
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Chaudhary, Mandeep (2016) Implementation and Applications of Logarithmic Signal Processing
on an FPGA. Doctor of Philosophy (PhD) thesis, University of Kent.

DOI

Link to record in KAR

http://kar.kent.ac.uk/55184/

Document Version

UNSPECIFIED

Implementation and Applications

of Logarithmic Signal Processing

on an FPGA

A Thesis submitted to The University of Kent for the degree

of Doctor of Philosophy in Electronic Engineering

By

Mandeep Chaudhary

February 2016

Dedicated to my family, teachers & friends.

Acknowledgements

Firstly, I would like to thank my supervisor Dr. Peter Lee for his guidance and

support. I thank him for supporting me with my PhD when I was having health

problems. My meetings with him have been a source of great encouragement, in-

spiration and learning. Thank you for believing in me and giving me such a nice

opportunity.

My friends and colleagues Dr. Harshal Oza, Gurtac Yemiscioglu, Mark Esdale

and Steven J. Moser, thank you for keeping me smiling in difficult times. Thank

you to the EDA staff for the opportunities and help you have given me for the years.

Finally I would like to say deepest thanks to my family in India. My father

(Randhir Singh Malik) and mother (Kamla Devi) thank you for love and moral

support. I would not have made this far without you all.

iii

Abstract

This thesis presents two novel algorithms for converting a normalised binary float-

ing point number into a binary logarithmic number with the single-precision of a

floating point number. The thesis highlights the importance of logarithmic num-

ber systems in real-time DSP applications. A real-time cross-correlation application

where logarithmic signal processing is used to simplify the complex computation is

presented.

The first algorithm presented in this thesis comprises two stages. A piecewise

linear approximation to the original logarithmic curve is performed in the first stage

and a scaled-down normalised error curve is stored in the second stage. The algo-

rithm requires less than 20 kbits of ROM and a maximum of three small multipliers.

The architecture is implemented on Xilinx’s Spartan3 and Spartan6 FPGA family.

Synthesis results confirm that the algorithm operates at a frequency of 42.3 MHz

on a Spartan3 device and 127.8 MHz on a Spartan6. Both solutions have a pipeline

latency of two clocks. The operating speed increases to 71.4 MHz and 160 MHz

respectively when the pipeline latencies increase to eight clocks.

The proposed algorithm is further improved by using a PWL (Piece-Wise Linear)

approximation of the transform curve combined with a PWL approximation of a

scaled version of the normalized segment error. A hardware approach for reducing

the memory with additional XOR gates in the second stage is also presented. The

architecture presented uses just one 18k bit Block RAM (BRAM) and synthesis

results indicate operating frequencies of 93 and 110 MHz when implemented on the

Xilinx Spartan3 and Spartan6 devices respectively.

Finally a novel prototype of an FPGA-based four channel correlation velocimetry

system is presented. The system operates at a higher sampling frquency than pre-

vious published work and outputs the new result after every new sample it receives.

The system works at a sampling frequency of 195.31 kHz and a sample resolution

of 12 bits. The prototype system calculates a delay in a range of 0 to 2.6 ms with a

resolution of 5.12 µs.

Publications

1. Chaudhary, M.; Lee, P, ”Two-stage logarithmic converter with reduced mem-

ory requirements,”Computers & Digital Techniques, IET, vol.8, no.1, pp.23,29,

January 2014.

2. Chaudhary, M.; Lee, P, ”An Improved 2-Step Binary Logarithmic Converter

for FPGAs,”IEEE transactions on Circuits & Systems II : Express Briefing,

vol.62, no.5, pp.476,480, May 2015.

v

Contents

Acknowledgements iii

Abstract iv

Publications v

Abbreviations xix

1 Introduction 1

1.1 Motivation, Aims & Objective . 1

1.2 Research Contributions . 4

1.3 Thesis Organisation . 6

2 FPGA Technology 8

2.1 Introduction . 8

2.2 DSP system Technologies . 8

2.3 FPGA Overview . 10

2.4 FPGA Device Types and Families . 13

2.4.1 Altera Cyclone Family Overview 14

2.4.2 Xilinx Spartan3 Family Overview 15

2.4.3 Xilinx Spartan6 Family Overview 18

2.5 Hardware Description Language . 21

2.6 Numerical Data Representation on FPGAs 21

2.7 Summary . 28

vi

Contents vii

3 Logarithmic Conversion Literature Review 29

3.1 Introduction . 29

3.2 Normalisation Methods . 31

3.2.1 Leading Zero Detector . 31

3.2.2 Leading One Detector . 32

3.3 Logarithmic Converter . 34

3.3.1 Direct PWL Conversion Algorithms 35

3.3.2 PWL and LUT Algorithms . 49

3.3.3 Polynomial Approximation Methods 54

3.3.4 CORDIC and Taylor algorithms 60

3.3.5 Other Methods . 64

3.4 Summary . 74

4 Improved Logarithmic Converter 76

4.1 Introduction . 76

4.2 Larson Lin2Log conversion algorithm 77

4.3 Novel Algorithm . 84

4.4 Implementation . 89

4.5 Results . 92

4.6 Conclusion . 94

5 Further Improved Logarithmic Converter 95

5.1 Introduction . 95

5.2 Novel Algorithm . 96

5.2.1 Symmetry . 98

5.2.2 LUT2 size reduction . 100

5.3 Implementation . 106

5.4 Results . 110

5.5 Conclusion . 111

6 FPGA based Correlation Velocimetry System 113

6.1 Introduction . 113

Contents viii

6.2 Correlation . 114

6.2.1 Cross-correlation . 114

6.2.2 Fast cross-correlation . 115

6.2.3 Incremental cross-correlation 116

6.3 Velocimetry System . 116

6.4 FPGA based Velocimetry System . 118

6.5 Velocimetry System Algorithm . 120

6.6 Hardware Implementation . 122

6.7 Results . 127

6.7.1 Log2Lin Domain . 128

6.7.2 FPGA Utilisation . 133

6.7.3 Piecewise Linear Area Optimisation 138

6.8 Conclusion . 141

7 Conclusions and Future Work 142

7.1 Summary of Research . 142

7.2 Research Novel Claims . 143

7.3 Future Research Directions . 144

Bibliography 145

Appendix 164

A Table 4.2 Matlab Simulations 165

B Table 4.3 Matlab Simulations 174

C Table 5.2 Matlab Simulations 183

D Table 5.3 Matlab Simulations 192

E Logarithmic Domain Cross-Correlation Plots 201

F VHDL Sample Code 210

List of Figures

1.1 Standard logarithmic processor. 3

1.2 Hybrid logarithmic processor. 4

2.1 FPGA Architecture. 11

2.2 FPGA CLB using 4 input LUT. 12

2.3 FPGA CLB using 6 input LUT. 12

2.4 Spartan 3 Starter Kit Board. 17

2.5 DSP48A1 Slice. 18

2.6 Nexys3 Board. 20

2.7 IEEE-754 std Single Precision. 22

2.8 IEEE-754 std Double Precision. 22

2.9 Three stage 18-bit floating point adder. 23

2.10 Three stage 18-bit floating point multiplier. 24

2.11 Floating point addition algorithm. 25

2.12 32 bit floating point adder. 26

2.13 Digit serial multiplier. 26

3.1 Oklobdzija leading zero detector circuit 31

3.2 P. Lee’s LOD circuit . 32

3.3 Fast 4-bit LOD . 33

3.4 Fast 16-bit LOD . 34

3.5 Mitchell’s algorithm generating binary logarithm 36

3.6 Mitchell approximation (a) Absolute error (b) Error histogram . . . 38

3.7 The Combet et al. Logarithmic approximation (a) Absolute error (b)

Error histogram . 39

ix

List of Figures x

3.8 Hall’s Logarithmic approximation (a) Absolute error (b) Error his-

togram . 41

3.9 Hoefflinger’s bit-serial logarithmic encoder 42

3.10 Gregory 1999 (a) Logarithmic approximation (b) Absolute error . . . 43

3.11 Siferd 2-region (a) Logarithmic approximation 44

3.11 Siferd 2-region (b) Absolute error . 45

3.12 Siferd 3-region (b) Absolute error . 46

3.12 Siferd 3-region (a) Logarithmic approximation 46

3.13 Siferd 6-region (a) Logarithmic approximation (b) Absolute error . . 48

3.14 Kmetz’s principal of proposed approximation. 50

3.15 Kmetz’s (a) Logarithmic approximation (b) Absolute error 51

3.16 Maenner principal of proposed approximation. 52

3.17 Maenner (a) Logarithmic approximation (b) Absolute error 53

3.18 Marino (a) Logarithmic approximation (b) Absolute error 55

3.19 Mori (a) Logarithmic approximation 56

3.19 Mori (b) Absolute error . 57

3.20 Knittel non uniform log approximation. 59

3.21 S.Pan Lin2Log architecture. 60

3.22 Multiplier-based Linear Interpolator 62

3.23 Multiplierless Linear Interpolator . 63

3.24 Novel Single Multiplier Quadratic Interpolator 64

3.25 Data path for Lewis segmented linear approximation. 66

3.26 Lewis Nonlinear compression. 68

3.27 Huang et al. Lin2Log architecture. 69

3.28 Stine and Schulte Bipartite table method. 70

3.29 LARSON first order interpolation. 71

3.30 LARSON second order interpolation. 73

4.1 Larson algorithm . 80

4.2 Larson first stage errors (128 segments, linear Interpolation) (a) Error

for 128 intervals (b) Superimposed error curves for each segment. . . 82

List of Figures xi

4.3 Larson first stage errors (128 segments, linear Interpolation) (a) Nor-

malised error curves for each segment (b) mean of normalised curves. 83

4.4 Larson total error i.e. (1st + 2nd) stage errors (a) Superimposed

error curves for each segment errors using maximum error curve (i.e.

1st error curve) of first stage . 85

4.4 Larson total error i.e. (1st + 2nd) stage errors (b) error obtained

using maximum error curve (i.e. 1st error curve) of first stage. 85

4.5 Larson total error i.e. (1st + 2nd) stage errors (a) error obtained

using mean (average i.e. 64th error curve) error curve of first stage . . 86

4.5 Larson total error i.e. (1st + 2nd) stage errors (b) error obtained

using minimum (i.e. 128th error curve) error curve of first stage. . . . 86

4.6 Algorithm using finite coefficients . 88

4.7 Spartan 6 based minimum pipelining design of the novel algorithm . . 90

4.8 Spartan 6 based maximum pipelining design of the novel algorithm . 91

5.1 Right-angled triangle on cartesian coordinates. 98

5.2 1st-stage errors showing magnitude of slope and angle of slope, when

using (a) 1 MSB and 16 LSB (b) 2 MSB and 15 LSB. 99

5.3 1st-stage errors showing magnitude of slope and angle of slope, when

using (a) 3 MSB and 14 LSB (b) 4 MSB and 13 LSB. 100

5.4 Residual error produced after superimposing (a) left half of the nor-

malised curve on the other half . 101

5.4 Residual error produced after superimposing (b) right half of the nor-

malised curve on the other half . 102

5.5 Residual error produced after approximating the normalised curve

using a symmetrical approximation. 102

5.6 Improved LUT2 architecture. 103

5.7 Residual error in normalised error curve approximation. 104

5.8 (a) Overall error obtained in approximation. (b) Histogram of ap-

proximated error distribution. 105

5.9 Spartan 6 based minimum pipelining design of the novel algorithm . . 107

5.10 Spartan 6 based maximum pipelining design of the novel algorithm . 108

List of Figures xii

6.1 Cable speed test rig. 117

6.2 2 channel velocimetry system. 121

6.3 4 channel velocimetry system. 123

6.4 Architecture for an FPGA-based 4-channel cross-correlation proto-

type system. 124

6.5 Incremental calculations arithmetic unit. 125

6.6 Lin2Log and normalisation circuit. 126

6.7 Log Approximation based Cross-correlation of (a)First Combination

(b) Second Combination. 129

6.8 Log Approximation based Cross-correlation of (a)Third Combination

(b) Fourth Combination. 130

6.9 Log Approximation based Cross-correlation of (a)Fifth Combination

(b) Sixth Combination. 131

6.10 Log Approximation based (a)Simple moving average (b)Weighted

moving average of six combinations. 132

6.11 Logarithmic cross correlation coefficient value of first combination. . . 133

6.12 Spartan6 based 4-channel velocimetry system. 134

6.13 Cross-correlation block of velocimtery system. 135

6.14 Normalisation block of velocimtery system. 136

6.15 Approximation of first combination when fraction bits are reduced to

(a)12 bits (b)10 bits. 139

6.16 Approximation of first combination when fraction bits are reduced to

(a)8 bits (b)6 bits. 140

A.1 Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment. 165

A.2 Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation. 166

A.3 Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage errors for each

segment. 166

A.4 Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.167

A.5 Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment. 167

A.6 Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation. 168

List of Figures xiii

A.7 Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage errors for each

segment. 168

A.8 Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.169

A.9 Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment. 169

A.10 Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation. 170

A.11 Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage errors for each

segment. 170

A.12 Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.171

A.13 Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment. 171

A.14 Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation. 172

A.15 Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage errors for each

segment. 172

A.16 Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.173

B.1 Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment. 174

B.2 Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation. 175

B.3 Configuartion 7 : 16 :: 7 : 9 - Residual error in normalised error curve. 175

B.4 Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.176

B.5 Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment. 176

B.6 Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation. 177

B.7 Configuartion 8 : 15 :: 6 : 9 - Residual error in normalised error curve. 177

B.8 Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.178

B.9 Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment. 178

B.10 Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation. 179

B.11 Configuartion 8 : 15 :: 7 : 8 - Residual error in normalised error curve. 179

B.12 Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.180

B.13 Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment. 180

B.14 Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation. 181

B.15 Configuartion 8 : 15 :: 8 : 7 - Residual error in normalised error curve. 181

B.16 Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.182

C.1 Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment. 183

List of Figures xiv

C.2 Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation. 184

C.3 Configuartion 7 : 16 :: 7 : 9 - Residual error in normalised error curve. 184

C.4 Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.185

C.5 Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment. 185

C.6 Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation. 186

C.7 Configuartion 8 : 15 :: 6 : 9 - Residual error in normalised error curve. 186

C.8 Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.187

C.9 Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment. 187

C.10 Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation. 188

C.11 Configuartion 8 : 15 :: 7 : 8 - Residual error in normalised error curve. 188

C.12 Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.189

C.13 Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment. 189

C.14 Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation. 190

C.15 Configuartion 8 : 15 :: 8 : 7 - Residual error in normalised error curve. 190

C.16 Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.191

D.1 Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment. 192

D.2 Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation. 193

D.3 Configuartion 7 : 16 :: 7 : 9 - Residual error in normalised error curve. 193

D.4 Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.194

D.5 Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment. 194

D.6 Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation. 195

D.7 Configuartion 8 : 15 :: 6 : 9 - Residual error in normalised error curve. 195

D.8 Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.196

D.9 Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment. 196

D.10 Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation. 197

D.11 Configuartion 8 : 15 :: 7 : 8 - Residual error in normalised error curve. 197

D.12 Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.198

D.13 Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment. 198

D.14 Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation. 199

D.15 Configuartion 8 : 15 :: 8 : 7 - Residual error in normalised error curve. 199

D.16 Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.200

List of Figures xv

E.1 Cross correlation coefficient value of first combination - using 16 frac-

tional bits. 201

E.2 Cross correlation coefficient value of second combination - using 16

fractional bits. 202

E.3 Cross correlation coefficient value of third combination - using 16

fractional bits. 202

E.4 Cross correlation coefficient value of fourth combination - using 16

fractional bits. 203

E.5 Cross correlation coefficient value of fifth combination - using 16 frac-

tional bits. 203

E.6 Cross correlation coefficient value of sixth combination - using 16

fractional bits. 204

E.7 Log Approximation Based Simple Moving Average of Six combina-

tions - using 16 fractional bits. 204

E.8 Log Approximation Based Weighted Moving Average of Six combi-

nations - using 16 fractional bits. 205

E.9 Cross correlation coefficient value of first combination - using 4 frac-

tional bits. 205

E.10 Cross correlation coefficient value of second combination - using 6

fractional bits. 206

E.11 Cross correlation coefficient value of third combination - using 6 frac-

tional bits. 206

E.12 Cross correlation coefficient value of fourth combination - using 6

fractional bits. 207

E.13 Cross correlation coefficient value of fifth combination - using 6 frac-

tional bits. 207

E.14 Cross correlation coefficient value of sixth combination - using 6 frac-

tional bits. 208

E.15 Log Approximation Based Simple Moving Average of Six combina-

tions - using 6 fractional bits. 208

List of Figures xvi

E.16 Log Approximation Based Weighted Moving Average of Six combi-

nations - using 6 fractional bits. 209

List of Tables

2.1 Cyclone FPGA Family Overview . 15

2.2 Spartan3 FPGA Family Overview . 16

2.3 Spartan6 FPGA Family Overview . 19

2.4 Hardware usage in multiplication of single and double floating point

precision . 27

2.5 Hardware usage in division of single and double floating point precision 27

4.1 Larson table of maximum errors using PWL Approximation 79

4.2 Ideal Performance using Scaled Max Error Curve for 23 bit fractional

input (MATLAB simulation results) 87

4.3 LUT coefficient bits (MATLAB simulation results) 88

4.4 Implementation statistics . 89

4.5 Comparison of Results with previous work for Single Floating Point

Precision. 92

5.1 LUT coefficient bits . 96

5.2 LUT coefficient bits . 103

5.3 LUT coefficient bits . 104

5.4 Device Utilisation Statistics (LUT2 with additional adder and xor

gates) . 106

5.5 Device Utilisation Statistics (LUT2 without additional adder and xor

gates) . 109

5.6 Device Utilisation Statistics (Reduced LUT2 architecture implemented)

110

5.7 Utilization Comparison . 111

xvii

List of Tables xviii

6.1 FPGA implementation of 2-channel signal 137

6.2 FPGA implementation of 4-channel signal with exceeded hardware

resources in detail . 138

6.3 FPGA implementation of 4-channel signal 138

Abbreviations

BRAM : Block random access memory

DRAM : Distributed random access memory

DSP : Digital Signal Processing

DFT : Discrete Fourier Transform

FPGA : Field Programmable Gate Arrays

FFT : Fast Fourier Transform

GPU : Graphical processing unit

LSP : Logarithmic Signal Processing

LNS : Logarithmic Number System

LUT : Look Up Table

Log : Logarithm

LIN2LOG : Linear To Logarithm

LOG2LIN : Logarithm TO Linear

LOD : Leading One Detector

LSB : Least Significant Bit

LZD : Leading Zero Detector

MSB : Most Significant Bit

PWL : Piecewise Linear

PWP : Piecewise Polynomial

ROM : Read Only Memory

ULP : Unit Last Place

VLSI : Very Large Scale Integration

xix

Chapter 1

Introduction

1.1 Motivation, Aims & Objective

In the world today digital electronics are used in almost every other application.

Whether, these applications are related to day-to-day activities, defence services or

research work, they all perform computations in the digital field. The technologies

used in implementing digital electronics in hardware have evolved with time. One of

the important parameters for a computation is its precision (i.e. the bit resolution).

The precision used in a computation is responsible for the result’s accuracy.

There are many number systems used to perform computations in digital elec-

tronics. However, the two most common number systems used are the fixed and

floating point number systems. These number systems are acceptable for low resolu-

tion simple arithmetic computations. The usage of fixed and floating point numbers

in real time applications with higher bit resolution requires enormous and complex

hardware architecture. This complex hardware architecture and real-time computa-

tion of data creates the problem of bottlenecks and inefficient systems for real-time

computations. The research in this thesis solves the problem by using logarithm

numbers instead of fixed/floating point numbers in computations. The research in

this thesis designs a single floating point precision Lin2Log converter which uses

less hardware (maintaining similar accuracy) than the recently published Lin2Log

converters and uses it in a real-time application.

Logarithms were first introduced by John Napier in 1614. The logarithm of a

1

Chapter 1. Introduction 2

number is defined as the exponent by which a number is raised to produce the same

number again, for example

1000 = 103 (1.1)

Thus, the number 1000 has a logarithm value of 3 with base 10. The logarithm

mathematically can be expressed as

log10(1000) = 3 (1.2)

In computers/digital electronics a logarithm with base 2 otherwise known as bi-

nary logarithm is used. The binary logarithm is simple and easy to implement

in hardware when compared to the implementation of other bases of logarithm in

computers/digital electronics.

Logarithms have been used as a tool in mathematics, to simplify complex arith-

metic operations. The logarithm properties of the linear operations of multiplication,

division, power, addition and subtraction are shown in equations 1.3, 1.4, 1.5, 1.6

and 1.7, where x and y are the numbers in the linear domain. The use of loga-

rithms reduces multiplication, division and power in the linear domain to addition,

subtraction and multiplication in the log domain respectively.

logb(x.y) = logb(x) + logb(y) (1.3)

logb(
x

y
) = logb(x)− logb(y) (1.4)

logb(x
p) = p.logb(x) (1.5)

logb(x+ y) = logb|x|+ logb(1 + 2logb|y|−1) (1.6)

logb(x− y) = logb|x|+ logb(1− 2logb|y|−1) (1.7)

The properties of logarithms save time for multiplication and division in a proces-

sor on a computer and reduce the area in integrated circuits by replacing hardware

multipliers and shifters by adders and subtractors. Logarithmic signal processing

has been used in a number of applications and is of increasing interest because of

the potential for area and higher resolution architectures [1]. As a consequence,

Chapter 1. Introduction 3

many algorithms and hardware architectures have been proposed over the past 50

years for converting a normalised binary number x into a binary logarithm (log2x) or

converting the binary exponent (2log2x) back to a normalised binary number. These

algorithms vary widely in terms of their accuracy, efficiency and speed. Over such

a long time-span there have also been significant changes in the performance of the

implementation technologies, resulting in newer architectures capable of achieving

increasing conversion accuracies and making the logarithmic number system (LNS)

a viable alternative in a number of modern applications [2–4], speech recognition [5]

and digital hearing aids [6].

There are two generic architectures for LNS processing. The first architecture

consists of all arithmetic operations (×,÷,+,−) to be performed in the logarithmic

domain (see figure 1.1), whereas in the second architecture, sometimes called hybrid-

LNS, the arithmetic operations (×,÷) are performed in the log domain while the

remaining operations (+,−) are performed in the linear domain (see figure 1.2). The

reason for using two different domains in hybrid-LNS is that logarithmic addition

and subtraction are non-linear functions requiring further approximation methods

(see equations 1.6 and 1.7), frequently based on piecewise linear (PWL) or higher-

order piecewise polynomial (PWP) methods, thereby offsetting any advantages of

using the LNS (Logarithmic Number System). The hybrid LNS architectures have

been used in many applications such as image compression where the forward and

inverse discrete cosine transforms (DCT) are performed on digital images [7].

The disadvantage of hybrid LNS is that for some algorithms repeated conversion

to and from the log domain is necessary. The choice of architecture, the required

Figure 1.1: Standard logarithmic processor.

Chapter 1. Introduction 4

Figure 1.2: Hybrid logarithmic processor.

resolution and the complexity of the overall conversion algorithms are strongly ap-

plication dependent and are only advantageous if the sum of complex arithmetic

operations is reduced, resulting in decreased power consumption or reduced circuit

area [8].

The recent research has tended to ignore a potential niche where logarithmic

signal processing has advantages over both fixed and floating point solutions. Thus,

the research work objective was to establish an algorithm for analysing and mod-

elling the performance of a Lin2Log converter with single floating point precision [9].

As most of the LSP-based applications require a high dynamic range with limited

accuracy, single floating point precision (i.e. 32 bit) is chosen for the purposes of

this research.

Another objective of the research was to map the architecture of a logarith-

mic converter onto a reconfigurable logic device (i.e. FPGA). Finally in this re-

search a cross-correlation-based application using the LNS instead of a fixed/floating

point number system is presented to find the velocity of pneumatic particles flowing

through a pipeline.

1.2 Research Contributions

The research work in this thesis provides information about the two novel algo-

rithms [10,11] for a Lin2Log converter and an application of cross-correlation using

the LNS specifically designed for mapping onto a reconfigurable device. The re-

search work here focuses on the area reduction, usage of minimum hardware and

Chapter 1. Introduction 5

precision achieved when designing a new algorithm or implementing the LNS onto

an application. In this thesis reconfigurable devices are chosen for hardware imple-

mentation as they can perform parallel computation processing at high frequencies

in comparison to microprocessors and microcontrollers.

The thesis presents a novel algorithm [10] to convert a linear (fixed/floating

point) number to an equivalent logarithmic number. The proposed algorithm [10]

requires less than 20 kbits of ROM and a maximum of three small multipliers.

The research shows how a generic error curve is generated in the first stage of the

algorithm using max, mean and minimum error curves and then normalised for

reproducing in the second stage. The thesis proposes another novel algorithm [11]

to reduce the memory elements (in the second stage) used for storing the error

curve of the first stage. The memory in the second stage is reduced further by

32% by exploiting the properties of symmetry in the normalised error curve. The

algorithm [11] uses additional XOR gates for implementing reduced memory in the

second stage.

A prototype velocimetry system used for real-time speed measurement of pneu-

matic particulates flowing through a pipeline using the LNS is presented. The system

is developed using incremental cross-correlation in the time domain instead of using

FFT (fast fourier transform) techniques in the frequency domain for the calcula-

tion of a continuous stream of data from multiple electrostatic sensors located in a

pipeline. The system operates at a higher sampling frequency than in previously

published work and outputs the new result after every new sample it receives. This

thesis provides the results of implementing the circuit on an FPGA device and shows

the reduction of bits in fractional bits (used for the linear to logarithmic converter).

The research work presented in this thesis has been submitted to and accepted

by IET Computer and Digital Techniques [10] and IEEE Transactions on Circuit

and Systems II [11].

Chapter 1. Introduction 6

1.3 Thesis Organisation

All the work presented in this thesis is organised in different chapters. The thesis

begins with an overview of FPGA technology in Chapter 2. The generic FPGA

architecture and features are compared with other alternative implementation tech-

nologies. The number representation using floating point and fixed point number

systems are discussed. Published work on the implementation of floating point num-

ber systems on FPGA devices, for arithmetic operations is discussed and compared

with logarithmic number systems.

Chapter 3 describes in detail the logarithmic number system and provides an

overview of algorithms and techniques used for converting Lin2Log and vice versa.

The popular algorithms proposed for normalising a binary number, using a leading

one or leading zero detector, are explained in section 3.2 and domain conversion

algorithms are explained in section 3.3. The algorithms described in Chapter 3 are

re-simulated in MATLAB and are plotted with their individual accuracy achieved.

Chapter 4 begins with a description of the Lin2Log conversion algorithm pro-

posed by K.E. Larson in 1994 [12]. The chapter proposes a novel algorithm per-

forming improvements to Larson’s algorithm [12]. The proposed novel algorithm is

simulated using MATLAB and implemented onto newer and old families of FPGA

devices. An analysis of different configurations of data bits, used for addressing and

interpolation of the PWL (Piece-wise Linear) approximation and a detailed overview

of the resolution of coefficient bits stored in memory to perform PWL approximation

is provided in this chapter. The numerical data on precision achieved is compared

with recent published papers.

Chapter 5 presents further improvement to the algorithm first proposed in Chap-

ter 4. Chapter 5 describes a further improved algorithm, exploiting symmetrical

properties of a normalised error curve. The implementation of a further improved

algorithm on an FPGA device, by using dynamic RAM instead of Block RAM, is

provided in the chapter. The algorithm is implemented in newer and old families of

FPGA devices. An analysis of different configurations of data bits and resolution of

coefficient bits stored in memory are provided in this chapter. The chapter compares

the results obtained from the further improved algorithm with results obtained from

Chapter 1. Introduction 7

Chapter 4 and recent published papers.

Chapter 6 begins by describing correlation techniques and methods to speed

up its computation such as using FFT (Fast Fourier Transform) and incremental

correlation algorithms. The recent work used for velocimetry system is described in

section 6.3. The velocimetry system implemented on an FPGA device in previous

work is presented in section 6.4. A new algorithm for detecting the velocity of

pneumatic particles flowing in a pipeline is mentioned in section 6.5. The results

obtained from implementing the algorithm on an FPGA device and its utilisation

of hardware resources are presented in section 6.7.

A review of all the research presented in this thesis, along with a summary of

findings, is presented in Chapter 7 as a conclusion. Directions for further research

are also suggested.

Chapter 2

FPGA Technology

2.1 Introduction

This Chapter contains a brief overview on FPGA (Field Programmable Gate Array)

technology. The FPGA is a very flexible and powerful hardware, allowing implemen-

tation of large and complex logic designs. The FPGA generally uses a combination of

gates and provides dedicated hardware resources to implement a real-time complex

application.

The chapter begins with existing DSP system technologies for implementing a

digital logic circuit in section 2.2. Section 2.3 starts with a brief history of FPGA

technology. An overview on FPGA different programming technologies along with

their main vendors are provided in section 2.4. An overview of low-cost families

of FPGA devices, are provided in sections 2.4.1, 2.4.2 and 2.4.3. Section 2.5 pro-

vides a brief information on programming languages used for designing a digital

circuit. Section 2.6 provides a description of a common value representation format

implemented on FPGAs and their shortcomings.

2.2 DSP system Technologies

For implementing the DSP operations in the hardware a DSP system is required,

the discrete signals are easily manipulated in a DSP system. The FPGA, ASIC,

DSP, GPU and CPU are the few commonly used technologies for implementing a

8

Chapter 2. FPGA Technology 9

DSP system in hardware.

ASICs (Application Specific Integrated Circuits) are ICs (integrated circuits)

built only for a specific application. ASICs contains predefined/hardwired gates for

specific applications because of which they do not offer flexibility of redesigning or

reprogramming them. ASICs require a low level logic to design the device. The mask

and design cost of ASICs in lower volume are higher than FPGA and DSP devices.

However, when ASICs are made in high volume, the cost becomes more economical.

It is been proved that for the same level of technology, ASICs are typically three to

four times faster than the FPGA devices [13].

ASICs require refabrication if there are any errors found in the design. FPGAs

were initially made to avoid the problem of refabrication of ASIC chips. The FPGAs

are sea of gates present in hardware. A prototyping of the logic circuits is performed

on FPGA. FPGA’s reprogrammable feature makes it possible to make changes and

run tests in the circuit before the circuit is send for fabrication. FPGA provides the

feature of signal processing in parallel rather than sequence because of which multiple

operations can be performed at the same time. Unlike ASICs, FPGAs require no

layout, masks or other manufacturing steps in designing an integrated circuit. When

implementing a system that requires reprogramming, parallel operations and cost

effectiveness for lower volume production, FPGA technology is preferred over ASIC

technology.

