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Abstract The application of ACO-based algorithms in data mining has been growing over

the last few years, and several supervised and unsupervised learning algorithms have been

developed using this bio-inspired approach. Most recent works about unsupervised learn-

ing have focused on clustering, showing the potential of ACO-based techniques. However,

there are still clustering areas that are almost unexplored using these techniques, such as

medoid-based clustering. Medoid-based clustering methods are helpful—compared to classi-

cal centroid-based techniques—when centroids cannot be easily defined. This paper proposes

two medoid-based ACO clustering algorithms, where the only information needed is the dis-

tance between data: one algorithm that uses an ACO procedure to determine an optimal

medoid set (METACOC algorithm) and another algorithm that uses an automatic selection

of the number of clusters (METACOC-K algorithm). The proposed algorithms are compared

against classical clustering approaches using synthetic and real-world datasets.

Keywords Ant colony optimization · Clustering · Data mining · Machine learning ·

Medoid · Adaptive

1 Introduction

Clustering is one of the most relevant areas in data mining and machine learning (Larose

2005; Witten and Frank 2005). Clustering techniques are based on the extraction of patterns in

data blindly, referred to as unsupervised learning. Using clustering techniques, data analysts

are able to extract information from different datasets without human or expert supervision.
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Clustering has been designed to group data by similarity. The aim is to minimize the value

of a pre-defined cost function, assigning data instances to different groups (clusters) and

optimizing this assignment in order to obtain the lowest value of the cost function.

There are several areas that have dealt with clustering problems. One of the most relevant

is the statistics area, where well-known clustering algorithms have been proposed, such as

K-means, expectation maximization (EM), hierarchical, spectral and fuzzy clustering, among

others. Over the last few years, bio-inspired algorithms have received increasing attention.

The potential that swarm intelligence and evolutionary algorithms have in optimization has

made them potential techniques for clustering. This paper explores this potential, specifically

focusing on ant colony optimization (ACO; Dorigo and Stützle 2004).

The proposed algorithms address the main problem with centroid-based approaches, that

is the fact that they need to know the features of the search space in order to determine

the central point and that they are sensitive to noise. This means, centroid-based clustering

algorithms use a multi-dimensional space to represent the data based on their features in

order to find the centroid (central point) position of each cluster. A distance metric (in most

cases Euclidean) is used to set a centroid and optimize its position according to the distance

between the centroid and the data. As a centroid position is determined by averaging the

coordinate values of the data in each cluster, this process does not cope well with outliers.

Centroid-based clustering algorithms work well when the data can be represented by features

in a multi-dimensional space, e.g. clustering of houses based on features such as price, square

metres, number of bedrooms/bathrooms, distance to public transportation. However, they are

not appropriate in cases where the features of the data are not clear, e.g. clustering of face

images—while it is straightforward to calculate the similarity of images, it not easy to define

features to represent them in a multi-dimensional space.

Medoid-based clustering algorithms are usually more robust to noise effects, and data

instances do not need to be represented in a multi-dimensional space. They use a notion of

similarity/distance among the data instances, which can be obtained as a Gram matrix of a

kernel or a distance measure, and they choose data instances to define clusters centres—the

selected instances are called medoids.

This paper proposes two medoid-based ACO clustering algorithms, where the only infor-

mation needed is the distance among data: one algorithm that uses an ACO procedure to

determine an optimal medoid set (METACOC algorithm) and another algorithm that addi-

tionally uses an automatic selection of the number of clusters (METACOC-K algorithm).

These algorithms use a graph-based structure and a search strategy that requires no knowledge

about the search space features. As aforementioned, this strategy is different from classical

centroid-based approaches, where the position of the centroid is optimized in order to define

the different clusters. In order to evaluate the performance of the proposed algorithms, we

have compared them against the ACO-based ACOC algorithm (Kao and Cheng 2006) using

synthetic and real-world datasets, and also against five well-known clustering algorithms: K-

means (MacQueen 1967), partition around medoids (PAM; Kaufman and Rousseeuw 1987),

PAMK (Kaufman and Rousseeuw 2009), EMBIC (Fraley and Raftery 2007) and Clues (Wang

et al. 2007).

The remainder of this paper is organized as follows. Section 2 presents related work,

discussing the clustering problem and previous ACO algorithms for clustering. Section 3

introduces the proposed algorithms. Computational experiments and analysis of the obtained

results are presented in Sect. 4. Finally, Sect. 5 presents conclusions and future work.
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2 Related work

Data mining and machine learning techniques have been used for several applications. One of

the most prominent application areas is the identification of patterns in data, which helps data

analysts to extract hidden information from data (Larose 2005). Recent data analysis demands

have presented new challenges for machine learning techniques (Cao 2010); for example, the

need for creating new scalable and robust methodologies is currently receiving increasing

interest. In order to improve the robustness of these analysis, new methodologies based on

swarm intelligence have shown promise due to the quality of the results extracted using these

techniques, which are highly competitive when compared with classical algorithms.

One of the most successful swarm intelligence techniques is ACO (Dorigo and Stützle

2004). ACO algorithms are based on some aspects of the foraging behaviour of ants that

collectively can find the shortest path from the nest to a food source. The use of ACO has been

extended to several optimization areas, including machine learning. This section provides

a general description of the clustering problem—including a discussion of issues about the

K-adaptive problem within clustering—and it discusses ACO applications in clustering and

the related classification task.

2.1 The clustering problem

Clustering has been widely used in several interdisciplinary areas, such as image segmen-

tation (Menéndez et al. 2014) and sport prediction (Menéndez et al. 2013), among others.

Given a dataset X = {x1, x2, . . . , xn}, the aim of clustering is to group data instances in

different clusters, in such a way that similar data instances fall into the same cluster. Let

C = {c1, . . . , ck} be the set of clusters, where k is the number of clusters and ci is a cluster.

The goal is to generate a function that assigns each data instance to a cluster so that a cost

function J is minimized—the classical cost function is related to the Euclidean distance and

the square norm. The goal is to minimize J by selecting the best clustering group (c j out of

the k different clusters) for each data instance xi . The cost function is given by

J =

n
∑

i=1

k

min
j=1

||xi − c j ||
2. (1)

The search for an optimal clustering has usually been implemented as an iterative procedure

that (1) updates the cluster decision according to the data associated with each cluster and (2)

updates the data associated with each cluster based on the cluster centroid position (i.e. the

average point across all the points in the cluster) in the space. This is the main idea behind

the best known clustering algorithm: K-means (MacQueen 1967). This algorithm represents

the clusters as a set of centroids and optimizes their position according to the cost function

using the iterative process described above.

There are also several statistical techniques that have been applied to clustering problems,

such as EM (Dempster et al. 1977). This approach uses the likelihood of the cluster selection

to guide the search, and it is able to apply different statistical estimators depending on the

problem. The most frequent estimator for EM is a Gaussian mixture model, where the user

defines one Gaussian distribution per cluster and the process optimizes the mean and variance

of each distribution in order to generate a good clustering distribution reducing some cost

function.

