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ABSTRACT

Many data mining algorithms do not make use of existing
domain knowledge when constructing their models. This
can lead to model rejection as users may not trust models
that behave contrary to their expectations. Semantic con-
straints provide a way to encapsulate this knowledge which
can then be used to guide the construction of models. One
of the most studied semantic constraints in the literature
is monotonicity, however current monotonically-aware algo-
rithms have focused on ordinal classification problems. This
paper proposes an extension to an ACO-based regression
algorithm in order to extract a list of monotonic regres-
sion rules. We compared the proposed algorithm against
a greedy regression rule induction algorithm that preserves
monotonic constraints and the well-known M5’ Rules. Our
experiments using eight publicly available data sets show
that the proposed algorithm successfully creates monotonic
rules while maintaining predictive accuracy.

CCS Concepts

•Computing methodologies → Supervised learning
by regression; Rule learning; Continuous space search;

Keywords

ant colony optimization; semantic constraints; monotonic;
data mining; regression rules; sequential covering

1. INTRODUCTION
Data mining is a research area focused on automating the

search for useful patterns in data [9]. Many algorithms con-
centrate on producing accurate models, however while accu-
racy is an important feature other parameters of a model are
also important including a model’s comprehensibility and its
ability to preserve pre-existing domain knowledge. Both of
these features can aid the acceptance of a model amongst
its users who are normally experts in the domain being in-
vestigated.
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This paper aims to investigate adding domain knowledge
in the form of semantic constraints to the learning process
of an Ant Colony Optimization (ACO)-based regression rule
learner to produce accurate models that conserve existing
domain knowledge.

ACO-based algorithms are stochastic algorithms that use
colonies of artificial ants that mimic the path finding be-
haviour of real ants to solve hard optimisation problems.
The artificial ants traverse a construction graph to build full
solutions [6]. In data mining, the ACO-based algorithm Ant-
Miner [20] and its derivatives have been successfully used to
create lists of classification rules while Ant-Miner-Reg [4]
— inspired by Ant-Miner — has tackled the regression task,
producing regression rules that outperform a classical greedy
search approach.

Semantic constraints allow algorithms to capture and use
existing domain knowledge to guide the construction of mod-
els. Algorithms that do not pay attention to these con-
straints may build models that break this relationship. This
failure can lead to decreased model acceptance by domain
experts due to their counter intuitiveness [12]. Monotonic
constraints are one form of semantic constraints, e.g., house
prices display monotonic properties as it is expected that as
the size of a house increases so will its price.

The rest of the paper is structured as follows. Firstly, we
present work from the literature that has been completed in
related areas, including regression, ant colony optimization
and semantic constraints. Section 3 details the proposed
extension to Ant-Miner-Reg. Next, Section 4 presents our
results followed up by a discussion, before drawing our con-
clusions and suggesting possible future work in Section 6.

2. BACKGROUND
There are three areas of related work, regression, ant col-

ony optimization (ACO) and semantic constraints. First we
will discuss regression and regression rule models followed
by a description of ACO algorithms and Ant-Miner-Reg —
the initial application of an ACO-based rule learner for the
regression task. Finally, a summary of the literature sur-
rounding semantic constraints and more specifically mono-
tonic constraints.

2.1 Regression
Regression algorithms aim to construct models that will

produce real values predictions for each instance they are
given. The prediction of a target value is made based on a
set of values of the predictor attributes. This is in contrast
to classification problems where the aim of a model is to
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Algorithm 1: Generic ACO pseudocode

1 while Not Terminated do
2 ConstructSolutions()
3 LocalSearch() // Optional step

4 PheromoneUpdate()

5 end
6 return BestSolution

classify each instance into a number of predetermined classes
[8]. Regression models can take a number of different forms
including linear and non-linear algebraic expressions, e.g.,
GP and SVR [1, 24], regression trees as produced by CART
and M5 [24, 23]. In this paper we will focus on the generation
of regression rules, following the structure:

IF att1 ≥ value1 AND att2 = value2 THEN target (1)

where att1 and att2 are belong to the set of predictor at-
tributes and target is the mean value of instances covered
by the rule in the training data. Instances are covered when
they satisfy the conditions present in the antecedent – the
IF ... part of the rule.