The above mentioned technologies were based on designing hardware circuit per-

forming parallel operations. However, processors (CPU) used for simpler operations

in general purpose computers can be used for performing DSP applications. A CPU

uses a simple load-store program design. The CPUs have a fixed hardware struc-

ture which limits there memory, peripheral structures and connections in hardware.

Due to which when performing a DSP application on general purpose processor a

slower performance is obtained. To overcome the performance issues, the GPUs and

DSPs were introduced. The GPUs are designed to accelerate creation of images for

a computer display. A GPU consists of thousands of cores designed for handling

multiple tasks simultaneously. The GPUs are designed to perform functions such

as texture mapping, image rotation, translation, shading, etc. Modern GPUs are

Chapter 2. FPGA Technology 10

very efficient at manipulating computer graphics and image processing, and their

highly parallel structure makes them more effective than general-purpose CPUs for

algorithms where the processing of large blocks of visual data is done in parallel.

The DSPs are specialised integrated circuits for processing digital signals. They

have better power consumption and are faster than general purpose processors.

Fixed and floating point architectures are both present in DSPs. However, for speed

efficiency fixed point binary architectures are preferred. The DSP architecture gen-

erally contains a program memory, data memory, ALU (arithmetic logic unit) and

the input / output ports. The input / output ports connect to analogue signals by

using an ADC (analogue to digital converter) and DAC (digital to analogue con-

verter). In the architecture, the data memory stores the data to be processed and the

program memory provides the data to ALU. In the ALU, instructions are executed

sequentially. An example of fixed point digital signal processor is TMS320C6455. It

comes in four packages : TMS320C6455-1000, TMS320C6455-1200, TMS320C6455-

720 and TMS320C6455-850, each with 1 GHz, 1.2 GHz, 720 MHz and 850 MHz

operating frequency respectively. This DSP comprises eight 32-bit instruction cy-

cles and performs 9600 million instructions per second [14].

2.3 FPGA Overview

The FPGA was invented by Ross Freeman in 1984. The basic idea behind FPGA was

to have a reprogrammable hardware, on which one or more particular application

logic designs can be made. The instructions were executed in parallel on FPGA

rather than in sequence, on conventional computers.

In the 1970s, programming logic devices were introduced. These devices were

programmed either by fuse or masking logic. In the 1980s, EEPROMs (electrically

erasable programmable read only memory) were used to control each programmable

connection instead of a fuse. Another alternative method, PAL (programmable

array logic), was made by fixing AND gates and making OR gates programmable.

The structure resulted in a PROM (programmable read only memory) or LUT (look

up table). The problem with PROM was that the circuit size grew exponentially

Chapter 2. FPGA Technology 11

with number of inputs [15]. Larger PROMs, were slower than the dedicated logic,

and power consumption was higher, which restricted this technology.

In the mid 1980s programmable logic used several blocks of logic on a single

chip to make complex logic functions. This advancement in technology resulted in

CPLD (complex programmable logic devices) and FPGA (field programable gate

arrays) devices. The CPLDS were based on PAL architecture, making them flash

programmable. The FPGAs were based on LUT architecture, where the programme

is held in static memory cells, making the configuration of FPGA devices volatile.

With the development in technology, interconnection structure and availability of

logic resources on FPGA devices increased. This made complex algorithms/ar-

chitecures implementation easier and on a single device. In an FPGA architecture

(shown in figure 2.1), there is a 2-D array layout of identical CLBs (Configurable

Logic Blocks), input-output blocks and programmable interconnections.

Figure 2.1: FPGA Architecture.

The input-output blocks connect the internal structure of FPGA to external

Chapter 2. FPGA Technology 12

devices. The CLBs are based on a LUT architecture and are interconnected through

a programming routing matrix, enabling FPGA to achieve high flexibility in their

designs. The CLBs in FPGA are made of 4 input LUT (see figure 2.2) or 6 input

LUT (see figure 2.3) in modern FPGA devices, producing a single bit output. The

flip-flop attached to the LUT is used to register the output. The complex functions

in FPGA are implemented by cascading multiple LUTs.

Figure 2.2: FPGA CLB using 4 input LUT.

Figure 2.3: FPGA CLB using 6 input LUT.

It is not practically possible on the basis of speed and area to provide dedicated

connection of every possible output to every possible input of CLBs. The solution

of this problem was to have a set of routing lines, which can be shared to create

connection between CLBs for a specific application. In an FPGA for grid inter-

connections a crossbar switch is used to programme connections between horizontal

and vertical routing lines. In modern days due to the high input output technology,

Chapter 2. FPGA Technology 13

reconfigurable logic blocks with high flexibility and dedicated hardware resources in

FPGAs are being used for implementing complete computer control systems such

as the Commodore Amiga 500 in project MiniMig [16]. FPGAs have also been

implemented to make a complete computer using linux [17–19].

2.4 FPGA Device Types and Families

In the current market, FPGA devices uses anti-fuse, flash and SRAM based pro-

gramming technology. In the anti-fuse programming technology, the devices are

configured by burning a set of fuses. They are one time programmable i.e. once

the devices are configured they cannot be altered. Quicklogic is the industrial man-

ufacturer for anti-fuse based FPGA devices. The FPGA devices using the flash

programming technology may re-programm the device several thousand times. The

devices using flash programming technology are non-volatile i.e. they keep their

configuration after the power-off. This technology is expensive and takes several

seconds for reconfiguration. The flash based devices are manufactured by the Actel

corporation.

The current dominating programming technology for FPGAs is SRAM based

technology. It features fast configuration and unlimited times re-programming of

the digital circuit. The devices using SRAM programming technology are volatile

and may require additional circuitry to load configuration in the device after power

is on. Due to the lower system cost, unlimited and fast re-programmable features

of programming a device, the FPGA device using SRAM based programming tech-

nology is used in this research.

The main vendors for making SRAM based FPGA devices are Xilinx and Altera.

The Xilinx, Inc. is an American technology company. It is known for inventing the

FPGAs. The Xilinx FPGA product families includes a variety of high performance

(Virtex family), mid range (Kintex family) and low cost (Artix / Spartan family)

devices. The Altera corporation is also an American manufacturer of FPGA devices.

It produces companies high bandwidth devices (stratix series) with 1.1 million logic

elements. The Altera corporation also produces low cost and low power FPGA de-

Chapter 2. FPGA Technology 14

vices known as cyclone series and SoC FPGAs. The Arria series FPGA devices are

produced by Altera for balance in power, cost and performance of FPGA devices.

The difference between the Altera and Xilinx FPGA devices is of the internal struc-

ture. The Xilinx FPGA device uses CLB (complex logic blocks) and Altera FPGA

devices uses logic cells. The CLBs are built with LUTs, flip flops and multiplexers

whereas the logic cells are made up by multiplexers alone.

There are number of families of FPGA available, offering different levels of com-

plexity in size and logic resources. The research in this thesis requires a lower cost

SRAM based FPGA device to re-programm / alter a digital circuit unlimited times.

Xilinx Spartan and Altera Cyclone families are both excellent devices featuring the

lower cost families of SRAM based FPGA devices. The research in this thesis does

not favour any specific family for implementing a digital circuit on FPGA devices.

However, due to ease in comparing implementation results with other recent and

old published papers, a Xilinx Spartan3 and Spartan6 families are being chosen for

implementation of logarithmic converters and logarithmic based correlation appli-

cations in this research.

2.4.1 Altera Cyclone Family Overview

The Cyclone SRAM based FPGA family is based on a 1.5V , 0.13µm, all-layer

copper SRAM process, with densities up to 20,060 logic elements (LEs) and up

to 288 kbits of RAM. With features like phaselocked loops (PLLs) for clocking

and a dedicated double data rate (DDR) interface to meet DDR SDRAM and fast

cycle RAM (FCRAM) memory requirements, Cyclone devices are a cost-effective

solution for data-path applications. Cyclone devices support various I/O standards,

including LVDS at data rates up to 311 megabits per second (Mbps) and 66-MHz,

32-bit peripheral component interconnect (PCI), for interfacing with and supporting

ASIC devices. Altera also offers new low-cost serial configuration devices to configure

Cyclone devices. A detailed overview of Cyclone family compared to Logic elements,

Block RAM, PLLs and I/O pins are shown in table 2.1.

Chapter 2. FPGA Technology 15

Table 2.1: Cyclone FPGA Family Overview [20]

Device Logic Elements Block RAM Total RAM bits PLLs I/O pins

EP1C3 2,910 13 59,904 1 104

EP1C4 4,000 17 78,336 2 301

EP1C6 5,980 20 92,160 2 185

EP1C12 12,060 52 239,616 2 249

EP1C20 20,060 64 294,912 2 301

2.4.2 Xilinx Spartan3 Family Overview

The Spartan3 family of FPGA devices was made as a successor of the SpartanIIE

family. Spartan3 devices are being widely used for a range of consumer electronic

applications because of their low cost on a comparison to the other families of

FPGA. The members of this family provide system gates from 50k to 5M (million)

in number. The Spartan3 family CLBs are made of RAM based 4 input LUT, shown

in figure 2.2. For applications, multipliers used can either be made by using LUT

available on the slices of Spartan3 device or by using embedded 18 bit dedicated

multipliers. The Spartan3 family provides Block RAM for data storage in the size

of 18k bits dual port blocks [21]. A detailed overview of Spartan3 family compared

to Logic cells, CLBs, Distribute RAM, Block RAM and Dedicated multipliers are

shown in table 2.2.

Chapter 2. FPGA Technology 16

Table 2.2: Spartan3 FPGA Family Overview [21]

Device System Logic Cells Total Distributed Block Dedicated

Gates CLBs RAM RAM Multipliers

XC3S50 50k 1,728 192 12k 72k 4

XC3S200 200k 4,320 480 30k 216k 12

XC3S400 400k 8,064 896 56k 288k 16

XC3S1000 1M 17,280 1,920 120k 432k 24

XC3S1500 1.5M 29,952 3,328 208k 576k 32

XC3S2000 2M 46,080 5,120 320k 720k 40

XC3S4000 4M 62,208 6,912 432k 1,728k 96

XC3S5000 5M 74,880 8,320 520k 1,872k 104

For the purposes of testing in this thesis a Spartan3 Starter Kit board from

Digilent Inc. is used. The Starter Kit board [22] provides a 20,000 gate Xilinx

Spartan3 XC3S200 device with four digit seven segment LED display, 3-bit 8-colour

VGA display port, ps2 port, 9 pin rs232 serial port with slide and push switches

(shown in figure 2.4).

Chapter 2. FPGA Technology 17

Figure 2.4: Spartan 3 Starter Kit Board [22].

Chapter 2. FPGA Technology 18

2.4.3 Xilinx Spartan6 Family Overview

The Spartan6 family consists of 13 members ranging from 3k to 147k logic cells.

The Spartan6 device CLBs use dual register 6 input LUT architecture (shown in

figure 2.3). The Block RAM available on the device is further reduced to 9k bits

blocks in comparison to previous spartan families. Instead of using dedicated 18

bit multipliers, as in the case of previous Spartan3 families, the Spartan6 device

uses DSP48A1 slices. DSP48A1 blocks perform operations like multiply, add, mul-

tiply add and multiply accumulate, which are essential for DSP applications. The

DSP48A1 slice in their architecture consists of two input pre-adder/subtractor, 18

bit two’s complement multiplier with a full precision of 36 bit result and two input

48 bit post-adder/subtractor. Figure 2.5 shows a detailed diagram of the DSP48A1

slice [23].

Figure 2.5: DSP48A1 Slice [23].

Chapter 2. FPGA Technology 19

A detailed overview of the Spartan6 family with a comparison of their Logic

cells, CLBs, Distribute RAM, Block RAM and DSP48A1 slices is shown in table

2.3 [24].

Table 2.3: Spartan6 FPGA Family Overview [24]

Device Logic Cells CLBs Distributed Block DSP48A1

Slices RAM RAM (18 kb) Slices

XC6SLX4 3,840 600 75k 12 8

XC6SLX9 9,152 1,430 90k 32 16

XC6SLX16 14,579 2,278 136k 32 32

XC6SLX25 24,051 3,758 229k 52 38

XC6SLX45 43,661 6,822 401k 116 58

XC6SLX75 74,637 11,662 692k 172 132

XC6SLX100 101,261 15,822 976k 268 180

XC6SLX150 147,443 23,038 1,355k 268 180

XC6SLX25T 24,051 3,758 229k 52 38

XC6SLX45T 43,661 6,822 401k 116 58

XC6SLX75T 74,637 11,622 692k 172 132

XC6SLX100T 101,261 15,822 976k 268 180

XC6SLX150T 147,443 23,038 1,355k 268 180

For the testing purposes in this thesis a Nexys3 board from Digilent Inc. is used.

The Nexys3 board provides Xilinx Spartan6 XC6SLX16 device with Adept USB2,

cellular RAM of 16 Mbyte, parallel PCM nonvolatile of 16Mbyte memory, ethernet

port, 8 bit VGA, USB HID Host and UART port, basic input output LEDs, push

and switch buttons (shown in figure 2.6).

Chapter 2. FPGA Technology 20

Figure 2.6: Nexys3 Board [25].

Chapter 2. FPGA Technology 21

2.5 Hardware Description Language

In computer languages, hardware description language is used to program an FPGA

device. It describes the behaviour and structural flow of digital logic circuits. The

two common form of hardware description languages used in industries are Verilog

and VHDL. For the research in this thesis VHDL is used for implementing novel

logarithmic converters on FPGAs.

The VHDL stands for very high speed integrated circuit hardware description

language. It was first introduced in 1981 by the U.S. department of defence (DoD).

The VHDL is used to write and synthesis digital logical circuits. The simulation

programs such as Xilinx Vivado and Mentor Graphics ModelSim are used to test the

logic design written in VHDL codes. After the successful simulation of digital logic

circuits, the circuits are implemented on the hardware FPGA devices by translating

synthesis output into a bitstream suited for a specific target device.

The advantage of using VHDL for system design is that it verifies the system

through simulation before synthesis tools implements the circuit on hardware. An-

other benefit of using VHDL over other conventional C, BASIC and assembly lan-

guages is that it provides a description of concurrent process rather than sequential

process.

2.6 Numerical Data Representation on FPGAs

The mathematical operations like addition, subtraction, multiplication and division

in hardware uses either fixed point binary number system or floating point binary

number system. The fixed point number system is straightforward and does not cre-

ate any complexity in mathematical operations as numbers of integers and fraction

bits are pre-defined.

The floating point on the other hand uses exponent bits and fraction bits covering

a large range of numbers with limited precision in comparison to the fixed point

number system. There is a trade off between the floating point number system and

fixed point number system on the basis of precision achieved and range covered.

The IEEE-754 [9] standard defines binary floating point numbers into single and

Chapter 2. FPGA Technology 22

double precision. The single precision uses 32 bits out of which 1 bit is for sign bit,

8 bits for exponent and 23 bits for fractional part (shown in figure 2.7). The double

precision (64 bits) in a floating point number are divided as 1 bit for sign bit, 11

bits for exponent and 52 bits for fractional part (shown in figure 2.8).

Figure 2.7: IEEE-754 std Single Precision.

Figure 2.8: IEEE-754 std Double Precision.

The DSP applications are mostly real time based, requiring a large dynamic

range. Using the floating point number system on an FPGA hardware has been

achieved in [26–29]. However, multiplication and division operations of a floating

point number on FPGAs is not trivial as described in [30] and [31]. Multiplication

of floating point numbers further requires operations of multiplication of fractional

bits and addition of exponent bits. Similarly the division of floating point numbers

requires the division of fractional bits and subtraction of exponent bits, making

computation slower in comparison to the fixed point number system.

A floating point adder/subtractor algorithm [30] is presented on an FPGA device

in order to maximize speed and minimise area. In the algorithm [30] addition and

subtraction are performed in three stages. A floating point number is represented

as

v = (−1)S.2E.(1.F) (2.1)

where S, E and F are used to represent sign, exponent and fraction/mantissa fields

of the floating point number. Figure 2.9 shows a three-stage 18-bit adder, where

Chapter 2. FPGA Technology 23

addition takes place between v1 and v2 floating point numbers. In the first stage,

alignment of fraction/mantissa bits is performed by shifting to the right. The num-

ber of positions to shift the fraction bit right is decided by subtracting exponent

bits. The subtraction of exponent bits is decided by a comparison of absolute values

of v1 and v2 floating point numbers. The addition/subtraction of fraction bits takes

place in the second stage, depending on the sign bit. In stage three, normalisation

of the resultant fraction bit is performed, by shifting fraction bits to the left until

high order bit is one.

Figure 2.9: Three stage 18-bit floating point adder [30].

[30] also presents a similar three-stage 18-bit multiplier unit. In stage 1, the

addition of exponent bits of floating numbers take place and ’1’ is concatenated to

the left side of fraction bits. The multiplication of two fractional bits is performed

in stage 2 by using an integer multiplier. The exponent part of the floating point

Chapter 2. FPGA Technology 24

number is adjusted depending on the higher bit of the multiplication result. Resul-

tant sign bit is calculated by using a xor gate. Normalisation of the multiplication

resultant is performed in stage 3. A three-stage 18-bit floating point multiplier is

shown in figure 2.10. The integer multiplier used for fraction bits in multiplication

unit suffers the problem of bottleneck. The author uses four different methods to

optimise the integer multiplier by using a integer multiplier available in VHDL com-

piler, array multiplier and by using pipeline in multiplication design to increase the

speed of the design.

Figure 2.10: Three stage 18-bit floating point multiplier [30].

In [27], the author describes an addition algorithm of floating point numbers,

shown in figure 2.11. The hardware implementation of addition algorithm is shown

in figure 2.12. The Initial version of 32-bit adder design took 72% of area on an

Altera 81188 device. The author claimed reduction of area by 25% when FLEX

8000 logic elements were used in the circuit. For the multiplication of floating point

numbers , the author [27] uses a digit serial multiplier. A digit serial multiplier gives

Chapter 2. FPGA Technology 25

performance in between a bit serial multiplier [32] and a bit parallel multiplier [33].

A digit serial multiplier is implemented on an Altera FLEX 81188 device. Figure 2.13

shows arrays of bit multipliers (BM). In the multiplication, multiplier bits are passed

to columns of array and multiplicand bits are passed to rows. The multiplication

unit consumes 49% of the Altera flex 81188 device, giving a performance of 2.3

MFlops.

Figure 2.11: Floating point addition algorithm [27].

Chapter 2. FPGA Technology 26

Figure 2.12: 32 bit floating point adder [27].

Figure 2.13: Digit serial multiplier [27].

Chapter 2. FPGA Technology 27

Another format of binary number system, LNS (logarithmic number system) not

being widely used in hardware, solves the problem of multiplication and division in

wide dynamic range [34]. LNS provides a similar range and precision to that of

the floating point number system. In 2005, Haselman [31] compared floating point

and logarithmic number systems on FPGAs. Tables 2.4 and 2.5 are reproduced

from [31], showing a comparison of FPGA hardware (Virtex II 2000) resources used

when arithmetic operations of multiplication and division are performed.

Table 2.4: Hardware usage in multiplication of single and double floating point

precision [31]

Single FP Precision Double FP Precision

FP LNS FP LNS

Slices 297 20 820 36

Multipliers 4 0 9 0

18k BRAM 0 0 0 0

Latency(ns) 65 10 83 12

Table 2.5: Hardware usage in division of single and double floating point precision

[31]

Single FP Precision Double FP Precision

FP LNS FP LNS

Slices 910 20 3376 36

Multipliers 0 0 0 0

18k BRAM 0 0 0 0

Latency(ns) 150 10 350 12.7

Chapter 2. FPGA Technology 28

2.7 Summary

This chapter has summarised the FPGA technology for designing a digital logic

circuit. The FPGAs can implement simple and complex function on a single device.

The commonly used functions (adder, multiplier etc.) on modern FPGAs are present

in dedicated hardware. The dedicated hardware resources can be combined with

other existing logic design on FPGA board.

The number systems for arithemtic operations on FPGA devices are discussed

and compared. The tables 2.4 and 2.5 shows that multiplication and division linear

operations in LNS are very efficient in terms of hardware resources usage in FPGAs.

However, before performing the linear operations of multiplication and division, a

floating point number must be converted into a logarithmic number and vice versa

with the resultant value. The conversion of floating point number to logarithmic

number, while maintaining its accuracy the same as single floating point precision is

further discussed in Chapters 3, 4 and 5. An example of using a logarithmic number

system instead of floating point number in a real time based application is showed

in Chapter 6.

Chapter 3

Logarithmic Conversion Literature

Review

3.1 Introduction

This chapter provides an overview of algorithms and techniques used in converting

linear to logarithm value with base 2 (Lin2Log) and vice versa (Log2Lin). Loga-

rithmic conversion and logarithmic signal processing have been used in a number

of applications and are of increasing interest because of the potential for area and

higher resolution architectures [1, 35–37]. As a consequence, many algorithms and

hardware architectures have been proposed over the past 50 years for converting a

normalised binary number x into a binary logarithm (log2x) or converting the binary

exponent (2log2x) back to a normalised binary number. These algorithms vary widely

in terms of their accuracy, efficiency and speed. Over such a long time-span there

have also been significant changes in the performance of the implementation tech-

nologies, resulting in newer architectures capable of achieving increasing conversion

accuracies and making the logarithmic number system (LNS) a viable alternative in

a number of modern applications [5, 6, 38–43].

As compared to recent algorithms early algorithms have low-precision, limited to

12-bits because of limited technology as integrated digital circuits their have limited

memory and/or logic capacities. Recent publications show that algorithms which

rely on direct LUT are more accurate, but conversion becomes impractical and large

29

Chapter 3. Logarithmic Conversion Literature Review 30

when using for 16-bits or higher because of their LUT size and access time [44]. At

this time when higher precision is required curve fitting techniques such as Taylor,

CORDIC, Chebyschev etc. are used to approximate the curve, using LUT for their

coefficient values. There are algorithms based on curve fitting techniques using first

order and second order approximation. Higher order polynomial approximation

methods are used in few papers where the precision required is greater than IEEE

single-precision floating point format [9].

The process of converting a fixed/floating point number into a logarithmic num-

ber is divided into two parts. The first part includes calculation of the integer

part into a logarithmic characteristic value and the second part calculates the deci-

mal/mantissa part into a logarithmic mantissa/fractional value. The finding of the

characteristic/integer value of a logarithmic number from a normalised fixed/float-

ing point number has been reasonably straightforward as there are similarities found

in normalised floating point formats and logarithmic formats. In equations 3.1 and

3.2, S denotes the sign bit. The exponent part of the floating point number (E)

has the same value as the characteristic value or integer part (I) of the logarithmic

value.

Floating Point Format

x = (−1)S.2E.(1.M) (3.1)

Logarithmic Format

x = (−1)S.2I .2F (3.2)

So the initial step for finding a logarithmic number of a given fixed/floating point

number is to normalise the input number. To normalise the input number by using

a leading one or leading zero detector is discussed in detail in section 3.2. Once the

input number is normalised and the characteristic value of the logarithmic number

is obtained, the next step is to perform a Lin2Log conversion on the decimal part

(M) of the floating/fixed point number. The different types of algorithms used

for converting a normalised floating/fixed point number into a logarithmic number

fraction/mantissa (F) are discussed in section 3.3.

Chapter 3. Logarithmic Conversion Literature Review 31

3.2 Normalisation Methods

The first step in converting a fixed/floating point number to a logarithmic number is

to normalise the input number. The normalisation is performed by using leading one

detector (LOD) or leading zero detector (LZD) [45–52]. LOD/LZDs are preferred

in designing a normalisation circuit as they are trivial to implement in hardware.

LOD/LZDs work on simple algorithm of shifting the first one or non zero bit to the

left-most bit position. A few popular and recent algorithms for leading one/zero

detectors are explained in this section.

3.2.1 Leading Zero Detector

The leading zero detector circuit was described in a 1993 electronics letter [53],

whose implementation was based on an algorithmic approach resulting in a modular

scalable circuit for any number of bits. The LZD works by shifting bits to the left

position until a nonzero bit is reached at MSB. The exponent part of the normalised

number is calculated by decrementing the original exponent part by the total number

of shifts until the first nonzero digit is reached. Figure 3.1 shows an Oklobdzija

leading zero circuit which is in hierarchical order, consisting of valid and position

Figure 3.1: Oklobdzija leading zero detector circuit [53]

Chapter 3. Logarithmic Conversion Literature Review 32

bits. When input is two bits it is trivial but with a 4-bit circuit, logic levels become

two, and in the second level a valid bit is formed as the logical OR of the valid bits

from the previous level. If all of the groups do not show a valid output, it means

they are a string of zeros. This circuit is good for a small number of bits, as the

number of bits increases output of this circuit becomes slower and more hardware

is needed.

3.2.2 Leading One Detector

In an electronics letter [54] in 1998 a modular circuit for determining the leading one

in a binary word is described. The circuit was designed for encoding binary data into

a binary logarithm format, but it can also be used for floating point normalisation.

In figure 3.2 LOD is used. The output of the circuit is encoded using a small

PLA (programmable logic array) to give the integer value of the logarithm and also

to control a shifter circuit which is used to generate a fractional part of the exponent.

Figure 3.2: P. Lee’s LOD circuit [54]

Chapter 3. Logarithmic Conversion Literature Review 33

The approach for leading one detection in this letter contrasts with LZD described

by Oklobdzija in 1993 [53] which uses a more complex circuit to produce the integer

value directly, without the need for an encoding PLA. The circuit shown in figure

3.2 was designed and built using 1.2 µm CMOS technology. The circuit works at a

frequency of 30 MHz and occupies an area of 0.05 mm2.

Abed et al. [55–58] proposed two approaches to LOD approximation by improv-

ing Mitchell’s algorithm [59]. Each approach is used to obtain 0.6 µm CMOS VLSI

implementations of 16, 32 and 64-bit LOD circuits. The approach to design a fast

LOD is based on dividing the input binary word into groups, which evaluate in par-

allel and independently of each other, but evaluation within each group is performed

serially. Figure 3.3 shows a circuit of 4-bit fast LOD circuit.

Figure 3.3: Fast 4-bit LOD [58]

For a higher bits LOD, the first stage consists of many 4-bit LODs, where each

4-bit LOD is used to evaluate each 4-bit of input data word. Therefore, the first

stage requires N
4
4-bit LODs (where N denotes the total number of input bits) and

because of the large number of LODs speed improves, but at a cost of more hardware

and more power.

To eliminate this problem Abed et al. [58] proposed another type of approach

which is made for low power and hardware efficiency. In this approach Abed et

Chapter 3. Logarithmic Conversion Literature Review 34

al. [58] used a single 4-bit LOD circuit to perform the operation of the first stage,

instead of N
4
4-bit LODs. In figure 3.4 a 16-bit LOD circuit is drawn for low power.

In this 16 bits are divided into 4 groups of 4 bits, OR gates are used to determine

whether a group has at least 1 or not which is then forwarded to the LOD to produce

a 4-bit control word which determines the leading group. A 4x4 multiplexer is used

which is controlled by control bits, each control bit controls a 4-bit MUXs row.

The 16-bit LOD circuit generates 16-bits active-high decoded binary word that has

leading one.

Figure 3.4: Fast 16-bit LOD [58]

3.3 Logarithmic Converter

Logarithmic conversion of the decimal part of normalised fixed/floating input num-

bers using different algorithms is mentioned in this section. Algorithms mentioned

in this section discuss Lin2Log and Log2Lin conversions on the basis of bits preci-

Chapter 3. Logarithmic Conversion Literature Review 35

sion achieved by them. In all the cases input numbers are assumed to be positive

and for negative numbers they are dealt with by sign (S) magnitude arithmetic (see

equations 3.1 and 3.2).

An analysis and comparison of different algorithms mentioned in this section is

performed by MATLAB simulations. In simulations a normalised input number (x)

is assumed. Here we consider the conversion of the normalised number 1 ≤ 1.F < 2,

where F is the fractional component of a normalised number (see equation 3.2).

This chapter shows the accuracy achieved by Lin2Log and Log2Lin algorithms and

discusses their error distribution.

3.3.1 Direct PWL Conversion Algorithms

This section of algorithms uses simple PWL approximation methods without using

many hardware resources such as LUT etc. to calculate the logarithmic approxi-

mation of fixed/floating point input numbers. These algorithms achieved a limited

amount of accuracy and are considered as the benchmark for new algorithms. One of

the earliest and most frequently compared algorithms was proposed by Mitchell [59]

in 1962. This paper is seen as the start of Lin2Log and Log2Liin processors. A sim-

ple addition or subtraction and shifting operation is all that is required to multiply

or divide in this algorithm.

The approximations to binary logarithms are easy to generate using Mitchell’s

approximation [59]. No look-up tables are required, and multiplication and divi-

sion operations are reduced to addition and subtraction operations. The algorithm

proposed in Mitchell’s approximation [59] uses a straight line interpolation between

the points where mantissa is zero. The multiplication error in Mitchell’s approxi-

mation [59] computation is -11.1% and division error is 12.5%.

To describe this algorithm an example is shown in figure 3.5. The algorithm is

divided into four parts, considering A and B (8 bits each) as input bits. The first

step in this algorithm is to shift input bits (A and B) to the left, until their most

significant bit (having value one) is in the left-most position. Once the shifting is

complete, the counter registers (X3X2X1 and Y3Y2Y1) contain the characteristics

of the logarithm of A and B (this method also known as leading one detection).

Chapter 3. Logarithmic Conversion Literature Review 36

Input registers A and B (6-0 bits) are shifted into bit positions (6-0 bits) of C and

D registers. After shifting the C and D registers, they contain the logarithm of

the original number. After obtaining the logarithmic value of the input registers,

multiplication and division operations which are reduced to addition/subtraction

in logarithmic domain take place. Registers C and D are considered as inputs for

this operation and results are stored in register E. Register F contains the resultant

approximated value (in linear domain) of two linear values (A and B). The resultant

exponent part in linear domain is calculated by decoding bit values Z4Z3Z2Z1 in

register E and placing one in appropriate position in F. The approximated fractional

part of the resultant is calculated by shifting the remaining bits of register E (that

is, 0-6 bits) into register F.

