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Abstract—Rainfall is one of the most challenging variables
to predict, as it exhibits very unique characteristics that do
not exist in other time series data. Moreover, rainfall is a
major component and is essential for applications that surround
water resource planning. In particular, this paper is interested
in extending previous work carried out on the prediction of
rainfall using Genetic Programming (GP) for rainfall derivatives.
Currently in the rainfall derivatives literature, the process of
predicting rainfall is dominated by statistical models, namely
using a Markov-chain extended with rainfall prediction (MCRP).
In this paper we further extend our new methodology by looking
at the effect of feature engineering on the rainfall prediction
process. Feature engineering will allow us to extract additional
information from the data variables created. By incorporating
feature engineering techniques we look to further tailor our GP
to the problem domain and we compare the performance of the
previous GP, which previously statistically outperformed MCRP,
against our new GP using feature engineering on 21 different
data sets of cities across Europe and report the results. The goal
is to see whether GP can outperform its predecessor without
extra features, which acts as a benchmark. Results indicate that
in general GP using extra features significantly outperforms a
GP without the use of extra features.

I. INTRODUCTION

Predicting rainfall is a major component and is essential

for applications that surround water resource planning and

management. Over the years numerous attempts have been

made at capturing rainfall. One area where it is vital to predict

the rainfall amount accurately is within rainfall derivatives.

Rainfall derivatives fall under the umbrella concept of weather

derivatives, which are similar to regular derivatives defined

as contracts between two or more parties, whose value is

dependent upon the underlying asset. In the case of weather

derivatives, the underlying asset is a weather type, such as

temperature or rainfall. The main difference between normal

derivatives and weather derivatives is that weather is not

tradeable. Hence, typical methods that exist in the literature

for other derivatives are not suitable for weather derivatives.

In this problem domain the underlying asset is the ac-

cumulated rainfall over a given period, which is why it is

crucial to predict rainfall as accurately as possible to reduce

potential mispricing. Contracts based on the rainfall index

are decisive for farmers and other users whose income is

directly or indirectly affected by the rain. A lack or too much

rainfall is capable of destroying a farmer’s crops, hence their

income. Thus, rainfall derivatives are a method for reducing

the risk posed by adverse or uncertain weather circumstances.

Moreover, they are a better alternative than insurance, because

it can be hard to prove that the rainfall has had an impact

unless it is destructive, such as severe floods or drought.

Similar contracts exist for other weather variables, such as

temperature.

Within the literature rainfall derivatives is split into two

main parts. Firstly, predicting the level of rainfall over a

specified time and secondly, pricing the derivatives based

on different contract periods/length. The latter has its own

unique problem, as rainfall derivatives constitute an incom-

plete market1. This means the standard pricing models such

as the Black-Scholes model are incapable of pricing rainfall

derivatives, because of the violation of the assumptions of

the model; namely no arbitrage pricing. Thus, a new pricing

framework needs to be established. This paper focuses on the

first aspect of predicting the level of rainfall. Note it is essential

to have a model that can accurately predict the level of rainfall,

before pricing derivatives, because the contracts are priced on

the predicted accumulated rainfall over a period of time.

In order to predict the level of rainfall for rainfall deriva-

tives, the statistical approaches of Markov-chain extended with

rainfall prediction (MCRP) [1] and spatial-temporal rainfall

(STR) models [2] is used. By predicting the underlying

variable of rainfall, this increases the accuracy of pricing,

which is crucial because contracts are priced ahead of time—

sometimes this can be up to a year ahead. Please note we are

only interested in the approaches that are currently used within

the rainfall derivatives literature, because the problem domain

of predicting accumulated rainfall amounts is different than

applications such as rainfall-runoff or other time-series based

applications. Rainfall-runoff are concerned with either short-

run predictions, requiring data up to an hour or requiring radar

data depending on the application and do not model rainfall

directly, but use rainfall indirectly to the problem domain.

The amount of literature surrounding rainfall derivatives

is quite light, due to rainfall derivatives being quite a new

concept and rainfall being very difficult to accurately measure.