Regression rules consist of (attribute, operator, value) tu-
ples which are joined together with logical ANDs. If all
terms are satisfied by an instance the value after the THEN

(the consequent) is used as a prediction. Regression rules
are used by many algorithms, two of which are M5’ Rules
[11] and SeCoReg [13]. Ant-Miner-Reg [4] is an ACO-based
regression algorithm that also constructs lists of regression
rules. Ant-Miner-Reg algorithm will be discussed in detail
in Section 3.1.

2.2 Ant Colony Optimization
Ant Colony Optimization (ACO) is a stochastic meta-

heuristic that has been used to approximate solutions to
many NP-hard combinatorial problems. A classical ACO
application is the traveling salesman problem (TSP) [6]. The
TSP is a problem where a salesman has a number of cities
he visits, which are all interconnected. The salesman wishes
to choose the shortest route that allows him to visit all the
cities at least once.

The ACO meta-heuristic was first proposed by Marco
Dorigo [6] based on the methods used by real ants to search
for food sources and then communicate the location of food
to the whole colony. Algorithm 1 shows a generic overview
of the ACO meta-heuristic.

An ACO algorithm is an iterative process. During the con-
struction phase (line 2 in algorithm 1) each ant in the colony
generates a candidate solution by traversing a construction
graph, where the vertices represent the components of a so-
lution. At each vertex, a decision is made by an ant to
choose the vertex that should be visited next, this choice
is probabilistic. The probability of selection is proportional
to the current pheromone level on the edge and a problem
specific heuristic information. The probability an edge Eij

is selected by an ant is given by:

P (Eij) =
τα
ij · η

β
ij

∑

l∈ allowed j
τα
il · η

β

il

(2)

where τ is the pheromone level of an edge, η is its heuristic

Table 1: Simple house rental data set.

Target Attribute Predictor Attributes

Rental Value Floor Area Location

£300 45 2

£600 80 1

£250 33 3

£400 65 2

£450 70 1

£350 54 2

value, α and β are constants that alter the importance of
each component. This equation was used by Dorigo in the
original ant system [6]. Other ACO derivatives may use
other methods for calculating probabilities.

Once candidate solutions have been generated an optional
step can be performed where a local search can be used to
optimise the verticies chosen by the ants. In classification
this local search takes the form of pruning strategies that
follow rules to remove terms that improve the quality of a
rule [20].

Finally the quality of the generated solutions is used to
update the pheromone values for the construction graph’s
edges. First edges used in good solutions have their phero-
mone level increased to strengthen the probability they are
selected in the next iteration — the increase in pheromone
value is proportional to the solution quality. Edges that
remain unused go through a process of evaporation where
their pheromone levels are decreased to suppress their selec-
tion. Pheromone evaporation allows colonies to forget poor
decisions they made in the past and explore new areas of
the problem domain. The pheromone gives the ant colony
an implicit memory, allowing future ants to improve their
solutions based on the successes of those before them [6].

These steps are then repeated until set stopping criteria
are reached, typically these are a fixed number of iterations
or the ants converge on a solution. At which point the best
solution is returned by the algorithm.

Ant-Miner [20] and its extensions have been successfully
used to generate classification rules in data mining applica-
tions, as the ants traverse the graph they generate a rule
by adding the terms that they visit on their path while
the pheromone is increased based on the quality of the best
rule generated by the colony in each iteration. cAnt-Miner
[18] extended Ant-Miner by allowing the use of continuous
attributes which are discretised at run time rather than a
pre-processing step. Ant-Miner-Reg [4] is inspired by both
Ant-Miner and cAnt-Miner however it focuses on the con-
struction of regression rules, like Ant-Miner it constructs
rules by traversing a graph adding individual terms and can
also handle continuous attributes by using a dynamic dis-
cretisation.

