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ABSTRACT

In this paper, we introduce Ant-MinerMA to tackle mixed-
attribute classification problems. Most classification prob-
lems involve continuous, ordinal and categorical attributes.
The majority of Ant Colony Optimization (ACO) classifica-
tion algorithms have the limitation of being able to handle
categorical attributes only, with few exceptions that use a
discretisation procedure when handling continuous attribu-
tes either in a preprocessing stage or during the rule creation.
Using a solution archive as a pheromone model, inspired
by the ACO for mixed-variable optimization (ACOMV), we
eliminate the need for a discretisation procedure and at-
tributes can be treated directly as continuous, ordinal, or
categorical. We compared the proposed Ant-MinerMA aga-
inst cAnt-Miner, an ACO-based classification algorithm that
uses a discretisation procedure in the rule construction pro-
cess. Our results show that Ant-MinerMA achieved signifi-
cant improvements on computational time due to the elimi-
nation of the discretisation procedure without affecting the
predictive performance.

CCS Concepts

•Computing methodologies → Supervised learning
by classification;

Keywords

ant colony optimization, Ant-Miner, data mining, classifica-
tion, continuous attributes

1. INTRODUCTION
Data mining is the process of extracting knowledge and

patterns from data [1, 22]. One of the major data mining
areas is classification. Classification is concerned in find-
ing patterns in data sets, then use those patterns to clas-
sify any new (future) data. Classification problems can be
viewed as optimization problems, where the aim is to cre-
ate the best model that represent the predictive patterns in
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the data. The discovered classification model is then used
to classify—predict the class attribute value of—new exam-
ples (unseen during training) based on the values of their
predictor attributes. Using classification rules gives a more
comprehensible classification model compared to black-box
models such as SVMs or artificial neural networks [17], which
are more difficult to be interpreted.

The first Ant Colony Optimization (ACO) classification
algorithm, called Ant-Miner, was proposed in [16]. Ant-
Miner and its extensions [7] were used to successfully extract
IF-THEN classification rules from data. Each ant traverses
a construction graph, where each node in the graph con-
sists of a condition that the ant might choose to add to its
rule. The majority of ACO-based classification algorithms
are limited to cope only with categorical attributes, therefore
continuous attributes must be discretised in a pre-processing
stage. cAnt-Miner [13, 14] was the first Ant-Miner exten-
sion to cope with continuous attributes directly. It employs
a dynamic discretisation procedure during the rule construc-
tion: when an ant select a node representing a continuous
attribute, the discretisation procedure is used to determine
cutoff value in a dynamic manner. A potential drawback
of this approach is its computational time: discretisation
requires sorting and the evaluation of multiple candidate
cuttoff values, which can significantly increase the compu-
tational time of the algorithm when applied to large data
sets.

In this paper we propose a new approach to extract IF-
THEN of classification rules, based on the ACO for mixed-
variable optimization (ACOMV) [3]. Our approach han-
dles the mixed attributes directly: attributes are catego-
rized as continuous, ordinal and categorical attributes. This
takes full advantage of the mechanisms of ACOMV to tackle
mixed-variable optimization to cope with mixed-attribute
classification problems. More importantly, it eliminates the
need for a discretisation procedure, which improves the com-
putational time for most of the large datasets. We com-
pared the predictive accuracy and computational time per-
formance of the proposed algorithm against cAnt-Miner in
30 publicly available data sets. Our results show that the
proposed algorithm significantly improves the computational
time when compared to cAnt-Miner while maintaining the
predictive accuracy.

The remainder of this paper is organized as follows. We
begin by reviewing the literature of ACO-based classifica-
tion algorithms in Section 2. Then, we present an overview
of cAnt-Miner and ACOMV in Section 3. We then present
our proposed Ant-MinerMA algorithm in Section 4, com-



putational results are presented in Section 5, and finally,
conclusions and directions for future work are discussed in
Section 6.