Figure 3.5: Mitchell’s algorithm generating binary logarithm [59]

Mitchell’s algorithm can be represented mathematically. Let a number in the

Chapter 3. Logarithmic Conversion Literature Review 37

linear number system (LNS) be represented as

N = 2k(1 + x) (3.3)

where 2k (k = 0,±1,±2...) is the exponent part of the number and x be the fractional

part of the number. The original logarithmic value of this number can be represented

as

y = log2(N) = k + log2(1 + x). (3.4)

The approximated value attained after using Mitchell’s algorithm is

y′ = log2(N)′ = k + x. (3.5)

Conversion error, which is the difference between the original logarithmic value and

the approximated value from the algorithm, is represented as e (error).

e = y − y′. (3.6)

e = k + log2(1 + x)− (k + x) = log2(1 + x)− x. (3.7)

Error, e, range calculated after derivative equal to zero is

0 ≤ e ≤ 0.08639. (3.8)

Hence the algorithm is equivalent roughly to four bits precision. Mitchell’s approx-

imation [59] conversion errors are simulated in MATLAB and are shown in figure

3.6.

Chapter 3. Logarithmic Conversion Literature Review 38

(a)

(b)

Figure 3.6: Mitchell approximation [59] (a) Absolute error (b) Error histogram

Combet et al. [60] proposed an algorithm in 1965, which claimed to reduce the

error of Mitchell’s approximation [59] by a factor of six. The realisation involves

not only counting and shifting but also binary decision-making and addition. The

algorithm uses a piecewise linear approximation on the error curve produced by

Chapter 3. Logarithmic Conversion Literature Review 39

Mitchell’s approximation [59] of four equal segments. The mantissa is divided into

four equal parts and these segments are using coefficients which are found by a trial

and error method.

The Maximum error in Mitchell’s approximation [59] is 0.086 (from equation

3.7) and the error range generated by the Combet et al. approximation [60] is

0.014 where the maximum and minimum error values are + 0.008 and - 0.006 (see

figure 3.7). This algorithm was realised at that time as a basic part of a digital

period-meter for a nuclear reactor.

(a)

(b)

Figure 3.7: The Combet et al. Logarithmic approximation [60] (a) Absolute error

(b) Error histogram

The method for reducing error consists of a piecewise linear approximation of

Chapter 3. Logarithmic Conversion Literature Review 40

log2A(1+ x) which is an approximated value of log2(1+ x). The error generated by

the Combet et al. approximation [60] can be written as

error = log2(1 + x)− log2A(1 + x). (3.9)

where log2A(1 + x) approximation in four regions is defined as

log2A(1 + x) = x+
5

16
x for 0 ≤ x ≤ 1

4
, (3.10)

log2A(1 + x) = x+
5

64
x for

1

4
≤ x ≤ 1

2
, (3.11)

log2A(1 + x) = x+
1

8
x′ +

3

128
for

1

2
≤ x ≤ 3

4
, (3.12)

and

log2A(1 + x) = x+
1

4
x′ for

3

4
≤ x ≤ 1. (3.13)

where x′ is the bit-by-bit binary complement of x.

In 1970 Hall [61] proposed a limited piecewise linear approximation Lin2Log

curve with the added constraint that the coefficients can be easily calculated. The

algorithm used in [61] defines four equal regions for approximating a logarithmic

curve. In this algorithm applications to digital filtering computations are consid-

ered and log-antilog multiplication is useful for parallel digital filter banks and mul-

tiplicative digital filters.

The logarithmic approximation in [61] is defined as

log2(1 + x) = x+
37

128
x+

1

128
for 0 ≤ x ≤ 1

4
, (3.14)

log2(1 + x) = x+
3

64
x+

1

16
for

1

4
≤ x ≤ 1

2
, (3.15)

log2A(1 + x) = x+
7

64
(1− x) +

1

32
for

1

2
≤ x ≤ 3

4
, (3.16)

and

log2(1 + x) = x+
29

128
(1− x) for

3

4
≤ x ≤ 1. (3.17)

The absolute error generated by using Hall’s logarithmic approximation [61] with

respect to original logarithmic value is shown in figure 3.8. Figure 3.8 also shows

an unequal error distribution through histogram when using Hall’s Logarithmic ap-

proximation [61].

Chapter 3. Logarithmic Conversion Literature Review 41

(a)

(b)

Figure 3.8: Hall’s logarithmic approximation [61] (a) Absolute error (b) Error his-

togram

Chapter 3. Logarithmic Conversion Literature Review 42

Hoefflinger [62–66] showed the implementation of Mitchell’s algorithm [59] in

VLSI. In these papers logarithmic encoding is by computing the instantaneous value

of an n, where the signal falls into one of n segments, which are identified by the

leading one detector in its binary representation as shown in figure 3.9. The segments

are encoded as the log2n MSBs of the logarithmic representation. LSBs from the

leading one to the bit position following the MSBs in the logarithmic representation

are shifted, retaining up to (m− 1) LSBs form bit accuracy over (n−m) octaves.

Figure 3.9: Hoefflinger bit-serial logarithmic encoder [62]

The Hoefflinger also showed that a DIGILOG multiplier. Which is made using

above implementation is less than one quarter by size and the multiplication time is

one half in comparison with a Booth Wallace multiplier [63]. This implementation

is preferred in signal processing operations.

Gregory et al. [67] in 1999 proposed a new algorithm in which approximation

is performed using only combinational logic and requires no multiplication. In the

Gregory et al. algorithm [67] the error of Mitchell’s approximation [59] is reduced

by dividing each cycle into two equal regions of different slope. In order to meet the

original logarithmic value at mid point of the cycle, the slope in the lower half of

the cycle is increased. For values past the midpoint of cycle, the slope is decreased

so that the approximate logarithm approaches the exact logarithm value at the

end point of the cycle. Increasing and decreasing the slope is achieved by shifting

a fractional part of the approximated logarithm value and adding to the original

fractional part to reduce errors.

Chapter 3. Logarithmic Conversion Literature Review 43

MATLAB simulation graphs are provided in figure 3.10 where the slope of cycle

is changed using only first 3 MSBs of the fractional part.

(a)

(b)

Figure 3.10: Gregory 1999 [67] (a)Logarithmic approximation (b) Absolute error

Siferd et al. [56] in 2003 used approximations on Mitchell’s algorithm [59]. The

improvements required minimal hardware additions, there is a trade-off between

accuracy obtained and complexity of correction. 2 region, 3 region and 6 region

approximations were made.

Chapter 3. Logarithmic Conversion Literature Review 44

The original logarithmic value is

N = 2k(1 +m) (3.18)

log2N = k + log2(1 +m) (3.19)

For the 2-region correcting algorithm, log2(1+m) is approximated as log2(1+m)′.

The logarithmic approximation and absolute error for 2-region are shown in figure

3.11.

log2(1 +m)′ = m+
1

4
(m3MSBits) for 0 ≤ m ≤ 1

2
(3.20)

log2(1 +m)′ = m+
1

4
(1−m3MSBits − 2−3) for

1

2
≤ m ≤ 1 (3.21)

(a)

Figure 3.11: Siferd [56] 2-region (a) Logarithmic approximation

For 3-region approximation

log2(1 +m)′ = m+
1

4
(m4MSBits) for 0 ≤ m ≤ 1

4
(3.22)

Chapter 3. Logarithmic Conversion Literature Review 45

(b)

Figure 3.11: Siferd [56] 2-region (b) Absolute error

log2(1 +m)′ = m+ 2−4 + 2−6 for
1

4
≤ m ≤ 3

4
(3.23)

log2(1 +m)′ = m+
1

4
(1−m4MSBits − 2−4) for

3

4
≤ m ≤ 1 (3.24)

The logarithmic approximation and absolute error for 3-region are shown in

figure 3.12.

Chapter 3. Logarithmic Conversion Literature Review 46

(b)

Figure 3.12: Siferd [56] 3-region (b) Absolute error

(a)

Figure 3.12: Siferd [56] 3-region (a) Logarithmic approximation

Chapter 3. Logarithmic Conversion Literature Review 47

For 6-region approximation

log2(1 +m)′ = m+
1

4
(m6MSBits) for 0 ≤ m ≤ 1

16
(3.25)

log2(1 +m)′ = m+
1

4
(m6MSBits) + 2−6 for

1

16
≤ m ≤ 1

4
(3.26)

log2(1 +m)′ = m+ 2−4 + 2−7 + 2−8 for
1

4
≤ m ≤ 3

8
(3.27)

log2(1 +m)′ = m+ 2−4 + 2−6 + 2−7 for
3

8
≤ m ≤ 27

40
(3.28)

log2(1 +m)′ = m+ 2−4 + 2−7 for
27

40
≤ m ≤ 3

4
(3.29)

log2(1 +m)′ = m+
1

4
(1−m6MSBits − 2−7) for

3

4
≤ m ≤ 1 (3.30)

The logarithmic approximation and absolute error for 6-region are shown in

figure 3.13.

Chapter 3. Logarithmic Conversion Literature Review 48

(a)

(b)

Figure 3.13: Siferd [56] 6-region (a) Logarithmic approximation (b) Absolute error

Chapter 3. Logarithmic Conversion Literature Review 49

3.3.2 PWL and LUT Algorithms

This section covers Lin2Log and Log2Lin conversion algorithms using PWL and

LUT approximation methods. Brubaker [68] in 1975 proposed such a method to

improve Mitchell’s approximation by using a look up table (LUT). Brubaker [68]

showed a comparison of direct multiplication using a LUT and multiplication using

logarithms via a LUT to store their values. Multiplication time for direct multi-

plication using a LUT required one memory access while logarithmic multiplication

required two memory access times plus an addition, which affected the speed of

logarithmic multiplication by a factor of one third. The area (number of bits) of

the LUT in multiplication via Logarithmic multiplication was smaller in comparison

with the number of bits required in LUT via direct multiplication. The accuracy

achieved by Brubaker’s [68] method was also affected by LUT size. For a given error

considerably fewer bits were needed for three LUTs than for a direct multiplication

using a single LUT. Brubaker [68] showed that hardware was very well suited for

implementing parallel multiplication in applications such as digital filters.

Kmetz [69] in 1986 presented a method to improve Mitchell’s algorithm [59]. In

Kmetz’s [69] algorithm the difference between exact logarithmic value and Mitchell’s

approximation [59] value is stored in a ROM. Mitchell’s approximation [59] value is

also used as an address for LUT according to which difference is sent to adder where

difference or LUT value is added to the corresponding Mitchell approximation [59]

value. Kmetz [69] in his paper is using a normalised floating point number so one is

subtracted from the fractional part which is same as Mitchell’s approximation [59]

value and the exponent of the fractional part is sent to the log storage register,

where it is used as a characteristic of the logarithm value and cocatenated with

the corrected mantissa value as shown in figure 3.14. The accuracy of Kmetz’s

approach [69] is dependent on the number of bits used as the address of the error LUT

which would be prohibitively large for higher accuracies. A MATLAB simulation

for Log approximation using Kmetz’s method with a comparison with the original

logarithmic curve is shown in figure 3.15 with the absolute error.

Chapter 3. Logarithmic Conversion Literature Review 50

Figure 3.14: Kmetz’s [69] principal of proposed approximation.

Chapter 3. Logarithmic Conversion Literature Review 51

(a)

(b)

Figure 3.15: Kmetz’s [69] (a) Logarithmic approximation (b) Absolute error

Maenner [70] in 1987 proposed a method on the Mitchell’s algorithm [59] by

using a look up table. Maenner’s method [70] can be implemented in software and

is therefore well suited for usage in personal computers. The basic idea in Maenner’s

algorithm was to split a fraction part into two parts. To explain Maenner’s algorithm

mathematically let Z be a binary fraction so by computations we get

Z = f(ak−1,, ak−m) +
k

∑

i=m+1

ak−i2
−i. (3.31)

The function f is given as look up table. For all combinations of ak−1,, ak−m,

Chapter 3. Logarithmic Conversion Literature Review 52

the table contains one entry each with a value precomputed to minimise the ap-

proximation error. The first step in Maenner’s algorithm [70] is to normalise the

arguments as done in Mitchell’s approximation [59]. The second part is to replace

the first m bits of the binary fraction by an element of the look up table. A case of

m = 16 is shown in figure 3.16 where the total number of bits is 32.

Figure 3.16: Maenner [70] principal of proposed approximation.

According to Maenner [70] using the firstm bits of the fraction for a look up table

replaces m bits by their exact precomputed values, so the error is restricted in bits

from m + 1 down to zero. He presented his algorithm on a 68000 microprocessor,

using a 64k word look up table and the approximation error was in the order of

magnitude of 10−6, showing a factor of 100 or 1000 times smaller than the errors

obtained with earlier approximations.

A simulation of Maenner’s approximation [70] is shown in figure 3.17 where the

total number of bits is taken as 16. A logarithmic approximation and absolute error

is calculated.

Chapter 3. Logarithmic Conversion Literature Review 53

(a)

(b)

Figure 3.17: Maenner [70] (a) Logarithmic approximation (b) Absolute error

Maenner [70] claimed that by using m segments the error in the conversion is

reduced by a factor of 2m. However in 2003 Arnold published a paper [71] in which

he made a detailed examination of this algorithm and concluded that it could not

achieve the accuracy claimed in the original paper because, although similar, the

Chapter 3. Logarithmic Conversion Literature Review 54

error curve is not the same in each segment. Maenner’s algorithm [70] uses the same

interpolation throughout the segments and assumed the error at the endpoints was

zero. This was not the case pointed out by Arnold and hence that the conversion

error was substantially larger than Maenner [70] had claimed.

3.3.3 Polynomial Approximation Methods

This section includes piece-wise polynomial approximation methods to convert a

fixed/floating point number to a logarithmic number and vice versa. Marino [72] in

1972 proposed a simple circuit for approximating the Mitchell [59] error curve. This

was achieved by using two quadratic approximations to the curve. The multiplicative

factors of the quadratic terms were chosen to minimise the arithmetic overhead

required which was an expensive resource at the time. Marino [72] claimed an

improvement, by a factor of 2.5 in the absolute maximum error over Mitchell’s

approximation [59]

The error of logarithmic expression is written as

Elog2(x) = log2(N)− log2(N)′ = log2(1 + x)− x (3.32)

In Marino’s [72] approximation Elog2(x
′) is an approximate fit of Elog2(x) which is

calculated using a method called divided difference giving the expression

Elog2(x
′) = 4t(x− x2) (3.33)

which is calculated by

Elog2(x
′) = (x− xa)f(xa, xb) + (x− xa)(x− xb)f(xa, xb, xc) (3.34)

where xa = 0, xb = 0.5 and xc = 1 and f(xb) = Elog2(x
′
b) = t f(xa) = 0

f(xa, xb) = 2t f(xa, xb, xc) = −4t.

Here t represents the ordinate of the parabola, because of asymmetry in Mitchell

[59] error curve there are two approximations. The curve is divided into two halves

as follows

Elog2(x
′) =

4t1

0.75
(x− x2) forx < 0.5 (3.35)

Chapter 3. Logarithmic Conversion Literature Review 55

Elog2(x
′) =

4t2

0.75
(x− x2) forx ≥ 0.5 (3.36)

Marino [72] defines an approximation for the x2 function. The maximum error

in Marino’s approximation [72] occurs at x = 0.5 as +0.0029 and -0.0020 for the

first and second curve respectively and are shown in figure 3.18.

(a)

(b)

Figure 3.18: Marino [72] (a)Logarithmic approximation (b) Absolute error

Mori [73] in 1987 used a general non uniform piecewise polynomial approximation

on the Mitchell [59] error curve. The Mitchell [59] error curve in is defined as

Elog2(x) = log2(1 + x)− x. (3.37)

Mori [73] used a polynomial fitting function of the type

Chapter 3. Logarithmic Conversion Literature Review 56

Zi = Aix
2 +Bix+ CI + x 1 ≤ i ≤ I. (3.38)

where in each interval [Xi−1, X1] error curve function is

Qi = Aix
2 +Bix+ Ci (3.39)

This error curve function is used to fit the Mitchell [59] error curve. The MAT-

LAB simulations for Mori approximations [73] are shown in figure 3.19. The Mori

approximation [73] uses ROM for values of coefficients A, B and C in polynomial

equations.

(a)

Figure 3.19: Mori [73] (a) Logarithmic approximation

Chapter 3. Logarithmic Conversion Literature Review 57

(b)

Figure 3.19: Mori [73] (b) Absolute error

Lewis [74] describes a new method for polynomial interpolation in hardware,

with advantages demonstrated by its application to an accurate logarithmic number

system (LNS) arithmetic unit. The algorithm described by Lewis [74] uses inter-

leaved memory for interpolating by storing actual value of function (f(x)) instead

of storing their coefficient values, as done by previous algorithms. The use of an

interleaved memory is that it reduces storage requirements by allowing each stored

function value to be used in interpolation across several segments. This strategy is

shown to be always used for fewer words of memory than an optimised polynomial

with stored polynomial coefficients.

The stored function value interpolator uses a slightly different approach for in-

terpolation intervals. 91k bits of ROM are used in implementing the second order

polynomial interpolator in the LNS arithmetic unit. Lewis’s method [74] claims

many different accuracies required for the LNS unit are possible and are better and

less complex than the previous LNS unit.

Chapter 3. Logarithmic Conversion Literature Review 58

In computer graphics algorithms normal operations like division, multiplication,

square etc. are frequently performed but are very slow if done by software or very

expensive if done by hardware. Knittel [75] in 1994 presented an algorithm in

which operands are converted into logarithms, turning division into subtraction and

exponentiations into multiplications.

The logarithm in Knittel’s algorithm [75] is calculated using a piecewise linear

approximation of the form

g = mix+ bi (3.40)

By storing the coefficients bi,mi and use of ternary encoding an n-digit binary num-

ber can be expressed as n+ 1 digit ternary number. In this way, the set of straight

lines which can be constructed using a fixed number of adders is enlarged signifi-

cantly. Knittel in his paper describes an algorithm to calculate distance between two

adjacent segments on the curve when using linear approximation (see figure 3.20).

All segments which do not increase the error if dismissed are removed. When this

distance between approximation and original curve increases above the required ac-

curacy a new segment starts to minimise error function. Using this algorithm there

is a significant reduction in memory, which is used to store the coefficient values for

approximation.

The patents [76–85] published by S.Pan and S.T. Wang describe a second order

interpolator defined as

y = cx2 + bx+ a. (3.41)

Out of 23 factional bits of floating point number the most significant 9 bits are

used as an address for 2 LUT ROM storing coefficients of zero and first order.

The second order term is encoded using a LUT ROM whose address of 9 bits

is made of 4 most significant bits of zero and first order address bits and 5 bits of

the input that have not been used to address the zero and first order coefficients.

Values of the second order term have been empirically determined by observing the

variance of the second order term removing the need for a multiplier. The patent

does not include details about overall accuracy achieved and the circuit uses 25k

Chapter 3. Logarithmic Conversion Literature Review 59

Figure 3.20: Knittel [75] non uniform log approximation.

bits of total memory. The architecture has been used and modified in many papers

and patents by S. Pan and S.T. Wang. The general architecture of the second order

Chapter 3. Logarithmic Conversion Literature Review 60

interpolator is shown in figure 3.21.

Figure 3.21: S.Pan [79] Lin2Log architecture.

3.3.4 CORDIC and Taylor algorithms

This section includes approximation methods to convert a fixed/floating point num-

ber to a logarithmic number and vice versa based on some well known mathematics

techniques such as the Taylor series, CORDIC methods etc.

The CORDIC (Coordinate Rotation Digital Computer) algorithm is used to cal-

culate hyperbolic and trigonometric functions. This algorithm can be implemented

through a software or hardware approach. However, it is suitable in hardware im-

plementation as it uses only adders, shifters and LUT. The CORDIC algorithm for

curve fitting techniques such as Lin2Log approximation etc has been used in [86,87].

[86] in 2013 proposed a CORDIC algorithm-based logarithmic converter. The

logarithmic converter [86] supports the logarithmic transformation of data with a

number of bits up to 48. The algorithm proposed in [86] uses the CORDIC IP core

of Xilinx ISE to calculate the inverse hyperbolic tangent and natural logarithm. The

algorithm [86] implementation in hardware is performed by using standard Verilog

hardware description language in ModelSim PE and the designed circuit is mapped

Chapter 3. Logarithmic Conversion Literature Review 61

onto a Xilinx xc5vsx95t device.

[87] in 2009 presented a new decimal floating-point CORDIC algorithm for the

computation of transcendental functions. Vazquez et al. [87] proposed a novel coding

scheme to use a unified algorithm for both circular and hyperbolic coordinates in

comparison to standard binary CORDIC algorithms using a constant scale factor.

Vazquez et al. [87] compares his new decimal floating-point CORDIC algorithm with

the LUT methods and shows a significant reduction of latency and storage.

However, the CORDIC algorithm has been challenged in the past by many other

approximation methods such as Chen et al. [88] who in 2012 proposed an algorithm

and architecture of the decimal floating-point logarithmic converter, based on the

digit-recurrence algorithm with selection by rounding. The proposed algorithm in

[88] showed a latency 3.88 times faster than that of the unit based on the CORDIC

algorithm in [87].

Mansour et al. [89] in 2015 presented a new method called Floor Shift based

on [90] for fast logarithm conversions. Mansour et al. [89] also combine the Floor

Shift algorithm with the Taylor series to improve the accuracy of the output. The

proposed method is compared with other existing common algorithms such as the

CORDIC and LUT-based approximations. Mansour et al. [89] shows that Taylor-

based approximation is the most power based efficient design, maintaining similar

accuracy with LUT-based approximations with a reasonable latency.

A Taylor series used in logarithmic approximation methods is defined as a rep-

resentation of a function of an infinite sum of terms that are calculated from the

values of the function’s derivatives at a single point. A Taylor series of function f(x)

mathematically can be represented as

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + (3.42)

=
∞
∑

n=0

fn(a)

n!
(x− a)n (3.43)

where a denotes the real/complex number, n! denotes the factorial of n and fn(a)

denotes the nth derivative of f evaluated at the point a.

For linear interpolation the Taylor coefficients correspond to a tangent line

Chapter 3. Logarithmic Conversion Literature Review 62

through the tabulated point. A truncated Taylor series can achieve a significant

improvement in accuracy, requiring only one or more LUTs to store the approxi-

mation coefficients and, in most cases, a multiplier. A truncated Taylor series for

approximating functions required by logarithmic number system (LNS) with more

accuracy than linear interpolation while using only a single multiplication was pro-

posed by Arnold [91] in 2001. Arnold’s method [91] uses two ROMs to give accuracy

of quadratic interpolation, whilst the other method uses one ROM to give four to

six bits better accuracy than linear interpolation. In [91] Arnold starts with explain-

ing few existing interpolation methods with their limitations and overcoming those

limitations he proposes a novel single multiplier quadratic secant multiplier. Some

of the interpolation described are

• Linear Tangent (LT) Interpolation

f(−n△− δ) ≈ f(−n△)− δ.D(−n△) (3.44)

This method is also known as a Taylor interpolation. Like most linear interpola-

tion techniques [92,93] it requires one multiplication in hardware. Equation 3.44 in

hardware is represented as shown in figure 3.22, where ROM1 represents f(−n△)

and ROM2 this D(−n△).

Figure 3.22: Multiplier-based Linear Interpolator [91]

• Multiplierless LT Interpolation

Chapter 3. Logarithmic Conversion Literature Review 63

By implementing the interpolation with logarithmic arithmetic instead of fixed-

point arithmetic, the multiplication can be eliminated

f(−n△− δ) ≈ f(−n△)− blogb(δ)+logb(D(−n△)) (3.45)

Equation 3.45 in hardware is represented as shown in figure 3.23, where ROM3

represents logb(D(−n△)) , ROM4 logb(δ) this and ROM5 is used for anti-log.

Figure 3.23: Multiplierless Linear Interpolator [91]

• Quadratic Tangent (QT) Interpolation

Coleman [94] extended the idea of tangent-line linear interpolation to quadratic

interpolation using an error correcting term, E(n).P (δ).

f(−n△− δ) ≈ f(−n△)− δ.D(−n△) + E(n).P (δ) (3.46)

Coleman’s technique is affordable because only the high-order bits of δ are re-

quired to obtain a satisfactory approximation for P(δ), where it requires 4 rom and

2 multipliers.

• Novel single Multiplier QT Interpolation

f(−n△− δ) ≈ f(−n△)− δ.D(−n△) + blogb(δ)+logb(D(−n△)) (3.47)

• Quadratic Secant (QS) Interpolation

Chapter 3. Logarithmic Conversion Literature Review 64

f(−n△− δ) ≈ f(−n△) + δ
f((−n− 1)△)− f(−n△)

△

+2(f(−n△) + f(−n− 1)△)− 2f((−n− 0.5)△).(
δ2

△2
− δ

△) (3.48)

• Novel Single-Multiplier QS Interpolation

Arnold proposes this method by eliminating two multiplications from the above

equation by using logarithmic arithmetic. Hardware realisation is shown in figure

3.24, where ROM6 is −logb(D
′(−n△)) + logb(ln(b)), Rom7 is logb(δ△− δ2) − 1 +

2logb(ln(b)), ROM8 is (f((−n− 1)△)− f(−n△))/△ and ROM9 is used for antilog-

arithm function.

f(−n△− δ) ≈ f(−n△) + δ
f((−n− 1)△)− f(−n△)

△ +

b(−n△−2f(−n△)+logb(lnb)+logb(δ△−δ2)−1) (3.49)

Figure 3.24: Novel Single Multiplier Quadratic Interpolator [91]

3.3.5 Other Methods

This section includes conversion of Lin2Log and Log2Lin using some uncommon/-

complex methods. One of these is the method proposed by Lewis in [95, 96]. Lewis

in [95,96] describes the architecture for performing addition and subtraction of num-

bers in the logarithmic number system using small lookup tables. Lewis [95,96] de-

scribes a new algorithm for linear approximation using different-sized approximation

Chapter 3. Logarithmic Conversion Literature Review 65

intervals in each of a number of segments used. A second technique is also proposed

using non-linear compression for further reduction in table space by storing the dif-

ference between the exact value of the function and a linear approximation. The

method describe in [95, 96] allows implementation of logarithmic arithmetic using

much less ROM than previously required, making high speed logarithmic arithmetic

possible in an area comparable to single-precision floating-point processors.

The method described in [95,96] (see figure 3.25) can be represented mathemati-

cally by assuming a and b to be the two numbers represented in LNS (Linear number

System) and c to be the sum of these two numbers.

c = a+ b (3.50)

Taking log on both sides

logc = log(a+ b) (3.51)

logc = log(a ∗ (1 + b

a
)) (3.52)

logc = log(a) + log(1 +
b

a
) (3.53)

logc = log(a) + log(1 + 2log(b)−log(a)) (3.54)

ec = ea + fa(eb − ea) (3.55)

where

fa(r) = log(1 + 2r) (3.56)

Subtraction between a and b the two input numbers can also take place, assuming

c as the result.

c = a− b (3.57)

Chapter 3. Logarithmic Conversion Literature Review 66

Figure 3.25: Data path for Lewis [96] segmented linear approximation.

ec = ea + fs(eb − ea) (3.58)

where

fs(r) = log(1− 2r) (3.59)

Chapter 3. Logarithmic Conversion Literature Review 67

In linear approximation Taylor’s first order equation is

f ′(x+△x) = f(x) +
δf(x)

δx
∗ △x (3.60)

Hence, after computation we get fa and fs function in this order

f ′(x+△x) = fa(x) + sgn(△x) ∗ exp(log|x|+ x− fa(x)) (3.61)

f ′(x+△x) = fa(x)− sgn(△x) ∗ exp(log|x|+ x− fs(x)) (3.62)

In the second technique proposed in [95, 96], the table compression is used to

reduce the size of each of the lookup tables. Nonlinear compression uses the obser-

vation that a linear approximation provides a close, but inexact, approximation of

the function (see figure 3.26). Since the approximation is close, a table storing the

difference between the linear approximation and exact function can use a few bits

to represent the difference

x = xb + xe (3.63)

f(x) = f(xb) +
δf(xb)

δx
× xe + fδ(x) (3.64)

fδ(x) = f(x)− f(xb)−
δf(xb)

δx
× xe (3.65)

Value stored by δf(xb)
δx

is chosen to optimise the accuracy of the linear approximation

and thus minimise the number of bits of ROM.

Chapter 3. Logarithmic Conversion Literature Review 68

Figure 3.26: Lewis [96] Nonlinear compression.

Huang et al. in 1993, 1994, 1998 and 1999 described and used the algorithm

proposed in [97–102] for logarithmic conversion. Huang et al. starts describing the

algorithm mathematically by assuming input data 1.x can be represented as 20.y

(binary exponent).

1.x0.x1.x2..........x22 = 20.y0.y1..........y22 (3.66)

1.x0.x1.x2..........x22 = 20.y0.y1..........y10

∗ 200000000000y11y12...........y22
(3.67)

(1.x0.x1.x2..........x22) ∗ 2−0.y0.y1..........y10

= 200000000000y11y12...........y22
(3.68)

The left hand side can be written as

Chapter 3. Logarithmic Conversion Literature Review 69

(1.x0.x1.x2..........x12) ∗ 2−0.y0.y1..........y10 +

(00000000000x13x14...........x22) ∗ 2−0.y0.y1..........y10
(3.69)

The first term is stored in ROM or PLA and the second term is simplified as

= (00000000000x13x14...........x22) ∗ 2−0.y0.y1..........y10 (3.70)

Taking log and antilog

= 2log2((00000000000x13x14...........x22) ∗ 2−0.y0.y1..........y10)

= 2log2(00000000000x13x14...........x22) + log2(2−0.y0.y1..........y10)

= 2(log2(0.x13.x14....x22)+(−13)+(−0.y0.y1.....y10))

= 2(log2(0.x13.x14....x22)+(−0.y0.y1.....y10)) + 2−13

(3.71)

The term 2(log2(0.x13.x14....x22+(−0.y0.y1.....y10)) can be transformed further and be rep-

resented by 2−I.F . First term is stored in PLA and second term in ROM as shown

in figure 3.27.

Figure 3.27: Huang et al. [97] Lin2Log architecture.

Stine and Schulte proposed approximation methods in [103–105] in 1997 and

1999 for functions like log2x, 2
x, ln(x), x(1/2) and sin(x). The two most commonly

used configurations are the Symmetric Table addition Method (STAM) and Sym-

Chapter 3. Logarithmic Conversion Literature Review 70

metric Bipartite Table Method (SBTM). Both configurations use Taylor first order

approximation to the desired function avoiding use of a multiplier.