2.3 Semantic Constraints
Semantic constraints incorporate existing domain knowl-

edge into the construction of new models. For example,
when you consider house rent the price can depend on fea-
tures such as the location, floor area. Table 1 shows a simple
hypothetical dataset. An obvious relationship in this data



Constraint

}} ##

Univariate

�� !!

Multivariate

Nominal Ordinal

}} ##

Monotone Non-monotone

|| ##

Piecewise
Monotone

Non-piecewise
monotone

Figure 1: Taxonomy of constraints, all constraints
can exist in soft and hard variants. Univariate Or-
dinal Monotone constraints are the most common
found in the literature [17].

set is that as the floor area increases so does the rental price
for all possible pairs in the data set.

A model that does not conserve these patterns would seem
counter intuitive and may lead to model rejection by domain
experts. Hoover and Perez [12] state that the economic field
distrusts data mining as a technique to search for models
due to the discovery of accidental correlations. They say
“Data mining is considered reprehensible largely because the
world is full of accidental correlations, so that what a search
turns up is thought to be more a reflection of what we want
to find than what is true about the world.” [12, p. 197].
Semantic constraints provide a method for guiding searches
by providing information on real correlations present within
the data.

There are many different possible constraints, Martens et
al. [17] presents a taxonomy of constraints. This taxonomy
can be seen in Figure 1, where the constraints featuring in
the taxonomy can be implemented in either hard or soft
variants. Hard constraints are enforced rigidly guaranteeing
compliance in the final model, while soft constraints bias
a preference towards compliance but will not enforce it if
model accuracy would be badly affected. So far the liter-
ature has focused on implementing monotonic constraints
when tackling the classification task. Many real-world prob-
lems contain monotonic properties such as house prices, cus-
tomer credit ratings [3]. This paper explores the implemen-
tation of monotonic constraints to the data mining regres-
sion task.

2.4 Monotonicity
Monotonicity is found in many different fields including

house prices, medicine, finance and law. Taking the first
example of house prices, it is expected that as the total floor
area of a property increases the value of the property will
also increase, this is illustrated in the example data shown
in Table 1 where the rental value is always monotonically
increasing with respect to the floor area. From the rental
price data set shown in Table 1 we could extract the rules:

IF floor area ≤ 65 THEN 325 ELSE

IF floor area ≥ 65 AND location = 1 THEN 525

where we can see that the rules have a monotonic relation-
ship between floor area and rental price with respect to each
another, as no prediction can be made where the floor area
decreases and the price would increase. Incidentally the
model is also monotonic w.r.t. location as the second rule
does not constrain this attribute so can be ignored.

Many data mining algorithm do not enforce this relation-
ship when constructing models and still produce good mod-
els. However, if models violate these constraints they may
not be accepted by experts as valid, conforming to mono-
tonicity constraints improves model acceptance [7, 10].

Monotonicity can be defined formally in the following ma-
nner. Let X = X1 ×X2 × · · · ×Xi be the instance space of i
attributes, Y be the target space, and function f : X → Y,
it is also assumed that both the instance space and target
space have an ordering. A function can then be considered
monotone if:

∀x,x′
∈ X : x ≤ x′ =⇒ f(x) ≤ f(x′) (3)

where x and x′ are two vectors in instance space, x =
(x1, x2, · · · , xp) [21]. In other words, f(x) is monotonic if
and only if all the pairs of examples x, x′ are monotonic
with respect to each other.

Monotonicity constraints can be enforced in a number of
different stages in the data mining process. The first is in
the pre-processing stage where the training data is manipu-
lated so that is becomes monotonic in nature. This method
does not enforce constraints in the model so it will be dis-
cussed no further. In the model construction stage models
are constructed in a monotonic fashion. Finally constraints
could be enforced in a post processing stage which modi-
fies constructed models so that they are monotonic. Table
2 presents previous work identified in the literature review
into these categories.

Constraints can be implemented as hard or soft variants.
Hard constraints are enforced rigidly and reject any model
or change to a model that would cause a violation to occur.
This method can cause the rejection of good models due to
small violations in their monotonicity. The second method,
soft constraint, is to balance the monotonicity of a model
against other model quality measures.