Therefore, we focus on the rainfall prediction process by de-

veloping a methodology that can predict rainfall as accurately

1In incomplete markets, the derivative can not be replicated via cash and
the underlying asset; this is because one can not store, hold or trade weather
variables.



as possible, noted earlier. The general approach of MCRP is

often referred to as a ‘chain-dependent process’ [3], which

splits the model into capturing first the occurrence pattern,

and then the rainfall intensities. The occurrence pattern is

produced by a Markov-chain, where state 0 is a dry day and

state 1 is a wet day. If a wet day is produced then the rainfall

intensity is calculated by generating a random number from

a given distribution (typically Gamma or Mixed-Exponential

distribution), otherwise a value of 0 is assigned (zero rainfall).

We refer the reader to [1] for a complete description and

to [4] where MCRP was most recently applied for rainfall

derivatives. The alternative STR methodology is based on the

simulation of the underlying physical processes that govern

rainfall. The methodology models the storm arrivals and how

it develops and decays over time using a poisson jump process.

We refer the reader to [2] for a complete description and to [5]

where STR was most recently applied for rainfall derivatives.

Even though the above approaches are popular, both face

several drawbacks. First of all, MCRP is very simplistic and

is heavily reliant on past information being reflective of the

future. Additionally, the predicted amount is essentially the

average level of rainfall observed across the study period

and does not take into account annual deviations in weather

patterns. Furthermore, for both approaches the model for each

city needs to be specifically tuned as each exhibits different

statistical properties, i.e. a new model for each city. Lastly,

MCRP produces weak predictive models, as its only focus is

on fitting the historical data. Similarly, STR although closer to

the meteorological methods and is far more robust than MCRP,

does suffer from long range prediction problems. This last

point is very important, as one should not only be interested

in deriving models that describe past data effectively, as it

currently happens; instead, we should also be focusing on

producing effective predictive models, which can offer us

insights on future long range weather trends.

Due to the disadvantages highlighted above, we divert away

from the use of statistical approaches and in this paper we

extend our previous work [6] where we proposed using a

machine learning technique called Genetic Programming (GP).

Rainfall prediction on a daily basis has not been covered in

great detail within the machine learning literature due to the

complex nature of rainfall and the applications are mainly

focussed on either the short term predictions (e.g. rainfall-

runoff models up to a few hours [7] or monthly amounts

[8] [9]). Little literature exists for the daily predictions, e.g.

[10] used a feed-forward back-propagation neural network for

rainfall prediction in Sri Lanka, which was inspired by the

chain-dependent approach from statistics. [11] applied GP to

daily rainfall data, but the GP performed poorly by itself,

although when assisted by wavelets the predictive accuracy

did improve. [6] applied GP for the first time to modelling the

accumulated rainfall amounts using a sliding window within

the context of rainfall derivatives. Results showed that GP

statistically outperformed the most commonly used approach

(MCRP) within rainfall derivatives literature across 21 cities

around Europe.

In this paper, we look to predict rainfall amounts more

accurately to assist with the pricing step, which as mentioned

is the second part of the rainfall derivatives application. We

choose to continue with GP for this paper over other machine

learning techniques not only because it has outperformed

the commonly used approach within the rainfall derivatives

literature, but it has the benefit of producing white box

(interpretable, as opposed to black box) models, which allows

us to probe the models produced. Moreover, we can capture

nonlinear patterns in data without any assumptions regarding

the data. This should allow us to produce a model that can

reflect the ever changing process of rainfall. As a result,

we could capture yearly deviations that the current MCRP

is unable to replicate and provide longer range predictions

that STR is lacking. Additionally, we are able to produce

a more general model, which can be applied to a range of

cities/climates, without having to build a new model each time.

The extension introduced in this paper is on feature en-

gineering. The idea exploited here is that our original data

in its raw values, may have underlying properties that can

further assist the prediction process. Although this approach

is typically used on high dimensionality problems e.g. 100’s

or 1000’s of variables to help with dimension reduction [12],

we experiment to help discover and create more features based

on the same variables used within [6]. Moreover, the variables

used in [6] are very limited, hence is important to create new

features.

Hence, the main contribution of this paper is exploring the

use of feature extraction for the problem of rainfall prediction

within rainfall derivatives. We will create a comprehensive

set of extra features and use a variable selection technique

to select only the most significant features, further tailoring

a GP to the problem domain. The features themselves will

provide additional information to assist with the problem at

hand and aim to achieve better predictive accuracy. In order

to show the effectiveness of the extra features we will follow

and update the methodology used within [6].

