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ABSTRACT: Membrane scission is the final step in all
budding processes wherein a membrane neck is sufficiently
constricted so as to allow for fission and the release of the
budded particle. For influenza viruses, membrane scission
is mediated by an amphipathic helix (AH) domain in the
viral M2 protein. While it is known that the M2AH alters
membrane curvature, it is not known how the protein is
localized to the center neck of budding virions where it
would be able to cause membrane scission. Here, we use
molecular dynamics simulations on buckled lipid bilayers
to show that the M2AH senses membrane curvature and
preferentially localizes to regions of high membrane
curvature, comparable to that seen at the center neck of
budding influenza viruses. These results were then
validated using in vitro binding assays to show that the
M2AH senses membrane curvature by detecting lipid
packing defects in the membrane. Our results show that
the M2AH senses membrane curvature and suggest that
the AH domain may localize the protein at the viral neck
where it can then mediate membrane scission and the
release of budding viruses.

I nfluenza virus budding requires a precise stepwise alteration
of membrane curvature leading to the formation of a

membrane bud that is attached to the host cell plasma
membrane through a small membrane neck. Release of the
budding virion requires membrane scission, which is mediated
by an amphipathic helix (AH) domain in the influenza virus M2
protein.1 The influenza virus M2 protein is a 97-amino acid
homotetrameric protein that contains a membrane proximal
AH with an extended cytoplasmic tail.2−4 Membrane insertion
of the M2AH is sufficient to alter membrane curvature and
cause budding in vitro and in vivo.1,5 However, to mediate
membrane scission, the M2AH needs to specifically bind and
insert into the membrane at the constricted neck of the
budding virus.
Influenza viruses bud from lipid raft domains on the apical

plasma membrane of infected cells. This budding localization is
thought to be mediated by the intrinsic raft localization of the
viral surface proteins, Hemagglutinin and Neuraminidase.
Because of the length of its transmembrane domain, the M2
protein preferentially sorts to the bulk plasma membrane
domain and is recruited to the periphery of the lipid raft
budding domains only through interactions with the viral M1
matrix protein. This interaction places M2 near the constricted
neck of the budding virion; however, scission requires more

precise localization that would place the M2AH at the center of
the membrane neck. This study investigates the mechanism of
M2AH localization and shows that the M2AH senses
membrane curvature and is preferentially located at the highly
curved center of a constricted membrane neck where
subsequent insertion of the AH would be sufficient to cause
membrane scission.
The first 16 amino acids of the M2 cytoplasmic tail form a

membrane-parallel AH domain that inserts into the membrane
(Figure 1).

During virus budding, the M2 protein is recruited to the
periphery of the assembly sites.1 However, to cause membrane
scission, M2 needs to localize to the midpoint of the
cytoplasmic face of the highly curved budding viral neck, a
region that can be topologically depicted as a catenoid (Figure
2A).
Therefore, to determine the specific localization of M2AH,

we performed course-grained molecular dynamics (MD)
simulations on buckled lipid bilayers.6 These are planar lipid
bilayers that are compressed in one dimension until the bilayers
deform. These bilayers show regions of positive, negative, and
neutral curvature following the arc length parameter S, allowing
for the determination of any M2AH curvature binding
preference (Figure 2B−D).
The simulations show that the M2AH rapidly binds to

membranes and inserts at or below the lipid headgroups
(Figure 2D). The lipid-bound M2AH then preferentially sorts
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Figure 1. Structure of the M2AH. (A) Tetrameric structure of M2
(PDB entry 2L0J). (B) Structure and sequence of the M2AH modeled
in the inner leaflet of the lipid bilayer (headgroups depicted as blue
dots) generated using E(z)3D.
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to regions of high positive membrane curvature (Figure 3A,B
and Movies S1 and S2), such as those seen at the narrowest
point of the budding neck. While the peptide associated with a
range of positively curved membrane domains, the association
was the strongest with increased curvature (Figure 3B).
Analysis of the free energy of binding showed that the energy

required for binding decreases as the curvature increases
(Figure 3C). The binding approached an energy minimum at a
radius of curvature comparable to that seen in a 20 nm
diameter vesicle; however, absolute quantification would likely
require an all-atom simulation. Interestingly, the simulations
did not reveal a clear preferred orientation (θ) of the M2AH in
the plane of the buckled bilayer surface (Figure 3D). This
resembles earlier results for the antimicrobial peptide magainin6