2. RELATED WORK
There are two main approaches to apply ant colony opti-

mization to create classification rules: grammar- and graph-
based approaches. In grammar-based approaches, the rule
creation is guided by a context-free grammar, which deter-
mines the valid structure of rules. The Grammar-Based Ant
Programming (GBAP) algorithm [9, 10] was the first imple-
mentation of a grammar-based approach. Similar to most of
ACO-based classification algorithms, GBAP does not cope
with continuous attributes directly and it uses a discretisa-
tion procedure in a preprocessing stage.

Graph-based approaches started with Ant-Miner [16], whi-
ch was limited to discrete datasets only. Several extensions
of Ant-Miner have been proposed [7]. Ant-Miner2 [6] and
Ant-Miner3 [5] presented a simple heuristic function using
density estimation. Ant-Miner+ [8] extended Ant-Miner in
several aspects: it uses a class based heuristic, since an ant
pre-selects the predicted class value and extracts a rule ac-
cordingly; it also employs a different pheromone initializa-
tion and update procedure based onMAX −MIN ant sys-
tem (MMAS) [21], where the use of the lower and upper
bound values allows the algorithm to avoid early stagnation
of the search; and the complexity of the construction graph
is reduced, in terms of the number of edges connecting ver-
tices, by defining it as a direct acyclic graph (DAG).

Additionally, Ant-Miner+ employs a distinctive procedure
for categorical and ordinal attributes. Categorical attributes
have unordered nominal values (e.g., male and female), whi-
ch were treated as a tuple (attribute,=, value). Ordinal
attributes have a natural order (e.g., poor < acceptable <

good), where the algorithm creates upper and lower bounds
on the values chosen by the ant: the first type represents a
lower bound of the interval and takes the form (attribute, ≤,
valuei); the second type represents an upper bound of the
interval and takes the form (attribute, ≥, valuej), where
valuei and valuej are values from the attribute domain.
Continuous attributes are discretised in a pre-processing sta-
ge and then treated as ordinal attributes.

cAnt-Miner was proposed in [13], where an entropy-based
method is proposed for handling the continuous attributes
discretisation during the rule construction process. The use
of the minimum description length (MDL) principle in cAnt-
Miner to allow construction of discrete intervals with lower
and upper bounds was proposed in [14]. Further improve-
ments in the cAnt-Miner are found in [18], where the authors
proposed the use of multiple pheromone levels to extract
rules predicting different class values. The latest improve-
ments based on cAnt-Miner were presented in [15], where us-
ing a new sequential covering strategy, each ant creates and
evaluates a rule list (considering interactions among rules)
rather than creating and evaluating a single rule like most
versions of Ant-Miner. More recently, an extension to dis-
cover unordered rules (set of rules) instead of ordered rules
(list of rules), with the aim of improving the interpretability
of the discovered rules, was proposed in [11, 12].

Despite the Ant-Miner extensions proposed in the litera-
ture, extending Ant-Miner to use a archive-based pheromone
model to handle continuous and categorical values (i.e., us-
ing ACOMV model ) is a research topic that has not been

explored, to the best of our knowledge. Most of the proposed
extensions handle continuous attributes in a pre-processing
stage, while cAnt-Miner employs a dynamic discretisation
procedure using a heuristic to define intervals.

3. BACKGROUND

3.1 cAnt-Miner

cAnt-Miner uses a graph-based approach to extract IF-
THEN classification rules from data. Let r be a rule, each
rule is a n-dimensional vector of terms t that are joined with
AND, such that IF t1 AND t2 .... AND tn THEN (class),
each term ti consist of a tuple (attribute, operator, value).
The cAnt-Miner construction graph consists of a fully con-

nected graph. Let ai be a nominal attribute and vji be the
j-th value of ai attribute. For j = 1, ..., bi, where bi is the
number of values of attribute ai, each vij is added as a node
(ai, =, vij) to the graph. Let ci be a continuous attribute,
only one node is added with (ci) to the graph—the operator
and value are not defined for a continuous attribute node.