2.4.1 Model Construction

Soft constraints have been implemented in the model con-
struction stage by Ben-David [2]. The approach attempts to
assign a non-monotonicity index to each decision produced.
The index is the ratio between the number of non-monotonic
leaf node pairs and the maximum number of pairs that could
have been non-monotonic. First a non-monotonicity matrix
m is constructed which has dimensions k (the number of
branches in the tree). This matrix is used to find the num-
ber of violations in the current tree, given by:

W =
k

∑

i=1

k
∑

j=1

mij

mij =

{

1 if i, j is non-monotonic
0 otherwise

(4)

where i and j denote the current cell being referenced in



Table 2: Monotonicity implementations found in the literature categorised by their implementation stage.

Implementation Stage Algorithm Names Reference

Pre Processing Nearest Neighbour with Monotonicity Constraints [7]
Relabelling data to ensure monotonicity [5]

Model Construction Decision Trees with Modified Entropy Calculation [2]
Ordinal learning model [3]
Fused Monotonic Decision Trees [22]
AntMiner+ with Constraints [16]

Post Processing Decision Trees with Monotonic pruning [10]

the matrix. W can then be used to find a tree’s non-mono-
tonicity index, given by:

Ia1...av
=

Wa1...av

k2
a1...av

− ka1...av

(5)

where a1...av are the attributes being constrained. The
Ia1...av

index can be converted to an ambiguity score A and
then incorporated with a tree accuracy score, given by:

Aa1...av
=

{

0 if Ia1..av
= 0

−(log2(Ia1...av
))−1 otherwise

(6)

Ta1...av
= Ea1...av

+RAa1...av
(7)

where R is the importance given to the monotonicity of trees
produced. It should be noted that an entropy based accu-
racy method was used in this example, which is a logarithmic
function hence the ambiguity value is also made logarithmic.
This modification is performed to ensure that both measures
used to calculate the total T scale at the same rate without
one dominating unduly. If the error measure E is altered
then care should be taken to modify A based on the new
behaviour to ensure the algorithm remains well behaved. It
was found that this method of using a combined metric pro-
duced fewer models that breached monotonicity constraints
while not significantly degrading the accuracy of the trees
generated [2].

Ben-David [3] also investigated the effects of monotonic-
ity constraints on ordinal classifiers, with the conjecture that
adding monotonicity constraints to learning algorithms will
impair their accuracy against those that do not. Ordinal
classifiers are classifiers that are aware that there can be
an order to discrete categories, for example credit rating
may have the categories poor, acceptable and good that has
an obvious order. The results presented contain two unex-
pected results. The authors found that ordinal classifiers did
not significantly improve over non-ordinal classifiers. Sec-
ondly, the monotonicity algorithms were not able to signifi-
cantly outperform a majority-based classifier. It is theorised
that these results were due to noisy data sets: the monotonic
classifiers enforced hard constraints, in the presence of noisy
data a softer approach may lead to better results [3].

Qian et al [22] have explored the possibility of fusing
monotonic decision trees to improve the accuracy of the final
model. This is achieved by reducing the original data set to
create sets that maintain the monotonicity of the original.
From these new reduced data sets, monotonic trees can be
constructed. Each leaf node of a reduced tree then contain
probabilities of the correctness of the prediction based on

the reduced training set. When a prediction is required, the
probabilities at each leaf nodes is averaged with the highest
average being the class predicted by the model.

2.4.2 Post-Processing

Feelders [10] has suggested that using non-monotonic cri-
teria in tree construction is not beneficial as splits later in
the construction process can transform a tree from a state of
non-monotonicity to one that is. Therefore pruning methods
have been developed to make the minimal number of changes
to make a tree monotonic in a post-processing phase [10].

The first method proposed is the Most Non-monotone
Parent (MNP) method, which aims to prune the node that
gives the most number of monotone pairs. This method has
the disadvantage of possibly creating new non-monotonic
pairs. The second method proposed is the best fix method,
this prunes the node that gives the biggest reduction in non-
monotonicity. The authors have also combined these prun-
ing methods with existing complexity pruning methods and
found that the monotonic trees produced no significant dif-
ference in performance compared to trees produced without
monotonic pruning. However it was observed that the trees
produced were smaller, which aids the comprehensibility of
the models produced [10].