To approximate a function using bipartite tables, the input operand, x, defined

by n bits of resolution, is separated into three parts.

x = x0 + x1 + x2 (3.72)

With the length of each part defined by

n = n0 + n1 + n2. (3.73)

The Function is then approximated by the expression

f(x) ≈ a0(x0, x1) + a1(x0, x2) (3.74)

Here n0+n1 are the most significant bits of x are inputs to a table that provides

the coefficients a0(x0, x1) and the n0 most significant and n2 least significant bits of

x are inputs to a table that contains the coefficients a1(x0, x2). The outputs from

two tables are then summed to produce an approximation to f(x) (see figure 3.28).

The technique can be extended by partitioning x intom+1 parts x0, x1, x2, x3.xm

with lengths of n0, n1, n2, n3nm respectively.

Figure 3.28: Stine and Schulte [103] Bipartite table method.

Chapter 3. Logarithmic Conversion Literature Review 71

Larson [12] in 1994 published a new algorithm for accurately converting a float-

ing point to a logarithmic number and accurately converting the result back to a

floating point. Larson’s algorithm [12] features the capability of performing floating

point arithmetic functions in a single clock cycle with a high degree of accuracy for

addition, subtraction, multiplication, division and square roots.

The algorithm in [12] firstly explains first order linear interpolation, in which

floating point mantissa is converted to a logarithmic number fraction. The upper

look up bits of the mantissa are used as an address into the look up table. In the

look up table, each address is mapped to a corresponding SEED (original logarithmic

number) value, which is the exact value of a logarithmic fraction for the high bits

value of mantissa. Additionally, the address maps to a SLOPE value, which is

the difference between the current SEED and previous value of SEED. Secondly an

interpolator computes the logarithmic number value corresponding to the low order

bits of the mantissa using a multiplier. The multiplier multiplies the low order

bits by the SLOPE in order to interpolate the lower value of logarithmic function.

Finally the SEED value and interpolated value are combined by using an adder to

form a logarithmic number fraction of a given floating point number as shown in

figure 3.29.

Figure 3.29: LARSON [12] first order interpolation.

Chapter 3. Logarithmic Conversion Literature Review 72

In the second half of [12], Larson describes a second order interpolation method

in order to improve the precision of the conversion. The second order interpolation

method will reduce the look up table size to one quarter of the size needed for a first

order interpolation look up table implementation. The floating point input number

mantissa is divided into four parts: first order look up bits, 16 − 22 bits, second

order look up bits, 9−15 bits, first order interpolation bits, 0−15 bits, second order

interpolation bits, 0−8 bits. The first order look up bits are used as an address into

a first order look up table. The first order interpolation bits are multiplied by the

slope that is interpolated linearly to compute the corresponding logarithmic number

value. The second order look up bits are used as an address into a second order

look up table. The output from the second order look up table is a SEED. The

SEED is added to an interpolated value derived from the second order interpolation

bits to better interpolate the true logarithmic function and achieve greater accuracy.

Logarithmic number values from all above steps are added to determine the resulting

logarithmic number fraction value as shown in figure 3.30.

Chapter 3. Logarithmic Conversion Literature Review 73

Figure 3.30: LARSON [12] second order interpolation.

Chapter 3. Logarithmic Conversion Literature Review 74

3.4 Summary

This chapter has provided a number of existing algorithms mentioned in patents,

papers and electronic letters about Lin2Log and Log2Lin conversion methods pro-

posed from the beginning to the recent approximations. The MATLAB simulation

graphs provided in this chapter are used to understand different algorithms with the

difference in their architecture used and accuracy achieved. In this chapter differ-

ent algorithm approximation methods denote a trade between achievable accuracy,

overall hardware costs and the speed of operations. However with time there has

been a decrease in semiconductor device size and an increase in processing speed as

stated by Moore’s law in 1965 [106].

While performing a literature review on different algorithms, it was found that

most of the logarithmic approximation architectures were not given in full detail,

some of the papers/patents were just proposing algorithms without implementing

them onto hardware. In some papers/patents the algorithms proposed were not

simulated or their simulated information was not provided, which could help to study

them in depth. The level of accuracy in few methods is also missing from some of

the papers and especially patents. With the simulated MATLAB graphs provided in

this chapter their accuracy achieved and hardware resources requirements are very

much clearer.

In the past piecewise linear approximation could achieve higher level of accuracy

but the problem was with the use of more intensive hardware, because of which non-

linear piecewise approximations and solutions like Larson’s algorithm [12] came into

practical adaption as they reduced the hardware cost. However, today with FPGA

devices (such as Xilinx Spartan and Virtex family) a large amount of memory is

provided. Avoiding multiplication by approximation using the Taylor first order

approximation is not needed any more as a large number of multipliers are provided

on the FPGA itself.

In this chapter other algorithms mentioned for higher accuracy either require a

vast amount of memory or complex architectures to perform logarithmic approxi-

mation, leading to intense usage of available hardware resource on an FPGA board.

The aim of this research was to provide a simple (i.e. not complex) logarithmic

Chapter 3. Logarithmic Conversion Literature Review 75

converter without using too many hardware resources. The logarithmic converter is

also required to perform complex arithmetic calculations in the logarithmic domain

with high accuracy and due to these reasons, Larson’s algorithm [12] was chosen

for this research. The Larson algorithm [12] is not dependent on any further ap-

proximation methods such as the Taylor series, CORDIC etc., making it simpler to

be implemented on an FPGA device. In [12] Larson does not describe the accu-

racy achieved by it when performing the second order interpolation. Furthermore,

there is no information about the size of coefficient bits stored in the LUT. The

information about the hardware implementation is missing from the Patent. The

Larson algorithm [12] which is rarely referenced, leaves a lot of information to be

discovered. The Larson algorithm [12] can be further improved and implemented in

hardware for the same or higher accuracy up to 32 bits with hardware optimisation.

This algorithm is further discussed in detail in Chapter 4.

Chapter 4

Improved Logarithmic Converter

4.1 Introduction

This chapter presents a novel PWL approximation-based Linear to Log (Lin2Log)

converter [10]. The novel algorithm [10] is designed to perform the conversion of the

decimal part of fixed/floating point input numbers to 23 bits of logarithmic fractional

numbers. This chapter compares the performance of the proposed architecture with

existing Lin2Log architectures based on traditional piecewise linear (PWL) [59, 61,

69, 70], piecewise polynomial (PWP) [72, 73, 91] and non-uniform piecewise [75, 95]

approximations that have been presented in recent papers [107]. The proposed novel

algorithm [10] is also found to have some similarities with algorithm mentioned

in [108] describing a 2-step technique based on normalised difference functions.

This chapter assesses the performance of Larson algorithm [12] when used to

convert normalized binary numbers with up to 23 fractional bits of accuracy. In

Section 4.2 of this chapter the origins and characteristics of the Larson algorithm

are described in detail. Section 4.3 proposes a novel algorithm including an analysis

of its theoretical performance using MATLAB. Improvements to the basic Larson

architecture are introduced. Section 4.4 details how the improved architecture has

been implemented on an FPGA and Section 4.5 presents numerical data on the

precision achieved and compares the FPGA resource utilisation with some recently

published solutions.

76

Chapter 4. Improved Logarithmic Converter 77

4.2 Larson Lin2Log conversion algorithm

A binary logarithm of a number x is typically defined using the 4-tuple (Z, S, I, F)

x = 2log2x = (1− Z).(−1)S.2I .20.F (4.1)

where S is the sign bit, I the integer part and F the fractional part (or mantissa)

of the logarithm base 2 respectively and Z is used to represent the special case of

x = 0. The derivation of Z, S and I is reasonably straightforward and examples can

be found in [54]. The conversion of a fixed/floating point number to and from the log

domain requires the approximation of the non-linear terms Log2(1.F) for Lin2Log

and 20.F for Log2Lin. In this chapter we consider that the input fixed/floating point

number is normalised using LOD or LZD techniques (see sections 3.2.1 and 3.2.2).

So, the input fixed/floating point number becomes 1 ≤ 1.F < 2, where F is the

fractional component of a normalised number. Many algorithms for approximating

log21.F have been based on improvements to the simple linear interpolation ap-

proximation first proposed by Mitchell [59] in 1962. Although this approximation

required minimal hardware, Mitchell [59] showed that the conversion error, e, of this

interpolation is in the range 0 ≤ e ≤ 0.08639 which is equivalent to about 4 bits of

binary precision (see section 3.3.1).

Subsequent papers have proposed improvements to the basic Mitchell [59] ar-

chitecture which have been achieved through the use of more complex curve-fitting

techniques and arithmetic components (adders and shifters) without requiring LUT

or complex arithmetic elements i.e. hardware multipliers [61, 91, 109]. However as

technology has improved and the demands for higher accuracy have increased there

has been a greater reliance on LUT techniques based on uniform PWL, PWP ap-

proximations [96, 110, 111]whereby the size of the LUTs, which become prohibitive

for resolutions greater than 16 bits, have been reduced at the cost of additional

arithmetic components adders and multipliers. Most recent algorithmic improve-

ments have been based on novel methods for reducing the size of the LUT and

the complexity and number of arithmetic components used [112]. Not all of these

have appeared in the academic literature and some are rarely referenced or used for

performance comparison [113–117].

Chapter 4. Improved Logarithmic Converter 78

In [75] architectures for achieving double-precision FP (Floating Point) accura-

cies have been reported where non-uniform polynomial techniques have been used

to keep the size of the LUTs within acceptable bounds, albeit at the cost of more

complex address encoding (see section 3.3.3).

Many early Lin2Log solutions focused on implementation using custom logic in

VLSI technology but advances in modern FPGA device densities have increased

interest in the use of logarithmic techniques for signal processing on FPGAs using

the hardwired arithmetic and memory resources available in most modern FPGA

fabrics [118]. For floating point and higher accuracy the substantial amounts of

memory are still required to implement such converters even when using piecewise

techniques and this remains a limiting factor, even on modern FPGAs. A further

limitation when implementing these converters on FPGAs is that the embedded

processing and memory blocks come in discrete sizes. In Xilinx devices the minimum

size of Block-RAM (BRAM) memory is 18 kbits and hardwired multipliers have a

fixed size of 18 × 18 (or 25 × 18) bits. Although on some FPGA devices it is

now possible to partition the BRAM into smaller blocks or use distributed memory

elements in the configurable fabric the algorithms often do not make efficient use of

BRAM elements. Although increasing with every new generation of FPGA devices,

the number of BRAM elements available remains a limited resource and where

possible it is important for conversion algorithms to optimize their use.

The Larson algorithm [12] (discussed in section 3.3.5) combines two PWL ap-

proximations to convert a normalised binary input,1 ≤ x < 2 , with 23 bits of

fractional precision into a binary logarithm 0 ≤ log2(x) < 1 also with 23-bits of

fractional precision. The first PWL stage is used to approximate the Log2 curve

while the second is used to reduce the residual conversion error, produced by the first

PWL approximation, to an acceptable level. The improvement to the basic PWL

approximation proposed by Larson has some similarities with the algorithms first

proposed by Marino [72], Combet [60], Kmetz [69] and Maenner [70] (see section

3.3.2).

Larson [12] proposed an improvement to the Maenner algorithm to produce an

Chapter 4. Improved Logarithmic Converter 79

approximation to the binary logarithm, alog2(1.F), that is

alog2(1.F) ≃ log2(1.F) (4.2)

where

F = Fk−1 × 2−1 + Fk−2 × 2−2 ++ F0 × 2−k =
k

∑

i=1

Fk−i2
−i (4.3)

Larson’s proposal [12] is based on a classic PWL architecture and began with

an evaluation of the accuracy achievable using such an architecture over a range of

resolutions. The table presented by Larson is reproduced here for clarity in table 4.1,

which shows the accuracy achieved using a first order (PWL) as presented in [12].

For instance this table shows that achieve an accuracy of 14 bits is achieved using

a look up address width of 6 bits and 9 interpolating data bits. In [12], the size of

the coefficient bits stored in the LUT used to achieve the listed accuracy is missing.

The information about the required accuracy achieved when using the two stage

Larson algorithm is set for future work. Table 4.1 also shows that the number of

LUT interpolation data bits used for a single PWL approximation is 3 more than

the number of address bits used for the zeroth order LUT. Larson’s scheme aimed

at reducing the size of the interpolation LUT, which has a significant impact on the

total memory required for the conversion algorithm.

Table 4.1: Larson table of maximum errors using PWL Approximation [12]

Look-up bit size Interpolate bit size Maximum error Bits of accuracy

6 9 4.335× 10−5 14.49

7 10 1.092× 10−5 16.48

8 11 2.741× 10−6 18.48

9 12 6.866× 10−7 20.47

10 13 1.718× 10−7 22.47

11 14 4.297× 10−8 24.47

12 15 1.075× 10−8 26.47

13 16 2.687× 10−9 28.47

14 17 6.718× 10−10 30.47

15 18 1.679× 10−10 32.47

16 19 4.199× 10−11 34.47

Chapter 4. Improved Logarithmic Converter 80

The basic architecture proposed by Larson is shown in figure 4.1. The first stage

uses a piecewise linear approximation between a set of exact points.

Figure 4.1: Larson algorithm

F is partitioned into p = 2m segments using the m MSBs (Most Significant Bits)

of F. Each segment contains 2n elements, where m = k− n. For each of the p = 2m

segments a unique pair of PWL coefficients ap and bp are stored in the LUT and

alog2(1.F) is calculated using (4.3)

alog2(1.F) = ap + bp(
k

∑

i=k−m−1

Fk−i2
−i). (4.4)

In Kmetz an LUT is used to approximate the difference (or error), ε , between

alog2(1.F) and log2(1.F), that is

ε = log2(1.F)− alog2(1.F). (4.5)

where the n least significant bits of 1.F are used as the address of the LUT containing

2n values of ε. Hence giving

alog2(1.F) = ap + bp(
k

∑

i=k−m−1

Fk−i2
−i + ε). (4.6)

Chapter 4. Improved Logarithmic Converter 81

by changing this to

alog2(1.F) = ap + bp(
k

∑

i=k−m−1

Fk−i2
−i + Spε

′). (4.7)

where Sp is a unique factor in each segment used to scale a PWL approximation of

the error, ε′, in each of the p segments, that is

ε′ = a′j + b′j(
k

∑

i=k−m−1

Fk−i2
−i) j = 1 : n. (4.8)

Larson [12] noticed the similarity in the shape of the error curves produced

between secant points of the PWL approximation. Figure 4.2a shows an example of

the curves produced when the log conversion curve for a normalised input with 23

fractional bits of precision is approximated using a PWL approximation with m = 7

(128 segments) with each segment containing 216 points. Larson proposed using a

PWL approximation to a single error curve with the zeroth and first order coefficients

(a′ and b′) stored in an additional LUT (LUT2). The resulting error curve is scaled

using a unique multiplicative factor (s) for each pair of PWL coefficients (a and

b) stored in LUT1 for the initial PWL approximation of log2(x). The error curve

used in each segment is a scaled version of the composite error curve derived from

the error curves produced in first stage. A MATLAB simulation of first stage error

curves is shown in figure 4.2a. The first stage error curves (shown in 4.2a) are of

similar shapes but with different scaling factors (due to same uniform step size) and

are shown in figure 4.2b. The mean and normalisation of these error curves is shown

in figure 4.3.

Chapter 4. Improved Logarithmic Converter 82

(a)

(b)

Figure 4.2: Larson first stage errors (128 segments, linear Interpolation) (a) Error

for 128 intervals (b) Superimposed error curves for each segment.

Chapter 4. Improved Logarithmic Converter 83

(a)

(b)

Figure 4.3: Larson first stage errors (128 segments, linear Interpolation) (a) Nor-

malised error curves for each segment (b) mean of normalised curves.

Chapter 4. Improved Logarithmic Converter 84

4.3 Novel Algorithm

The novel algorithm [10] proposed in this chapter comprises two stages where the

first stage is similar to the algorithm proposed in [12]. However, in the second stage

the novel algorithm [10] evaluates the dependency of the error curve by using three

possible composite error curves. These three possible composite error curves in this

chapter have been evaluated using MATLAB. The errors produced when using a

composite error curve based on the scaled Mean, Max or Min of the error curves are

shown in figures 4.4 and 4.5. The version shown in figures 4.4a and 4.4b shows the

smallest overall error and the RMS (Root Mean Square) of the respective residual

error when the composite error is approximated using a scaled linear approximation

in the second stage. Figures 4.4 and 4.5 show clearly how the distribution of the

error changes when the composite curve is derived using different criteria (min, max

and mean). The MATLAB simulations show that when the max error curve is used

as a stored error curve in LUT for second stage approximation, it minimises the

overall RMS error value over the range 1 ≤ log2(1.x) < 2 (shown in figure 4.4b).

Hence the max error curve for second stage approximation is the most appropriate

choice.

Chapter 4. Improved Logarithmic Converter 85

(a)

Figure 4.4: Larson total error i.e. (1st + 2nd) stage errors (a) Superimposed error

curves for each segment errors using maximum error curve (i.e. 1st error curve) of

first stage

(b)

Figure 4.4: Larson total error i.e. (1st + 2nd) stage errors (b) error obtained using

maximum error curve (i.e. 1st error curve) of first stage.

Chapter 4. Improved Logarithmic Converter 86

(c)

Figure 4.5: Larson total error i.e. (1st + 2nd) stage errors (a) error obtained using

mean (average i.e. 64th error curve) error curve of first stage

(d)

Figure 4.5: Larson total error i.e. (1st + 2nd) stage errors (b) error obtained using

minimum (i.e. 128th error curve) error curve of first stage.

Chapter 4. Improved Logarithmic Converter 87

So far the effects of finite precision in the LUT data and the multipliers have

been ignored but need to be considered as they will impact on the effectiveness of

the hardware implementation. The proposed algorithm was tested using a number

of different data partitions for a normalised binary number with 23 bit fractional

bits. These are summarised in table 4.2 and their respective MATLAB simulation

plots are shown in appendix A. In this table a configuration of 7:16::7:9 indicates

that 7 the first MSBs, are used as the address of a LUT1 and 16 LSBs are used

for the calculation of the first order term of the PWL approximation. The next 7

significant bits (bits 15 down to 9) are used as the address for the second LUT and

the remaining 9 bits of the input (bits 8 down to 0) are used for the calculation

of the first order term of the correction. The different data partitions tested are

defined in a similar way.

Table 4.2: Ideal Performance using Scaled Max Error Curve for 23 bit fractional

input (MATLAB simulation results)

Config LUT1 Input LUT2 RMS Accuracy

uration Add Interpolation Bits Add Interpolation (×10−9) Bits

Bits Bits Bits Bits

7:16::7:9 7 16 16 7 9 1.796 29

7:16::8:8 7 16 16 8 8 1.699 29

8:15::6:9 8 15 15 6 9 0.401 31

8:15::7:8 8 15 15 7 8 0.246 31

8:15::8:7 8 15 15 8 7 0.218 32

The effects of finite precision coefficients in LUT1 and LUT2 were considered for

each of the above configurations and the accuracy obtained is summarised in table

4.3. Their MATLAB simulation plots are shown in appendix B. It has been assumed

that the default size of the multiplier inputs is a maximum of 18 bits as is the case

with most Xilinx FPGA devices. The final output of approximation is rounded to 23

bits using a rounding to nearest algorithm. A detailed view of algorithm architecture

with finite precision coefficients in LUT, multipliers and adders size are is shown in

figure 4.6.

Chapter 4. Improved Logarithmic Converter 88

Table 4.3: LUT coefficient bits (MATLAB simulation results)

Config LUT1 LUT2 Total Bits RMS

uration a b s LUT1 Bits a’ b’ LUT2 Bits (×10−7)

7:16::7:9 25 18 18 7808 18 9 3456 11264 1.03

8:15::6:9 25 18 18 15616 18 9 1728 17344 0.8

8:15::7:8 25 18 18 15616 18 9 3456 19072 0.8

8:15::8:7 25 18 18 15616 18 9 6912 22528 0.8

Chapter 4. Improved Logarithmic Converter 89

4.4 Implementation

The architecture circuit shown in figure 4.6 and has been implemented onto a Spar-

tan3 (XC3S200) and a Spartan6 (XC6SLX16) FPGA device using Xilinx ISE V13.2

synthesis tools and a Xilinx CORE generator to compare the effect of differences in

the configurable fabric on the efficiency of the implementation. Synthesis was per-

formed for both optimised area and speed. To improve speed additional pipelining

stages have been added to the arithmetic stages. The post-implementation results

are summarised in table 4.4, where maximum and minimum pipelining are shown

with respective to their frequencies. The FPGA design top level diagram for max-

imum and minimum pipelining of novel algorithm [10] architectures are shown in

figures 4.7 and 4.8.

Table 4.4: Implementation statistics

Spartan3 utilisation BRAM HMUL Logic slices speed,MHz Latency,clks

min pipelining 2 3 104 42.3 2

max pipelining 2 3 232 127.8 8

mult 3 implemented 2 2 286 128 8

using CLB

Spartan6 utilisation BRAM DSP48 Logic slices speed,MHz Latency,clks

min pipelining 2 3 28 71.4 2

max pipelining 2 3 55 160 8

mult 3 implemented 2 2 83 180 8

using CLB

C
h
a
p
te
r
4
.
Im

p
r
o
v
e
d

L
o
g
a
r
ith

m
ic

C
o
n
v
e
r
te
r

9
0

fdc

C

CLR

D Q

fdc

C

CLR

D Q

LUTtwosp6

BRAM2

addra(6:0)

clka

douta(26:0)

fdc

C

CLR

D Q

fdc

C

CLR

D Q

multiplier9bitsp6

multiplier9bit

a(8:0)

b(8:0)

p(17:0)

multipliersp6

multiplier

a(15:0)

b(17:0)

p(33:0)

Madd_sum21

Madd_sum21

DataA(33:0)

DataB(33:0)

Result(33:0)

LUTonesp6

BRAM1

addra(6:0)

clka

douta(60:0)

gnd

XST_GND

G

Madd_sum11

Madd_sum11

DataA(27:0)

DataB(27:0)

Result(27:0)

multipliersignusignsp6

multipliersignunsign

a(17:0)

b(17:0)

p(35:0)

vcc

XST_VCC

P

Madd_sum3_Madd1

Madd_sum3_Madd1

DataA(28:0)

DataB(28:0)

Cin

Result(28:0)

fdc

C

CLR

D Q

main:1

main

LinearInput(22:0)

clk

reset

LogOutput(24:0)

F
igu

re
4.7:

S
p
artan

6
b
ased

m
in
im

u
m

p
ip
elin

in
g
d
esign

of
th
e
n
ovel

algorith
m

C
h
a
p
te
r
4
.
Im

p
r
o
v
e
d

L
o
g
a
r
ith

m
ic

C
o
n
v
e
r
te
r

9
1

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

multipliersp6

multiplier

a(15:0)

b(17:0)

clk

p(33:0)

fdc

C

CLR

D Q

fdc

C

CLR

D Q

Madd_sum11

Madd_sum11

DataA(27:0)

DataB(27:0)

Result(27:0)

fdc

C

CLR

D Q

LUTtwosp6

BRAM2

addra(6:0)

clka

douta(26:0)

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

multiplier9bitsp6

multiplier9bit

a(8:0)

b(8:0)

clk

p(17:0)

fdc

C

CLR

D Q

Madd_sum21

Madd_sum21

DataA(33:0)

DataB(33:0)

Result(33:0)

LUTonesp6

BRAM1

addra(6:0)

clka

douta(60:0)

gnd

XST_GND

G

fdc

C

CLR

D Q

multipliersignusignsp6

multipliersignunsign

a(17:0)

b(17:0)

clk

p(35:0)

vcc

XST_VCC

P

Madd_sum3_Madd1

Madd_sum3_Madd1

DataA(28:0)

DataB(28:0)

Cin

Result(28:0)

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

main:1

main

LinearInput(22:0)

clk

reset

LogOutput(24:0)

F
igu

re
4.8:

S
p
artan

6
b
ased

m
ax

im
u
m

p
ip
elin

in
g
d
esign

of
th
e
n
ovel

algorith
m

Chapter 4. Improved Logarithmic Converter 92

4.5 Results

The results in table 4.3 indicate that the proposed algorithm [10] when built using

a second stage approximation achieves accuracies equal to or better than recent

solutions proposed in [119], [120] and [118] that used piece-wise polynomial or non-

uniform piecewise polynomial techniques for Lin2Log conversion with 23 bits of

fractional precision while using less LUT resources. A comparison with these tech-

niques is shown in table 4.5, where F stands for faithful rounding units and B stands

for BTFP (Better than Floating Point) units as described in [118].

Table 4.5: Comparison of Results with previous work for Single Floating Point

Precision.

Source Device BRAM HMUL/DSP48 slices

18 k 9 k

[120] Altera - - 2 234

Stratix

[119] Virtex II 2 0 3 286

XC2V2000

[118]F Virtex II 2 0 3 286

XC2V6000

[118]B Virtex II 2 0 3 327

XC2V6000

Table 4.4 Spartan 3 2 0 3 232

XC3S200

Table 4.4 Spartan 6 1 1 3 55

XC6SLX16

NFGs cannot be mapped into the FPGA because of the excessive memory size.

This chapter compares logic utilisation of the proposed algorithm with [118] and

[119] using the Xilinx Virtex-II family. Although a different device, the underlying

architecture of the slices is the same. Because of this there is almost no difference in

the number of logic slices required by both the Spartan3 and the Virtex II devices.

Chapter 4. Improved Logarithmic Converter 93

The only significant change is the substantial increase in the operating frequency of

the algorithm on a Virtex II device due to the fabrication technology used (not the

architecture).

In the proposed algorithm, with the same number of hardware multipliers and

BRAM used in [118], a reduction of 18.88% to 29.05% of the required FPGA slices is

achieved using a Spartan3 device. This reduction in FPGA slices is further improved

with the improved slice architecture available on a Spartan6 device.

In Spartan6 BRAM memory blocks can also be more efficiently partitioned than

in Spartan3 devices. Hence in table 4.5 the Spartan6 solution uses only one block of

18k BRAM and one block of 9k BRAM. The NFG (Numerical Function Generator)

presented in [120] can be used for a variety of functions without introducing any

modifications, but due to this flexibility its LUT uses memory sizes up to 5,586,944

bits for the ln(x)function. This is clearly larger than the algorithm proposed in this

chapter and will not map onto an FPGA’s memory resources.

The algorithm presented in [121] shows that the memory used in the 2nd order

polynomial for 24-bit precision (7,324 bits) is lower than has been achieved in the

7:16 configurations in table 4.3. However, the architecture is much more compu-

tationally intensive compared to the algorithm presented here. The computational

overhead also increases the calculation time which is 38.9 ns (approx. 25.7 MHZ)

for 16-bit precision (implemented on Xilinx Virtex-II pro) in [121], whereas the log

converter presented here has a worst case calculation time (i.e. no pipelining im-

plemented) on a Spartan3 of 23.64 ns (approx. 42.3 MHZ) for 23 bits of accuracy.

In [122], the author presented a search algorithm for optimising a conversion func-

tion. For numerical functions over 2000 designs are considered. [122] concluded that

for ln(1 + x) a 3rd order polynomial solution was the most efficient. Although the

results in [122]) are achieved using a smaller memory footprint but at a cost of sub-

stantial increase in the arithmetic components required, which offsets any advantage

gained by this approach [122].

Chapter 4. Improved Logarithmic Converter 94

4.6 Conclusion

This chapter has demonstrated an efficient two stage PWL novel algorithm [10] for

converting a fixed / floating point input normalised binary number (in the region

1 ≤ 1.x < 2) to an equivalent logarithmic number. The novel algorithm [10] in this

chapter unlike in [12] uses all possible combinations for choosing the generic error

curve to be used in its second stage approximation. This chapter shows an implemen-

tation of a two stage PWL algorithm on a legacy and a modern FPGA device. This

chapter also provides quantitative data about the overall reduction in LUT memory

achieved while using the proposed algorithm. The hardware implementation of the

proposed algorithm shows that it requires fewer arithmetic components to achieve

23 bits of fractional precision than other algorithms using uniform and non-uniform

piecewise linear or piecewise poynomial techniques and require less than 20 kbits

of ROM and a maximum of three multipliers. The chapter presents empirical data

for the accuracy of the conversion using a number of different LUT configurations.

Example implementation statistics have been presented using Xilinx Spartan3 and

Spartan6 device families. Synthesis results confirm that the algorithm operates at

frequency of 42.3 MHz on a Spartan3 device and 127.8 MHz on a Spartan6 with a

latency of two clocks. This increase to 71.4 and 160 MHz, respectively, when the

latency is increased to eight clocks. On a Spartan6 XC6SLX16 device, the converter

uses just 55 logic slices, three multipliers and 11.3kbits of Block RAM configured as

ROM.

Chapter 5

Further Improved Logarithmic

Converter

5.1 Introduction

This chapter presents a novel algorithm [11], performing further improvements on the

algorithm [10] previously presented in section 4.3. The proposed novel algorithm [11]

exploits the symmetrical properties of a normalised error curve stored in the second

stage of the algorithm [10]. This chapter shows that by exploiting the symmetrical

properties of the normalised error curve, the size of the second stage LUT is reduced

significantly, allowing it to be implemented more efficiently using the combinatorial

logic (CLB) available in the reconfigurable fabric instead of a second BRAM. The

results of the optimisations of the proposed algorithm [11] on Xilinx Spartan3 and

Spartan6 families are presented in this chapter and are compared with the previously

proposed algorithms.

The chapter begins with describing a novel algorithm [11] in section 5.2, includ-

ing its theoretical performance using MATLAB. Section 5.3 details how the novel

architecture has been implemented on new and legacy FPGA devices. Results in-

cluding numerical data on the precision achieved and comparison with some recent

published solutions are presented in section 5.4.

95

Chapter 5. Further Improved Logarithmic Converter 96

5.2 Novel Algorithm

The algorithm presented in Chapter 4 is implemented with two stages i.e. stage 1

and stage 2 (previously mentioned in section 4.2) as shown in figure 4.6. Stage 1

contains a PWL approximation of the log function. The coefficient LUT contains

values for ap and bp and also the scaling factor Sp as described in equations 4.6 and

4.7. Stage 2 is a PWL approximation of the error curve and contains an additional

multiplier to scale the curve. It should be noted that the error curve generated for

LUT2 is using a second-stage PWL approximation. The scaled version of normalised

error curve is then added to the first-stage PWL approximation of the log function

to reduce the overall conversion error. LUT1 is used to store the zeroth (a) and

first order (b) coefficients of the PWL approximation together with a scaling factor

(s) which is used to multiply the normalised error curve approximated using PWL

coefficients (a’ and b’) and stored in LUT2.