Statistical techniques usually use a search space representation, where the parameters

of the estimator are optimized. They are known as parametric techniques. However, there
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Fig. 1 Results of PAM and K-means after the introduction of an outlier into three Gaussian distributions:

PAM keeps its correct solution, while K-means is diverted by the outlier—it creates a cluster with a single

data point. The lines connecting the different clusters illustrate their distance

are other important approaches that do not use parameters or estimators. These techniques

are named nonparametric techniques (Menéndez et al. 2014), and one of the most relevant

approaches in this domain is based on medoids (Kaufman and Rousseeuw 1987). Medoids can

be defined as a group of relevant instances for a specific dataset, which could be considered

as representatives of the clusters. In the medoid-based approach, the set of k clusters can be

defined as

C = {m1, . . . , mk | mi ∈ X}, (2)

where mi represents the medoid selected out of the set of X data instances. In these

approaches, the search is focused on the data instances instead of the whole search space.

However, it is required to generate a topology among the data using a similarity/dissimilarity

metric. One of the main techniques, called PAM (Kaufman and Rousseeuw 1987), gener-

ates a graph topology through a dissimilarity matrix. This matrix contains the pairwise cost

metric between data instances, and the algorithm tries to minimize the cost function J (i.e.

differences between a data instance and a medoid) with respect to the medoids selection.

The main advantages of medoids when compared with centroids are:

– Centroids are determined by averaging the coordinate values of the data in each cluster,

while medoids are representative members of the data: centroids are not suitable when the

average cannot be defined (e.g. clustering of face images, time series or gene expression

data);

– Centroids are more sensitive to outliers: an instance that is far away from the rest of the

cluster produces an important modification in the centroid position. This does not happen

with medoids because they are a relevant instance of the datasets.

Figure 1 illustrates an example of the problem of outliers in centroid-based clustering: it

shows how K-means cluster assignation is affected by an outlier, while PAM keeps the

optimal solution even in the presence of an outlier. Since medoid-based algorithms use the

information extracted from the data distances, they are a good choice for problems where the

search space is not well defined, such as time series clustering.

One of the main challenges around the clustering problem is how to choose a good number

of clusters (Tibshirani et al. 2001). The majority of clustering algorithms require the speci-

fication of the number of clusters a priori as a parameter of the algorithm. An alternative to

having the number of clusters fixed is based on the use of a metric to evaluate the clusters’

quality, allowing an algorithm to test a variable number of clusters. The most relevant metric

used in the literature is the silhouette (Rousseeuw 1987; see Sect. 3.2). This metric represents
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a balance between the number of clusters and the cluster separation, which can be used to

evaluate the trade-off between the number of clusters and their dissimilarity. Different algo-

rithms have been proposed to optimize the silhouette measure. The most relevant are PAMK

(Kaufman and Rousseeuw 2009; an extended version of PAM allowing the number of clus-

ters to vary) and Clues (Wang et al. 2007; an iterative algorithm focused on the silhouette

optimization).

2.2 Ant colony optimization in clustering

ACO has already been applied to clustering (Jafar and Sivakumar 2010) and classification

(Martens et al. 2011). The advantage of applying ACO algorithms to these problems is that

ACO performs a global search in the solution space, which is less likely to get trapped in

local minima and, thus, has the potential to find more accurate solutions.

The most popular bio-inspired approaches that deal with the clustering problem are focused

on evolutionary algorithms (Menéndez et al. 2014). Hruschka et al. (2009) presents a survey

of clustering algorithms from different evolutionary approaches. In the context of ant-based

approaches, researchers have explored mainly two different strategies. There are ant-based

approaches that focus on the cooperative self-organization characteristics of ant algorithms.

Handl et al. (2006) present an adaptive clustering algorithm, called ATTA, based on the

clustering of corpses behaviour of ants. An interesting aspect of ATTA is its ability to adapt

the total number of clusters k during the search, although at the same time this is viewed as

a limitation, since the algorithm does not allow the specification of k for problems where

the number of clusters is known a priori. More examples can be found in Fernandes et al.

(2008), Herrmann and Ultsch (2008). These approaches can also be characterized based on

the way data are manipulated by ants: ant-based approaches can be based on a grid, where ants

move data to define the clusters mimicking a behaviour observed in nature (e.g. the way ants

move their brood or their waste) or based on the association of each data instance to an ant

(Hamdi et al. 2010). Other ant-based approaches involve the use of an ACO procedure, where

the clustering problem in modelled as an optimization problem and pheromone is used to

guide the search towards better solutions. Kao and Cheng (2006) designed a centroid-based

ACO clustering algorithm, where ants assign each data instance to one of the available

clusters and cluster centroids are adjusted based on this assignment. França et al. (2008)

introduce a bi-clustering algorithm. Ashok and Messinger (2012) focused their work on

graph-based clustering of spectral imagery, where the data are represented as a graph and

an ACO procedure is used to find long paths through the data. Several other approaches are

discussed in Jafar and Sivakumar (2010).

3 Medoid-based ACO clustering algorithms

This section presents the proposed medoid-based ACO clustering algorithms. Both algo-

rithms employ an ACO procedure to select an optimal medoid set to determine the clusters.

The first algorithm, called MEdoid seT ACO Clustering algorithm (METACOC), is simi-

lar to the PAM algorithm, where the goal of the algorithm is to choose the best k medoids

(data instances) based only on distance information—where k is the pre-defined number of

clusters. The second algorithm, called K-adaptive MEdoid seT ACO Clustering algorithm

(METACOC-K), is an extension of METACOC that enables the algorithm to automatically

adjust the number of clusters—useful for problems where the number of cluster is not known

a priori.

123



128 Swarm Intell (2016) 10:123–145

Not Medoid

Medoid

Int. 1 Int. 2 Int. 3 Int. 4 Int. 5

τ(1, n)

τ(1, y)

Fig. 2 An ant travelling through the construction graph. The pheromone values are stored in the edges: the

order of visiting the data instances is random and the pheromone values represent the desirability of considering

an instance x as a medoid (τ(x, y) value) or not (τ(x, n) value)

3.1 METACOC: a medoid set ACO clustering algorithm

The METACOC algorithm is based on several ants looking for the best path in the construction

graph. The construction graph is composed by all data instances. Solutions are generated by

choosing medoids (data instances) and assigning remaining data instances deterministically to

them, according to their distance in relation to the selected medoids. The medoids selection

is illustrated in Fig. 2. The rationale is that once the medoids are determined, there is a

deterministic optimal cluster allocation based on the similarity/dissimilarity values.

Each ant (a) has the following features:

– a list of visited data instances (tba);

– a set of chosen medoids Ma , which is initially empty.

Ants have two possible search strategies, exploitation and exploration. In each iteration,

an ant chooses the strategy for the medoid assignment j according to the pseudo-random

proportional rule (Dorigo and Gambardella 1997)

j =

{

argmaxu∈{y,n}{τ(i, u)} if q ≤ q0

S otherwise
, (3)

where {y, n} are the possibilities (to be or not to be a medoid) to data instance i (see Fig. 2),

τ(i, u) is the pheromone value between i (the data instance) and u (the condition “yes” or “no”

to become a medoid), q0 is the user-defined exploitation probability, q is a random number

distributed uniformly in [0, 1] for strategy selection and S is the ACO-based exploration

strategy. The ACO-based exploration strategy S is defined by

S = P(i, u) =
τ(i, u)

∑

l∈{y,n} τ(i, l)
, (4)

where P(i, u) is the probability that data instance i could be selected as a medoid or not

and u ∈ {y, n}. Note that METACOC does not use heuristic information to select a medoid.