and suggests that the M2AH may be an isotropic curvature
sensor, capable of identifying curved membranes regardless of
the orientation of the helix relative to the direction of curvature.
Isotropic curvature sensing would be of particular benefit for
M2 protein localization as each AH domain in the full length
tetrameric protein is oriented at a 90° angle from each other
(Figure 1A).
To confirm the MD simulation data, we next performed a

liposome binding assay using a fluorescent M2AH peptide.
Unilamellar vesicles were made in a range of sizes, which were
verified by dynamic light scattering (Figure S1). Vesicles were
made without anionic lipids to ensure that charge interactions

do not mask potential curvature sensing,7 though this masking
was not observed in the simulations. As shown in Figure 4A,
the M2AH binds to vesicles that have a diameter between 35
and 3135 nm. The level of binding is slightly reduced for larger
vesicles >150 nm in diameter (which possess correspondingly
less positive membrane curvature) and significantly enhanced
for small vesicles 35 nm in diameter (which have more positive
membrane curvature) (Figure 4A).
There is good correlation between the binding results and

the MD simulations, both of which show enhancement of
binding with increasing membrane curvature (Figures 3B and
4A). In addition, recent bicelle NMR experiments have shown
that the M2AH domain can associate with highly curved bicelle
edges,8 further supporting the ability of the M2AH to sense
membrane curvature.
Binding results were confirmed using circular dichroism

spectroscopy (CD) analysis of peptide secondary structure. The
M2AH forms an α-helix upon membrane binding, and thus, the
amount of α-helix observed in the structure is related to
membrane binding activity. CD analysis showed an increasing
percentage of α-helix formation as vesicle size decreased,
reaching a maximum when the domain bound to 35 nm
vesicles, though in all cases the M2AH was at least 70% α-helix,
indicating that enhanced curvature facilitates but is not
necessary for structuring of the AH domain (Figure 4B).
Together, these results indicate that the M2AH strongly
associates with highly curved membranes, such as would be
seen at the neck of budding viruses.
Many AHs, such as those found in N-Bin-Amphiphysin-Rvs

(N-BAR) domains and amphipathic lipid packing sensor
(ALPS) motifs, are capable of sensing membrane curvature.7,9

ALPS motifs contain bulky hydrophobic residues on one face of

Figure 2. MD simulation of M2AH on buckled lipid bilayers. (A)
Catenoid structure representative of the neck of a budding virion. (B)
Representative top-view (top) and side-view (bottom) snapshots of
the MD simulation of the M2AH on lipid bilayers, buckled in the Lx
dimension. Lipid headgroups are colored pink and acyl chains gray.
Lipid tail ends are shown as orange spheres, and the M2AH is colored
red. Indicated vectors represent the orientation of the M2AH on the
bilayer. The side view also shows the Euler buckling profile (blue
hashed line) fitted to the bilayer midplane and the corresponding arc
length S ∈ [0, 1], which parametrizes the position along the curved
membrane midplane (C), with s = 0.5 being the most positively curved
position. (D) Side-view snapshot of one location of the M2AH (red)
in the buckled bilayer, with the lipid headgroup phosphates shown as
black dots.

Figure 3. M2AH senses membrane curvature. (A) Heat map of the
center of mass distribution of the M2AH during the MD simulation,
superimposed on the lipid headgroup density (blue level curves). (B)
Localization of the M2AH to regions of different curvature during the
simulation, shown as a probability distribution and reflecting the arc
length parameter S. (C) Binding free energy at the peptide center of
mass on buckled bilayers as a function of the radius of curvature at
each given point. (D) Distributions of the in-plane orientation (θ) of
single M2AH peptides on bilayers. Because of symmetry in the system,
the distributions are periodic (180°). Minor asymmetry arises from
statistical fluctuations due to finite sampling, but no additional
directional bias is present.
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the AH and uncharged residues on the polar face.7 These
motifs sense membrane curvature through insertion of the
bulky hydrophobic residue face into lipid packing defects,
which are gaps in the lipid bilayer caused by the separation of
polar headgroups as a consequence of positive membrane
curvature.7,10 Like the ALPS motif, the hydrophobic face of
M2AH also contains multiple bulky hydrophobic residues. To
determine whether the M2AH recognizes membrane curvature
by sensing lipid packing defects, we evaluated binding of the
peptide to LUVs containing fully saturated (DSPE) or
monounsaturated (DOPE) lipid tails. DOPE is a cone-shaped
lipid that limits how tightly the lipids can pack in a curved
bilayer, creating many lipid packing defects. In contrast, DSPE
is a cylindrical lipid that allows for tighter packing of the lipid
headgroups, resulting in fewer lipid packing defects compared
to the number in DOPE bilayers for any given curvature.11