Section 4.2 showed some analysed and verified simple methods for deriving a

curve that produces the minimum (root mean square) error approximation. This

was assessed for a normalised input with 23 bits of fractional precision. Each con-

figuration produced a conversion error of less than 1ULP (Unit of Last Place) where

1ULP = 2−23 = 1.19× 10−7. The results presented in section 4.3 for different LUT

sizes for a 23-bit conversion in the previously proposed algorithm [10] are presented

in table 5.1.

Table 5.1: LUT coefficient bits

Config LUT1(a=25, b=18, s=18) LUT2(a’=18, b’=9) Total RMS

uration Add Data LUT1 Add Data LUT2 Bits (×10−7)

Bits Bits Bits Bits Bits Bits

7:16::7:9 22:16(7) 15:0(16) 7808 15:9(7) 8:0(9) 3456 11264 1.03

8:15::6:9 22:15(8) 14:0(15) 15616 14:9(6) 8:0(9) 1728 17344 0.8

8:15::7:8 22:15(8) 14:0(15) 15616 14:8(7) 7:0(8) 3456 19072 0.8

8:15::8:7 22:15(8) 14:0(15) 15616 14:7(8) 6:0(7) 6912 22528 0.8

Chapter 5. Further Improved Logarithmic Converter 97

It is clear from table 5.1 that this architecture produces a significant reduction in

LUT size and memory requirements when compared to published versions of PWL

and PWP solutions proposed by other researchers (see section 4.5).

Further improvements to this architecture are possible and the structure can be

optimised for implementation on an FPGA. Although the results in table 5.1 indicate

that the 7 : 16 :: 7 : 9 configuration is the most efficient in terms of total memory

used, it does not make the most efficient use of resources when implemented on

an FPGA. In Chapter 4 the LUTs have been implemented using dedicated BRAM

(Block RAM) elements that are embedded in the FPGA fabric. These BRAM cells

have a granularity of 18k bits for Xilinx Spartan3 devices and 9k bits for more

modern Spartan6 devices. The optimal implementation above uses just 43% of

a BRAM’s available capacity to implement LUT1 and less than 19% for LUT2.

Although significant numbers of BRAM cells exist on modern FPGA devices they

still represent a limited resource. The solution proposed here is to exploit, where

possible, the Distributed RAM elements available within the Configurable Logic

Block (CLB) of the FPGA fabric. The use of distributed RAM in the programmable

fabric of the FPGA devices is more efficient in modern devices due to the change

in the underlying slice architecture and is achieved using Xilinx CORE generator.

In Spartan3 and Virtex2 devices the distributed RAM elements have dimensions of

16 × 1 bits. In more modern devices (such as the Spartan 6 and Virtex 6) the size

of distributed RAM elements has increased to 64× 1 bits. Hence it is now possible

to embed four times as much memory in a programmable slice. Modern devices

also have a substantially increased slice capacity. This is clearly a more efficient

use of the available programmable resources and benefits our proposed approach

substantially. These memory blocks have a much finer granularity and are embedded

in the configurable logic fabric. From table 5.1 it is observed that using an 8 : 15

partition for LUT1 would increase the utilisation of a BRAM to 85% while reducing

the size of LUT2 to just 1728 bits. This would result in just 9.4% utilization of a

second BRAM for LUT2 on a Spartan 3 device. The inefficient utilisation of BRAM

for LUT2 indicates that alternative implementations could be more effective.

Chapter 5. Further Improved Logarithmic Converter 98

5.2.1 Symmetry

It has been observed that when an increasing number of PWL segments are used to

approximate the normalised Lin2Log function, the symmetrical characteristics of the

residual error curves generated for each segment increases. A simple differentiation

of the curve shows how this effect increases as the number of segments increase. To

prove this mathematically differentiation of each error curve is calculated. Figure

5.1 shows a right angled triangle with 3 points A(x2, y2), B(x2, y1) and C(x1, y1).

Figure 5.1: Right-angled triangle on cartesian coordinates.

Slope (m) in this triangle is defined as

m =
δy

δx
(5.1)

where

δy = y2− y1 (5.2)

and

δx = x2− x1, (5.3)

Hence slope from equation (5.1) becomes

m =
y2− y1

x2− x1
. (5.4)

Angle of slope (θ) in figure 5.1 is defined as

tan(θ) = m =
y2− y1

x2− x1
, (5.5)

Chapter 5. Further Improved Logarithmic Converter 99

where θ can be written as

θ = tan−1(
y2− y1

x2− x1
). (5.6)

However in figure 5.1 x1 is greater than x2. As x1 approaches x2, the magnitude

of slope and angle of slope (θ) will increase. This is shown in simulations done in

MATLAB, that is as symmetry increases in error curves, the magnitude of slope

and angle of slope (θ) increases and vice versa. Figures 5.2 to 5.3 show an example

of increase in symmetry where straight line is used as reference for ideal line and

dotted line is approximated between highest points on error curves. Two to sixteen

error curves are shown in these figures, which proves that with more number of error

curves a more symmetrical normalised error curve is produced.

(a)

(b)

Figure 5.2: 1st-stage errors showing magnitude of slope and angle of slope, when

using (a) 1 MSB and 16 LSB (b) 2 MSB and 15 LSB.

Chapter 5. Further Improved Logarithmic Converter 100

(a)

(b)

Figure 5.3: 1st-stage errors showing magnitude of slope and angle of slope, when

using (a) 3 MSB and 14 LSB (b) 4 MSB and 13 LSB.

5.2.2 LUT2 size reduction

A quick glance at the normalised error curve stored in LUT2 and shown in figure

4.3a indicates that it has a significant component of symmetry about its apex. and

is significantly more symmetrical than the Mitchell error curve. This symmetrical

property could be used to reduce the size of LUT2 by a factor of 2. Such techniques

have frequently been used in the past to reduce the size of LUTs for sine and

Chapter 5. Further Improved Logarithmic Converter 101

cosine functions in Direct Digital Synthesis (DDS) by exploiting their (obvious)

symmetrical properties.

However, analysis of the curve in figure 4.3a shows that it is not completely

symmetrical. In the begining an experiment is performed in which a left and right

halves of the normalised error curve (figure 4.3a) are superimposed on other halves.

The error produced by this approximation is shown in figure 5.4. This approximation

is improved further by using the average of the left and right halves of the curves to

generate a symmetrical composite error curve, resulting in the smallest residual error

(figure 5.5) between the normalised error curve and the symmetrical approximation

to it. However, when this simple symmetrical approximation of the normalised error

curve is used the accuracy of the conversion algorithm degrades to less than 23 bits

of fractional precision, shown in table 5.2. The table 5.2 MATLAB simulation plots

are shown in appendix C.

(a)

Figure 5.4: Residual error produced after superimposing (a) left half of the nor-

malised curve on the other half

Chapter 5. Further Improved Logarithmic Converter 102

(b)

Figure 5.4: Residual error produced after superimposing (b) right half of the nor-

malised curve on the other half

Figure 5.5: Residual error produced after approximating the normalised curve using

a symmetrical approximation.

Chapter 5. Further Improved Logarithmic Converter 103

Table 5.2: LUT coefficient bits

Config LUT1(a=25, b=18, s=18) LUT2(a’=18, b’=9) Total RMS

uration Add Data LUT1 Add Data LUT2 Bits (×10−7)

Bits Bits Bits Bits Bits Bits

7:16::7:9 22:16(7) 15:0(16) 7808 15:10(6) 8:0(9) 1728 9536 2.62

8:15::6:9 22:15(8) 14:0(15) 15616 14:10(5) 8:0(9) 864 16480 1.64

8:15::7:8 22:15(8) 14:0(15) 15616 14:9(6) 7:0(8) 1728 17344 1.24

8:15::8:7 22:15(8) 14:0(15) 15616 14:8(7) 6:0(7) 3456 19081 1.03

Further analysis of the residual error curve (figure 5.5) shows that it also has

symmetrical properties and hence an approximation to the residual error can also

be stored in the same LUT as the symmetrical approximation to the normalised

error curve. When combined with the symmetrical error using the circuit shown in

figure 5.6, the remaining error in the normalised error curve (shown in figure 5.7)

is significantly reduced and if this approximation is used then the maximum error

produced by whole conversion algorithm is less than 1ULP (Unit of Last Place) for

a 23-bit fractional input, that is 1.19× 10−7.

Figure 5.6: Improved LUT2 architecture.

Chapter 5. Further Improved Logarithmic Converter 104

Figure 5.7: Residual error in normalised error curve approximation.

Accuracy achieved when normalised error curve symmetrical property is com-

bined with the symmetrical residual error (5.7) is shown in table 5.3 and their

respective MATLAB simulation plots are shown in appendix D. Figure 5.8a shows

overall error when first and reduced second stages are combined and figure 5.8b

shows even distribution of magnitude of overall error on a histogram.

Table 5.3: LUT coefficient bits

Config LUT1(a=25, b=18, s=18) LUT2(a’=18, b’=9) Total RMS

uration Add Data LUT1 Add Data LUT2 Bits (×10−7)

Bits Bits Bits Bits Bits Bits

7:16::7:9 22:16(7) 15:0(16) 7808 15:10(6) 8:0(9) 2368 10176 1.05

8:15::6:9 22:15(8) 14:0(15) 15616 14:10(5) 8:0(9) 1184 16800 0.9

8:15::7:8 22:15(8) 14:0(15) 15616 14:9(6) 7:0(8) 2368 17984 0.9

8:15::8:7 22:15(8) 14:0(15) 15616 14:8(7) 6:0(7) 4736 20354 0.9

Chapter 5. Further Improved Logarithmic Converter 105

(a)

(b)

Figure 5.8: (a) Overall error obtained in approximation. (b) Histogram of approxi-

mated error distribution.

Chapter 5. Further Improved Logarithmic Converter 106

5.3 Implementation

The algorithm [11] with reduced memory has been implemented using the Xilinx

ISE Design suite 13.2 on Xilinx XC3S200 Spartan3 and XC6SLX16 Spartan6 FPGA

devices. The architecture design for the proposed algorithm [11] gives the choice

between minimum hardware usage and maximum operating frequency. In the mini-

mum pipelining architecture of the proposed algorithm [11], the multipliers are made

with zero latency stage limiting the complete circuit with lower operating frequency

but with minimum hardware usage to perform the conversion. To increase the op-

erating frequency of complete circuit, a maximum pipelining architecture is shown

where the multiplier with three stages (i.e. the optimum stages for pipelining) are

used. The post-implementation results of both the architectures are shown in table

5.4. The FPGA design top level diagram for maximum and minimum pipelining of

the proposed algorithm [11] architectures are shown in figures 5.9 and 5.10.

Table 5.4: Device Utilisation Statistics (LUT2 with additional adder and xor gates)

Spartan3 utilisation BRAM HMUL CLB slices speed,MHz Latency,clks

min pipelining 1 3 187 33.42 2

max pipelining 1 3 317 93.34 8

Spartan6 utilisation BRAM DSP48 CLB slices speed,MHz Latency,clks

min pipelining 1 3 49 46.14 2

max pipelining 1 3 73 110.5 8

C
h
a
p
te
r
5
.
F
u
r
th

e
r
Im

p
r
o
v
e
d

L
o
g
a
r
ith

m
ic

C
o
n
v
e
r
te
r

1
0
7

Mxor_threex<8>1

Mxor_threex<8>1

Data(1:0) Result

Mxor_threex<7>1

Mxor_threex<7>1

Data(1:0) Result

Mxor_threex<6>1

Mxor_threex<6>1

Data(1:0) Result

Mxor_threex<5>1

Mxor_threex<5>1

Data(1:0) Result

Mxor_threex<4>1

Mxor_threex<4>1

Data(1:0) Result

Mxor_threex<3>1

Mxor_threex<3>1

Data(1:0) Result

Mxor_threex<2>1

Mxor_threex<2>1

Data(1:0) Result

Mxor_threex<1>1

Mxor_threex<1>1

Data(1:0) Result

Mxor_threex<0>1

Mxor_threex<0>1

Data(1:0) Result

fdc

C

CLR

D Q

Mxor_addr2<0>1

Mxor_addr2<0>1

Data(1:0) Result

Mxor_addr2<5>1

Mxor_addr2<5>1

Data(1:0) Result

Mxor_addr2<4>1

Mxor_addr2<4>1

Data(1:0) Result

Mxor_addr2<3>1

Mxor_addr2<3>1

Data(1:0) Result

Mxor_addr2<2>1

Mxor_addr2<2>1

Data(1:0) Result

Mxor_addr2<1>1

Mxor_addr2<1>1

Data(1:0) Result

Madd_three1

Madd_three1

DataA(8:0)

DataB(8:0)

Result(8:0)

fdc

C

CLR

D Q

LUTtwosp6distributed

BRAM2

a(5:0)

clk

qspo(36:0)

fdc

C

CLR

D Q

multiplier9bitsp6

multiplier9bit

a(8:0)

b(8:0)

p(17:0)

Mxor_meanerrorx<9>1

Mxor_meanerrorx<9>1

Data(1:0) Result

Mxor_meanerrorx<8>1

Mxor_meanerrorx<8>1

Data(1:0) Result

Mxor_meanerrorx<7>1

Mxor_meanerrorx<7>1

Data(1:0) Result

Mxor_meanerrorx<6>1

Mxor_meanerrorx<6>1

Data(1:0) Result

Mxor_meanerrorx<5>1

Mxor_meanerrorx<5>1

Data(1:0) Result

Mxor_meanerrorx<4>1

Mxor_meanerrorx<4>1

Data(1:0) Result

Mxor_meanerrorx<3>1

Mxor_meanerrorx<3>1

Data(1:0) Result

Mxor_meanerrorx<2>1

Mxor_meanerrorx<2>1

Data(1:0) Result

Mxor_meanerrorx<1>1

Mxor_meanerrorx<1>1

Data(1:0) Result

Mxor_meanerrorx<0>1

Mxor_meanerrorx<0>1

Data(1:0) Result

fdc

C

CLR

D Q

Madd_n00921

Madd_n00921

DataA(33:0)

DataB(33:0)

Result(33:0)

gnd

XST_GND

G

Madd_meanerror1

Madd_meanerror1

DataA(9:0)

DataB(9:0)

Result(9:0)

multipliersp6

multiplier

a(15:0)

b(17:0)

p(33:0)

Madd_sum21

Madd_sum21

DataA(33:0)

DataB(33:0)

Result(33:0)

LUTonesp6

BRAM1

addra(6:0)

clka

douta(60:0)

Madd_sum11

Madd_sum11

DataA(27:0)

DataB(27:0)

Result(27:0)

multipliersignusignsp6

multipliersignunsign

a(17:0)

b(17:0)

p(35:0)

vcc

XST_VCC

P

Madd_sum3_Madd1

Madd_sum3_Madd1

DataA(28:0)

DataB(28:0)

Cin

Result(28:0)

fdc

C

CLR

D Q

main:1

main

LinearInput(22:0)

clk

reset

LogOutput(24:0)

F
igu

re
5.9:

S
p
artan

6
b
ased

m
in
im

u
m

p
ip
elin

in
g
d
esign

of
th
e
n
ovel

algorith
m

C
h
a
p
te
r
5
.
F
u
r
th

e
r
Im

p
r
o
v
e
d

L
o
g
a
r
ith

m
ic

C
o
n
v
e
r
te
r

1
0
8

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

Mxor_threex<8>1

Mxor_threex<8>1

Data(1:0) Result

Mxor_threex<7>1

Mxor_threex<7>1

Data(1:0) Result

Mxor_threex<6>1

Mxor_threex<6>1

Data(1:0) Result

Mxor_threex<5>1

Mxor_threex<5>1

Data(1:0) Result

Mxor_threex<4>1

Mxor_threex<4>1

Data(1:0) Result

Mxor_threex<3>1

Mxor_threex<3>1

Data(1:0) Result

Mxor_threex<2>1

Mxor_threex<2>1

Data(1:0) Result

Mxor_threex<1>1

Mxor_threex<1>1

Data(1:0) Result

Mxor_threex<0>1

Mxor_threex<0>1

Data(1:0) Result

fdc

C

CLR

D Q

Mxor_addr2<0>1

Mxor_addr2<0>1

Data(1:0) Result

Mxor_addr2<5>1

Mxor_addr2<5>1

Data(1:0) Result

Mxor_addr2<4>1

Mxor_addr2<4>1

Data(1:0) Result

Mxor_addr2<3>1

Mxor_addr2<3>1

Data(1:0) Result

Mxor_addr2<2>1

Mxor_addr2<2>1

Data(1:0) Result

Mxor_addr2<1>1

Mxor_addr2<1>1

Data(1:0) Result

multipliersp6

multiplier

a(15:0)

b(17:0)

clk

p(33:0)

fdc

C

CLR

D Q

Madd_three1

Madd_three1

DataA(8:0)

DataB(8:0)

Result(8:0)

fdc

C

CLR

D Q

LUttwosp6distributed

BRAM2

a(5:0)

clk

qspo(36:0)

Madd_sum11

Madd_sum11

DataA(27:0)

DataB(27:0)

Result(27:0)

fdc

C

CLR

D Q

multiplier9bitsp6

multiplier9bit

a(8:0)

b(8:0)

clk

p(17:0)

Mxor_meanerrorx<9>1

Mxor_meanerrorx<9>1

Data(1:0) Result

Mxor_meanerrorx<8>1

Mxor_meanerrorx<8>1

Data(1:0) Result

Mxor_meanerrorx<7>1

Mxor_meanerrorx<7>1

Data(1:0) Result

Mxor_meanerrorx<6>1

Mxor_meanerrorx<6>1

Data(1:0) Result

Mxor_meanerrorx<5>1

Mxor_meanerrorx<5>1

Data(1:0) Result

Mxor_meanerrorx<4>1

Mxor_meanerrorx<4>1

Data(1:0) Result

Mxor_meanerrorx<3>1

Mxor_meanerrorx<3>1

Data(1:0) Result

Mxor_meanerrorx<2>1

Mxor_meanerrorx<2>1

Data(1:0) Result

Mxor_meanerrorx<1>1

Mxor_meanerrorx<1>1

Data(1:0) Result

Mxor_meanerrorx<0>1

Mxor_meanerrorx<0>1

Data(1:0) Result

fdc

C

CLR

D Q

Madd_n01251

Madd_n01251

DataA(33:0)

DataB(33:0)

Result(33:0)

gnd

XST_GND

G

Madd_meanerror1

Madd_meanerror1

DataA(9:0)

DataB(9:0)

Result(9:0)

fdc

C

CLR

D Q

Madd_sum21

Madd_sum21

DataA(33:0)

DataB(33:0)

Result(33:0)

LUTonesp6

BRAM1

addra(6:0)

clka

douta(60:0)

fdc

C

CLR

D Q

multipliersignusignsp6

multipliersignunsign

a(17:0)

b(17:0)

clk

p(35:0)

vcc

XST_VCC

P

Madd_sum3_Madd1

Madd_sum3_Madd1

DataA(28:0)

DataB(28:0)

Cin

Result(28:0)

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

fdc

C

CLR

D Q

main:1

main

LinearInput(22:0)

clk

reset

LogOutput(24:0)

F
igu

re
5.10:

S
p
artan

6
b
ased

m
ax

im
u
m

p
ip
elin

in
g
d
esign

of
th
e
n
ovel

algorith
m

Chapter 5. Further Improved Logarithmic Converter 109

From table 5.4 is observed that when LUT2 is implemented using reconfigurable

fabric it needs just 187 slices on a Spartan 3 device and 49 slices on Spartan 6 device,

when no pipelining is used. In case of maximum pipelining 317 slices on a Spartan

3 device and 73 slices on a Spartan 6 device are used. This modest increase in the

number of slices needed in the design is offset by the fact that the architecture now

uses only one BRAM instead of two. The size of the LUT is reduced to just 1184

bits or reduced by 32% of the original LUT2 at the cost of additional adder and

XOR gates at the LUT inputs and outputs (see figure 5.6).

Device utilisation statistics when LUT2 is implemented only on distributed RAM

(using a Xilinx CORE generator see section 5.2) without using any additional

circuitry (adder and xor gates) is shown in table 5.5. The additional logic (adder

and xor gates) shown in table 5.4 reduces the number of CLB slices needed to

implement LUT by a further 4% when compared to just using the CLBs or slices

for the LUT.

Table 5.5: Device Utilisation Statistics (LUT2 without additional adder and xor

gates)

Spartan3 utilisation BRAM HMUL CLB slices speed,MHz Latency,clks

max pipelining 1 3 331 127.7 8

Spartan6 utilisation BRAM DSP48 CLB slices speed,MHz Latency,clks

max pipelining 1 3 76 1589.9 8

Previously published [118] and [119] used Xilinx Virtex-II family to compare logic

utilisation. Although a different device, the underlying architecture of the slices in

both devices is the same. Hence as expected, the table 5.6 shows that there is almost

no difference in the number of logic slices required by both Spartan 3 (see table 5.5)

and Virtex II devices. The only significant change is the substantial increase in the

operating frequency of the algorithm on a Virtex II device due to the fabrication

technology used (not the architecture).

Chapter 5. Further Improved Logarithmic Converter 110

Table 5.6: Device Utilisation Statistics (Reduced LUT2 architecture implemented)

Device BRAM HMUL slices speed,MHz Latency,clks

V2-2000 1 3 351 264.03 8

V2-6000 1 3 351 264.03 8

5.4 Results

In table 5.7 results from table 5.4 are compared with recent work [119] [118] for

conversion with 23 bits of fractional precision (or equivalent to an accuracy of 1.19

×10−7) indicating that similar accuracies are achieved with less BRAM. In table 5.7

F stands for faithful rounding units and B stands for BTFP (Better Than Floating

Point) units as described in [118]. This comparison shows there is a reduction in the

number of BRAM of 50% offset by a modest increase in the number of slices from

the algorithm [10] presented in Chapter 4.

BRAM has a fixed capacity (18 kbits) and, even on modern FPGA devices, are

a limited resource. For example the test device used in this chapter is a Spartan3

XC3S200 and has only 12 BRAMs. In contrast it has 1,920 logic slices available.

Hence the 30% increase in slices (from 232 to 317 on a Spartan3) actually represents

an increase of 85 slices or a 4.5% increase of the total slices available on the device.

This modest increase is offset by a 50% reduction in the number of BRAMs used

in the design (a reduction of 8.3% in the BRAMS required a much more limited

resource). Therefore this represents a credible design choice.

Chapter 5. Further Improved Logarithmic Converter 111

Table 5.7: Utilization Comparison

Source Device BRAM HMUL/DSP48 slices

[119] Virtex II 24 0 163

XC2V2000

[118]F* Virtex II 2 3 286

XC2V6000

[118]B** Virtex II 2 3 327

XC2V6000

Table 4.4 Spartan 3 2 3 232

XC3S200

Table 5.4 Spartan 3 1 3 317

XC3S200

Table 4.4 Spartan 6 2 3 55

XC6SLX16

Table 5.4 Spartan 6 1 3 73

XC6SLX16

F* Faithful rounding units, B** BTFP (Better Than Floating Point)

5.5 Conclusion

This chapter describes a novel binary Linear to Log (Lin2Log) conversion algorithm

[11] that has been optimised for implementation on an FPGA. The novel algorithm

[11] shows improvement to the algorithm [10] proposed in Chapter 4 by a 50%

reduction in the total number of BRAM used. The algorithm [11] is based on a

two-stage approximation and uses fewer FPGA resources i.e. number of slices and

multipliers when compared with other piecewise linear (PWL) and non-uniform

piecewise polynomial (PWP) architectures that have been proposed recently.

This chapter exploits the symmetrical properties of a normalised error curve to

reduce the size of the second-stage LUT by 32%. The MATLAB simulations and

Chapter 5. Further Improved Logarithmic Converter 112

analysis of different configurations of data bits and resolution of coefficient bits stored

in memory are provided in this chapter. The proposed algorithm [11] uses additional

XOR gates allowing it to be implemented more efficiently using the combinatorial

logic available (achieved by using distributed RAM) in the reconfigurable fabric

instead of a second BRAM. The architecture presented in this chapter achieves 23

bits of fractional precision while operating at a maximum frequency of 93 and 110

MHz when implemented on Xilinx Spartan3 and Spartan6 devices respectively and

requires just one 18k bit Block RAM (BRAM) element for the first-stage Look-Up

Table (LUT).

Chapter 6

FPGA based Correlation

Velocimetry System

6.1 Introduction

This chapter provides a description of an application of FPGA and logarithmic

processing using correlation techniques. Correlation is a technique which is used to

show the interdependence or similarity between two or more signals. This technique

is widely used in digital signal processing applications such as image processing for

robotic vision, remote sensing by satellite and climatology applications [123].

Applications such as radar and sonar systems use correlation techniques for find-

ing a specific object in space. A problem faced by these systems was accuracy in

determining the location of an object in space. Reflected signals coming from an

object in space are highly corrupted with noise, creating the problem of object pres-

ence. By using correlation techniques this problem can be solved, where received

signal is correlated with the transmitted signal. In digital communication, applica-

tions like spectral analysis and statistical estimation are performed using correlation

technique [124] to find the original signal buried in noise by comparing it with the

original signal.

A velocimetry system using cross-correlation technique is used to calculate the

speed of moving particles in a pipeline. In previously published [125–129], the

velocimetry used extensive computations and complex architectures. This chapter

113

Chapter 6. FPGA based Correlation Velocimetry System 114

presents a novel architecture using LNS in the velocimetry system to simplify the

computations and architecture required in calculating the speed of moving particles

in a pipeline. The velocimetry application is used in this research as it is a real-time

based application, requiring limited accuracy with a high dynamic range (see section

1.1).

The chapter begins with an overview of correlation techniques. In section 6.2,

the cross-correlation principle using FFT (Fast Fourier Transform) and incremental

correlation algorithms are described. Section 6.3 describes an overview of published

velocimetry systems, describing the application to velocimetry systems with their

architecture and performance achieved. Section 6.4 presents an FPGA-based pro-

totype velocimetry system. The algorithm and a hardware implementation of the

prototype device is presented in sections 6.5 and 6.6. Section 6.7 shows the results

obtained after implementing the system on an FPGA and compares performance

with existing solutions developed at Kent (also known as Kent Method).

6.2 Correlation

In signal processing correlation technique is divided into two types - cross-correlation

and autocorrelation techniques using discrete-time input/ouput signals. In a cross-

correlation two independent discrete-time signals are compared and in autocorre-

lation a discrete-time signal is compared with a delayed version of itself. Auto-

correlation is a special case of cross-correlation in which the discrete-time signal is

correlated with itself to find information missing from the signal such as frequency

and periodic nature of signal.

6.2.1 Cross-correlation

Cross-correlation is performed to find similarity or interdependence between two or

more discrete-time independent signals. Cross-correlation is used for many applica-

tions such as tomography [130–134], pattern distribution and detection [135–138],

velocimetry [139–143], digital image processing [144–149] and stereovision [150–154].

Mathematically the cross-correlation (r) between two discrete-time independent sig-

Chapter 6. FPGA based Correlation Velocimetry System 115

nals is represented as

rx1x2
=

1

N

N−1
∑

n=0

x1(n)x2(n) (6.1)

where x1(n) and x2(n) are two independent periodic signals, each with N period.

Similarly autocorrelation of x1(n) and x2(n) signals can be found out as shown in

6.2 and 6.3.

rx1x1
=

1

N

N−1
∑

n=0

x2
1(n) (6.2)

rx2x2
=

1

N

N−1
∑

n=0

x2
2(n) (6.3)

To keep the cross-correlation in the normalised range (i.e. from −1 to +1), the

cross-correlation between the two signals is divided by autocorrelation of each signal.

Mathematically normalisation of cross-correlation is represented as

ρx1x2
=

rx1x2√
rx1x1

rx2x2

. (6.4)

ρx1x2
=

rx1x2

1
N

√

∑N−1
n=0 x2

1(n)
∑N−1

n=0 x2
2(n)

. (6.5)

where ρx1x2
is the cross-correlation coefficient. The +1 and -1 means complete

correlation of these two signals in phase and antiphase respectively. The value 0

in the correlation coefficient shows no similarity between two signals or they are

completely independent of each other.

6.2.2 Fast cross-correlation

In section 6.2.1 cross-correlation is defined in the time domain. When cross-correlation

is performed in real-time application, due to the constant stream of data in cross-

correlation, computation of its sequence becomes large. To make computations sim-

ple cross-correlation is computed using the FFT (Fast Fourier Transform). Signals

used in computing cross-correlation are multiplied in the frequency domain using the

DFT (Discrete Fourier Transform) and then their product is converted back into the

time domain using the inverse of DFT. Fast cross-correlation mathematically can

be represented as

Chapter 6. FPGA based Correlation Velocimetry System 116

rx1x2
=

1

N
F−1
D [X∗

1 (k)X2(k)] (6.6)

where X1(k) and X2(k) are the DFTs of x1(n) and x2(n) periodic signals, each

with N period. F−1
D represents the inverse of DFT. For a cross-correlation using

FFT, multiplication of one signal with another signal conjugate is required, which

is denoted as ′∗′ in equation 6.6 [155].

6.2.3 Incremental cross-correlation

Another way of speeding up the computing of cross-correlation is by adding new

cross-correlation values to previous values and then subtracting the old cross-correlation

values from it. By using this approach computations are reduced to a single com-

putation instead of computing the complete cross-correlation sequence every time

as described in section 6.2.1. Assuming N number cross-correlation, this approach

gives correct values after N − 1 values of cross-correlation [123].

new value = previous value+ 1
N
(product of the two new data)

− 1
N
(product of the first two data)

(6.7)

6.3 Velocimetry System

One of the important applications of correlation in industrial applications, is to

measure the velocity of flow of particles, strips and conveyor belts. A velocimetry

system provides industries with a more reliable and accurate system for measuring

the speed of moving strips, pneumatic particulates, rotating machinery and many

more. In a coal-fired power station, speed measuring of its pipeline is essential in

order to have a uniform flow of coal particulates, which are responsible for complete

power station efficiency and can contribute to emission reduction [125].

A velocimetry system may use different methods to calculate the speed, one of

which is cross-correlation. In a velocimetry system, different types and combinations

of sensors are used in the cross-correlation method, like electrostatic, ultrasonic and

radiometric [156]. In 2010 [127] shows the use of electrostatic sensors in measuring

Chapter 6. FPGA based Correlation Velocimetry System 117

Figure 6.1: Cable speed test rig.

the speed of pneumatically conveyed particles. The authors compare circular and

rod electrodes for measuring the speed of coal and biomass particles. The authors

claim that rod sensors give better signals or higher cross-correlation coefficients in

a comparison with circular electrodes. However, circular electrodes give signals pro-

duced around the walls of a pipeline, whereas the rod electrodes generate signals

around the local area where they are installed instead of measuring particles every-

where around the pipeline.