While the number of selected medoids m is less than k, where k is the pre-defined number

of clusters, any data instance can be selected as a new medoid and the pheromone values are

used to decide whether a data instance is considered a medoid or not. When the maximum

number of medoids is reached, the selection process stops and the remaining data instances

are set to not be medoids.

The METACOC algorithm can be described as follows:
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1. Initialize the pheromone matrix τ0.

2. Initialize each ant a: set the chosen medoids Ma = ∅ and the visited data instances

tba = ∅.

3. For each ant, check if all instances have been visited (|tba | == n) or all medoids have

been chosen (|Ma | == k). If not:

(a) select the next data instance i .

(b) choose a search strategy;

(c) if i is selected as a medoid add it to Ma ;

(d) add i to the list of visited data instances tba .

4. Assign each data instance to its closest medoid and calculate the objective function value

for each ant a:

J a =

n
∑

i=1

|Ma |

min
j=1

d(xi , ma
j ), (5)

where xi represents a data instance and m j represents a medoid in Ma .

5. Choose the best solution:

(a) rank the ants solutions;

(b) if an ant has less medoids than k it is eliminated from the ranking;

(c) choose the best ant a∗ (iteration-best solution);

(d) compare a∗ with the best-so-far solution a∗∗ and update this value with the maximum

between them.

6. Update the pheromone trails (global updating rule). Only the r best ants add pheromone:

τt+1(i, j) = (1 − ρ)τt (i, j) +

r
∑

h=1

∆τt (i, j)h, ∆τt (i, j)h =
1

J h
, (6)

where ρ is the pheromone evaporation rate, (0 < ρ < 1), t is the iteration counter, r is

the number of elitist ants and J h is the quality of the solution created by ant h.

7. Check termination condition:

(a) if the number of iterations is greater than the maximum number of iterations, it

finishes choosing the best-so-far solution a∗∗;

(b) otherwise, go to step 2.

Once this process has finished, the best-so-far solution is chosen as the solution found by the

algorithm. The solution consists of a set of medoids, which are the data instances represen-

tative of the clusters. Each data instance is then assigned to its closest medoid to define the

clusters.

In terms of computational complexity, we can assume that all data instances are visited

during the search process—although in practice this is not frequent—which takes O(An)

(where A is the number of ants and n is the number of data instances). The algorithm also

includes a step that assigns each data instance to its closest medoid, which takes O(Ank)

(where k is the number of medoids). The evaluation involves calculating the similarity of

each data instance to its assigned medoid, which takes O(An). Finally, the ranking of solu-

tions takes O(A log A) and the pheromone update uses r elitist ants and visits all data

instances, which takes O(rn). Since these steps are repeated T iterations, the total com-

plexity is O(T An) + O(T Ank) + O(T A log A) + O(T rn)—as O(T Ank) ≥ O(T An) ≥

O(T rn) ≥ O(T A log A), the complexity is simplified to O(T Ank).
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3.2 METACOC-K: a k-adaptive extension of METACOC

The proposed METACOC algorithm cannot choose the number of clusters, but requires as

input a value for k. This section presents the METACOC-K algorithm, which allows the

estimation of the number of clusters using METACOC as a starting point.

The main features of METACOC-K are:

– each ant can have a different number of clusters;

– the quality metric is designed to balance between the number of clusters and the cluster

assignment cost.

The first improvement is a straightforward modification of the ant behaviour, where each

ant chooses a random number k of clusters to build a solution. The value of k is limited

to a pre-defined range [kmin, kmax]. This is used to allow the algorithm to explore different

numbers of clusters. The second improvement consists in the solution evaluation, which now

takes into account that each candidate solution can have a different number of clusters. As the

metric used to update the pheromone information, we take the average silhouette calculated

as

Avg_sil(X) =

∑

x∈X sil(x)

|X |
, (7)

where x ∈ X is a data instance and sil(x) is the silhouette metric (Kaufman and Rousseeuw

2009) given by

sil(x) =
d(x, Cclosest) −

∑

j∈Cx
d(x, j)

|Cx |

max
(

∑

j∈Cx
d(x, j)

|Cx |
, d(x, Cclosest)

) , (8)

where d(x, j) is the distance between data instances x and j , d(x, Cclosest) is the distance1

between x and the closest neighbouring cluster Cclosest, Cx is the cluster to which element x

belongs and |Cx | represents the number of elements of Cx . The silhouette compares tightness

and separation of clusters. It is calculated by data instance and gives information about those

data instances that are well assigned to a cluster and those that should be moved. The silhouette

of all data instances provides an appreciation of the clusters’ quality (in a similar way of a

Riemann integral). The area of the shape defined by silhouette is useful to determine the

quality of the number of clusters selection (see Fig. 3).

The METACOC-K algorithm follows a structure similar to METACOC. The main differ-

ences are:

1. Selection of the number of clusters:

(a) during the ant initialization (step 2 in METACOC), it additionally chooses uniformly

at random the number of clusters in the range [kmin, kmax]; the solution is then created

using the same procedure as in METACOC.

2. Solution evaluation:

(a) candidate solutions are evaluated using the average silhouette (Eq. 7), which evaluates

the balance between the number of clusters and the cluster assignment cost (step 4

in METACOC).

Concerning the computational complexity of METACOC-K, we have to consider that the

silhouette calculation is more expensive. The silhouette is used to evaluate the solutions,

1 The distance between data instance x and a cluster C is the average of the distances between x and all data

instances in C . The cluster with the lowest average distance is considered the closest neighbouring cluster.

123



Swarm Intell (2016) 10:123–145 131

75

74

68

61

72

63

73

64

62

66

71

69

65

67

70

44

48

47

46

45

53

58

60

51

49

59

56

52

50

55

57

54

41

43

42

40

38

39

37

21

30

29

24

36

31

34

22

23

33

35

28

25

27

32

26

7

17

20

5

1

19

15

18

4

13

16

2

14

3

12

8

11

9

6

10

Silhouette width si

1: 20 | 0.73

2: 23 | 0.75

3: 17 | 0.67

4: 15 | 0.80

Fig. 3 Silhouette for a dataset where four clusters have been discriminated: the first value represents the

cluster number, the second is the number of instances and the third is the average silhouette of the cluster

(cluster number: instances|silhouette). The average silhouette value across all clusters is 0.74, which measures

the quality of the number of clusters selection

and it involves the distance between every pair of data instances n and the distance between

each data instance and the k medoids, repeated over T iterations; therefore, the evaluation

of solutions is O(T An2k) (where A is the number of ants). Since the remaining steps are

similar to METACOC and O(T An2k) ≥ O(T Ank), the complexity remains O(T An2k).