The remainder of this paper is organised as follows. Section

II will cover the setup of the data including the data sets that

will be used. Section III describes in detail our GP for rainfall

prediction. Section IV discusses the feature engineering pro-

cess. Section V will then discuss the experimental setup, and

Section VI will discuss the results from feature engineering.

Finally, Section VII will conclude findings and suggest future

research.

II. DATA SETUP

There are two elements to the setup of the data, first is

the number of cities we will test our GP on, including the

length of each training set. Second, is how the data will be

treated and the number of attributes that will be passed to the

algorithms. We follow the same procedure outlined in [6] and

have described the process below.



A. Choice of data

The daily rainfall data used is summarised in Table I, which

includes a total of 21 cities from around Europe. The cities

were chosen based on two aspects, firstly, the availability of

data, hence minimising the potential for missing values. The

data corresponding to the European cities were provided by

the National Centers for Environmental Information2 (NCEI).

Secondly, the climate of each city. In order to get an approach

that can be generalised, different climates are present across

the selection of cities, ranging from very wet climates to very

dry climates. This is an important factor as the climate has

an impact upon an algorithm’s performance, in the literature

individual models are built for each city.

TABLE I
THE LIST OF ALL CITIES WHOSE DAILY RAINFALL AMOUNTS WILL BE

USED FOR EXPERIMENTS.

Cities used for daily rainfall

Amsterdam (Netherlands) Ljubljana (Slovenia)

Arkona (Germany) Luxembourg (Luxembourg)

Basel (Switzerland) Marseille (France)

Bilbao (Spain) Oberstdorf (Germany)

Bourges (France) Paris (France)

Caceres (Spain) Perpignan (France)

Castricum (Netherlands) Potsdam (Germany)

De Kooy (Netherlands) Regensburg (Germany)

Delft (Netherlands) Santiago (Portugal)

Gorlitz (Germany) Strijen (Netherlands)

Hamburg (Germany)

The length of data was chosen to be 10 years of daily

rainfall for training and 1 year of daily rainfall for testing.

We leave it as a future investigation whether different training

lengths can impact the results. The length of training data is an

important aspect, given climatic shifts can occur across long

periods of time. Therefore, by using 10 years allows us to have

sufficient observations to build a model on, without having to

worry about climatic shifts within the period. Additionally,

this will capture the periodic shifts in rainfall that occur each

year, not associated with climatic shifts. As rainfall derivative

contracts are written several months ahead of time and could

span several months at a time, a testing period of 1 year is an

appropriate length. Additionally, forecasting one year ahead

really tests the robustness and suitability of the algorithm.

B. Treatment of data

The way the data is treated is an additional factor, as it

is uncommon that giving raw data values to an algorithm

will return anything of use. Therefore, the data should be

transformed to better suit our problem domain. The end goal

of this work is to price rainfall derivative contracts based on

the accumulated amount of rainfall, over the specified contract

length. For example, a contract for the month of January

2http://www.ncdc.noaa.gov/

Fig. 1. The daily level of rainfall in tenths of mm of Luxembourg over the
period from 01/01/2013 till 31/12/2013.

Fig. 2. The daily level of rainfall in tenths of mm of Luxembourg using the
sliding window approach over the period from 01/01/2013 till 31/12/2013.

would require the summation of daily rainfall over 31 days.

An important aspect, which should be taken into account is

that contracts must be in the future, usually up to a year ahead

of time and the contract period can be of any length. The most

common period lengths being monthly or seasonally, but there

is nothing stopping having a contract of 37 days or 164 days

being specified. In addition, there is an even greater necessity

for transforming the data, given the unique aspect of rainfall.

Daily rainfall is one of the most volatile and hardest variables

to predict, which includes (depending upon climate) long or

frequent periods of wet and/or dry spells. Findings from [11]

suggest that using daily values for GP is unsuitable given

the relative poor performance of their GP. Figure 1 shows

the annual rainfall for Luxembourg and just how volatile and

unpredictable the rainfall process is over a year.