A method to measure strip speed using electrostatic signals was proposed in [128].

In this, speed of surface is calculated by knowing the distance between electrodes

and time taken by a signal to pass these electrodes. The tests were conducted on

a prototype system where a cable is rotated with the help of a motor, shown in

figure 6.1. Absolute accuracy and repeatability tests were performed on the speed

measuring system. The test on the system shows a relative error of ±1.5% for the

speed range of 0 to 10 ms−1. For the speed of a system between 3 to 8 ms−1, relative

error is further reduced to ±0.5%.

There are industries where cutting machines are used to cut strips of metal,

cables, leather and cotton. This cutting process is of fixed length, which when

done with negligence or inaccuracy can result in wastage of a high amount of raw

materials. In 2011 [129] presented a non-contact measurement of strip speed using

electrostatic sensors in combination with correlation signal processing techniques.

The author uses electrodes to measure the moving speed of cable strip. The friction

caused by air and strip surface passes a charge to electrodes. Electrodes are set at

Chapter 6. FPGA based Correlation Velocimetry System 118

fixed positions. The first electrode is called upstream and second one is downstream.

The downstream electrode transits the time delayed signal, the same as upstream

with added noise. The author uses a tachometer as a reference for comparison with

the strip speed system designed by him. The comparison shows a relative error and

repeatability error of ±1.8% and 2.5% respectively. The speed range of this strip

speed measuring system is claimed to be 0.8 to 10 ms−1.

With the use of sets of electrostatic sensor arrays and data fusion techniques,

measurement of coal and biomass particles in pipelining has been further improved

[125, 126]. In [126], the author uses circular and arc shaped electrostatic sensors to

measure average and localised speed of coal and biomass particles flowing through

the pipeline. An algorithm of an multiple channel cross-correlation velocimetry

system was presented in [126]. Multiple values by permutation of cross-correlation

coefficient are computed by the velocimetry system. In data fusion techniques,

weighted and simple moving averages are used to produce the results with greater

accuracy than other proposed methods. This paper uses a dsPIC kit based circuit,

which has a sampling frequency of 50 kHz and operates on 2048 samples at each

cross correlation coefficient. However, the author does not mention in detail the

actual hardware circuit implementation parameters such as area, power, etc.

Another important field for a velocimetry system is to calculate a rotational

speed used by rotating machineries such as electric rotating machineries, turbines,

propellers and engines. Mathematical modelling for rotational speed measurement

while using electrostatic sensors is presented in [157]. The authors in [158] use cross-

correlation to find rotational speed in real-time and claim that system performance

is dominantly affected by distance between the electrode and rotating object surface.

In the speed range of 0 to 3000 revolutions per minute, the maximum error generated

by the system is ±2%.

6.4 FPGA based Velocimetry System

The methods described in section 6.3 used microntrollers [129] or dsPIC kits [126]

to find velocity and other parameters of particles in the pipeline. FPGAs in the past

Chapter 6. FPGA based Correlation Velocimetry System 119

have been used for correlation applications. Urena [159] used FPGAs for correlation

detection using ultrasonic sensors, showing an improvement on previous transducer

electronic systems. The method described in [159], improved the accuracy of TOFs

(times of flight) which is a similar approach to radar applications. In this method

the correlation between signal sent and echo signal received is found by using a

peak detector. In [160], for finding phase only correlation, an image captured by a

CMOS camera in FPGAs is processed at a higher/faster speed. The correlation is

performed using Fast Fourier Transform and Inverse Fast Fourier Transform. The

FPGAs have been also used for 2D and 3D correlation tracking applications [161],

real-time stereovision systems [162], real-time correlation on voice signals [163] and

embedded systems for comparing finger prints using cross-correlation [164].

In [165], signal processing of a two-channel electrode system has been imple-

mented on an FPGA, where the system monitors the continuous flow rate of pneu-

matically conveyed particulates by calculating their cross correlation. The au-

thors [165] present a real-time logarithmic based arithmetic circuit which is 1000x

times faster than previously published microcontroller based solution. In [165], the

circuit is implemented on the Xilinx Spartan3 device operating at the frequency of

50 MHz. The architecture is capable of a delay in range of 0 to 20.48 ms with a

resolution of 20.48 µs at the sampling rate of 48.8 kHz. The cross-correlation com-

putation in the past has been speeded up by using the FFT (described in section

6.2.2). However, while using the FFT, the conversion of signals from time domain

to frequency domain (by using DFT) and their product back into the time domain,

makes the hardware circuit highly complex and vast.

For a real-time correlation application, to speed up the computation on the hard-

ware basis, an incremental correlation algorithm is preferred (described in section

6.2.3). Incremental correlation is simpler and easier to implement on hardware.

The computation in incremental correlation algorithm is speeded up by implement-

ing the correlation calculation recursively. The calculation is repeated when next

sampled data values are arriving; their product is added and the last product of old

sampled values are deleted. This calculation after initial set up requires only one

multiplication, one subtraction, one addition and one division.

Chapter 6. FPGA based Correlation Velocimetry System 120

This chapter presents a novel architecture for an FPGA-based real-time correla-

tion application using an incremental correlation algorithm first presented in [165].

The novel architecture presented in this chapter uses the 2 and 4-electrode system

first published in [128,129] and [126] at a higher/faster operating frequency rate.

6.5 Velocimetry System Algorithm

In a pipeline, the velocity of particles flowing through it can be measured by using

sensors embedded into its walls. With the relative motion in particles, air and pipe

wall there is a production of electrostatic charge. This electrostatic charge, measured

with electrodes, is preamplified before performing any computations. In [128] and

[129], two electrodes with dedicated electric circuits are positioned downstream and

upstream (see figure 6.2). The length between two electrodes is fixed and the particle

velocity is derived by using

V =
L

T
(6.8)

where V is the velocity, L is the centre-to-centre spacing between the two electrodes

and T is the time taken by particles to flow from one electrode upstream to the

other in the downstream. The time taken by particles can be found by plotting the

correlation function of two signals and the highest peak on the plot will denote to

the sampled value or time taken by particles to flow from upstream to downstream.

The authors in [128] describe the problems faced in the correlation based ve-

locimetry system such as failing to identify any change in velocity with high accuracy

and spurious readings because of irregularity in the cross-section of a pipeline. The

author in paper [126] solved this problem by using a set of sensor arrays and data

fusion techniques, where the maximum of information is acquired from particulate

flow with a high accuracy.

A cross-correlation function using upstream and downstream channels is defined

as

Csusd =
1

N

N−1
∑

n=0

su(n−m)sd(n) (6.9)

Chapter 6. FPGA based Correlation Velocimetry System 121

Figure 6.2: 2 channel velocimetry system.

where Csusd is the cross-correlation between two signals su(n) (upstream signal) and

sd(n) (downstream signal), m is the sampled delay between upstream and down-

stream and N is the number of samples. The cross-correlation performed in 6.9,

when implemented in hardware creates a problem of bottleneck [165]. The bot-

tleneck problem was earlier resolved by doing correlation in a number of sub-sets.

The number of sub-sets limits the correlation fluctuation and overall accuracy in

the flow rate. The efficient way to address this problem is by using incremental

correlation algorithm as every new result is produced at every new sample. The

property of incremental calculations of producing new results at every new sample

helps the circuit to be a real-time application. Hence equation 6.9 is converted into

an incremental correlation algorithm, shown in equation 6.10.

Csusd,m,t = Csusd,m,t−1 +
1
N
(sd0+mT × su0)

− 1
N
(sdCL+mT × suCL)

(6.10)

where T is the sampling period, mT is total delayed time for the sample and CL is

the correlation length or number of samples. Csusd,m,t at time nt is calculated from

the previous value Csusd,m,t−1 (value of correlation at previous sample) by adding the

new value of correlation and subtracting the oldest value from it. For normalising the

Chapter 6. FPGA based Correlation Velocimetry System 122

cross-correlation, autocorreation of upstream and downstream signals is computed

in an incremental manner as shown in equations 6.11 and 6.12.

∑

su2
t =

∑

su2
t−T + 1

N
(su2

0)− 1
N
(su2

512) (6.11)

∑

sd2m,t =
∑

sd2m,t−T + 1
N
(sd20+m,t)− 1

N
(sd2512+m,t) (6.12)

To further simplify normalisation, Csusd, su
2 and sd2 are converted in the log

domain from linear domain. The multiplication and division in equation 6.13 are

reduced to addition and subtraction, shown in equation 6.14. Hence, it becomes

simple to implement these computations on hardware. Such computation also uses

fewer hardware resources.

ρsusd =
Csusd√
su2×sd2

(6.13)

log2(ρsusd) = log2(Csusd)− 1
2
(log2(su

2) + log2(sd
2)) (6.14)

6.6 Hardware Implementation

The incremental cross-correlation algorithm described in section 6.5 is implemented

in hardware by using a 4-channel velocimetry system. A schematic diagram of a

4-channel velocimetry system is shown in figure 6.3, where X1, X2, X3 and X4

represent the equally spaced (at a fixed length of L) arrays of sensors embedded in a

pipeline wall. These sensors in the pipeline wall get electrostatically charged when

the particulates in the pipeline flow through them. Cross-correlation computations

are performed on six values (by permutation) combinations of the sensors and are

represented in figure 6.3 as rx1x2, rx1x3, rx1x4, rx2x3, rx2x4 and rx3x4. The peak values

are detected in the cross-correlation computations performed above, denoting the

time (sample value) taken by particulates to flow from one sensor to the other.

In figure 6.3, the time (sample value) for each of the combination of sensors are

represented as T12, T13, T14, T23, T24 and T34. The data fusion block in figure 6.3

Chapter 6. FPGA based Correlation Velocimetry System 123

Figure 6.3: 4 channel velocimetry system.

Chapter 6. FPGA based Correlation Velocimetry System 124

is used to give a robust and reliable solution for calculating the average time of

particulates flowing from one sensor to the another. The data fusion block uses

simple algorithms such as simple and weight moving average to calculate the time

average of the multiple measurement results [126]. Finally, the average velocity of

flowing particulates is calculated by performing a division operation between the

fixed length (L) of equally spaced sensors and calculated average time (Tavg).

A prototype system based on the Xilinx Spartan 6 family is shown in figure

6.4. The prototype system shows an overview of a 4-channel velocimetry system

architecture on an FPGA. This prototype system converts analogue signals to digital

by using an AD7476 [166] 12 bits A/D converter. Digital signals are stored in the

FIFO (first in first out) registers of respective sizes. Initially working of the FIFO

registers in respect to incremental correlation is tested by using DAC121S101 [167]

12 bits D/A converter (see figure 6.4). After performing incremental correlation the

output is converted to logarithmic number, which is used for normalisation.

Figure 6.4: Architecture for an FPGA-based 4-channel cross-correlation prototype

system.

A generic example of 4 to 8 word depth, upstream and downstream FIFO working

is shown in figure 6.5. In this example, the new and old values of the upstream

Chapter 6. FPGA based Correlation Velocimetry System 125

and downstream signals are operated according to their incremental operations (see

equations 6.11 and 6.12). The FIFO on the right hand-side in figure 6.5 stores a

previous value of cross-correlation. The signals Csusd, su
2 and sd2 for normalisation

are obtained by adding values stored in the FIFO register to their respective new

values and then subtracted from their old values of cross-correlation.

Figure 6.5: Incremental calculations arithmetic unit.

A logarithmic architecture is used for calculating the correlation coefficients as

it simplifies the operations of multiplication, division and square root to addition,

subtraction and multiplication respectively in the logarithmic domain (see equations

6.13 and 6.14). Figure 6.6 shows (i) the conversion of the signals su2, sd2 and Csusd

into logarithmic domain and (ii) their normalisation. In Lin2Log conversion, firstly

numbers are normalised using leading one detector, where it distinguishes between

integer and fractional part of a binary number. The binary number integer part is

mapped to an equivalent log value, using integer ROM. A direct ROM conversion is

used for the integer part because of having just 36 combinations of output which are

6 bit in resolution. For a binary fractional part, a piecewise linear approximation is

used instead of the direct ROM approach to avoid high usage of hardware resources.

In the fractional part 16 MSBs are selected and rest of the bits are discarded (out

of 36-bit binary value). The selected 16 MSBs are further divided into 8 MSBs and

8 LSBs.

Chapter 6. FPGA based Correlation Velocimetry System 126

Figure 6.6: Lin2Log and normalisation circuit.

Chapter 6. FPGA based Correlation Velocimetry System 127

The 8 MSBs work as an address bit for LUT in piecewise linear approximation,

where LUT is storing zeroth and first order coefficient values. The remaining 8 LSBs

are multiplied with a first order coefficient value (16 bits in resolution). Multipli-

cation results are added to the zeroth order coefficient value, producing a 16-bit

approximated value for a binary fractional part. Integer and fractional parts of the

logarithmic number are joined by concatenation. Log2su
2, Log2sd

2 and Log2Csusd

obtained by PWL approximation are added, subtracted and multiplied with 1
2
to

calculate the correlation coefficient (Log2ρsusd).

6.7 Results

The cross-correlation was performed on the six combinations of the 4-channel ve-

locimetry system. In the cross-correlation, the time (sample value) was required

for finding the velocity of flowing particulates in the pipeline. To calculate the

time taken by particulates to flow from one sensor to another, the cross-correlation

coefficients of each combination of sensors were plotted. The highest peak in a

cross-correlation plot denotes the time (sample) taken by particulates to flow from

one sensor (upstream channel) to the other (downstream channel). To verify the

cross-correlation operations of each of the six possible combination of sensors, the

MATLAB simulations were performed. For testing purposes in MATLAB simula-

tions it is assumed that particulates take 100 samples (time value) to cross from

one sensor to another. Figures 6.7, 6.8 and 6.9 show the highest peak (time/sam-

ple value) achieved by cross-correlation plots of each of the possible combinations.

Once the time (sample) value for each combination was known the next step was

to calculate the average time using the simple and weighted moving average. In a

simple moving average, all combinations time values are added and divided by the

total combination number. The mathematically simple moving average (S.M.A) is

represented as

S.M.A = 1
n

∑n
i=1 Ti (6.15)

where n represents the total number of combinations of sensors and Ti represents the

time/sample value of each combination. Figure 6.10a shows the accuracy achieved

Chapter 6. FPGA based Correlation Velocimetry System 128

in a logarithmic approximation based cross-correlation of simple moving average.

Another approach to calculate average time is by performing weighted moving

average. In weighted moving average the calculated time for each sensor combination

is multiplied by its weight factor and added with other time values. A weighted

moving average mathematically can be represented as

W.M.A =
∑n

i=1
(n+1−i)Ti∑n

i=1
(n+1−i)

(6.16)

where n represents total number of combinations of sensors and Ti represents the

time/sample value of each combination. Figure 6.10b shows the accuracy achieved

in logarithmic approximation based cross-correlation of weighted moving average.

The advantage of weighted moving average over simple moving average is that it has

shorter response time as more recent data has more weighing factor in the averaging

process because of which such averaging process are preferred in the time varying

process.

6.7.1 Log2Lin Domain

The circuit for cross-correlation can be made simpler and faster by avoiding the

computation required for antilogarithm. As per the real-time application, detecting

time (sample) without performing antilogarithm on logarithmic cross correlation co-

efficient value is straightforward. Figures 6.7, 6.8 and 6.9 show the cross-correlation

coefficient obtained after performing logarithmic and anti-logarithmic conversions.

Figure 6.11 shows the cross-correlation coefficient obtained only after performing

logarithmic conversion. The cross-correlation shown in figure 6.11 is of first combi-

nation of permutation previously shown in figure 6.7a. Results in figure 6.11 show

that time (sample) on the x-axis remains unchanged irrespective of the correlation

coefficient value in the y-axis. This observation from plot proves that output on this

circuit after logarithmic conversion without performing anti-logarithmic conversion

can be used for real-time application. The cross-correlation coefficient plots without

using anti-logarithmic conversion for all combinations (by permutation) are shown

in appendix E.

The error produced by using 16 bits of fractional bit on a comparison with ideal

Chapter 6. FPGA based Correlation Velocimetry System 129

(a)

(b)

Figure 6.7: Log Approximation based Cross-correlation of (a)First Combination (b)

Second Combination.

Chapter 6. FPGA based Correlation Velocimetry System 130

(a)

(b)

Figure 6.8: Log Approximation based Cross-correlation of (a)Third Combination

(b) Fourth Combination.

Chapter 6. FPGA based Correlation Velocimetry System 131

(a)

(b)

Figure 6.9: Log Approximation based Cross-correlation of (a)Fifth Combination (b)

Sixth Combination.

Chapter 6. FPGA based Correlation Velocimetry System 132

(a)

(b)

Figure 6.10: Log Approximation based (a)Simple moving average (b)Weighted mov-

ing average of six combinations.

Chapter 6. FPGA based Correlation Velocimetry System 133

cases (MATLAB simulations) has been ignored as it does not affect the computation

of the velocity of pneumatically conveyed particles.

Figure 6.11: Logarithmic cross correlation coefficient value of first combination.

6.7.2 FPGA Utilisation

In the prototype device, the sampling rate is set to be 195.31 kHz and the sam-

ple resolution is 12 bits. The circuit works on 512 correlation samples resulting

in 512 cross-correlations per sample. Architecture described in section 6.6 is first

simulated in MATLAB and then written and compiled in VHDL using Xilinx ISE

Design Suite 14.6. A top level diagram of 4-channel velocimetry system is shown

in figure 6.12. The cross-correlation and normalisation blocks used in 4-channeled

velocimetry system are shown in figure 6.13 and 6.14 respectively and their VHDL

codes are presented in appendix F.

Due to limited hardware resources on an FPGA Spartan6 board, the prototype

system is limited to 512 into 1024 cross-correlations producing results of 512 samples.

The prototype device is working at an operating frequency of 100 MHz (oscillator

frequency available on a Spartan6 board). The prototype uses 195.31 kHz as the

sampling frequency, which is obtained by dividing the operating frequency by the

Chapter 6. FPGA based Correlation Velocimetry System 134

number of required samples i.e.

100 MHz
512

= 195.31 kHz (6.17)

signals

sig

A(11:0)

B(11:0)

x(11:0)

y(11:0)

clk

sample

Adsd(11:0)

Adsu(11:0)

Ausd(11:0)

Ausu(11:0)

Bdsd(11:0)

Bdsu(11:0)

xusd(11:0)

xusu(11:0)

ydsd(11:0)

ydsu(11:0)

yusd(11:0)

yusu(11:0)

clkdividersine

run_enable

clk dclk

clkdivider

spiclock

clk dclk

clkdivider_ce

spiclock_ce

clk dclk

ICrr

cc1ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

ICrr

cc2ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

ICrr

cc3ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

ICrr

cc4ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

ICrr

cc5ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

ICrr

cc6ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

adc

adc1

fpgaclk

run

spiclk

spiclk_ce

douta(11:0)

doutb(11:0)

done

pmod(3:0)

adc

adc2

fpgaclk

run

spiclk

spiclk_ce

douta(11:0)

doutb(11:0)

done

pmod(3:0)

operationalblock

cc1Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

operationalblock

cc2Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

operationalblock

cc3Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

operationalblock

cc4Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

operationalblock

cc5Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

operationalblock

cc6Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

simtest:1

simtest

clk

xxnormout1(22:0)

xxnormout2(22:0)

xxnormout3(22:0)

xxnormout4(22:0)

xxnormout5(22:0)

xxnormout6(22:0)

ja(3:0)

jb(3:0)

Figure 6.12: Spartan6 based 4-channel velocimetry system.

Chapter 6. FPGA based Correlation Velocimetry System 135

fd

C

D Q

multiplier

corrmult1

a(11:0)

b(11:0)

clk

p(23:0)

test_blkRam

corraccumulatorfifo

din(35:0)

clk

qout(35:0)

fd

C

D Q

multiplier

sdmult1

a(11:0)

b(11:0)

clk

p(23:0)

test_blkRam

sdaccumulatorfifo

din(35:0)

clk

qout(35:0)

multiplier

sumult1

a(11:0)

b(11:0)

clk

p(23:0)

test_blkRam

suaccumulatorfifo

din(35:0)

clk

qout(35:0)

Madd_addv21

Madd_addv21

DataA(35:0)

DataB(35:0)

Result(35:0)

multiplier

corrmult2

a(11:0)

b(11:0)

clk

p(23:0)

Madd_sdaddv21

Madd_sdaddv21

DataA(35:0)

DataB(35:0)

Result(35:0)

multiplier

sdmult2

a(11:0)

b(11:0)

clk

p(23:0)

Madd_suaddv21

Madd_suaddv21

DataA(35:0)

DataB(35:0)

Result(35:0)

multiplier

sumult2

a(11:0)

b(11:0)

clk

p(23:0)

Msub_addv1

Msub_addv1

DataA(35:0)

DataB(35:0)

Result(35:0)

Msub_sdaddv1

Msub_sdaddv1

DataA(35:0)

DataB(35:0)

Result(35:0)

Msub_suaddv1

Msub_suaddv1

DataA(35:0)

DataB(35:0)

Result(35:0)

fd

C

D Q

fd

C

D Q

fd

C

D Q

ICrr:1

cc1ICorr

dsd(11:0)

dsu(11:0)

usd(11:0)

usu(11:0)

clk

sample

corr(35:0)

sd(35:0)

su(35:0)

Figure 6.13: Cross-correlation block of velocimtery system.

Chapter 6. FPGA based Correlation Velocimetry System 136

lin2logmain

corrlin2log

D(35:0)

CLK

Log2_Fraction(15:0)

Log2_Integer(5:0)

Log2_Zero(0:0)

lin2logmain

sulin2log

D(35:0)

CLK

Log2_Fraction(15:0)

Log2_Integer(5:0)

Log2_Zero(0:0)

lin2logmain

sdlin2log

D(35:0)

CLK

Log2_Fraction(15:0)

Log2_Integer(5:0)

Log2_Zero(0:0)

fd

C

D Q

fd

C

D Q

LOG_ADDER

ADD

Fraction_A(15:0)

Fraction_B(15:0)

I_A(5:0)

I_B(5:0)

ZERO_A(0:0)

ZERO_B(0:0)

clk

Add_Q(22:0)

ZERO_Q(0:0)

LOG_SUBTRACT

subtract

Sfraction_A(15:0)

SI_A(5:0)

SZERO_A(0:0)

SZERO_B(0:0)

S_B(21:0)

clk

F_Q(22:0)

SIGN_Q(0:0)

SZERO_Q(0:0)

operationalblock:1

cc1Normalization

corr(35:0)

SD(35:0)

SU(35:0)

CLK

Norm(22:0)

sign(0:0)

zero(0:0)

Figure 6.14: Normalisation block of velocimtery system.

step size(resolution) = 1
samplingfrequency

= 1
195.31 kHz

= 5.12µs (6.18)

range = step size× numberofsamples = 5.12µs× 512 = 2.6ms (6.19)

The cross-correlation circuit calculates the delay in time or the highest peak

value of flowing particulates (to be used for finding the velocity of particulate see

sections 6.5 and 6.7). The cross-correlation circuit uses 5.12 µs step size / resolution

(see equation 6.18) to calculate the highest peak value of flowing particulates in the

range of 0 to 2.6 ms (see equations 6.19). The prototype system can work with a

higher operating frequency in a comparison to the 100 MHz (used in the prototype

circuit). However, there is a trade off between the range of calculating the peak

value and operating frequency (as shown in equation 6.17, 6.18 and 6.19) due to

which 100 MHz is chosen as the operating frequency of the prototype system.

Chapter 6. FPGA based Correlation Velocimetry System 137

The prototype system has a worst case delay of 13.07 ns. However, further

analysis of system latency has been ignored in this research as the system uses an

incremental correlation algorithm where with every new sample value a new result

is outputted (see section 6.2.3). So, the time taken by the complete circuit (or the

frequency) to output the new result is directly dependent on the sampling frequency

of circuit, which is 195.31 kHz in this case. Hence after the initial set up, the

prototype system outputs the new results with a latency of 5.12 µs.

Initially the experiment was performed on a 2-channel signal without using the

anti-logarithm circuit. Table 6.1 shows hardware resources consumption. In Spar-

tan6, due to the new architecture, the complete slices cannot be used as LUT. Due

to this, when a 4-channel signal is implemented on Spartan6 on the same device as

of 2-channel signal, the slice LUTs and DSP48A1s exceeded the number of hard-

ware resources available on the chip shown in table 6.2. The complete circuit of the

4-channel signal is implemented on a Spartan6 xc6slx45csg324-2 device, where slice

LUTs and DSP48A1s are completely implemented on the chip. Hardware resources

used by 4-channel signal architecture on the Spartan6 are shown in table 6.3. From

table 6.1 to table 6.3 it is also observed that the number of hardware resources such

as slice registers, LUTs and DSP48A1s have almost increased by six times. This

holds true for six combinations of cross-correlation shown in figure 6.3.

Table 6.1: FPGA implementation of 2-channel signal

Device Slice Register Slice LUTs Block RAM DSP48A1s

Used/Available Used/Available Used/Available Used/Available

XC6SLX16 789 (4%) 2233 (24%) 6 (19%) 9 (28 %)

csg324-2 18224 9112 32 32

Chapter 6. FPGA based Correlation Velocimetry System 138

Table 6.2: FPGA implementation of 4-channel signal with exceeded hardware re-

sources in detail

Device Slice Register Slice LUTs Block RAM DSP48A1s

Used/Available Used/Available Used/Available Used/Available

XC6SLX16 4157 (22%) 11879 (130%) 27 (84%) 54 (168 %)

csg324-2 18224 9112 32 32

Table 6.3: FPGA implementation of 4-channel signal

Device Slice Register Slice LUTs Block RAM DSP48A1s

Used/Available Used/Available Used/Available Used/Available

XC6SLX45 4336 (7%) 12082 (44%) 27 (23%) 54 (93 %)

csg324-2 54576 27288 116 58

6.7.3 Piecewise Linear Area Optimisation

The results obtained in section 6.7.1 and 6.7.2 are computed when the fractional

bit of log domain is 16 bits in piecewise linear approximation. Experiments have

been performed on reducing the resolution of fractional bits. The graphs shown in

figures 6.15 and 6.16 show the effect of reducing bits on the first combination in the

velocimetry system. In figures 6.15a and 6.15b the resolution of fractional bits (of log

domain) used for piecewise linear approximation is reduced from 16 bits to 12 bits

and 10 bits respectively. When figure 6.15 is compared with figure 6.7, the accuracy

of cross-correlation coefficient reduces (i.e. the magnitude in y-axis) but the value

(x-axis value) at which the highest peak occurs remains the same. Similar results

are also achieved when the fraction bits (of log domain) are further reduced to 8 and

6 bits in figures 6.16a and 6.16b respectively. Analysis on accuracies reduced when

fraction bit resolution is decreased from 16 bits to 12 bits, 10 bits, 8 bits and 6 bits

respectively has been ignored due to no change in highest peak value in the x-axis of

the cross-correlation coefficient plot. In this research, only the time (sample value)

of the highest peak in the cross-correlation coefficient plot is required to calculate

the velocity of flowing particulates (see section 6.5), so the reduction in fractional

Chapter 6. FPGA based Correlation Velocimetry System 139

bits of log domain (shown above) can be used to optimise the area of the circuit

effectively.

(a)

(b)

Figure 6.15: Approximation of first combination when fraction bits are reduced to

(a)12 bits (b)10 bits.

Chapter 6. FPGA based Correlation Velocimetry System 140

(a)

(b)

Figure 6.16: Approximation of first combination when fraction bits are reduced to

(a)8 bits (b)6 bits.

Chapter 6. FPGA based Correlation Velocimetry System 141

6.8 Conclusion

The chapter presented a novel FPGA-based 4-channel correlation velocimetry sys-

tem and an improved 2-channel correlation velocimetry system. The prototype

velocimetry system is used for real-time speed measurement of pneumatic par-

ticulates flowing through a pipeline. The system is developed using incremental

cross-correlation in the time domain instead of using FFT (Fast Fourier Transform)

techniques in the frequency domain for the calculation of a continuous stream of

data from multiple electrostatic sensors located in a pipeline. The system operates

at a higher sampling frequency than previously published work [125–129] and out-

puts the new result after every new sample it receives. This chapter provides the

results of implementing the circuit on an FPGA device and shows the reduction

of bits in fractional bits (used for a linear to logarithmic converter). To simplify

the computations in cross-correlation the velocimetry system uses LNS. The LNS

in the velocimetry system uses an algorithm of piecewise linear approximation to

approximate the logarithmic values.

The novel FPGA-based 4-channel correlation velocimetry system is implemented

on a Xilinx Spartan6 device. The velocimetry system is working at a sampling

frequency of 195.31 kHz and sample resolution of 12 bits. The circuit calculates a

delay in a range of 0 to 2.6 ms with a resolution / step size of 5.12 µs in cross-

correlation plots. The prototype device uses just 6 BRAM and 9 multipliers on an

XC6SLX16 device for an improved 2-channel velocimetry system. The 4-channel

velocimetry system on an XC6SLX45 device uses 27 BRAM and 54 multipliers for

six combinations of cross-correlation.

Chapter 7

Conclusions and Future Work

7.1 Summary of Research

The thesis has presented two novel algorithms [10,11] for converting a fixed / floating

point number to a binary logarithmic number and an application for finding the

velocity of pneumatic particles flowing through a pipeline. The thesis has shown

the implementation of algorithms and application on new and old families of FPGA

devices and compares them with recently published work.

Chapter 1 introduced, in general terms, the concept of LSP (logarithmic signal

processing) with its architectures. As stated in Chapter 1, the advantage of LNS

(logarithmic number system) is the reduction of multiplication and division opera-

tions to addition and subtraction operations. Due to non-linearity, the operations of

addition and subtraction (in linear domain) are avoided in the logarithmic domain.

All the circuit designs proposed in this thesis have been implemented using FPGA

technology, for the reasons outlined in Chapter 2. FPGA technology is compared

with other existing technology and the arithmetic technology used in implementing

the proposed circuits is explained. The number systems implemented on FPGA

devices are mentioned and compared in this chapter.

A literature review on the popular algorithms for leading one detector and loga-

rithmic converters is presented in Chapter 3. The MATLAB simulation graphs are

used for understanding and comparing their accuracy.