4 Computational experiments

This section presents the experiments that were carried out to measure the performance of

the proposed algorithms: METACOC and METACOC-K. METACOC was compared against

K-means, ACOC and PAM as non-adaptive algorithms (i.e. algorithms that required a fixed

number of clusters), whereas METACOC-K was compared against EMBIC, Clues and PAMK

as adaptive algorithms (i.e. algorithms that do not required a fixed number of clusters).

4.1 Datasets

We divided the computational results in three sets of experiments. In the first set of experi-

ments, we evaluated the proposed algorithms on synthetic datasets. The following synthetic

datasets were generated:

– synthetic dataset 1: This dataset corresponds to points in a two-dimensional Euclidean

space, where nine clusters of points, each derived from a two-dimensional Gaussian

distribution, were generated. There are three Gaussians which are closer than the rest.

This dataset has 450 instances, and it is illustrated in the top-left plot in Fig. 4;

– synthetic dataset 2: This second dataset is generated analogously to dataset 1 (nine clus-

ters of points), but with additional noisy data in the background. This dataset has 550

instances, and it is illustrated in the top-right plot in Fig. 4;
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Fig. 4 Data points generated by the three synthetic datasets that have been used for the experiments: the first

(top-left plot) shows nine two-dimensional Gaussian distributions, where three of them are very close; the

second (top-right plot) introduces noise to the nine Gaussian models; and the last one (bottom-centre plot)

shows three well-separated Gaussian models

– synthetic dataset 3: This dataset is composed of three two-dimensional Gaussian distri-

butions, which are well separated. This dataset has 150 instances, and it is illustrated in

the bottom-centre plot in Fig. 4.

In the second set of experiments, we chose 20 real-world datasets from the UCI Machine

Learning Repository (Frank and Asuncion 2010). These datasets are benchmark datasets

for clustering and classification tasks. Table 1 shows the main characteristics for each UCI

dataset used in our experiments. Finally, in the third set of experiments, we chose 10 time

series benchmark datasets from the UCR time series repository (Chen et al. 2015) in order to

evaluate the medoid-based methodologies in a specific area where they have been successful.

Table 2 shows the main characteristics for each UCR dataset used in our experiments.

4.2 Experimental setup

This section briefly describes the selected algorithms used for comparison. ACOC (Kao and

Cheng 2006) is an ACO clustering algorithm based on centroids. ACOC uses a pheromone

matrix to store the relationship between the data instances and the centroid labels, where ants

assign each data instance to one of the available clusters and cluster centroids are adjusted

based on this assignment. Comparing ACOC to METACOC and METACOC-K, both META-

COC and METACOC-K use a different construction graph, where an ant chooses whether

an instance is a medoid or not (i.e. it is always a binary decision regardless of the number of

clusters).

K-means (MacQueen 1967) is an iterative algorithm based on centroids, which are ran-

domly selected at the beginning. The goal of the algorithm is to find the best centroid positions.
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Table 1 Description of the UCI

datasets used in the experiments

The table shows the number of

numerical attributes, classes and

data instances per dataset

Name Attributes Classes Instances

Breast cancer (BC) 9 2 699

Breast tissue (BT) 9 6 106

Ecoli (Ec) 7 6 336

Glass (Gl) 9 6 214

Haberman (Hb) 3 2 306

Hayes (Hy) 5 6 132

Hepatitis (Hp) 19 2 155

Ionosphere (Io) 34 2 351

Iris (Ir) 4 3 150

Lenses (Le) 4 3 24

Libras (Li) 90 15 360

Lung cancer (LC) 56 3 32

Mammographic (Mm) 5 2 961

Musk (Mu) 166 2 476

Onehr (Oh) 28 2 1867

Page blocks (PB) 10 5 5473

Seeds (Se) 7 3 210

Sonar (So) 60 2 208

Vertebral column (VC) 6 3 310

Wine (Wi) 13 3 178

Table 2 Description of the UCR

datasets used in the experiments

The table shows the number of

numerical attributes, classes and

data instances per dataset

Name Attributes Classes Instances

ArrowHead (AH) 251 3 211

BirdChicken (BC) 512 2 40

CBF (CB) 128 3 930

Coffee (Co) 286 2 56

ECGFive (EF) 136 2 884

Ham (Ha) 431 2 214

Herring (He) 512 2 128

ItalyPowerDemand (IP) 24 2 1106

Lighting2 (Lt) 637 2 121

SonyAIBORobot (SA) 70 2 621

It is executed in two steps: in the first step, it assigns the data to the closest centroid (cluster);

in the second step, it calculates the new position of each centroid as the centroid of the data

that have been assigned to it.

PAM (Kaufman and Rousseeuw 1987) is similar to K-means, but it uses medoids instead

of centroids. PAM can work with a dissimilarity/similarity matrix, which is used to calculate

the overall cost of a cluster. PAMK (Kaufman and Rousseeuw 2009) is an extension of PAM,

which calculates the number of clusters using the silhouette as a decision metric.
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EMBIC (Fraley and Raftery 2007) combines EM with the Bayesian information criterion

(BIC). The EM algorithm tries to optimize the parameters of an estimator (in this case,

Gaussian Mixture Models), and BIC adds a penalty to the likelihood based on the number

of parameters. This is helpful when the number of clusters needs to be controlled. Finally,

Clues (Wang et al. 2007) creates a cluster per data instance and merges the clusters according

to the silhouette metric.

We used the R standard implementation2 of K-means, PAM, PAMK, EMBIC and Clues:

for each algorithm, the number of iterations was set to 100 and the remaining parameters were

used with their default values; the initial centroids for K-means were randomly chosen. The

parameters of ACOC, METACOC and METACOC-K algorithms have been set in a similar

way as in the original work (Kao and Cheng 2006): the number on ants is 1000, the number

of elitist ants is 10, the exploitation probability (q0) is 0.0001, the initial pheromone values

follow a uniform distribution in [0.7, 0.8], β = 2.0 (only used by ACOC), ρ = 0.1 and the

maximum number of iterations is 1000.

All the experiments have been carried out using the Euclidean distance as the basic per-

formance metric, which is defined as

d(xi , x j ) = ||xi − x j || =

√

∑

v

(xv
i − xv

j )
2, (9)

where xi , x j represent two data instances and v represents each attribute of the data instance.

Additionally, K-means, PAM, ACOC and METACOC algorithms need the number of clusters

as an initial parameter. The experiments have been carried out 100 times per algorithm and

dataset used, and the average is reported.

The evaluation of the experiments has been focused on two different criteria: on one

hand, the synthetic datasets have been evaluated according to the cluster discrimination and

the performance of the algorithm to discriminate the original clusters in the noisy case;

on the other hand, the real-world datasets have been evaluated using the silhouette metric,

which is optimized directly by the PAMK, EMBIC, Clues and METACOC-K algorithms,

and indirectly by the remaining algorithms (K-means, PAM, ACOC and METACOC) when

they optimize the cost function defined by the Euclidean metric.