Therefore, we use a sliding window, which will transform



the data to something more manageable and better suited for

the problem domain. Figure 2 shows the benefit of applying a

sliding window approach to the data. The output appears a lot

less random, which was the motivation behind applying the

sliding window, i.e., to help smooth out the data. Additionally

the day-by-day volatility appears to have decreased and a

pattern in rainfall is more easily noticeable. This approach

is very flexible to the problem of predicting rainfall and can

be modified to any length of interest. We refer the reader to

[6] for a more detailed explanation of the process.

C. Data variables

In order to predict the accumulated rainfall amount, histori-

cal data from previous periods in the same form is required. If

we predict for a 31 day sliding window, then our data variables

should be consistent with this. Therefore, constructing the

variables in the same way from [6], we generate a set of

variables rt and ry . Where rt is the accumulated rainfall

amount in the last known non overlapping sliding window t

periods ago. Similarly, ry is the accumulated rainfall amount in

the current sliding window y years ago. We use this latter kind

of variable to capture information regarding annual rainfall

variations. The variables are shown in Figure 3. For example

if our target day was 1st January 2016, then rt−1 is 1st

December 2015 - 31st December 2015, rt−2 is 31st October

2015 - 30th November 2015 and ry−1 is 1st January 2015 -

31st January 2016.

Fig. 3. The sliding window value with the targets day amount with its
respective t’s and y’s. The daily rainfall amounts within each boundary would
be accumulated.

To sum up what we have discussed in this section, the

data sets that we will use consist of 21 different European

cities, from different climate types. In addition, we will use

a sliding window approach to summarise the data, instead of

daily predictions. Lastly, the attributes we will be using for

predicting the rainfall amounts are the previous contract length

periods rt and ry .

III. OUR GENETIC PROGRAMMING METHODOLOGY

Here we briefly outline the GP used in [6] for the problem

of rainfall prediction. To avoid illegal trees being generated we

use a Strongly-typed GP (STGP) [13] allowing us to specify

different types. Several modifications have been made to the

STGP, which will be covered briefly here.

A. Terminal set

There are three types of elements to the terminal set.

The first set of elements in the terminal set includes all the

variables available within the data. The variables are defined

by the original ry’s and rt’s calculated from the original data.

The second element is an ephemeral random constant (ERC),

which will pick a uniformly distributed random number. We

allow our ERC to choose a random number between the limits

of -500 to 500. We want to generate a larger spread, due to

predicting accumulated rainfall over a contract length, rather

than daily amounts. Additionally, we allow for flexibility in

our ERC and include a separate range for positive and negative

numbers. Therefore, allowing a way to reduce the search space

for choosing meaningful random numbers. The ERC requires

four parameters to control the range of random numbers. Two

parameters to control the positive range and two to control the

negative range. Each different range requires a parameter for

its upper bound and a parameter for its lower bound.

The third element is a set of constants from -4 to 4, at 0.25

intervals, which will take a separate type from the terminals

already discussed. These are constants that are specific to the

power function. Due to using a STGP, we can ensure that

the second argument of the power function is always one

of these constants and does not create an illegal tree. We

opt for choosing from within this range, to avoid excessively

large numbers being created, whilst maintaining a reasonable

amount of options for our GP to choose from during initiali-

sation and evolution.

TABLE II
GP FUNCTION AND TERMINAL SETS.

Set Value

Functions
ADD, SUB, MUL, DIV,

POW, SQRT, LOG

Terminals

11 rt periods (t-1, t-2, . . . , t-11),

10 ry periods (y-1,y-2,. . . ,y-10),

ERC,

Constants in the range [-4,4]

B. Function set

The function set includes: Add (ADD), Subtract (SUB),

Multiply (MUL), Divide (DIV), power (POW), square root

(SQRT), and log (LOG). The functions LOG, SQRT and DIV

are protected, because the data includes zeroes and negative

numbers. If the input is zero or negative then SQRT and LOG

will return zero. If the second argument passed to DIV is

zero (denominator), then zero is also returned. Protecting these

values will stop NaN’s (not a number) and Inf’s (infinity) from

being generated. The final function that has been modified is

POW. It has been forced such that the second argument will

be a constant within a specified range as mentioned within

the previous discussion regarding the terminals stopping very

large values from being generated. Additionally, we allow



TABLE III
A TABLE SHOWING THE COMPLETE LIST OF FEATURES TO BE

CALCULATED

Features

Mean Standard Deviation

Sum

Difference Adjacent Difference

Moving Average Standard Deviation across MA

Last Maximum Last Minimum

Time Last Maximum Time Last Minimum

Magnitude of Maximum Magnitude of Minimum

Maximum Last Contract Length Minimum Last Contract Length

Difference of Maximum over Last Contract Length

Difference of Minimum over Last Contract Length

for fractional powers, which means there is the potential for

rooting negative values and producing NaN. One final check

is whether the first argument (number to be raised by a

power) is negative, if so then the second argument must be

a whole number, which will be rounded to the nearest number

if fractional. These adjustments will avoid illegal trees being

generated.