3. DISCOVERING MONOTONIC

REGRESSION RULES
In this section we present the proposed extension to Ant-

Miner-Reg. Ant-Miner-Reg is a sequential covering algo-
rithm that uses an ACO procedure to construct regression
rules. Sequential covering — also known as separate-and-
conquer — is commonly used to construct lists of rules.
The iterative procedure generates a single rule in each cy-
cle while removing any instances covered by the new rule.
The extension proposed incorporates monotonicity measures
into pruning process, both during rule construction and post
rule construction. This allows soft constraints to be used
during rule construction enableing the ACO procedure to
fully explore the search space while using hard constraints
post-construction to enforce the constraints rigourously.

3.1 Ant-Miner-Reg
Algorithm 2 shows the sequential covering pseudocode.

During each iteration of the algorithm the ACO returns a
single rule (line 5). The rule is then added to the current
list of rules and any instances covered by the new rule are
removed (lines 7 and 9). Once the number of uncovered
instances drop below a preset threshold the default rule is
added to the list and the completed list returned. The de-



fault rule is an empty rule whose consequent is the mean of
the uncovered instances.

The rule construction process is based on the cAnt-Miner
algorithm [18]. The high-level pseudocode is shown in Al-
gorithm 3, where ant interations control the number of it-
erations performed while searching for a new rule and col-
ony size represents the number of ants that will traverse
the construction graph in each iteration. The CreateRule()
function builds each rule using the pheromone levels to de-
termine the terms to be added to each rule — convention-
ally the probability of a term being selected also relies on a
problem specific heuristic, however Ant-Miner-Reg does not
employ heuristic information.

3.2 Rule Pruning
The original Ant-Miner-Reg had a single rule pruning

method applied after the rule creation (line 9 of Algorithm
3). This has been replaced by a soft pruning method that
is applied after each ant has constructed its rule. The soft
pruning method removes a single term from the rule, and if
this produces an improvement to its quality the new shorter
rule is retained. This is repeated until no improvement is
measured or there are no terms left in the rule. The rule
quality measure uses a combination of factors including a
measure of monotonicity and therefore favours these mono-
tonic rules, however its does not prohibit non-monotonic
rules if they are shown to have other good features. Section
3.3 presents a detailed explanation of the quality measure.

A second hard rule pruning is also performed (line 28 of
Algorithm 3) in a post-construction pruning phase. The
monotonicity of the best rule generated is checked, if it is
found to be non-monotonic a single term is removed from
the rule and the monotonicity re-evaluated. This is repeated
until the rule is monotonic and it is then returned; if no
terms remain the default rule is returned and the algorithm
will return the rule list that has been constructed so far.

The decision to use two monotonic pruning strategies al-
lows the ACO to fully explore the search space. During rule
construction soft constraints allow the search to be guided
towards the goal of creating monotonic models. After con-
struction hard pruning ensures that the model returned is
strictly monotonic.

3.3 Rule Quality Measure
The original Ant-Miner-Reg used the rule quality measure

described by Janssen and Furnkranz [13]. This combines
both relative coverage and relative root mean squared error
(RRMSE), given by:

Q = α · (1−RRMSE) + (1− α) · relCov (8)

where relCov represents the relative coverage of the rule,
RRMSE is the relative root mean squared error and α is the
weighting applied to each component. relCov is given by:

relCov =
1

m
· coverage(Rule) (9)

where m is the total number of instances which is used to
constraint the coverage between 0 and 1. RRMSE is given
by:

RRMSE =
RMSE

√

1

m
Ldefault

(10)

Algorithm 2: SequentialCovering(Instances)

Data: Instances
Result: RuleList

1 RuleList ←− ∅
2 Rule ←− ∅
3 while Instances > Threshold do
4 // Creates the next rule

5 Rule ←− ACOLearnOneRule(Instances)
6 // Adds rule to list

7 RuleList ←− RuleList ∪ Rule
8 // Removes covered instances

9 Instances ←− Instances − Covered(Rule, Instances)

10 end
11 // Adds the default rule

12 RuleList ←− RuleList ∪ DefaultRule
13 return RuleList

RMSE =

√

√

√

√

1

m
·

m
∑

i=1

(yi − ȳi)2 (11)

Ldefault =

m
∑

i=1

(yi − y
′)2 (12)

where RMSE is the root mean square error and LDefault

is a normalising factor that will approximately bound the
RRMSE between 0 and 1.