4.3 Synthetic experiments

This section presents the result for the synthetic experiments. We have measured how the

algorithms discriminate data, applying the adjusted rand index metric (Hubert and Ara-

bie 1985) to the solutions generated for each dataset. As mentioned above, we considered

three datasets. Table 3 shows the average results for each algorithm (average±SD) over

100 executions; no standard deviation is shown when its value is lower than 0.001. For

the adaptive algorithms METACOC-K, PAMK, EMBIC and Clues, the average number

of clusters identified is in brackets. Table 4 shows the median results for each algorithm.

Finally, Table 5 shows the best results obtained by each algorithm: a value in this table cor-

responds to the highest value in terms of the adjusted rand index metric achieved by an

algorithm.

Table 3 shows that METACOC is the algorithm that is able to clearly discriminate the

data in all three datasets, achieving the highest average adjusted rand index of all algorithms.

METACOC-K also performs well overall, although it seems to have more problems discrim-

inating the cluster boundaries on the synthetic dataset 1. PAM and PAMK obtain similar

2 http://www.r-project.org/
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Table 3 Average results of the application of the algorithms to the synthetic datasets in adjusted rand index

terms, calculated over 100 executions (average±SD); no SD is shown for an algorithm when all values are

lower than 0.001

K-means ACOC PAM METACOC

Synthetic 1 0.812 ± 0.088 0.922 ± 0.017 0.975 0.992 ± 0.002

Synthetic 2 0.783 ± 0.080 0.892 ± 0.030 0.955 0.963 ± 0.005

Synthetic 3 0.812 ± 0.237 1.0 ± 0.000 1.0 1.0 ± 0.000

EMBIC Clues PAMK METACOC-K

Synthetic 1 0.985 (9) 0.892 (15) 0.975 (9) 0.967 ± 0.041 (9)

Synthetic 2 0.667 (9) 0.959 (9) 0.928 (10) 0.954 ± 0.011 (9)

Synthetic 3 1.0 (3) 0.293 (12) 1.0 (3) 1.0 ± 0.000 (3)

The best result for a given dataset is shown in boldface; for adaptive algorithms, the average number of clusters

identified is in brackets

Table 4 Median value for the

adjusted rand index on the

synthetic datasets

Each value corresponds to the

median value achieved by an

algorithm over 100 executions.

The best result for a given dataset

is shown in boldface

K-means ACOC PAM METACOC

Synthetic 1 0.833 0.943 0.975 0.995

Synthetic 2 0.810 0.914 0.955 0.963

Synthetic 3 1.0 1.0 1.0 1.0

EMBIC Clues PAMK METACOC-K

Synthetic 1 0.985 0.892 0.975 0.995

Synthetic 2 0.667 0.959 0.928 0.969

Synthetic 3 1.0 0.293 1.0 1.0

performances, but PAMK has problems in identifying the correct number of clusters on syn-

thetic dataset 2. This is also the case for EMBIC, which performs well on synthetic dataset 1

and synthetic dataset 3, but has problems on synthetic dataset 2. Clues is the algorithm that

achieved the lowest average in synthetic dataset 3, since it generates several clusters—many

more than the existing clusters in the data—during the discrimination process (12 cluster); it

achieves a good performance in the remaining datasets. ACOC performs well overall, with

the exception of synthetic dataset 2, where it has problems discriminating the cluster centres.

K-means has problems in all three datasets: while it managed to discriminate the clusters in

the majority of the runs, it seems to be more sensitive to the initial centroids’ positions, as

can be noticed by its lower average and higher standard deviation values.

Looking closely at the median (Table 4) and average (Table 3) results, we get an intuition

about the convergence of METACOC and METACOC-K. METACOC has similar values

for both median and average, showing that the solutions are similar over multiple runs.

METACOC-K variates more according to the average, which is usually lower than the median.

This shows that an outlier result might appear when we apply METACOC-K multiple times,

which affects the average value. Comparing the median of METACOC-K with the maximum

value (Table 5) of the other algorithms, METACOC-K achieves a better or similar result,
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Table 5 Highest value for the

adjusted rand index on the

synthetic datasets

Each value corresponds to the

highest value achieved by an

algorithm over 100 executions.

The best result for a given dataset

is shown in boldface

K-means ACOC PAM METACOC

Synthetic 1 0.995 0.995 0.975 1.0

Synthetic 2 0.955 0.947 0.955 0.972

Synthetic 3 1.0 1.0 1.0 1.0

EMBIC Clues PAMK METACOC-K

Synthetic 1 0.985 0.892 0.975 1.0

Synthetic 2 0.667 0.959 0.928 0.972

Synthetic 3 1.0 0.293 1.0 1.0

which suggests that in more than 50 % of the runs METACOC-K obtains a better or similar

result than the best result of the other algorithms.

These results show that the proposed algorithms are able to find good results when com-

pared with classical algorithms using synthetic datasets and in general achieved better results

than ACOC.

4.4 Experiments with real-world datasets

This section presents the results of the experiments with real-world datasets. In this case,

the evaluation is focused on the algorithms objectives—i.e. optimizing the silhouette metric.

Table 6 shows the results of all the non-adaptive algorithms, and Table 7 shows the results of

the adaptive algorithms. The values in these tables represent the average and standard devi-

ation (average±SD) over 100 executions; no standard deviation is shown for an algorithm

when all values are lower than 0.001 (EMBIC, Clues and PAMK results).

We have performed a statistical analysis using the Wilcoxon test (Demšar 2006). We

compared the performance of METACOC against PAM (Table 6) and METACOC-K against

PAMK (Table 7): the datasets where METACOC (METACOC-K)’s performance is statisti-

cally significantly better according to the Wilcoxon test with a significant level of 0.05 are

marked with the symbol ; the datasets where METACOC (METACOC-K)’s performance

is statistically significantly worse are marked with the symbol ; if no symbol is shown, no

significant difference was observed. In the first case, METACOC and PAM have been cho-

sen since both are medoid-based clustering algorithms, but METACOC employs a different

search strategy compared to PAM. In the second case, METACOC-K and PAMK have been

chosen as PAMK is the adaptive algorithm with the best performance among the algorithms

optimizing the silhouette metric.

Table 6 shows that METACOC obtains statistically significantly better results than PAM

in 8 out of 20 datasets, while achieving statistically significantly worse results in only 3.