All functions and terminals presented in this section are

summarised in Table II.

C. Management of trees

Another adjustment made involves dealing with negative

number outputs. For this problem domain the values have to be

greater than or equal to zero, it is impossible to have negative

rainfall amounts. Therefore, we include a wrapper around each

individual (candidate solution) to change the prediction to zero

if the prediction was less than zero. The final adjustment made

was to ensure a good balance between variables and random

numbers in an individual. Therefore, when initialising the

population using the ramped-half-and-half method, we make

sure that the first child is either a function or a variable,

whereas the second child can either be a variable, an ERC

or another function. This will avoid trees being dominated by

random numbers.

D. Fitness (evaluation) function

The fitness used for evaluation will be the root mean squared

error, given by:

RMSE =

√

√

√

√

1

N

N
∑

t=1

(rt − r̄t)2, (1)

where N is the length of the data set, rt represents the

predicted rainfall amount and r̄t represents the actual rainfall

amount for the tth data point (time index).

IV. ADDITIONAL FEATURES

Here we outline the features that are to be created to extract

additional information from the variables outlined in II-C

with the given number of rt’s and ry’s as specified from II.

The motivation is that the original variables previously used

may contain relationships between themselves that provide

additional information that can be extracted. Additionally, we

can create features that GP does not need to construct by itself

or does not have the means to easily do so. Therefore, we

are saving precious computational time during the evolution

process by giving GP the necessary tools ahead of time, thus

we do not need to rely on the features being generated by

chance or even not at all. One issue that is raised by such an

approach is that we will be increasing the dimensionality of

the problem, but we are confident that the extra information is

worthy of the increased dimensionality by creating meaningful

features in the first place. Given that we are increasing the

dimensionality we will also select the best features from those

generated to avoid issues caused by high dimensionality.

A. Creation of features

Table III outlines the full list of features that we are to

create for the problem at hand. We opt to create them ahead

of time, rather than having GP randomly create them during

the evolution process as demonstrated by [12]. If left for GP

to randomly create the features, we will not know which

features were considered other than the best ones in the final

individual (if any). Therefore, by creating them ahead of time,

we can analyse and compare across multiple data sets which

features were actually used from the initial set. Likewise, as

previously mentioned we get more choice in deciding what

would make a good feature by our intuition of the problem

domain. Subsequently, from the list of features created we may

want to enforce a structure within the trees on how to handle

or which features are allowed to be combined. Thus, avoiding

wasted evolution time during the experiments. Additionally,

we calculate the features by respecting the natural temporal

order of the data, rather than randomly choosing variables

ignoring the temporal order.

The Mean, Standard Deviation and Sum are all calculated

over various lengths of periods for both rt and ry , e.g.

Meant−1 would be the mean of the corresponding rainfall

amounts at times rt−1 and rt−2, Meant−2 would be the mean

of the corresponding rainfall amounts at times rt−1, rt−2 and

rt−3.

The Difference is very similar, however, the relevant period

is always taken away from either rt−1 or ry−1 e.g., Diffy−2

would be the difference between rainfall amounts ry−1 and

ry−2, whereas Diffy−3 would be the difference between rain-

fall amounts ry−1 and ry−3. Adjacent difference (AdjDiff)

works in a similar way, but is between adjacent pairs e.g.,

AdjDifft−2 would be the difference between rainfall amounts

rt−2 and rt−3.

Moving Average (MA) is calculated on each individual rt
and ry in turn and will go back a predefined number of

days rather than across parameters like the Mean previously

described. Likewise, Standard Deviation across the Moving

Average (StdMA) works in the same way, but calculates the

standard deviation instead of the average. We allow for dif-

ferent lengths of moving averages as we make no assumption



what value is the most appropriate. We vary the MA length

from the last 10-100 days in increments of 10 days.