The semantic constraint extensions to Ant-Miner-Reg re-
quires a modification of the rule quality measure, including
the addition of a third factor that measures a model’s com-
pliance with the required constraints. To measure the non-
monotonicity index of a newly constructed rule, the rule is
added to the partial list of rules that was created in previ-
ous iterations. The non-monotonicity index of this partial
model can then be calculated. The partial model will always
have a non-monotonicity index of 0 at the beginning of the
ACO procedure – this is enforced by hard monotonic prun-
ing before a rule is committed to the rule list. Therefore,
any increase in the non-monotonicity index is attributed to
the new rule that has been added. The non-monotonicity
index is given by:

NMI =

∑k

i=1

∑k

j=1
mij

k2 − k

mij =

{

1 if mij is a non-monotonic pair
0 otherwise

(13)

where mij defines if the pair of rules rulei and rulej vio-
late the constraint, k is the number of rules in the model.
The NMI of a model is constrained between 0 and 1. The
non-monotonicity index calculates the ratio of monotonic
violating pairs over the total possible number of predic-
tion pairs present in the model being tested, the lower a
non-monotonicity index is the better a model is considered.
If this is the first rule in the partial model it will be au-
tomatically designated monotonic and be assigned a non-
monotonicity index of 0. A pair is found to be monotonic if
the constrained attributes and prediction satisfy the criteria,
this differs from the literature where the monotonic test is



Algorithm 3: ACOLearnOneRule(Instances)

Data: Instances
Result: BestRule

1 BestEval ←− ∞, BestRule ←− null
2 PheromoneInitialization()
3 for i = 0 to ant iterations do
4 // Each ant creates a rule, remembering

5 // the best for later

6 MaxEval ←− −∞, MaxRule ←− null
7 for j = 0 to colony size do
8 Rule ←− CreateRule()
9 PruneRuleSoft(MaxRule)

10 Eval ←− EvaluateRule(Rule, Instances)
11 if Eval > MaxEval then
12 MaxEval ←− Eval
13 MaxRule ←− Rule

14 end

15 end
16 // Adds the best rule and update the

17 // pheromone levels with the best rule

18 // produced by the colony

19 UpdatePheromone(MaxRule)
20 // If the max rule is better than the best

21 // rule found from all iterations update

22 // the best rule

23 if MaxEval > BestEval then
24 BestEval ←− MaxEval
25 BestRule ←− MaxRule

26 end

27 end
28 PruneRuleHard(BestRule)
29 return BestRule

only required if all others attributes are equal. This conser-
vative approach to monotonicity is required as continuous
attributes are rarely equal in real data sets.

The three separate measures are incorporated into a single
equation, given by:

Qsem = α · (1−LRRMSE)+β ·relCov+γ · (1−NMI) (14)

where α, β and γ are used to weight the importance of the
three individual measures and can be optimised for the best
performance and create a single quality measure that is con-
strained between 0 and 1.

4. RESULTS
Ant-Miner-Reg has been previously compared to SeCoReg

[14], a greedy sequential covering algorithm. In this pa-
per we have compared the proposed Ant-Miner-Reg+MC to
SeCoReg+MC (SeCoReg modified to prune rules to enforce
monotonic constraints) and the non-constraint aware M5’
Rules [11]. Table 3 contains the configuration of Ant-Miner-
Reg+MC and SeCoReg+MC, the values chosen are based
on those used by the original SeCoReg [13] and have not
been optimised for either Ant-Miner-Reg or the addition of
monotonic constraints.