The comparison of METACOC with the rest of the non-adaptive algorithms shows that the

algorithm achieves the best results in 6 out of 20 datasets, a similar results obtained by PAM

while K-means obtains the best results in 10 out of 20 datasets. The good performance of

K-means is likely a consequence that this algorithm is able to move its centroids in the

whole search space (i.e. centroid values do not necessarily correspond to values from a

data instance), while METACOC and PAM—the medoid-based algorithms—choose data

instances as medoids, which probably reduces the silhouette values. This case is similar

when ACOC and METACOC are compared: the ACOC algorithm is able to use the whole

search space, while METACOC has to use a reduced and discrete version based only on the

data instances. As a consequence, the performance of ACOC and METACOC is similar in
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Table 6 Average results of the application of the non-adaptive algorithms to the UCI datasets in silhouette

metric terms (average±SD)

K-means ACOC PAM METACOC

BC 0.755 ± 0.000 0.756 ± 0.001 0.754 ± 0.000 0.754 ± 0.001

BT 0.625 ± 0.014 0.676 ± 0.060 0.633 ± 0.009 0.635 ± 0.050

Ec 0.259 ± 0.038 0.231 ± 0.032 0.263 ± 0.022 0.230 ± 0.028

Gl 0.537 ± 0.115 0.317 ± 0.132 0.281 ± 0.075 0.250 ± 0.091

Hb 0.47 ± 0.003 0.471 ± 0.002 0.472 ± 0.000 0.474 ± 0.003

Hy 0.668 ± 0.000 0.668 ± 0.001 0.665 ± 0.000 0.667 ± 0.001

Hp 0.536 ± 0.049 0.549 ± 0.003 0.559 ± 0.015 0.550 ± 0.009

Io 0.270 ± 0.000 0.263 ± 0.004 0.266 ± 0.000 0.265 ± 0.008

Ir 0.562 ± 0.013 0.562 ± 0.004 0.564 ± 0.007 0.562 ± 0.005

Le 0.175 ± 0.033 0.175 ± 0.011 0.124 ± 0.012 0.129 ± 0.031

Li 0.236 ± 0.017 0.115 ± 0.035 0.211 ± 0.007 0.199 ± 0.030

LC 0.081 ± 0.014 0.073 ± 0.020 0.041 ± 0.010 0.037 ± 0.000

Mm 0.608 ± 0.002 0.608 ± 0.001 0.608 ± 0.001 0.608 ± 0.002

Mu 0.394 ± 0.037 0.393 ± 0.012 0.382 ± 0.021 0.399 ± 0.022

Oh 0.372 ± 0.002 0.365 ± 0.026 0.361 ± 0.000 0.372 ± 0.003

PB 0.649 ± 0.030 0.561 ± 0.035 0.551 ± 0.015 0.565 ± 0.021

Se 0.529 ± 0.024 0.53 ± 0.001 0.524 ± 0.008 0.531 ± 0.004

So 0.187 ± 0.000 0.194 ± 0.006 0.215 ± 0.000 0.215 ± 0.001

VC 0.398 ± 0.021 0.382 ± 0.006 0.348 ± 0.011 0.377 ± 0.013

Wi 0.629 ± 0.004 0.636 ± 0.002 0.637 ± 0.002 0.636 ± 0.003

The performance of METACOC is statistically significantly better than PAM according to the Wilcoxon test

with a significance level of 0.05 in the datasets marked with the symbol ; the performance of METACOC is

statistically significantly worse than PAM in the datasets marked with the symbol ; if no symbol is shown,

no significant difference was observed. The best result for a given dataset is shown in boldface

several cases. However, it is important to remark that centroid-based algorithms cannot be

used when only the distances/similarities among data are known.

Table 7 shows the experimental results for the datasets when the adaptive algorithms

are considered. This table shows that METACOC-K obtains statistically significantly better

results than PAMK in 15 of the 20 datasets, while achieving statistically significantly worse

results in only 4. When METACOC-K is compared with the rest of the adaptive algorithms,

it obtains better results than both EMBIC and Clues—with the exception of the So and Li

datasets, where Clues obtains better results.

Table 8 presents a summary of the best results obtained by each algorithm. A value in the

table corresponds to the highest value in terms of the silhouette metric achieved by an algo-

rithm over 100 executions. These results show again the better performance of METACOC-K

in optimizing the silhouette metric over the remaining algorithms: METACOC-K obtained

the highest value in 17 of the 20 datasets; although K-means optimizes the silhouette metric

only indirectly by minimizing the Euclidean error in the clusters, it obtained the highest value

in two datasets (in one of them it tied with METACOC-K); ACOC and PAMK obtained the

highest value in one dataset each.

We also compared the best results of K-means against a single run of METACOC and

METACOC-K. This comparison presents a balance between the computational time and
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Table 7 Average results of the application of the adaptive algorithms to the UCI datasets in silhouette metric

terms (average±SD); no standard deviation is shown for an algorithm when all values are lower than 0.001

EMBIC Clues PAMK METACOC-K

BC 0.037 (9) 0.045 (21) 0.754 (2) 0.728 ± 0.010 (2)

BT 0.855 (2) 0.878 (2) 0.792 (4) 0.926 ± 0.000 (2)

Ec 0.391 (5) 0.193 (7) 0.444 (3) 0.451 ± 0.028 (3)

Gl 0.033 (5) 0.129 (5) 0.675 (3) 0.697 ± 0.051 (2.60 ± 0.49)

Hb 0.193 (2) 0.173 (6) 0.472 (2) 0.609 ± 0.053 (2)

Hy 0.523 (1) 0.574 (4) 0.701 (2) 0.701 ± 0.000 (2)

Hp 0.163 (6) 0.218 (3) 0.549 (2) 0.774 ± 0.000 (2)

Io 0.138 (9) 0.029 (5) 0.369 (3) 0.265 ± 0.019 (2.08 ± 0.34)

Ir 0.707 (2) 0.557 (3) 0.709 (2) 0.711 ± 0.036 (2)

Le 0.013 (1) 0.112 (1) 0.134 (3) 0.311 ± 0.000 (2)

Li 0.111 (1) 0.216 (7) 0.268 (10) 0.195 ± 0.034 (2)

LC 0.011 (2) 0.032 (1) 0.057 (6) 0.109 ± 0.004 (2)

Mm 0.121 (8) 0.193 (32) 0.608 (2) 0.612 ± 0.012 (2)

Mu 0.398 (3) 0.111 (14) 0.399 (3) 0.403 ± 0.013 (2.06 ± 0.23)

Oh 0.008 (4) 0.050 (38) 0.361 (2) 0.548 ± 0.051 (2)

PB 0.293 (7) 0.275 (113) 0.842 (2) 0.851 ± 0.032 (2)

Se 0.325 (5) 0.529 (3) 0.602 (2) 0.610± 0.004 (2)

So 0.033 (1) 0.201 (3) 0.215 (2) 0.191 ± 0.026 (2)

VC 0.108 (4) 0.194 (5) 0.472 (2) 0.567 ± 0.019 (2)

Wi 0.553 (4) 0.578 (4) 0.700 (2) 0.728 ± 0.004 (2)

The performance of METACOC-K is statistically significantly better than PAMK according to Wilcoxon test

with significance level of 0.05 in the datasets marked with the symbol ; the performance of METACOC-K is

statistically significantly worse than PAMK in the datasets marked with the symbol ; if no symbol is shown,

no significant difference was observed. The best result for a given dataset is shown in boldface; the average

number of clusters identified is in brackets

the performance of the algorithms, given that the proposed algorithms use a more time-

consuming ACO procedure where multiple candidate solutions are evaluated, while K-means

employs a faster local search strategy. The results are presented in Table 9. A value in the table

corresponds to the average of the best K-means value over 30 executions (where the best value

is determined over 30 restarts for each execution) and a single execution of METACOC and

METACOC-K. The results show that METACOC-K is the best of the ACO-based algorithms,

achieving statistically significantly better results than K-means in 14 of the 20 datasets and

statistically significantly worse results in only one dataset; in the remaining 5 datasets, no

statistically significant differences were detected. In this case is evident the advantage of the

ACO procedure, since it leads to the creation of high quality solutions. The results obtained

by METACOC are mixed: K-means is statistically significantly better than METACOC in

9; K-means is statistically significantly worse than METACOC in 5 datasets; and they have

similar performances in 4 datasets. Given the stochastic nature of the ACO search, better

results might be obtained by multiple executions of METACOC, at the cost of a higher

computational time.