Last Maximum (LMax) and Last Minimum (LMin) is the

last known local maximum and local minimum point of

our data, as we move through our data. The Magnitude of

Maximum and Magnitude of Minimum is how far LMax and

LMin is from the mean value of our data. Maximum of last

Contract Length (MaxCL) and Minimum of Last Contract

Length (MinCL) are similar, but are over the predefined

contract length, instead of the last known local maxima or

minima. Thus, LMax and MaxCL can be different, similarly

LMin and MinCL can be different. Difference of Maximum

over Last Contract Length and Difference of Minimum over

Last Contract Length is the deviance away from the average

LMax and LMin values respectively.

The features presented have been chosen to assist GP and

are common for statistical analysis or for time-series analysis.

Additionally, our GP must operate within a set of constraints

whether it is the depth of the tree, the structure of the tree or

the terminal/function set (Table II) available. Therefore, we are

able to create features that GP would not be able to randomly

create if left during the evolution process. Additionally, we

have created features that are bounded by temporal constraints,

thus reducing the complexity and overhead of checking for

feasible feature creation.

B. Selection of features

From the extra features in Table III using the last 11 rt’s and

10 ry’s given in Table II, we are able to create a total of 514

extra features. From the features created, not all of them may

be useful and in fact some may not contribute much (or any)

in terms of extra information. Therefore, we will use a well

known variable selection technique called Correlation based

Feature Selection (CFS) [14]. This technique was designed to

select a feature subset where each feature has a high predictive

ability and the degree of redundancy between features is low.

Thus, we only choose variables that have a positive influence

to predict.

TABLE IV
A TABLE SHOWING THE TOTAL NUMBER OF FEATURES PER CITY AS

SELECTED BY CFS

City
Number

of features
City

Number

of features

Amsterdam 59 Ljubljana 46

Arkona 56 Luxembourg 40

Basel 48 Marseille 61

Bilbao 57 Oberstdorf 50

Bourges 51 Paris 47

Caceres 47 Perpignan 29

Castricum 55 Potsdam 59

Dekooy 60 Regensburg 52

Delft 43 Santiago 58

Gorlitz 59 Strijen 43

Hamburg 37

From the 514 features in total we use CFS to select the best

features for each data set based on the training data. Table IV

shows the full list of cities with their respective number of

features after feature selection. As we can observe we have

been able to successfully reduce the number of features from

514 to a range between 29 to 61 depending upon the city that

will be used for our experimentation.

V. EXPERIMENTAL SETUP

A. Parameter tuning - GP

We used a package called iRace [15] to find the optimal

parameters for GP based on the training data, presented in

Table V.

TABLE V
THE BEST CONFIGURATION OF GP FROM OPTIMISING THE PARAMETERS

USING IRACE.

GP parameters

Max depth of tree 8 Elitism percentage 0.03

Population size 1400 Number of gens 30

Crossover probability 0.76 ERC negative low -495.36

Mutation probability 0.69 ERC negative high -102.56

Primitive probability 0.55 ERC positive low 100.77

Terminal/Node bias 0.2 ERC positive high 438.58

B. Experimental methodology

Using the optimal GP parameters from Table V, we are then

ready to move on to the experimental comparison between our

GP’s, which are tested on all 21 datasets. GP will use the full

and most recent training set (01/Jan/2004 - 31/Dec/2013), be-

fore testing on the unseen test set (01/Jan/2014 - 31/Dec/2014).

As GP is a stochastic algorithm, we run it for 50 times on each

city and report the average over those 50 runs.

We will be running three different experiments for GP, the

first (GPOF) will be GP using the previous 11 rt periods

and previous 10 ry periods noted in Table II. The second

experiment (GPEF) will be GP using all of the extra features

after feature selection given in table IV along with the original

21 features used in the first experiment. Due to an uneven

distribution of extra features per data set, we will pick the 21

best ranked features from those generated to match the num-

ber from the initial experiment. Hence, the third experiment

(GPEF21) will be to use the best ranking 21 features from each

data set along with the original 21 features used in the first

experiment. For completeness we will include the performance

of MCRP, which is the most common method used within

rainfall derivatives. We do not include STR mentioned earlier,

due to not coping well with long run predictions.