K.E. Larson’s algorithm [12] first mentioned in Chapter 3 (section 3.3.5) is inves-

142

Chapter 7. Conclusions and Future Work 143

tigated and a novel algorithm [10] is introduced in Chapter 4. The proposed novel

algorithm [10] is analysed and simulated using MATLAB software. For hardware

implementation, the novel algorithm is implemented onto newer and old families of

FPGA devices. An analysis of different configurations of data bits, used for address-

ing and interpolation of the PWL (Piece-wise Linear) approximation are shown. A

detailed overview of the resolution of coefficient bits stored in memory to perform

PWL approximation is also provided in this chapter. The numerical data on preci-

sion achieved is compared with recent published papers.

Chapter 5 proposes further improvement to the novel algorithm [10] first pro-

posed in Chapter 4. The improved algorithm [11] reduces the size of memory used

for storing the coefficient values. The size of memory is reduced by exploiting the

properties of symmetry in the error curve. The chapter also explains how the reduc-

tion of memory in hardware is achieved. The proposed algorithm is implemented

on FPGA devices and results are compared with the Chapter 4 results and recently

published work.

A prototype device for calculating the velocity of pneumatic particles flowing

through a pipeline is presented in Chapter 6. The system uses incremental cor-

relation algorithms for producing new results at every new sample. The chapter

provides an overview on the recent work done using Kent’s method for finding the

velocity of biomass and coal particles in a pipeline. The chapter shows no noticeable

effect in finding velocity by reducing the number of bits in the fractional bits of a

Lin2Log converter. The system is tested using constant distance between electrodes,

embedded in a pipe wall and the results are plotted in MATLAB.

7.2 Research Novel Claims

The research presented in this thesis claims

• to develop a two-stage novel Lin2Log converter [10] for converting a fixed /

floating point number into a logarithmic number. The converter achieves a precision

of single floating point number (IEEE 754). The novel method [10] shows empirical

data for the accuracy of the converter using a number of different LUT configura-

Chapter 7. Conclusions and Future Work 144

tions. The novel method [10] also shows the use of less than 20 kbits of ROM and

maximum of three multipliers when implemented on new and old families of FPGA

devices.

• to further improvement on previously proposed algorithm [10]. The new pro-

posed algorithm [11] exploits the property of symmetry in the first-stage approxi-

mated error curve. By using the improved proposed algorithm [11] a 32% reduction

in LUT of second-stage approximation is shown. In the hardware implementation

on new and old families of FPGA devices, the novel algorithm [11] shows a reduction

of BRAM by 50%.

• to propose a novel 4-channel velocimetry system to calculate the velocity of

pneumatic particles flowing through a pipeline. The velocimetry system uses an

incremental correlation algorithm, making it output the new result with every new

sample value. The proposed velocimtery system reduces the complete circuit area by

not performing anti-logarithmic operations on the cross-correlation coefficients plots

and by reducing the resolution of fractional bits in PWL logarithmic approximation.

7.3 Future Research Directions

The novel technique [10] presented in Chapter 4 is suitable for implementation on the

new generation of reconfigurable fabrics that now have hardware multipliers together

and small blocks of distributed memory on the same chip. The technique explained

in this chapter can also be used for a Log2Lin (or 20.F) converter. It can also be

applied to the architecture of continuous real-time applications such as correlation

in instrumentation and communication LTE (Long Term Evolution) decoding of

OFDM (Orthogonal Frequency Division Multiplex). In both these applications,

complex computations are reduced to simple additions and subtractions, which make

computations fast while maintaining sufficient accuracy.

The novel algorithm [11] presented in Chapter 5 can be adapted easily to ap-

plications needing higher accuracies. This method is even more effective on newer

Xilinx devices which have increased distributed memory capacities over earlier gen-

erations. Future work will investigate the use of these methods at higher precision

Chapter 7. Conclusions and Future Work 145

and investigate if they can be applied when high order PWP approximations are

used. The proposed algorithm can also be applied to other functions such as 2x, 1
x
,

√
x, sin(x) and 1√

x
.

For the prototype device presented in Chapter 6, it will be interesting to investi-

gate the area optimisation of circuit implemented on an FPGA by using multiplexers

in the circuit and calculating the latency caused by them. The FPGA prototype de-

vice can be tested with different velocimetry systems using sensors such as circular,

radiometric, optical and combinations of them.

Bibliography

[1] F. Sheikh, S. Mathew, M. Anders, H. Kaul, S. Hsu, A. Agarwal, R. Krish-

namurthy, and S. Borkar, “A 2.05gvertices/s 151mw lighting accelerator for

3D graphics vertex and pixel shading in 32nm CMOS,” Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, pp.

184–186, Feb 2012.

[2] V. Paliouras, “Optimization of LNS operations for embedded signal processing

applications,” Circuits and Systems, 2002. ISCAS 2002. IEEE International

Symposium on, vol. 2, pp. II–744–II–747, 2002.

[3] R. Ismail, R. Hussin, and S. Murad, “Interpolator algorithms for approxi-

mating the lns addition and subtraction: Design and analysis,” Circuits and

Systems (ICCAS), 2012 IEEE International Conference on, pp. 174–179, Oct

2012.

[4] C. Chen and C. H. Yang, “Pipelined computation of LNS addition/subtraction

with very small lookup tables,” Computer Design: VLSI in Computers and

Processors, 1998. ICCD ’98. Proceedings. International Conference on, pp.

292–297, Oct 1998.

[5] S. Melnikoff, S. Quigley, and M. Russell, “Speech recognition on an FPGA

using discrete and continuous hidden Markov models,” Field-Programmable

Logic and Applications: Reconfigurable Computing Is Going Mainstream, ser.

Lecture Notes in Computer Science, vol. 2438, M. Glesner, P. Zipf, and

M. Renovell, Eds., pp. 202–211, 2002.

146

Bibliography 147

[6] H. Li, G. Jullien, V. Dimitrov, M. Ahmadi, and W. Miller, “A 2-digit mul-

tidimensional logarithmic number system filterbank for a digital hearing aid

architecture,” Circuits and Systems, 2002. ISCAS 2002. IEEE International

Symposium on, vol. 2, pp. II–760–II–763, 2002.

[7] P. Lee, “A VLSI Implementation of a Digital Hybrid LNS Neuron,” Integrated

Circuits, 2007. ISIC ’07. International Symposium on, pp. 9–12, Sept 2007.

[8] M. Arnold, “Reduced power consumption for MPEG decoding with LNS,”

Application-Specific Systems, Architectures and Processors, 2002. Proceedings.

The IEEE International Conference on, pp. 65–75, 2002.

[9] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70,

Aug 2008.

[10] M. Chaudhary and P. Lee, “Two-stage logarithmic converter with reduced

memory requirements,” Computers Digital Techniques, IET, vol. 8, no. 1, pp.

23–29, January 2014.

[11] M. Chaudhary and P. Lee, “An improved two-step binary logarithmic con-

verter for fpgas,” Circuits and Systems II: Express Briefs, IEEE Transactions

on, vol. 62, no. 5, pp. 476–480, May 2015.

[12] K. Larson, “Floating point to logarithm converter,” U.S. Patent 5,365,465.

Nov. 15 1994.

[13] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” Pro-

ceedings of the 2006 ACM/SIGDA 14th International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’06, pp. 21–30. New York, NY, USA:

ACM, 2006.

[14] “Tms320c6455 fixed-point digital signal processor,” Texas Instruments, Texas

Instruments, Post Office Box 655303, Dallas, Texas 75265, U.S.A.

[15] D. G. Bailey, Image Processing, pp. 1–19. John Wiley & Sons (Asia) Pte

Ltd, 2011.

Bibliography 148

[16] D. Weeren, “Minimig.” [Online]. Available: http://www.minimig.net/ Last

visited 2014-08-10.

[17] R. H. Klenke, “Experiences using the Xilinx Microblaze softcore processor and

uCLinux in computer engineering capstone senior design projects,” Proceed-

ings of the 2007 IEEE International Conference on Microelectronic Systems

Education, ser. MSE ’07, pp. 123–124. Washington, DC, USA: IEEE Com-

puter Society, 2007.

[18] J. Williams, “Microblaze uCLinux project.” [Online]. Available:

http://osdir.com/ml/linux.uclinux.microblaze/2005-10/msg00101.html Last

visited 2014-08-15.

[19] B. Nelson, “The BYU Linux on FPGA project.” [Online]. Available:

http://splish.ee.byu.edu/projects/LinuxFPGA/ Last visited 2014-08-16.

[20] “Cyclone FPGA Family Data Sheet,” Altera Corporation, 101 Innovation

Drive, San Jose, CA 95134, U.S.A.

[21] “Spartan-3 FPGA family data sheet,” Xilinx, Inc., San Jose, CA, USA.

[22] “Spartan-3 Starter Kit Board User Guide,” Digilent, Inc, 1300 NE. Henley

Court Pullman, WA 99163, U.S.A.

[23] “Spartan-6 FPGA DSP48A1 slice user guide,” Xilinx, Inc., San Jose, CA,

USA.

[24] “Spartan-6 FPGA family data sheet,” Xilinx, Inc., San Jose, CA, USA.

[25] “Nexys3 Board Reference Manual,” Digilent, Inc, 1300 NE. Henley Court

Pullman, WA 99163, U.S.A.

[26] P. Belanovic and M. Leeser, “A library of parameterized floating-point mod-

ules and their use,” Proceedings of the Reconfigurable Computing Is Going

Mainstream, 12th International Conference on Field-Programmable Logic and

Applications, ser. FPL ’02, pp. 657–666. London, UK, UK: Springer-Verlag,

2002.

Bibliography 149

[27] L. Louca, T. Cook, and W. Johnson, “Implementation of IEEE single precision

floating point addition and multiplication on FPGAs,” FPGAs for Custom

Computing Machines, 1996. Proceedings. IEEE Symposium on, pp. 107–116,

Apr 1996.

[28] B. Fagin and C. Renard, “Field programmable gate arrays and floating point

arithmetic,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 2, no. 3, pp. 365–367, Sept 1994.

[29] K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-point Perfor-

mance,” Proceedings of the 2004 ACM/SIGDA 12th International Symposium

on Field Programmable Gate Arrays, ser. FPGA ’04, pp. 171–180. New York,

NY, USA: ACM, 2004.

[30] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating

point arithmetic on FPGA based custom computing machines,” FPGAs for

Custom Computing Machines, 1995. Proceedings. IEEE Symposium on, pp.

155–162, Apr 1995.

[31] K. Hemmert and K. Underwood, “An analysis of the double-precision floating-

point FFT on FPGAs,” Field-Programmable Custom Computing Machines,

2005. FCCM 2005. 13th Annual IEEE Symposium on, pp. 171–180, April

2005.

[32] S. Akhter and S. Chaturvedi, “HDL based implementation of N x00D7;N bit-

serial multiplier,” Signal Processing and Integrated Networks (SPIN), 2014

International Conference on, pp. 470–474, Feb 2014.

[33] K. Y. Chang, D. won Hong, and H.-S. Cho, “Low complexity bit-parallel

multiplier for GF(2m) defined by all-one polynomials using redundant repre-

sentation,” Computers, IEEE Transactions on, vol. 54, no. 12, pp. 1628–1630,

Dec 2005.

[34] M. Arnold, T. Bailey, J. Cowles, and J. Cupal, “Redundant logarithmic num-

ber systems,” Computer Arithmetic, 1989., Proceedings of 9th Symposium on,

pp. 144–151, Sep 1989.

Bibliography 150

[35] M. Arnold, “A pipelined LNS ALU,” VLSI, 2001. Proceedings. IEEE Com-

puter Society Workshop on, pp. 155–161, May 2001.

[36] M. Arnold and S. Collange, “A dual-purpose real/complex logarithmic number

system ALU,” Computer Arithmetic, 2009. ARITH 2009. 19th IEEE Sympo-

sium on, pp. 15–24, June 2009.

[37] T. Stouraitis and C. Chen, “Hybrid signed digit logarithmic number system

processor,” Computers and Digital Techniques, IEE Proceedings E, vol. 140,

no. 4, pp. 205–210, Jul 1993.

[38] D. Lewis, “114 MFLOPS logarithmic number system arithmetic unit for DSP

applications,” Solid-State Circuits, IEEE Journal of, vol. 30, no. 12, pp. 1547–

1553, Dec 1995.

[39] S. Gammino, L. Torrisi, S. Cavallaro, L. Celona, L. Giuffrida, D. Margarone,

D. Mascali, and R. Miracoli, “Recent results of the laser ion source facility

at INFN-LNS and applications to nuclear and applied research,” Review of

Scientific Instruments, vol. 81, no. 2, pp. 02A508–02A508–3, Feb 2010.

[40] L. Cahill and G. Deng, “An overview of logarithm-based image processing

techniques for biomedical applications,” Digital Signal Processing Proceedings,

1997. DSP 97., 1997 13th International Conference on, vol. 1, pp. 93–96, Jul

1997.

[41] H. Li, R. Muscedere, G. Jullien, and V. Dimitrv, “The application of 2-D

logarithms to low-power hearing-aid processors,” Circuits and Systems, 2002.

MWSCAS-2002. The 2002 45th Midwest Symposium on, vol. 3, pp. III–13–

III–16, Aug 2002.

[42] V. Dimitrov, J. Eskritt, L. Imbert, G. Jullien, and W. Miller, “The use of the

multi-dimensional logarithmic number system in DSP applications,” Computer

Arithmetic, 2001. Proceedings. 15th IEEE Symposium on, pp. 247–254, 2001.

Bibliography 151

[43] J. T.J. Sullivan, R.E. Morley and G. Engel, “A VLSI FIR digital signal proces-

sor using logarithmic arithmetic,” IEEE Workshop on VLSI Signal Processing,

vol. VLSI Signal Processing-111, IEEE Press, pp. 276–280, 1988.

[44] P. Lee, “Hybrid-logarithmic arithmetic and applications,” Ph.D. dissertation,

University of Kent, 2011.

[45] M. S. Schmookler and K. Nowka, “Leading zero anticipation and detection-a

comparison of methods,” Computer Arithmetic, 2001. Proceedings. 15th IEEE

Symposium on, pp. 7–12, 2001.

[46] V. Oklobdzija, “An implementation algorithm and design of a novel leading

zero detector circuit,” Signals, Systems and Computers, 1992. 1992 Confer-

ence Record of The Twenty-Sixth Asilomar Conference on, vol. 1, pp. 391–395,

Oct 1992.

[47] V. Oklobdzija, “An algorithmic and novel design of a leading zero detector

circuit: comparison with logic synthesis,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 2, no. 1, pp. 124–128, March 1994.

[48] V. Oklobdzija, H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko,

and T. Sumi, “Comments on ldquo; leading-zero anticipatory logic for high-

speed floating point addition rdquo;,” Solid-State Circuits, IEEE Journal of,

vol. 32, no. 2, pp. 292–292, Feb 1997.

[49] M. Schmookler and D. Mikan, “Two state leading zero/one anticipator (lza),”

U.S. Patent 5,493,520. Feb. 20 1996.

[50] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, and T. Sumi,

“Leading-zero anticipatory logic for high-speed floating point addition,” Solid-

State Circuits, IEEE Journal of, vol. 31, no. 8, pp. 1157–1164, Aug 1996.

[51] J. Bruguera and T. Lang, “Leading-one prediction scheme for latency improve-

ment in single datapath floating-point adders,” Computer Design: VLSI in

Computers and Processors, 1998. ICCD ’98. Proceedings. International Con-

ference on, pp. 298–305, Oct 1998.

Bibliography 152

[52] J. Bruguera and T. Lang, “Leading-one prediction with concurrent position

correction,” Computers, IEEE Transactions on, vol. 48, no. 10, pp. 1083–1097,

Oct 1999.

[53] V. Oklobdzija, “Algorithmic design of a hierarchical and modular leading zero

detector circuit,” Electronics Letters, vol. 29, no. 3, pp. 283–284, Feb 1993.

[54] P. Lee and A. Sartori, “Modular leading one detector for logarithmic encoder,”

Electronics Letters, vol. 34, no. 8, pp. 727–728, Apr 1998.

[55] K. Abed and R. Siferd, “CMOS VLSI implementation of 16-bit logarithm

and anti-logarithm converters,” Circuits and Systems, 2000. Proceedings of

the 43rd IEEE Midwest Symposium on, vol. 2, pp. 776–779, 2000.

[56] K. Abed and R. Siferd, “CMOS VLSI implementation of a low-power loga-

rithmic converter,” Computers, IEEE Transactions on, vol. 52, no. 11, pp.

1421–1433, Nov 2003.

[57] K. Abed and R. Siferd, “VLSI implementation of a low-power antilogarithmic

converter,” Computers, IEEE Transactions on, vol. 52, no. 9, pp. 1221–1228,

Sept 2003.

[58] K. Abed and R. Siferd, “VLSI implementations of low-power leading-one de-

tector circuits,” SoutheastCon, 2006. Proceedings of the IEEE, pp. 279–284,

March 2006.

[59] J. N. Mitchell, “Computer multiplication and division using binary loga-

rithms,” Electronic Computers, IRE Transactions on, vol. EC-11, no. 4, pp.

512–517, Aug 1962.

[60] M. Combet, H. Van Zonneveld, and L. Verbeek, “Computation of the base

two logarithm of binary numbers,” Electronic Computers, IEEE Transactions

on, vol. EC-14, no. 6, pp. 863–867, Dec 1965.

[61] E. L. Hall, D. Lynch, and I. Dwyer, S.J., “Generation of products and quo-

tients using approximate binary logarithms for digital filtering applications,”

Computers, IEEE Transactions on, vol. C-19, no. 2, pp. 97–105, Feb 1970.

Bibliography 153

[62] B. Hoefflinger, “Efficient VLSI digital logarithmic codecs,” Electronics Letters,

vol. 27, no. 13, pp. 1132–1134, June 1991.

[63] B. Hoefflinger, M. Selzer, and F. Warkowski, “Digital logarithmic CMOS mul-

tiplier for very-high-speed signal processing,” Custom Integrated Circuits Con-

ference, 1991., Proceedings of the IEEE 1991, pp. 16.7/1–16.7/5, May 1991.

[64] B. Hofflinger, “Circuit arrangement for digital multiplication of integers,” U.S.

Patent 5,956,264. Sep. 21 1999.

[65] B. Hoefflinger, “Schaltungsanordnung zum digitalen multiplizieren von

integer-zahlen,” dE Patent App. DE19,924,213,107. Sep. 2 1993.

[66] E. Der, “Schaltungsanordnung zum digitalen multiplizieren von integer-

zahlen,” dE Patent App. DE19,904,033,507. Jul. 2 1992.

[67] S. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, “A fast, low-power

logarithm approximation with CMOS VLSI implementation,” Circuits and

Systems, 1999. 42nd Midwest Symposium on, vol. 1, pp. 388–391, 1999.

[68] T. Brubaker and J. Becker, “Multiplication using logarithms implemented

with read-only memory,” Computers, IEEE Transactions on, vol. C-24, no. 8,

pp. 761–765, Aug 1975.

[69] G. Kmetz, “In a digital computation system,” U.S. Patent 4,583,180. Apr. 15

1986.

[70] R. Maenner, “A fast integer binary logarithm of large arguments,” Micro,

IEEE, vol. 7, no. 6, pp. 41–45, Dec 1987.

[71] M. Arnold, T. Bailey, and J. Cowles, “Error analysis of the Kmetz/Maenner

algorithm,” Journal of VLSI signal processing systems for signal, image and

video technology, vol. 33, no. 1-2, pp. 37–53, 2003.

[72] D. Marino, “New algorithms for the approximate evaluation in hardware of

binary logarithms and elementary functions,” Computers, IEEE Transactions

on, vol. C-21, no. 12, pp. 1416–1421, Dec 1972.

Bibliography 154

[73] R. de Mori and R. Cardin, “A new design approach to binary logarithm com-

putation,” Signal Processing, vol. 13, no. 2, pp. 177 – 195, 1987.

[74] D. Lewis, “Interleaved memory function interpolators with application to an

accurate LNS arithmetic unit,” Computers, IEEE Transactions on, vol. 43,

no. 8, pp. 974–982, Aug 1994.

[75] G. Knittel, “A fast logarithm converter,” ASIC Conference and Exhibit, 1994.

Proceedings., Seventh Annual IEEE International, pp. 450–453, Sep 1994.

[76] S. Pan, S. Panchumarthi, R. Srinath, and S. Wang, “Method and system for

solving linear systems,” U.S. Patent 6,078,938. Jun. 20 2000.

[77] S. Pan and S. Wang, “Logarithm/inverse-logarithm converter and method of

using same,” U.S. Patent 5,642,305. Jun. 24 1997.

[78] S. Pan and S. Wang, “Log converter utilizing offset and method of use thereof,”

U.S. Patent 6,065,031. May 16 2000.

[79] S. Pan and S. Wang, “Logarithm/inverse-logarithm converter utilizing second-

order term and method of using same,” EP Patent App. EP19,960,902,604.

Sep. 1 1999.

[80] S. Pan and S. Wang, “Logarithm/inverse-logarithm converter utilizing second-

order term and method of using same,” U.S. Patent 5,703,801. Dec. 30 1997.

[81] S. Pan and S. Wang, “Logarithm/inverse-logarithm converter utilizing

second-order term and method of using same,” WO Patent App. PC-

T/US1996/000,147. Aug. 8 1996.

[82] S. Pan and S. Wang, “Logarithm/inverse-logarithm converter and method of

using same,” U.S. Patent 5,941,939. Aug. 24 1999.

[83] S. Pan and S. Wang, “Method and system for performing an l2 norm opera-

tion,” U.S. Patent 5,936,871. Aug. 10 1999.

[84] S. Pan, S. Wang, B. Sigmon, S. Ma, K. Laird, and J. Toler, “Apparatus using

a logarithm based processor,” U.S. Patent 5,961,579. Oct. 5 1999.

Bibliography 155

[85] P. Wei and W. T, “Procede et dispositif concernant une operation en norme

l¿2?” WO Patent App. PCT/US1996/013,068. Mar. 6 1997.

[86] L. Bangqiang, H. Ling, and Y. Xiao, “Base-n logarithm implementation on

fpga for the data with random decimal point positions,” Signal Processing

and its Applications (CSPA), 2013 IEEE 9th International Colloquium on,

pp. 17–20, March 2013.

[87] A. Vazquez, J. Villalba, and E. Antelo, “Computation of decimal transcenden-

tal functions using the cordic algorithm,” Computer Arithmetic, 2009. ARITH

2009. 19th IEEE Symposium on, pp. 179–186, June 2009.

[88] D. Chen, L. Han, Y. Choi, and S.-B. Ko, “Improved decimal floating-point log-

arithmic converter based on selection by rounding,” Computers, IEEE Trans-

actions on, vol. 61, no. 5, pp. 607–621, May 2012.

[89] M. S. A. A. M. Mansour, A. M. El-Sawy and A. T. Sayed, “A New Hardware

Implementation of Base 2 Logarithm for FPGA,” International Journal of

Signal Processing Systems, vol. 3, pp. 177–182, December 2015.

[90] D. Kostopoulos, “An algorithm for the computation of binary logarithms,”

Computers, IEEE Transactions on, vol. 40, no. 11, pp. 1267–1270, Nov 1991.

[91] M. Arnold and M. Winkel, “A single-multiplier quadratic interpolator for LNS

arithmetic,” Computer Design, 2001. ICCD 2001. Proceedings. 2001 Interna-

tional Conference on, pp. 178–183, 2001.

[92] H. Henkel, “Improved accuracy for the logarithmic number system,” IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. Assp-37, pp.

301–303, Feb 1989.

[93] A. Noetzel, “An interpolating memory unit for function evaluation: analysis

and design,” Computers, IEEE Transactions on, vol. 38, no. 3, pp. 377–384,

Mar 1989.

Bibliography 156

[94] J. N. Coleman, E. I. Chester, C. Softley, and J. Kadlec, “Arithmetic on the

european logarithmic microprocessor,” Computers, IEEE Transactions on,

vol. 49, no. 7, pp. 702–715, Jul 2000.

[95] D. Lewis, “An architecture for addition and subtraction of long word length

numbers in the logarithmic number system,” Computers, IEEE Transactions

on, vol. 39, no. 11, pp. 1325–1336, Nov 1990.

[96] L. Yu and D. Lewis, “A 30-b integrated logarithmic number system processor,”

Solid-State Circuits, IEEE Journal of, vol. 26, no. 10, pp. 1433–1440, Oct 1991.

[97] S. C. Huang, L. G. Chen, and T. H. Chen, “A 32-bit logarithmic number

system processor,” Journal of VLSI signal processing systems for signal, image

and video technology, vol. 14, no. 3, pp. 311–319, 1996.

[98] P. Huang, D. Y. Teng, K. Wahid, and S. B. Ko, “Convergence analysis of jacobi

iterative method using logarithmic number system,” Computer and Informa-

tion Science, 2008. ICIS 08. Seventh IEEE/ACIS International Conference

on, pp. 27–32, May 2008.

[99] S. C. Huang and L. G. Chen, “A LOG-EXP still image compression chip

design,” Consumer Electronics, 1999. ICCE. International Conference on, pp.

156–157, June 1999.

[100] S. C. Huang and L. G. Chen, “A LOG-EXP still image compression chip

design,” Consumer Electronics, IEEE Transactions on, vol. 45, no. 3, pp.

812–819, Aug 1999.

[101] S. C. Huang, L. G. Chen, and T. H. Chen, “The chip design of a 32-b loga-

rithmic number system,” Circuits and Systems, 1994. ISCAS ’94., 1994 IEEE

International Symposium on, vol. 4, pp. 167–170, May 1994.

[102] S. C. Huang, “Logarithmic number system processor for DSP applications,”

Master’s thesis, National Taiwan University, 1993.

Bibliography 157

[103] M. Schulte and J. Stine, “Symmetric bipartite tables for accurate function

approximation,” Computer Arithmetic, 1997. Proceedings., 13th IEEE Sym-

posium on, pp. 175–183, Jul 1997.

[104] M. Schulte and J. Stine, “Accurate function approximations by symmetric

table lookup and addition,” Application-Specific Systems, Architectures and

Processors, 1997. Proceedings., IEEE International Conference on, pp. 144–

153, Jul 1997.

[105] M. Schulte and J. Stine, “Approximating elementary functions with symmetric

bipartite tables,” Computers, IEEE Transactions on, vol. 48, no. 8, pp. 842–

847, Aug 1999.

[106] G. Moore, “Cramming more components onto integrated circuits,” Electronics

Magazine, vol. 38, Apr 1965.

[107] D. Chen and S. B. Ko, “A dynamic non-uniform segmentation method for

first-order polynomial function evaluation,” Microprocessors and Microsys-

tems, vol. 36, no. 4, pp. 324 – 332, 2012.

[108] S. F. Hsiao, H. J. Ko, and C. S. Wen, “Two-level hardware function evaluation

based on correction of normalized piecewise difference functions,” Circuits and

Systems II: Express Briefs, IEEE Transactions on, vol. 59, no. 5, pp. 292–296,

May 2012.

[109] J. Toler, “Apparatus using a logarithm based processor and an audio ampli-

fier,” U.S. Patent 5,948,052. Sep. 7 1999.

[110] F. S. Lai, “A 10 ns hybrid number system data execution unit for digital signal

processing systems,” Solid-State Circuits, IEEE Journal of, vol. 26, no. 4, pp.

590–599, Apr 1991.

[111] L. Pickett, “Method and apparatus for exponential/logarithmic computation,”

U.S. Patent 5,197,024. Mar. 23 1993.

[112] F. de Dinechin and A. Tisserand, “Multipartite table methods,” Computers,

IEEE Transactions on, vol. 54, no. 3, pp. 319–330, March 2005.

Bibliography 158

[113] H. Kim, B. G. Nam, J. H. Sohn, J. H. Woo, and H. J. Yoo, “A 231-mhz, 2.18-

mw 32-bit logarithmic arithmetic unit for fixed-point 3-D graphics system,”

Solid-State Circuits, IEEE Journal of, vol. 41, no. 11, pp. 2373–2381, Nov

2006.

[114] B. G. Nam, H. Kim, and H. J. Yoo, “Power and area-efficient unified compu-

tation of vector and elementary functions for handheld 3D graphics systems,”

Computers, IEEE Transactions on, vol. 57, no. 4, pp. 490–504, April 2008.

[115] T. B. Juang, S. H. Chen, and H. J. Cheng, “A lower error and rom-free

logarithmic converter for digital signal processing applications,” Circuits and

Systems II: Express Briefs, IEEE Transactions on, vol. 56, no. 12, pp. 931–935,

Dec 2009.

[116] S. Paul, N. Jayakumar, and S. Khatri, “A fast hardware approach for ap-

proximate, efficient logarithm and antilogarithm computations,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17, no. 2, pp.

269–277, Feb 2009.

[117] D. De Caro, N. Petra, and A. Strollo, “Efficient logarithmic converters for

digital signal processing applications,” Circuits and Systems II: Express Briefs,

IEEE Transactions on, vol. 58, no. 10, pp. 667–671, Oct 2011.

[118] H. Fu, O. Mencer, and W. Luk, “Optimizing logarithmic arithmetic on FP-

GAs,” Field-Programmable Custom Computing Machines, 2007. FCCM 2007.

15th Annual IEEE Symposium on, pp. 163–172, April 2007.

[119] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and

K. Hemmert, “A comparison of floating point and logarithmic number sys-

tems for FPGAs,” Field-Programmable Custom Computing Machines, 2005.

FCCM 2005. 13th Annual IEEE Symposium on, pp. 181–190, April 2005.

[120] T. Sasao, S. Nagayama, and J. Butler, “Numerical function generators using

LUT cascades,” Computers, IEEE Transactions on, vol. 56, no. 6, pp. 826–838,

June 2007.

Bibliography 159

[121] D. U. Lee, R. C. C. Cheung, W. Luk, and J. Villasenor, “Hardware implemen-

tation trade-offs of polynomial approximations and interpolations,” Comput-

ers, IEEE Transactions on, vol. 57, no. 5, pp. 686–701, May 2008.

[122] D. U. Lee, A. Gaffar, O. Mencer, and W. Luk, “Optimizing hardware function

evaluation,” Computers, IEEE Transactions on, vol. 54, no. 12, pp. 1520–1531,

Dec 2005.

[123] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Ap-

proach, 2nd ed. Pearson Education, 2002.

[124] M. Rae, “Applications of correlation techniques,” Rheologica Acta, vol. 8, no. 2,

pp. 157–161, 1969.

[125] X. Qian, “In-line measurement and characterisation of pneumatically conveyed

pulverised coal and biomass using non-intrusive electrostatic sensor arrays,”

Ph.D. dissertation, University of Kent, 2012.