Overall, we consider the results presented in Tables 6, 7, 8 and 9 positive. In summary,

METACOC shows statistically significant improvements over PAM; METACOC-K, the pro-
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Table 8 Highest value for the

silhouette metric on the UCI

datasets

Each value corresponds to the

highest value achieved by an

algorithm over 100 executions.

The best result for a given dataset

is shown in boldface

K-means ACOC PAM METACOC

BC 0.755 0.757 0.754 0.754

BT 0.705 0.753 0.642 0.720

Ec 0.362 0.292 0.285 0.335

Gl 0.558 0.534 0.355 0.539

Hb 0.477 0.475 0.472 0.477

Hy 0.668 0.670 0.665 0.669

Hp 0.774 0.557 0.574 0.550

Io 0.270 0.274 0.266 0.270

Ir 0.599 0.566 0.571 0.570

Le 0.230 0.181 0.136 0.134

Li 0.279 0.152 0.218 0.250

LC 0.105 0.112 0.051 0.037

Mm 0.613 0.610 0.609 0.613

Mu 0.398 0.393 0.403 0.401

Oh 0.376 0.368 0.361 0.372

PB 0.810 0.564 0.566 0.567

Se 0.530 0.536 0.532 0.541

So 0.187 0.206 0.215 0.221

VC 0.487 0.394 0.359 0.396

Wi 0.643 0.636 0.639 0.640

EMBIC Clues PAMK METACOC-K

BC 0.037 0.045 0.754 0.743

BT 0.855 0.878 0.792 0.926

Ec 0.391 0.193 0.444 0.453

Gl 0.033 0.129 0.675 0.717

Hb 0.193 0.173 0.472 0.663

Hy 0.523 0.574 0.701 0.702

Hp 0.163 0.218 0.549 0.774

Io 0.138 0.029 0.369 0.294

Ir 0.707 0.557 0.709 0.712

Le 0.013 0.112 0.134 0.311

Li 0.111 0.216 0.268 0.235

LC 0.011 0.032 0.057 0.126

Mm 0.121 0.193 0.608 0.635

Mu 0.398 0.111 0.399 0.403

Oh 0.008 0.050 0.361 0.653

PB 0.293 0.275 0.842 0.862

Se 0.325 0.529 0.602 0.614

So 0.033 0.201 0.215 0.282

VC 0.108 0.194 0.472 0.629

Wi 0.553 0.578 0.700 0.733
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Table 9 Average results of the

best K-means run computed over

30 restarts, and a single run of

METACOC and METACOC-K

on the UCI datasets in silhouette

metric terms (average±SD)

The performance of METACOC

and METACOC-K is statistically

significantly better than K-means

according to Wilcoxon test with

significance level of 0.05 in the

datasets marked with the symbol

; the performance of

METACOC and METACOC-K is

statistically significantly worse

than K-means in the datasets

marked with the symbol ; if no

symbol is shown, no significant

difference was observed. The best

result for a given dataset is shown

in boldface

K-means METACOC METACOC-K

BC 0.755 ± 0.000 0.758 ± 0.002 0.728 ± 0.010

BT 0.635 ± 0.004 0.639 ± 0.051 0.926 ± 0.000

Ec 0.303 ± 0.007 0.227 ± 0.022 0.451 ± 0.028

Gl 0.541 ± 0.002 0.286 ± 0.083 0.697 ± 0.051

Hb 0.477 ± 0.003 0.488 ± 0.002 0.609 ± 0.053

Hy 0.668 ± 0.000 0.669 ± 0.002 0.701 ± 0.000

Hp 0.676 ± 0.007 0.540 ± 0.005 0.774 ± 0.000

Io 0.270 ± 0.000 0.271 ± 0.003 0.265 ± 0.019

Ir 0.577 ± 0.004 0.557 ± 0.004 0.711 ± 0.036

Le 0.200 ± 0.002 0.117 ± 0.027 0.311 ± 0.000

Li 0.243 ± 0.001 0.194 ± 0.028 0.195 ± 0.034

LC 0.095 ± 0.011 0.047 ± 0.000 0.109 ± 0.004

Mm 0.613 ± 0.001 0.618 ± 0.003 0.612 ± 0.012

Mu 0.398 ± 0.002 0.401 ± 0.020 0.403 ± 0.013

Oh 0.376 ± 0.002 0.379 ± 0.006 0.548 ± 0.051

PB 0.751 ± 0.008 0.575 ± 0.017 0.851 ± 0.032

Se 0.530 ± 0.003 0.541 ± 0.009 0.610 ± 0.004

So 0.187 ± 0.000 0.215 ± 0.001 0.191 ± 0.026

VC 0.417 ± 0.007 0.367 ± 0.017 0.567 ± 0.019

Wi 0.634 ± 0.002 0.646 ± 0.009 0.728 ± 0.004

posed algorithm that can adapt the number of clusters, obtains the highest results of all the

algorithms in 17 of the 20 datasets. More importantly, it statistically significantly outperforms

PAMK in 15 of the 20 datasets.

4.5 Time series experiments

In this section, we present a set of experiments focused on a specific domain where medoid-

based approaches have been successful: time series analysis (Liao 2005). We have selected

ten datasets from the UCR Time Series Classification Archive (Chen et al. 2015). Details

of these datasets are presented in Table 2. The similarity matrix derived from the alignment

between two time series is generated applying the Dynamic Time Wrapping distance (Keogh

and Ratanamahatana 2005). Table 10 shows the experimental results for the medoid-based

algorithms: PAM, METACOC, Clues, PAMK and METACOC-K. The values in this table

represent the average and standard deviation (average±SD) over 100 executions; no standard

deviation is shown for an algorithm when all values are lower than 0.001 (Clues and PAMK

results).

