
probability penalty applied to combat noise-like sound classes,
for a range of different probability thresholds.

Pth 0.9 0.8 0.7 0.5 0.3 0.1
Precision 95.0 90.0 83.9 72.1 65.4 64.7
Recall 60.4 70.0 75.5 80.7 82.3 82.3
F1 73.8 78.7 79.5 76.2 72.9 72.4

Table 3: Precision, recall and F1 of the CNN classifier with a
BIC segmentation front end, using energy detection and with a
probability penalty, shown for a range of different probability
thresholds.

Pth 0.9 0.8 0.7 0.5 0.3 0.1
Precision 96.5 94.0 91.2 86.7 78.4 77.7
Recall 57.4 66.5 71.5 75.0 78.1 78.1
F1 72.0 77.9 80.2 80.4 78.2 77.9

end segmentation technique before the energy detector, and in-
cluding the application of a probability penalty. The results are
shown in Table 3 and reveal that the optimum Pth for overall
F1 score is now lower at about 0.5. Interestingly, while the
precision score has improved substantially over other methods,
the recall score is slightly worse. The final combined F1 score
achieves over 80% accuracy.

Comparing these results with several alternative systems,
Table 4 shows the SIF-CNN baseline (SIF-CNN/Baseline)
and final CNN classifier system with BIC segmentation (SIF-
CNN/Final), HMM based on MFCC features (MFCC-HMM),
SIF with an SVM classifier (SIF-SVM), and SIF features with a
DNN classifier from [2] (SIF-DNN), in the 4 different levels of
noise. In this case, we set Pth = 0.7 for the proposed CNN
classifiers. While mean recall of the final system is slightly
worse than the SIF-DNN and SIF-CNN systems, the average
precision is very much higher, particularly in high levels of
noise. Consequently, the overall F1 score of the proposed sys-
tem is improved over the baseline as well as over existing meth-
ods.

To better understand the trade-offs inherent in the three pro-
posed SIF-CNN systems, two graphs are presented to explore
the Pth tradeoff. Fig. 2 shows ROC (receiver operating curve)
plots of the three techniques introduced in this paper in which
the Y-axis shows precision while the X-axis shows recall. The
BIC-based SIF-CNN/Final system is clearly superior to the sys-
tem with a probability penalty, which in turn outperforms the
basic energy detector (SIF-CNN/Baseline). Meanwhile Fig. 3
reveals how the overall F1 score changes with Pth. On the
whole, the probability penalty and the BIC separation improve
system performance. However when Pth becomes too high, for
example 0.8 or 0.9, the results are confusing. It is worth bear-
ing in mind that it is probably not sensible to set Pth so high,
because it means that many true sound events are ignored, al-
though the fewer that are detected are more often classified cor-
rectly, thus a good balance would be achieved with Pth around
0.5 or 0.6.

5. Conclusion
This paper has proposed a method of robust continuous sound
event detection. Firstly, spectrogram based image features are
used rather than traditional auditory features such as MFCC, in
order to obtain a better two-dimensional description of sound



Table 4: Comparison between proposed system and other systems for different levels of background noise.
System Precision Recall F1

SNR clean 20dB 10dB 0dB mean clean 20dB 10dB 0dB mean
MFCC-HMM 28.12 08.69 06.60 04.57 12.00 94.87 79.20 60.47 38.53 68.27 20.41
SIF-SVM 90.84 85.87 57.32 27.51 65.39 86.93 86.80 85.60 71.20 82.63 73.01
SIF-DNN 87.70 82.53 53.69 24.63 62.14 84.87 84.33 81.33 64.13 78.67 69.43
SIF-CNN/Baseline 93.66 92.03 77.99 51.67 78.84 81.80 81.67 79.33 60.47 75.82 77.30
SIF-CNN/Final 95.79 94.95 89.67 84.40 91.20 76.67 77.73 75.53 56.20 71.53 80.18
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Figure 2: ROC curves of the three systems.

events. Because of the acknowledged ability of convolutional
neural networks (CNN) to learn the discriminative structures in
images, we apply this for classification on the image features.
One main characteristic of continuous sound recognition that is
unimportant for the classification of isolated sounds is the seg-
mentation of the continuous audio into same-sound regions that
are then classified. We present and discuss three methods of
performing this task. The first, which will act as our baseline
system, is a low-complexity energy detector with fixed context
region. To improve the noise immunity of that method, par-
ticularly for noise-like sounds, a probability penalty is intro-
duced to use background probability throughout the continuous
sound file to reduce the influence of mis-classified background
noise. Finally, a Bayesian approach is developed, inspired by
the same/different speaker segmentation methods used in di-
arization research. This Bayesian inference criteria (BIC) is
used for segmentation prior to the energy detector and appli-
cation of probability penalty. The performance of each system
was evaluated and shown to work well in noise.

5.1. Future work

It is notable that many of the RWCP sounds are percussive or
scraping in nature, and are thus very similar to periods of back-
ground noise. It is therefore highly likely that such systems
would be susceptible to high levels of noise, in particular when
sound events are highly overlapped. Small degrees of over-
lap are handled well, but the BIC method is unable to separate
sound regions when they are almost completely overlapping,
and the CNN classifier is currently unable to assign a single re-
gion to two different classes. In future we aim to address these
issues by exploring rules for multiple classifications per same-
sound region, and better methods of background noise adapta-
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Figure 3: F1 values of the three systems.

tion.
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