Eight publicly available data sets from the UCI Machine
Learning Repository [15] were chosen as they contain at-
tributes that have a low non-monotonicity index. These

Table 3: Parameters used for SeCoReg+MC and
Ant-Miner-Reg+MC algorithms.

General Parameter Value

Minimum Covered Rule 10

Minimum Uncovered Theory 0.1

Split Points 3

Error Weighting (α) 0.4

Coverage Weighting (β) 0.3

Constraint Weighting (γ) 0.3

Cross Validation Folds 10

ACO Parameter Value

Iterations 500

Colony Size 10

data sets are shown in Table 4, which summarises the num-
ber of instances in each data set, the make up of the at-
tributes, and constraint information. Experiments were run
using tenfold cross-validation, both SeCoReg+MC and M5’
Rules were ran once however Ant-Miner-Reg+MC was ran
5 times across the same folds and an average taken to help
avoid spurious results due to the stochastic nature of ACO.

The average RRMSE of each model produced by the 3
algorithms are shown in Table 5 with the smallest error for
each data set shown in bold. Ant-Miner-Reg+MC man-
aged to achieve lower RRMSE values than M5’ Rules 2 out
of 8 times and SeCoReg+MC in seven of the data sets.
M5’ Rules achieved lower RRMSE value than SeCoReg+MC
in all 8 data sets and was the algorithm with the lowest
RRMSE values overall.

Further statistical analysis was performed on the exper-
iment results where the Friedman test was applied with a
Holm post-hoc test. This showed that M5’ Rules did not
statistically outperform Ant-Miner-Reg+MC at the 5% con-
fidence level as shown in Table 6.

Finally, the monotonicity of the models was checked, both
Ant-Miner-Reg+MC and SeCoReg+MC produced monoton-
ic models — this is guaranteed by the hard monotonic pruner
that is run before rules are added to the list. Table 7 shows
the non-monotonicity index for the models produced by M5’
Rules. As M5’ Rules contain linear models it is possible
for a rule to internally violate monotonicity if the coeffi-
cient for a constrained attribute has the incorrect sign. This
means that another method is required to estimate its non-
monotonicity. The models produced on each cross-validation
fold were used to re-label the testing data to create a new
data set, from this each pair in the data can be compared.
This allows non-monotonicity index for each of the relabelled
data sets to be measured.

5. DISCUSION
Ant-Miner-Reg+MC has been shown to produce models

that preserve the monotonic constraints imposed upon it
while not suffering a statistically significant decrease to its
performance when compared to M5’ Rules. It manages to
outperform M5’ Rules in two of the eight data sets. However
M5’ Rules has been shown to be significantly better than
the greedy search algorithm SeCoReg+MC which has been



Table 4: Attribute makeup and constraint information of the eight UCI data sets used in the experiments
[15]. In each data set a single attribute was constrained, the attribute name, whether it is monotonically
increasing or decreasing and the non-monotonicity index of the attribute is given.

Attributes Constraint

Name Instances Nominal Continuous Constrained Attribute Direction NMI

CCPP 9568 0 5 V Decreasing 0.080

CPU 209 1 8 MMax Increasing 0.074

Elevators 9516 0 6 ClimbRate Increasing 0.080

Flare 1065 10 1 LargestSpot Increasing 0.065

Housing 452 1 13 LSTAT Decreasing 0.087

MPG 392 3 5 Horsepower Decreasing 0.084

Red Wine 1599 0 12 Alcohol Increasing 0.090

Yacht 308 0 7 Froude Increasing 0.035

Table 5: RRMSE of the model produced by each algorithms in each of the eight data sets. The bold value
indicates the smallest error of the three algorithms; the standard deviation is shown in square brackets.