VI. RESULTS

The performance of GPOP, GPEF and GPEF21 is presented

in Table VI based on the average RMSE performance from

the testing set for each city. For completeness we have also

included the results from MCRP. The table has been split



between those data sets seen by iRace (top) and unseen

(bottom), arranged by alphabetical order. We have chosen to

do this, as the best GP configurations were chosen based on

the validation set of the 11 cities shown in the top half. Hence,

we would expect GP to perform better. Whereas, the bottom

10 cities by have not influenced the choice of best parameter

configuration for GP and help show the ability to generalise.

Thus, allowing us to use our best configuration on future data

sets that exhibit a similar climate.

TABLE VI
THE AVERAGE RMSE PERFORMANCE IN TENTHS OF MM FOR EACH OF

OUR EXPERIMENTS ACROSS EACH CITY.

Data GPOF [6] GPEF GPEF21 MCRP

Amsterdam 412.49 503.93 500.53 373.42

Arkona 310.45 275.64 278.42 290.72

Bilbao 519.67 437.58 436.31 659.03

Bourges 375.46 335.29 338.26 382.62

De kooy 343.66 336.08 329.35 358.27

Ljubljana 1027.62 897.10 917.51 1058.86

Luxembourg 517.34 477.67 482.29 585.23

Marseille 505.93 492.14 502.01 956.35

Potsdam 320.66 329.83 317.28 327.98

Regensburg 330.33 300.43 327.47 331.07

Santiago 1062.60 1043.97 1067.32 1085.10

Basel 425.13 403.58 413.39 467.23

Caceres 438.41 436.25 434.46 687.74

Castricum 438.88 409.25 406.94 465.77

Delft 404.47 447.56 444.09 449.82

Gorlitz 304.38 282.29 296.24 304.92

Hamburg 408.25 374.75 379.85 409.56

Oberstdorf 677.36 647.27 647.06 671.99

Paris 277.79 271.73 273.25 280.40

Perpignan 760.73 760.08 760.66 968.74

Strijen 298.62 287.53 310.30 343.21

GPEF achieved the lowest RMSE on 13 data sets, whilst

GPEF21 only 6 times and MCRP and GPOF sharing 1 each.

This is a very good result, showing the positives that can be

achieved with the use of extra features. Other than Amsterdam,

GP once again outperformed MCRP over the testing period

for all other cities. Generally speaking, the gains in predictive

accuracy from GPEF and GPEF21 over GPOF and is an

important step forward for the second part of pricing. From

the results the percentage gains in lower RMSE from the use

of extra features ranges from 0.1% for Perpignan to 16%

for Bilbao. Other noticeable gains include Ljubljana (13%),

Bourges (11%) and Arkona(11%), with the overall average

increase in performance just over 6%.

To check which of our GP’s performed better in terms of

victories, we compute the mean rank based on Table VI — the

lower the rank, the better the GP’s performance. Furthermore,

in order to determine whether the above results are statistically

significant, we compare the four approaches by using the

Friedman test [16]. The Friedman test is a nonparametric test

for testing the difference in mean between multiple related

samples. The null hypothesis is that there is no significant

difference between the average of the four approaches. We

apply the test at the 5% significance level.

TABLE VII
THE MEAN RANKINGS OF THE FOUR EXPERIMENTS, AND THE

FRIEDMAN’S p VALUE TO TEST WHETHER ONE OR MORE OF THE

APPROACHES STATISTICALLY OUTPERFORMED THE OTHERS.

Approach Ranking

GPOF 2.81

GPEF 1.62

GPEF21 1.86

MCRP 3.71

Friedman p-value 1.36x10−7

Table VII shows the mean rank of the four approaches,

GP using original features, GP using all extra features, GP

using the best ranking 21 features and MCRP, with values

of 2.81, 1.62 and 1.86, 3.71 respectively, where a lower rank

indicates better performance. Therefore, across all cities on

average GP with all extra features outperformed the three other

approaches. As we can observe, the Friedman test result has a

p value of 1.36x10−7, which is less than the 5% significance

level. Therefore, there is strong evidence to reject the null

hypothesis, and conclude that there is a statistical difference

between the four approaches.