[126] X. Qian, Y. Yan, J. Shao, LijuanWang, H. Zhou, and C. Wang, “Quantitative

characterization of pulverized coal and biomasscoal blends in pneumatic con-

veying pipelines using electrostatic sensor arrays and data fusion techniques,”

Measurement science and technology, vol. 23, p. 13, 2012.

[127] J. Shao, J. Krabicka, and Y. Yan, “Velocity measurement of pneumatically

conveyed particles using intrusive electrostatic sensors,” Instrumentation and

Measurement, IEEE Transactions on, vol. 59, no. 5, pp. 1477–1484, May 2010.

[128] Y. Yan, Z. Xie, J. Krabicka, and J. Shao, “Non-contact strip speed measure-

ment using electrostatic sensors,” Instrumentation and Measurement Technol-

ogy Conference (I2MTC), 2010 IEEE, pp. 1535–1538, May 2010.

[129] Y. Yan, S. J. Rodrigues, and Z. Xie, “Non-contact strip speed measurement

using electrostatic sensing and correlation signal-processing techniques,” Mea-

surement Science and Technology, vol. 22, p. 9, 2011.

[130] C. Tan and F. Dong, “Cross correlation velocity of oil-water two-phase flow

by a dual-plane electrical resistance tomography system,” Instrumentation and

Bibliography 160

Measurement Technology Conference (I2MTC), 2010 IEEE, pp. 766–770, May

2010.

[131] Y. Lin, C. Huang, D. Irwin, L. He, Y. Shang, and G. Yu, “Three-dimensional

flow contrast imaging of deep tissue using noncontact diffuse correlation to-

mography,” Applied Physics Letters, vol. 104, no. 12, pp. 121 103–121 103–4,

Mar 2014.

[132] N. Ayob, S. Yaacob, Z. Zakaria, M. Fazalul Rahiman, and R. Rahim, “Simu-

lation on using cross-correlation technique for two-phase liquid/gas flow mea-

surement for ultrasonic transmission tomography,” Signal Processing and Its

Applications (CSPA), 2010 6th International Colloquium on, pp. 1–5, May

2010.

[133] X. Wu, X. Wu, and Z. Zhu, “Tilting alignment for electron tomography based

on local cross-correlation and adaptive searching,” IT in Medicine and Educa-

tion, 2008. ITME 2008. IEEE International Symposium on, pp. 684–688, Dec

2008.

[134] J. Munoz-Gomez, J. Bartrina-Rapesta, M. Marcellin, and J. Serra-Sagrista,

“Correlation modeling for compression of computed tomography images,”

Biomedical and Health Informatics, IEEE Journal of, vol. 17, no. 5, pp. 928–

935, Sept 2013.

[135] M. Dabbicco, V. Spagnolo, M. Troccoli, C. Marinelli, and G. Scamarcio, “Cor-

relation between laser pattern and local carrier distribution in vcsels deter-

mined by microprobe electroluminescence,” Lasers and Electro-Optics Europe,

2000. Conference Digest. 2000 Conference on, p. 1, Sept 2000.

[136] H. Miyajima, N. Shigei, and Y. Hamakawa, “Higher order differential cor-

relation associative memory of sequential patterns,” Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on, vol. 2, pp. 891–896

vol.2, July 2004.

[137] D. Walvoord, K. Baum, M. Helguera, A. Krol, and R. Easton, “Localization

of fiducial skin markers in mr images using correlation pattern recognition for

Bibliography 161

pet/mri nonrigid breast image registration,” Applied Imagery Pattern Recog-

nition Workshop, 2008. AIPR ’08. 37th IEEE, pp. 1–4, Oct 2008.

[138] H. El-Bakry and Q. Zhao, “Fast pattern detection using neural networks and

cross correlation in the frequency domain,” Neural Networks, 2005. IJCNN

’05. Proceedings. 2005 IEEE International Joint Conference on, vol. 3, pp.

1900–1905, July 2005.

[139] J. Carlson and R.-K. Ing, “Ultrasonic particle velocimetry in multiphase

flows,” Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 1, pp. 761–

764, Oct 2002.

[140] W. Zhang, C. Wang, and Y. Wang, “Parameter selection in cross-correlation-

based velocimetry using circular electrostatic sensors,” Instrumentation and

Measurement, IEEE Transactions on, vol. 59, no. 5, pp. 1268–1275, May 2010.

[141] C. Huang, J. Shen, and X. Cai, “Optical correlation velocimetry: An aid to

particle sizing by acoustic emission measurement,” Systems and Informatics

(ICSAI), 2012 International Conference on, pp. 2633–2635, May 2012.

[142] D. Hill, S. Young, P. Parker, and E. Pike, “Photon correlation velocimetry

of blood flow in the retina,” Quantum Electronics, IEEE Journal of, vol. 13,

no. 9, pp. 897–898, September 1977.

[143] S. Yatsushiro, K. Kuroda, A. Hirayama, H. Atsumi, and M. Matsumae, “Cor-

relation time mapping based on magnetic resonance velocimetry: Prelimi-

nary results on cerebrospinal fluid flow,” Biomedical Engineering International

Conference (BMEiCON), 2013 6th, pp. 1–4, Oct 2013.

[144] S. Yaofeng, T. Y. Meng, J. Pang, and S. Fei, “Digital image correlation and

its applications in electronics packaging,” Electronic Packaging Technology

Conference, 2005. EPTC 2005. Proceedings of 7th, vol. 1, p. 6, Dec 2005.

[145] L. Siegel, H. Siegel, and A. Feather, “Parallel processing approaches to image

correlation,” Computers, IEEE Transactions on, vol. C-31, no. 3, pp. 208–218,

March 1982.

Bibliography 162

[146] X. Xianming, H. Wenxiang, and W. Hongru, “Digital image correlation

method (dicm) application in speckle phase-shift of shear speckle defect detec-

tion,” Intelligent Signal Processing and Communication Systems (ISPACS),

2010 International Symposium on, pp. 1–4, Dec 2010.

[147] J. Fan, A. Kot, H. Cao, and F. Sattar, “Modeling the exif-image correlation

for image manipulation detection,” Image Processing (ICIP), 2011 18th IEEE

International Conference on, pp. 1945–1948, Sept 2011.

[148] G. Guo and C. Dyer, “Patch-based image correlation with rapid filtering,”

Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference

on, pp. 1–6, June 2007.

[149] M. Cavadini, M. Wosnitza, and G. Troster, “Multiprocessor system for high-

resolution image correlation in real time,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 9, no. 3, pp. 439–449, June 2001.

[150] Y. Wang, J. Liu, and D. Li, “Study on correlation of micro stereovision with

stereo light microscope,” Mechatronics and Automation, 2007. ICMA 2007.

International Conference on, pp. 948–952, Aug 2007.

[151] S. Lefebvre, S. Ambellouis, and F. Cabestaing, “Obstacles detection on a

road by dense stereovision with 1D correlation windows and fuzzy filtering,”

Intelligent Transportation Systems Conference, 2006. ITSC ’06. IEEE, pp.

739–744, Sept 2006.

[152] J. Marie-Julie, P. Adam, and D. Juvin, “Real time stereovision using corre-

lation on a parallel simd computer, sympati 2,” Algorithms and Architectures

for Parallel Processing, 1995. ICAPP 95. IEEE First ICA/sup 3/PP., IEEE

First International Conference on, vol. 1, pp. 422–426, Apr 1995.

[153] L. Boissier, B. Hotz, C. Proy, O. Faugeras, and P. Fua, “Autonomous planetary

rover (vap): on-board perception system concept and stereovision by corre-

lation approach,” Robotics and Automation, 1992. Proceedings., 1992 IEEE

International Conference on, pp. 181–186, May 1992.

Bibliography 163

[154] M. Ouali, H. Lange, and C. Laurgeau, “An energy minimization approach

to dense stereovision,” Image Processing, 1996. Proceedings., International

Conference on, vol. 1, pp. 841–845, Sep 1996.

[155] D. Lyon, “The discrete fourier transform, part 6: Cross-correlation,” Journal

of object technology, vol. 9, pp. 17–22, 2010.

[156] I. R. Barratt, Y. Yan, and B. Byrne, “A parallel-beam radiometric instru-

mentation system for the mass flow measurement of pneumatically conveyed

solids,” Measurement Science and Technology, vol. 12, pp. 1515–1528, 2001.

[157] L. Wang and Y. Yan, “Mathematical modelling and experimental validation of

electrostatic sensors for rotational speed measurement,” Measurement Science

and Technology, vol. 25, no. 11, p. 115101, 2014.

[158] L. Wang, Y. Yan, Y. Hu, and X. Qian, “Rotational speed measurement

through electrostatic sensing and correlation signal processing,” Instrumenta-

tion and Measurement, IEEE Transactions on, vol. 63, no. 5, pp. 1190–1199,

May 2014.

[159] J. Urena, “Correlation detector based on a FPGA for ultrasonic sensors,”

Microprocessors and Microsystems, vol. 23, pp. 25–33, 1999.

[160] W. Xie, Y. Zhou, and L. Li, “Application of phase only correlation in velocity

measurement based on FPGA,” Image and Signal Processing (CISP), 2011

4th International Congress on, vol. 3, pp. 1301–1304, Oct 2011.

[161] A. HajiRassouliha, T. Gamage, M. Parker, M. Nash, A. Taberner, and

P. Nielsen, “FPGA implementation of 2D cross-correlation for real-time 3D

tracking of deformable surfaces,” Image and Vision Computing New Zealand

(IVCNZ), 2013 28th International Conference of, pp. 352–357, Nov 2013.

[162] J. Ding, X. Du, X. Wang, and J. Liu, “Improved real-time correlation-based

FPGA stereo vision system,” Mechatronics and Automation (ICMA), 2010

International Conference on, pp. 104–108, Aug 2010.

Bibliography 164

[163] S. H. Jin, J. U. Cho, D. R. Lee, J. H. Park, H. S. Kim, C. H. Lee, J. S.

Choi, and J. W. Jeon, “An FPGA based voice signal preprocessor for the real-

time cross-correlation,” Control, Automation and Systems, 2007. ICCAS ’07.

International Conference on, pp. 793–797, Oct 2007.

[164] G. Danese, M. Giachero, F. Leporati, G. Matrone, and N. Nazzicari, “An

FPGA based embedded system for fingerprint matching using phase only cor-

relation algorithm,” Digital System Design, Architectures, Methods and Tools,

2009. DSD ’09. 12th Euromicro Conference on, pp. 672–679, Aug 2009.

[165] P. Lee, K. Adefila, and Y. Yan, “An FPGA correlator for continuous real-time

measurement of particulate flow,” Instrumentation and Measurement Tech-

nology Conference (I2MTC), 2012 IEEE International, pp. 2183–2186, May

2012.

[166] “AD7476/AD7477/AD7478: 1 MSPS, 12-/10-/8-Bit ADCs in 6-Lead SOT-23

Data Sheet (Rev F, 02/2009),” Analog Devices, One Technology Way, P.O.

Box 9106, Norwood, MA 02062-9106, U.S.A.

[167] “DAC121S101/DAC121S101Q 12-Bit Micro Power, RRO Digital-to-Analog

Converter ,” Texas Instruments, Texas Instruments, Post Office Box 655303,

Dallas, Texas 75265, U.S.A.

Appendix A

Table 4.2 Matlab Simulations

Figure A.1: Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment.

165

Appendix A. Table 4.2 Matlab Simulations 166

Figure A.2: Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation.

Figure A.3: Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage errors for each

segment.

Appendix A. Table 4.2 Matlab Simulations 167

Figure A.4: Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.

Figure A.5: Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment.

Appendix A. Table 4.2 Matlab Simulations 168

Figure A.6: Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation.

Figure A.7: Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage errors for each

segment.

Appendix A. Table 4.2 Matlab Simulations 169

Figure A.8: Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.

Figure A.9: Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment.

Appendix A. Table 4.2 Matlab Simulations 170

Figure A.10: Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation.

Figure A.11: Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage errors for each

segment.

Appendix A. Table 4.2 Matlab Simulations 171

Figure A.12: Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.

Figure A.13: Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment.

Appendix A. Table 4.2 Matlab Simulations 172

Figure A.14: Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation.

Figure A.15: Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage errors for each

segment.

Appendix A. Table 4.2 Matlab Simulations 173

Figure A.16: Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.

Appendix B

Table 4.3 Matlab Simulations

Figure B.1: Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment.

174

Appendix B. Table 4.3 Matlab Simulations 175

Figure B.2: Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation.

Figure B.3: Configuartion 7 : 16 :: 7 : 9 - Residual error in normalised error curve.

Appendix B. Table 4.3 Matlab Simulations 176

Figure B.4: Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.

Figure B.5: Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment.

Appendix B. Table 4.3 Matlab Simulations 177

Figure B.6: Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation.

Figure B.7: Configuartion 8 : 15 :: 6 : 9 - Residual error in normalised error curve.

Appendix B. Table 4.3 Matlab Simulations 178

Figure B.8: Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.

Figure B.9: Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment.

Appendix B. Table 4.3 Matlab Simulations 179

Figure B.10: Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation.

Figure B.11: Configuartion 8 : 15 :: 7 : 8 - Residual error in normalised error curve.

Appendix B. Table 4.3 Matlab Simulations 180

Figure B.12: Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.

Figure B.13: Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment.

Appendix B. Table 4.3 Matlab Simulations 181

Figure B.14: Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation.

Figure B.15: Configuartion 8 : 15 :: 8 : 7 - Residual error in normalised error curve.

Appendix B. Table 4.3 Matlab Simulations 182

Figure B.16: Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.

Appendix C

Table 5.2 Matlab Simulations

Figure C.1: Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment.

183

Appendix C. Table 5.2 Matlab Simulations 184

Figure C.2: Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation.

Figure C.3: Configuartion 7 : 16 :: 7 : 9 - Residual error in normalised error curve.

Appendix C. Table 5.2 Matlab Simulations 185

Figure C.4: Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.

Figure C.5: Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment.

Appendix C. Table 5.2 Matlab Simulations 186

Figure C.6: Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation.

Figure C.7: Configuartion 8 : 15 :: 6 : 9 - Residual error in normalised error curve.

Appendix C. Table 5.2 Matlab Simulations 187

Figure C.8: Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.

Figure C.9: Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment.

Appendix C. Table 5.2 Matlab Simulations 188

Figure C.10: Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation.

Figure C.11: Configuartion 8 : 15 :: 7 : 8 - Residual error in normalised error curve.

Appendix C. Table 5.2 Matlab Simulations 189

Figure C.12: Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.

Figure C.13: Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment.

Appendix C. Table 5.2 Matlab Simulations 190

Figure C.14: Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation.

Figure C.15: Configuartion 8 : 15 :: 8 : 7 - Residual error in normalised error curve.

Appendix C. Table 5.2 Matlab Simulations 191

Figure C.16: Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.

Appendix D

Table 5.3 Matlab Simulations

Figure D.1: Configuartion 7 : 16 :: 7 : 9 - 1st stage errors for each segment.

192

Appendix D. Table 5.3 Matlab Simulations 193

Figure D.2: Configuartion 7 : 16 :: 7 : 9 - 1st stage error approximation.

Figure D.3: Configuartion 7 : 16 :: 7 : 9 - Residual error in normalised error curve.

Appendix D. Table 5.3 Matlab Simulations 194

Figure D.4: Configuartion 7 : 16 :: 7 : 9 - 1st stage + 2nd stage error approximation.

Figure D.5: Configuartion 8 : 15 :: 6 : 9 - 1st stage errors for each segment.

Appendix D. Table 5.3 Matlab Simulations 195

Figure D.6: Configuartion 8 : 15 :: 6 : 9 - 1st stage error approximation.

Figure D.7: Configuartion 8 : 15 :: 6 : 9 - Residual error in normalised error curve.

Appendix D. Table 5.3 Matlab Simulations 196

Figure D.8: Configuartion 8 : 15 :: 6 : 9 - 1st stage + 2nd stage error approximation.

Figure D.9: Configuartion 8 : 15 :: 7 : 8 - 1st stage errors for each segment.

Appendix D. Table 5.3 Matlab Simulations 197

Figure D.10: Configuartion 8 : 15 :: 7 : 8 - 1st stage error approximation.

Figure D.11: Configuartion 8 : 15 :: 7 : 8 - Residual error in normalised error curve.

Appendix D. Table 5.3 Matlab Simulations 198

Figure D.12: Configuartion 8 : 15 :: 7 : 8 - 1st stage + 2nd stage error approximation.

Figure D.13: Configuartion 8 : 15 :: 8 : 7 - 1st stage errors for each segment.

Appendix D. Table 5.3 Matlab Simulations 199

Figure D.14: Configuartion 8 : 15 :: 8 : 7 - 1st stage error approximation.

Figure D.15: Configuartion 8 : 15 :: 8 : 7 - Residual error in normalised error curve.

Appendix D. Table 5.3 Matlab Simulations 200

Figure D.16: Configuartion 8 : 15 :: 8 : 7 - 1st stage + 2nd stage error approximation.

Appendix E

Logarithmic Domain

Cross-Correlation Plots

Figure E.1: Cross correlation coefficient value of first combination - using 16 frac-

tional bits.

201

Appendix E. Logarithmic Domain Cross-Correlation Plots 202

Figure E.2: Cross correlation coefficient value of second combination - using 16

fractional bits.

Figure E.3: Cross correlation coefficient value of third combination - using 16 frac-

tional bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 203

Figure E.4: Cross correlation coefficient value of fourth combination - using 16

fractional bits.

Figure E.5: Cross correlation coefficient value of fifth combination - using 16 frac-

tional bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 204

Figure E.6: Cross correlation coefficient value of sixth combination - using 16 frac-

tional bits.

Figure E.7: Log Approximation Based Simple Moving Average of Six combinations

- using 16 fractional bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 205

Figure E.8: Log Approximation Based Weighted Moving Average of Six combina-

tions - using 16 fractional bits.

Figure E.9: Cross correlation coefficient value of first combination - using 4 fractional

bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 206

Figure E.10: Cross correlation coefficient value of second combination - using 6

fractional bits.

Figure E.11: Cross correlation coefficient value of third combination - using 6 frac-

tional bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 207

Figure E.12: Cross correlation coefficient value of fourth combination - using 6

fractional bits.

Figure E.13: Cross correlation coefficient value of fifth combination - using 6 frac-

tional bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 208

Figure E.14: Cross correlation coefficient value of sixth combination - using 6 frac-

tional bits.

Figure E.15: Log Approximation Based Simple Moving Average of Six combinations

- using 6 fractional bits.

Appendix E. Logarithmic Domain Cross-Correlation Plots 209

Figure E.16: Log Approximation Based Weighted Moving Average of Six combina-

tions - using 6 fractional bits.

Appendix F

VHDL Sample Code

1

2 entity simtest is

3 Port (clk : in STD LOGIC;

4 −− xrun : in std logic;

5

6 xxnormout1,xxnormout2,xxnormout3,

7 xxnormout4,xxnormout5,xxnormout6 :out std logic vector(22 downto ...

0));

8 −− sdataout : out std logic;

9 −− xx : out std logic vector(11 downto 0);

10 −− ja : inout STD LOGIC vector(3 downto 0));

11 end simtest;

12

13 architecture Behavioral of simtest is

14 signal spiclk, spiclk ce, newclk1,sdone, xdataout : std logic ...

:= '0';

15 signal sineout : std logic vector(9 downto 0):= (others=>'0');

16 signal A,B,C,D : std logic vector (11 downto 0):= (others=>'0');

17

18 signal xsu1, xsd1, xcorr1 : std logic vector(35 downto 0):= ...

(others=>'0');

19 signal Xnorm1 : std logic vector(22 downto 0):= (others=>'0');

20 signal xzero1, xsign1 : std logic vector(0 downto 0):= ...

(others=>'0');

210

Appendix F. VHDL Sample Code 211

21

22

23 signal xsu2, xsd2, xcorr2 : std logic vector(35 downto 0):= ...

(others=>'0');

24 signal Xnorm2 : std logic vector(22 downto 0):= (others=>'0');

25 signal xzero2, xsign2 : std logic vector(0 downto 0):= ...

(others=>'0');

26

27

28 signal xsu3, xsd3, xcorr3 : std logic vector(35 downto 0):= ...

(others=>'0');

29 signal Xnorm3 : std logic vector(22 downto 0):= (others=>'0');

30 signal xzero3, xsign3 : std logic vector(0 downto 0):= ...

(others=>'0');

31

32 signal xsu4, xsd4, xcorr4 : std logic vector(35 downto 0):= ...

(others=>'0');

33 signal Xnorm4 : std logic vector(22 downto 0):= (others=>'0');

34 signal xzero4, xsign4 : std logic vector(0 downto 0):= ...

(others=>'0');

35

36 signal xsu5, xsd5, xcorr5 : std logic vector(35 downto 0):= ...

(others=>'0');

37 signal Xnorm5 : std logic vector(22 downto 0):= (others=>'0');

38 signal xzero5, xsign5 : std logic vector(0 downto 0):= ...

(others=>'0');

39

40 signal xsu6, xsd6, xcorr6 : std logic vector(35 downto 0):= ...

(others=>'0');

41 signal Xnorm6 : std logic vector(22 downto 0):= (others=>'0');

42 signal xzero6, xsign6 : std logic vector(0 downto 0):= ...

(others=>'0');

43

44

45

46 −−signal xq,wq : std logic vector(7 downto 0):= (others=>'0');

47 −−signal xavgq : std logic vector(8 downto 0):= (others=>'0');

Appendix F. VHDL Sample Code 212

48 signal readdata : std logic vector(47 downto 0):= (others=>'0');

49

50 signal xusu, xusd,yusu, yusd, ydsu, ydsd,Ausu, Ausd, Adsu, Adsd, ...

Bdsu, Bdsd : std logic vector(11 downto 0):= (others=>'0');

51

52

53 begin

54

55

56 data: entity work.read file

57 port map (

58 clk =>newclk1,

59 q => readdata);

60 −−−
61 −−−−−−−2mhz clk for pmod ...

ADC−−−
62 −−−
63

64 spiclock : entity work.clkdivider −− 2mhz for adc

65 port map (

66 clk => clk,−− 100 mhz

67 dclk => spiclk);

68

69 spiclock ce : entity work.clkdivider ce

70 port map (

71 clk => clk,−− 100 mhz

72 dclk => spiclk ce);

73

74 −−−
75 −−−−−−−sampling Frequency ...

−−−
76 −−−
77

78 run enable : entity work.clkdividersine −− 97.656 khz −− sample ...

frequency

79 port map (

80 clk => clk, −−100 mhz

Appendix F. VHDL Sample Code 213

81 dclk => newclk1); −− 97.656 KHZ

82

83 −−−
84 −−−−−−−−−−−−−−−upstream downstream ...

fifo−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 −−−
86 sig : entity work.signals

87 port map (clk => clk,

88 sample => newclk1,

89 x => A,

90 y => B,

91 A => C,

92 B => D,

93 xusu => xusu,

94 xusd => xusd,

95 yusu => yusu,

96 yusd => yusd,

97 ydsu => ydsu,

98 ydsd => ydsd,

99 Ausu => Ausu,

100 Ausd => Ausd,

101 Adsu => Adsu,

102 Adsd => Adsd,

103 Bdsu => Bdsu,

104 Bdsd => Bdsd);

105 −−−
106 −−−−−−−cc1−−−
107 −−−
108

109 cc1ICorr : entity work.ICrr

110 port map(clk => clk, −− 100 mhz

111 usu => xusu,

112 usd => xusd,

113 dsu => ydsu,

114 dsd => ydsd,

115 sample => newclk1, −− 97.656 KHZ

116 corr => xcorr1, −−corr value

Appendix F. VHDL Sample Code 214

117 su =>xsu1, −− suˆ2

118 sd => xsd1); −− sdˆ2

119

120 cc1Normalization : entity work.operationalblock

121

122 port map(CLK => clk, −−100 mhz;

123 SU => xsu1, −− SUˆ2;

124 SD => xsd1, −− SDˆ2;

125 corr => xcorr1, −− SU SD(corr);

126 Norm => xNorm1, −− output

127 zero => xzero1,

128 sign => xsign1);

129 −−−
130 −−−−−−−cc2−−−
131 −−−
132

133 cc2ICorr : entity work.ICrr

134 port map(clk => clk, −− 100 mhz

135 usu => xusu,

136 usd => xusd,

137 dsu => Adsu,

138 dsd => Adsd,

139 sample => newclk1, −− 97.656 KHZ

140 corr => xcorr2, −−corr value

141 su =>xsu2, −− suˆ2

142 sd => xsd2); −− sdˆ2

143

144 cc2Normalization : entity work.operationalblock

145

146 port map(CLK => clk, −−100 mhz;

147 SU => xsu2, −− SUˆ2;

148 SD => xsd2, −− SDˆ2;

149 corr => xcorr2, −− SU SD(corr);

150 Norm => xNorm2, −− output

151 zero => xzero2,

152 sign => xsign2);

153 −−−

Appendix F. VHDL Sample Code 215

154 −−−−−−−cc3−−−
155 −−−
156

157 cc3ICorr : entity work.ICrr

158 port map(clk => clk, −− 100 mhz

159 usu => xusu,

160 usd => xusd,

161 dsu => Bdsu,

162 dsd => Bdsd,

163 sample => newclk1, −− 97.656 KHZ

164 corr => xcorr3, −−corr value

165 su =>xsu3, −− suˆ2

166 sd => xsd3); −− sdˆ2

167

168 cc3Normalization : entity work.operationalblock

169

170 port map(CLK => clk, −−100 mhz;

171 SU => xsu3, −− SUˆ2;

172 SD => xsd3, −− SDˆ2;

173 corr => xcorr3, −− SU SD(corr);

174 Norm => xNorm3, −− output

175 zero => xzero3,

176 sign => xsign3);

177 −−−
178 −−−−−−−cc4−−−
179 −−−
180

181 cc4ICorr : entity work.ICrr

182 port map(clk => clk, −− 100 mhz

183 usu => yusu,

184 usd => yusd,

185 dsu => Adsu,

186 dsd => Adsd,

187 sample => newclk1, −− 97.656 KHZ

188 corr => xcorr4, −−corr value

189 su =>xsu4, −− suˆ2

190 sd => xsd4); −− sdˆ2

Appendix F. VHDL Sample Code 216

191

192 cc4Normalization : entity work.operationalblock

193

194 port map(CLK => clk, −−100 mhz;

195 SU => xsu4, −− SUˆ2;

196 SD => xsd4, −− SDˆ2;

197 corr => xcorr4, −− SU SD(corr);

198 Norm => xNorm4, −− output

199 zero => xzero4,

200 sign => xsign4);

201

202 −−−
203 −−−−−−−cc5−−−
204 −−−
205

206 cc5ICorr : entity work.ICrr

207 port map(clk => clk, −− 100 mhz

208 usu => yusu,

209 usd => yusd,

210 dsu => Bdsu,

211 dsd => Bdsd,

212 sample => newclk1, −− 97.656 KHZ

213 corr => xcorr5, −−corr value

214 su =>xsu5, −− suˆ2

215 sd => xsd5); −− sdˆ2

216

217 cc5Normalization : entity work.operationalblock

218

219 port map(CLK => clk, −−100 mhz;

220 SU => xsu5, −− SUˆ2;

221 SD => xsd5, −− SDˆ2;

222 corr => xcorr5, −− SU SD(corr);

223 Norm => xNorm5, −− output

224 zero => xzero5,

225 sign => xsign5);

226 −−−
227 −−−−−−−cc6−−−

Appendix F. VHDL Sample Code 217

228 −−−
229

230 cc6ICorr : entity work.ICrr

231 port map(clk => clk, −− 100 mhz

232 usu => Ausu,

233 usd => Ausd,

234 dsu => Bdsu,

235 dsd => Bdsd,

236 sample => newclk1, −− 97.656 KHZ

237 corr => xcorr6, −−corr value

238 su =>xsu6, −− suˆ2

239 sd => xsd6); −− sdˆ2

240

241 cc6Normalization : entity work.operationalblock

242

243 port map(CLK => clk, −−100 mhz;

244 SU => xsu6, −− SUˆ2;

245 SD => xsd6, −− SDˆ2;

246 corr => xcorr6, −− SU SD(corr);

247 Norm => xNorm6, −− output

248 zero => xzero6,

249 sign => xsign6);

250

251

252

253 −−−
254 −−−−−−−Peak detect−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
255 −−−
256 −−peak : entity work.peakdetect

257 −− port map (

258 −− clk => clk, −− 100mhz

259 −− d =>xnorm, −−− input

260 −− q => xq);

261 −−−−
262 −−−−
263 −−−
264 −−−−−−−−−avg block−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Appendix F. VHDL Sample Code 218

265 −−−
266 −−avg : entity work.averageblock

267 −− port map (

268 −− clk => newclk1, −− sample

269 −− d =>xq, −−− input

270 −− q => xavgq);

271 −−
272 −−
273 −−−
274 −−−−−−−−−waveform out ...

−−−
275 −−−
276 −−
277 −−wave : entity work.waveformout

278 −− port map (

279 −− clk => clk, −− 100mhz

280 −− sample => newclk1,

281 −− d =>xnorm, −−− input

282 −− q => wq);

283

284 −−−
285 −−−−−−−Usb Uart interface For ...

labview−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
286 −−−
287

288 −−uartlabview: entity work.main

289 −− port map (

290 −−−− datain => xavgq(7 downto 0),

291 −− datain => wq,

292 −− clk => clk,

293 −− run => xrun,

294 −− dataout => xdataout);

295

296

297 −−
298 −−−− INPUT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
299

Appendix F. VHDL Sample Code 219

300 A ≤ readdata(47 downto 36); −− DAC input A

301 B ≤ readdata(35 downto 24); −− DAC input B

302 C ≤ readdata(23 downto 12); −− DAC input A

303 D ≤ readdata(11 downto 0); −− DAC input B

304

305

306

307 xxnormout1 ≤ xnorm1;

308 xxnormout2 ≤ xnorm2;

309 xxnormout3 ≤ xnorm3;

310 xxnormout4 ≤ xnorm4;

311 xxnormout5 ≤ xnorm5;

312 xxnormout6 ≤ xnorm6;

313 −− xx ≤ A; −− led on fpga

314 −− sdataout ≤ xdataout; −− usb uart pin

315 −− process(spiclk)

316 −− begin

317 −− if rising edge(spiclk) then

318 −− A ≤ xdoutA; −− DAC input A

319 −− end if;

320 −− end process;

321

322

323 end Behavioral;