In these experiments, we use PAM, Clues and PAMK as benchmark for the Wilcoxon

test with significance level of 0.05, comparing them with METACOC and METACOC-K,

respectively. METACOC shows better performance compared with PAM overall, achieving

statistically significantly better results in two datasets (CB and SA) and statistically signifi-

cantly worse results in only one dataset (Lt). METACOC-K achieved statistically significantly

better results than Clues in 9 out of 10 datasets and no statistically significant differences

were detected in only one dataset (He); compared with PAMK, METACOC-K achieved sta-

tistically significantly better results in 6 out of 10 datasets (AH, CB, Co, Ha, IP and SA) and
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Table 10 Average results of the

application of the adaptive

algorithms to the UCR time series

datasets in silhouette metric

terms (average±SD); no SD is

shown for an algorithm when all

values are lower than 0.001

The performance of PAM (Clues

and PAMK) is statistically

significantly better than

METACOC (METACOC-K)

according to Wilcoxon test with

significance level of 0.05 in the

datasets marked with the symbol

; the performance of PAM

(Clues and PAMK) is statistically

significantly worse than

METACOC (METACOC-K) in

the datasets marked with the

symbol ; if no symbol is shown,

no significant difference was

observed. The best result for a

given dataset is shown in

boldface; the average number of

clusters identified by Clues,

PAMK and METACOC-K is

shown in brackets

PAM METACOC

AH 21.88 ± 0.010 22.20 ± 0.018

BC 34.10 ± 0.000 34.10 ± 0.000

CB 13.56 ± 0.025 14.55 ± 0.018

Co 28.78 ± 0.013 28.78 ± 0.000

EF 40.31 ± 0.001 40.30 ± 0.002

Ha 10.98 ± 0.012 10.33 ± 0.012

He 32.44 ± 0.022 32.66 ± 0.004

IP 63.08 ± 0.044 63.25 ± 0.003

Lt 21.06 ± 0.027 15.02 ± 0.024

SA 7.80 ± 0.021 10.54 ± 0.039

Clues PAMK METACOC-K

AH 11.53 (5) 46.99 (2) 74.58 ± 0.025 (2)

BC 0 (1) 35.57 (8) 35.58 ± 0.012 (2)

CB 8.51 (19) 23.74 (2) 27.51 ± 0.007 (3)

Co 0 (1) 28.78 (2) 32.03 ± 0.047 (2)

EF 20.91 (20) 40.31 (2) 40.40 ± 0.007 (2)

Ha 6.57 (4) 10.98 (2) 25.81 ± 0.065 (2)

He 33.05 (2) 32.84 (2) 32.16 ± 0.007 (2)

IP 14.32 (24) 63.08 (2) 64.14 ± 0.002 (2)

Lt 9.73 (3) 21.06 (2) 21.37 ± 0.017 (2)

SA 6.16 (13) 15.83 (4) 16.56 ± 0.062 (2)

no statistically significant differences were detected in the remaining datasets. Additionally,

METACOC-K identified the right number of clusters in all cases but the AH dataset, which

was also not identified by any of the adaptive algorithms.

4.6 Computational time

Table 11 shows the average computational time (average±SD) in seconds taken by META-

COC and METACOC-K on the UCI datasets over a fixed number of iterations. The algorithms

are around 10 times slower than K-means, 6 times slower than PAM and Clues, 4 times slower

than PAMK and similar to EMBIC. Overall, METACOC is faster than METACOC-K. We

were expecting a higher computational time for METACOC-K, since the algorithm explores

solutions with different values for k and it uses a more complex evaluation function. In

our observations, both METACOC and METACOC-K are generally faster than ACOC. We

attribute this to the simplified construction process compared to ACOC. As soon as the algo-

rithm selects k medoids (where k is the number of clusters), the solution construction process

stops, while ACOC must visit all instances of the dataset to create a solution.

Figure 5 illustrates the convergence of METACOC and METACOC-K. It is interesting to

note that METACOC-K converges faster than METACOC, while being slower than META-

COC over the same number of iterations. This suggests that the computational time of

METACOC-K can be improved by using a smaller number of iterations to reduce its overall

computation time, without negative impact on its performance.

123



142 Swarm Intell (2016) 10:123–145

Table 11 Average

computational time

(average±SD) in seconds taken

by METACOC and

METACOC-K on the UCI

datasets

The lowest value for a given

dataset is shown in boldface

METACOC METACOC-K

BC 10.11 ± 0.042 17.52 ± 0.073

BT 1.41 ± 0.001 1.95 ± 0.010

Ec 4.88 ± 0.018 11.37 ± 0.042

Gl 2.33 ± 0.005 2.89 ± 0.015

Hb 4.20 ± 0.012 9.31 ± 0.033

Hy 1.87 ± 0.001 1.99 ± 0.004

Hp 1.92 ± 0.001 3.01 ± 0.006

Io 5.06 ± 0.008 12.27 ± 0.062

Ir 2.11 ± 0.003 2.31 ± 0.007

Le 0.31 ± 0.000 0.45 ± 0.000

Li 3.98 ± 0.009 8.81 ± 0.031

LC 0.40 ± 0.000 0.51 ± 0.000

Mm 21.20 ± 0.029 20.40 ± 0.068

Mu 8.53 ± 0.011 18.20 ± 0.082

Oh 21.70 ± 0.029 49.10 ± 0.101

PB 45.10 ± 0.081 100.40 ± 0.192

Se 1.95 ± 0.002 3.33 ± 0.005

So 2.55 ± 0.003 2.72 ± 0.003

VC 5.22 ± 0.009 7.89 ± 0.026

Wi 2.33 ± 0.001 2.51 ± 0.005

5 Conclusions and future work

In this paper, we proposed two medoid-based ACO clustering algorithms, METACOC

and METACOC-K. Medoid-based clustering algorithms only need the distances/similarities

among data to find a solution and they are more robust to outliers. One of the main advantages

of medoid-based algorithms is that they can directly be applied to problems where the fea-

tures of data cannot be easily represented in a multi-dimensional space. The first algorithm,

called METACOC, uses an ACO procedure to determine an optimal medoid set (METACOC

algorithm). The second algorithm, called METACOC-K, uses an automatic selection of the

number of clusters, useful for problems where the number of cluster is not known a priori.

We compared the proposed algorithms against classical clustering algorithms, both

centroid- and medoid-based, in synthetic and real-world datasets. METACOC results were

positive, statistically significantly outperforming PAM in 8 out of 20 real-world datasets

and achieving competitive results against (centroid-based) K-means and ACOC algorithms,

while using only the information about the distance among the data instances. METACOC-K

results were also positive: it statistically significantly outperformed PAMK in 15 out of the

20 real-world datasets. METACOC-K was also the algorithm that consistently achieved the

best results in the real-world datasets in the experiments optimizing the silhouette metric.

Concerning the time series datasets, METACOC shows better performance compared with

PAM overall, achieving statistically significantly better results in two datasets and statis-

tically significantly worse results in only one dataset; METACOC-K achieved statistically

significantly better results than Clues in 9 out of 10 datasets and than PAMK in 6 out of 10

datasets, with no statistically significant differences detected in the remaining datasets.
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Fig. 5 Illustration of the convergence of METACOC and METACOC-K on the breast cancer, breast tissue,

Haberman and Wine UCI datasets

There are several future research directions. Both METACOC and METACOC-K do not

employ heuristic information during the construction process—it would be interesting to

investigate whether the search can be further improved by such information. Exploring the

use of different cluster evaluation measures to improve the number of clusters selection in

METACOC-K is also another interesting research direction—this can be evaluated in an

automatic configuration setting (López-Ibáñez et al. 2011). At the moment, the selection of

the number of clusters is not part of the construction graph, and therefore, it is not influenced

by pheromone values—adding the selection to the construction graph might improve the

search. Finally, the application of the algorithms in large-scale data analysis tasks is also a

research direction worth further exploration.
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