Data Set Ant-Miner-Reg+MC SecoReg+MC M5’ Rules

CCPP 0.1715 [0.0126] 0.2853 [0.0150] 0.2375 [0.0136]

CPU 0.3564 [0.2269] 0.4194 [0.2074] 0.1707 [0.1438]

Elevators 0.8574 [0.1421] 1.0017 [0.0020] 0.6014 [0.0134]

Flare 0.9480 [0.0283] 1.0099 [0.0144] 1.0086 [0.0257]

Housing 0.5088 [0.2732] 0.8936 [0.2282] 0.4396 [0.1154]

MPG 0.4639 [0.1724] 0.6203 [0.0588] 0.3723 [0.0455]

Red Wine 1.0745 [0.5425] 1.0099 [0.0160] 0.8068 [0.0354]

Yacht 0.1811 [0.0385] 0.4597 [0.1168] 0.0833 [0.0264]

Table 6: Non-parametric Friedman test with Holm’s
post-hoc test results based on the average RRMSE
of the three algorithms used in the experiments.
Statistically significant results at the α = 0.05 level
are shown in bold.

Algorithm Avg. Rank p-value Holm

M5’ Rules 1.25 – –

Ant-Miner-Reg+MC 2.0 0.1336 0.05

SeCoReg+MC 2.75 0.0027 0.025

modified to preserve the same constraints as Ant-Miner-
Reg+MC. While M5’ Rules on average does produce bet-
ter RRMSE values, all of the models produced by the algo-
rithm are non-monotonic. Five of the eight models produced
showed an increase in the non-monotonicity over the original
data sets.

In this initial implementation the ACO-based Ant-Miner-
Reg algorithm with monotonic constraints shows that fu-
ture investigation is warranted to improve the performance
against the current state-of-the-art data mining algorithms.
The use of regression rules as a comprehensible model cou-
pled with the conservation of monotonic constraints should
provide an increase in model acceptance when compared

Table 7: Estimation of the non-monotonicity index
of the models produced by M5’ Rules by relabelling
the data sets and calculating their NMI.

Data Set Model NMI Data Set Model NMI

CCPP 0.0707 Housing 0.0735

CPU 0.0994 MPG 0.0804

Elevators 0.1010 Red Wine 0.1221

Flare 0.2197 Yacht 0.0445

with other black box models which may or may not con-
serve the monotonic properties of a data set.

Finally the non-monotonicity of all models generated was
checked and it was found that as designed both AntMiner-
Reg+MC and SeCoReg+MC produced monotonic models.
M5’ Rules was shown to produce non-monotonic models in
all data sets and in cases the non-monotonicity of the re-
labeled data set was greater than that of the original. This
shows that existing algorithms are not capable of extract-
ing and conserving these constraints on their own and re-
quire additional information on them. To the best of our
knowledge there are no existing regression rule monotonic
algorithms in the literature.



6. CONCLUSION
This paper presented an extension to the existing ACO-

based algorithm Ant-Miner-Reg that preserved the mono-
tonic constraints imposed upon it while constructing models,
called Ant-Miner-Reg+MC. The algorithm outperformed a
greedy search strategy that also conserved monotonic con-
straints. Ant-Miner-Reg+MC was shown to not be signif-
icantly worse than M5’ Rules at the 5% significance level
in terms of RRMSE, while successfully creating monotonic
rules.

It was also shown that as expected M5’ Rules fails to
preserve the monotonic constraints. The incorporation of
existing domain knowledge and therefore the preservation
of monotonic constraints may aid model acceptance among
users so it a worth while property to optimise when con-
structing models. The parameters used by Ant-Miner-Reg-
+MC have not been optimised for the specific algorithm
which may lead to performance improvements in the future.

Monotonicity is a global property of a model, currently
Ant-Miner-Reg+MC builds a model in a one-rule-at-a-time
fashion and does not modify previous rules. Further work
is required to allow full rule lists to be generated in a single
iteration (as proposed in [19]) which would allow more com-
plex pruning strategies optimising monotonicity in a global
manner. Ant-Miner-Reg has a number of possible future en-
hancements including the use of heuristic information during
rule construction. Additionally the adoption of linear mod-
els as rule consequents in a similar fashion to M5’ Rules may
reduce the RRMSE of Ant-Miner-Reg although with a loss
in comprehensibility when compared to simple single valued
rule consequents.
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