Thus, a peptide that senses lipid packing defects would be
expected to bind more tightly to LUVs containing DOPE than
LUVs containing DSPE. We found that the M2AH binds
significantly stronger to LUVs with packing defects but shows
minimal change in α-helix content when bound to these LUVs
(Figure 4). As DOPE and DSPE have significantly different
phase transition temperatures, we confirmed that the observed
binding differences were caused by the presence of lipid
packing defects and not because of differences in line tension or
lipid domain formation. In Figure S2, we see that the M2AH
binds comparably to LUVs with a range of different line
tensions.12 Thus, these results suggest that the M2AH identifies

membrane curvature by sensing lipid packing defects, similar to
ALPS motifs.
Narrow preconstricted membrane necks occur at the

junction between a budding influenza virion and the host
cell, and infection of cells with influenza viruses that do not
express the M2 protein results in the formation of stalled
membrane buds that fail to undergo membrane scission.1 This
suggests that M2 is responsible for completing scission at the
narrow neck that forms at the site of viral budding. TEM
analysis of the stalled buds, formed on the plasma membrane
during a ΔM2 influenza virus infection, shows a constricted
membrane neck with an average radius of curvature at the
midpoint of the neck of 19.84 ± 7.91 nm (Figure 5).1

These results agree with the results of our liposome binding
experiments that showed efficient binding to 35 nm vesicles
(possessing a 17.5 nm radius of curvature) and with our
molecular dynamics simulations, which showed an increasing
level of binding with decreasing vesicle size (Figures 3B and
4A).
This suggests that the M2AH sorts to regions of high

membrane curvature similar to that seen at the center of the
membrane neck formed during influenza virus budding and is
consistent with the observed in vivo localization of the M2
protein during virus budding.1 When the M2 protein is present
at the membrane neck during wild-type influenza virus budding,
membrane scission is completed and the influenza virion is
released.1

The M2 protein is thought to localize to the boundary
between the viral budding domain and the bulk plasma
membrane, which would position the M2 protein near the neck
of the budding virus, though it is not clear if this localization is
mediated through M2−M1 interactions or because of intrinsic
biophysical properties of the full length protein.13−15 However,
to complete membrane scission, M2 needs to act at the
midpoint of the constricted neck. Here we show that the
M2AH senses membrane curvature (Figure 3B,C) by detecting
lipid packing defects occurring at highly curved membranes
(Figure 4A). This curvature sensing allows the level of M2AH−
membrane binding to increase as the membrane radius of
curvature decreases (Figure 3C). This allows for strong binding
of the M2AH to membranes with a radius of curvature between
10 and 20 nm, similar to what is seen at the center neck of
budding influenza virions (Figure 5).
Thus, M2AH curvature sensing may facilitate placement of

the helix at the center of the preconstricted membrane neck
and could ensure the maintenance of this localization during
further constriction. At the neck midpoint, M2AH membrane
insertion, and induction of curvature, may be sufficient to cause
membrane scission.1 Thus, the release of influenza viruses likely

Figure 4. M2AH senses membrane curvature in vitro. (A) The FITC-
labeled M2AH was incubated with POPC vesicles of the indicated size
or with 100 nm DOPC:DOPE/DSPE LUVs for 1 h. Fluorescence was
determined and is represented as the vesicle-bound fluorescence/
background fluorescence. Values are means ± the standard deviation
of three independent repeats. (B) The M2AH was incubated with
indicated vesicles and the secondary structure determined by CD. All
measurements are the average of four background-subtracted
measurements, shown as % α-helix using K2D3.

Figure 5. Curvature at the neck of budding virions. MDCK cells were
infected with A/Udorn/72-ΔM2 virus for 18 h, fixed, and processed
for thin-section TEM.1 Images were analyzed to determine the average
radius of curvature (red circles) at the neck midpoint (blue line) for a
minimum of 50 virions. Two representative images and their
magnifications are shown. The scale bar represents 20 nm.
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requires a specific combination of curvature sensing and
curvature induction by the M2AH domain.
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