Due to having a statistical difference, we will perform the

Holm post-hoc test in order to determine which of the four

approaches statistically outperformed the other. The results can

be found in Table VIII.

TABLE VIII
A TABLE SHOWING THE PAIRED COMPARISONS OF INTEREST FROM THE

HOLM POST-HOC TEST FOR OUR FOUR EXPERIMENTS TO DETERMINE

WHICH APPROACH OUTPERFORMED ONE ANOTHER

Paired comparisons p value Holm

GPEF vs. MCRP 1.4484x10−7 0.0083

MCRP vs. GPEF21 3.1408x10−6 0.0100

GPOF vs. GPEF 0.0028 0.0125

GPOF vs. GPEF21 0.0168 0.0167

GPOF vs. MCRP 0.0232 0.0250

GPEF vs. GPEF21 0.5501 0.0500

The table shows that all of the approaches using GP statis-

tically outperformed MCRP, shown by p values 1.4484x10−7,

3.1408x10−6 and 0.0232 which are less than the Holm scores

of 0.0083, 0.0100 and 0.0250 respectively. This is an important

result as it shows that GP once again is able to outperform

MCRP, the most common approach that exists within the

literature of rainfall derivatives.

GPEF does not statistically outperform GPOF at the 95%

confidence level, with a p value of 0.0168 which is marginally

greater than the Holm score of 0.0167. However, we obtain



statistical significance at the 90% confidence level where the

Holm score would be 0.0333. Despite this, it still shows a

positive result as we are statistically outperforming MCRP at

the 95% confidence level using GPEF21.

The main result is that GPEF does statistically outperform

GPOF, with a p value of 0.0028 which is less than the Holm

score of 0.0125. Therefore, these results show that the use of

carefully designed extra features is beneficial and does help

increase the predictive power of GP.

From the above results, we can conclude that the use of extra

features is a beneficial in assisting GP for predicting rainfall in

the context of weather derivatives. Shown by outperforming

GPOF and also the most common approach in the rainfall

derivatives literature (MCRP). This is a very important result,

as it shows that there are more potential gains to be made for

predicting rainfall and that we can further tune our GP to the

problem at hand. Especially as by producing more accurate

rainfall predictions, helps to increase the accuracy of pricing

rainfall derivatives. As we explained at the beginning of this

paper, is another important problem. Lastly, as we are able to

give more confidence surrounding the prediction of rainfall,

this will help to reduce potential mispricing and attract more

investors to the rainfall derivative market.

VII. CONCLUSION

This paper extends the work by [6] by further looking to im-

prove the predictive accuracy of rainfall within the application

of rainfall derivatives. The extension proposed in this paper is

the use of carefully designed extra features and to see whether

they have a positive effect on Genetic Programming’s (GP)

ability to predict accumulated rainfall amounts. The motivation

for this paper comes from questioning whether the features

used within [6] were the most appropriate, which was left for

future research. The idea is that the standard features used may

contain additional information that might not be utilised if left

to GP by itself to construct. Thus, we aimed to construct a set

of new features that could extract more information to boost

the predictive performance of GP.

Strongly-typed Genetic Programming (STGP) was our cho-

sen methodology, due to producing white box (interpretive)

models and to being a technique that can detect and learn

from nonlinear data. Furthermore, STGP was chosen over

the standard GP, because we can influence types to avoid

illegal trees being created. In this paper we compared our

STGP across three different experiments, the first was using

the original features used in [6], the second was using a set of

extra features and the third was to use a smaller subset of extra

features. The first experiment and Markov-chain extended with

rainfall prediction (MCRP) acted as our benchmark for our

later experiments.

Using daily rainfall data across a collection of cities from

Europe, we predict accumulated rainfall based on using a

sliding window. This approach is more intuitive to the problem

at hand. When we compared the performance of our three

GP approaches, we found sufficient evidence to suggest that

the use of the proposed extra features is beneficial and that

GP using extra features statistically outperforms a GP using

the original features and the most currently used approach

(MCRP).

Future work will include testing other commonly used

regression algorithms to compare against GP. Furthermore, we

will develop a method to decompose the rainfall prediction

problem down for GP to further improve the accuracy. Lastly,

since we have obtained further promising rainfall prediction

results, we can also move towards the pricing task of rainfall

derivatives and investigate if our current results have an overall

positive effect in pricing.
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