Suppose an ant x is generating a rule rx. It starts with an
empty rule at node i and probabilistically chooses to visit
a node j based on the amount of pheromone and heuristic
information on the edge Eij , given by

P (Eij) =
τα
ij · ηβ

j
P

l2 allowed i

τα
il · ηβ

l

(1)

where τij is the pheromone value of the edge connecting
node i to node j; ηj is the value of the heuristic information
for node j; node l is a node in the neighbourhood of node i;
the exponents α and β are used to control the influence of
the pheromone and heuristic information, respectively.

If a node with a nominal attribute is selected, then a term
in the form (ai = vij) is added to the rule. If a node with
a continuous attribute is selected, then a dynamic discreti-
sation procedure based on the entropy measure is used to
choose an operator and value to create a term in the form
(ai ≤ vij) or (ai > vij). This is done with a complexity of
O(n log n), where n is the number of the training instances,
since the values need to be sorted and multiple cutoff values
are evaluated.

An ant keeps adding terms until the rule covers less train-
ing examples than a user specified threshold, or all attributes
are already added to the rule.

3.2 ACOMV

ACOMV [3] is applied to mixed variables optimization
problems with r real-valued variables, c categorical-valued
variables and o ordinal-valued variables. The ACOMV uses
a solution archive (SA) as a form of pheromone model, in-
stead of a pheromone matrix. The archive structure con-
tains R previously generated solutions. Each solution Sj in
the archive, for j = {1, 2, ..., R}, is a vector containing n-
dimensional real-valued components, m-dimensional index-
valued components and o-dimensional ordinal-valued com-
ponents. The archive is sorted by the quality Q of solutions,
so that Q(S1) ≥ Q(S2) ≥ · · · ≥ Q(SR).
Each solution Sj is associated with weight wj that is re-

lated to Q(Sj), where wj is calculated using the Gaussian
function given by
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where q is a variable that is used to control the extend of the
top-ranked solution influence on the construction of new so-
lutions. The weight of solution Sj is used during the creation
of new solutions, as an indicator for the level of attractive-
ness of this solution. The higher the weight of the solution
Sj , the higher the probability of sampling a new solution
around the values of Sj .

ACOMV starts by randomly generating R solutions in the
archive. The solution construction phase starts by each ant i
generating a new Si candidate solution. When constructing
solution Si, a probabilistic solution construction method is
used to sample new values from the solution archive accord-
ing to each attribute type. At the end of an iteration, all
solutions created by the ants in the colony are added to the
archive. The archive is sorted and only the best R solutions
are kept and the remaining solutions are removed.

3.2.1 Continuous variables

Continuous variables are handled by ACOMV using ACOR

[19], where each ant i probabilistically chooses one solution
from the archive based on

Pj =
wj

RP

l=1

wl

(3)

where Pj is the probability of selecting the j-th solution
from the archive to sample the new continuous variable value
around it, R is the size of the archive, and wj is the weight
associated with the j-th solution in the archive. Let Si de-
note a new solution sampled by ant i around the chosen
solution Sj for continuous attribute a, the Gaussian proba-
bility density function (PDF) is given by

Si,a ∼ N(Sj,a, σj,a) (4)

σj,a = ξ

RX

r=1,j 6=r

|Sj,a − Sr,a|
R− 1

(5)

where Sj,a is the value of the variable a in the solution j of
the archive, σa,j is the average distance between the value of
the variable a in the solution j and the value of a in all the
other solutions in the archive and ξ is a user-defined value
representing the convergence speed of the algorithm.

3.2.2 Ordinal variables

Ordinal variables are variables whose order have a mean-
ing, e.g., small < medium < large. ACOMV handles ordinal
variables as continuous variables, where the continuous value
is the index of the chosen value in the ordered attribute val-
ues. Then, a final step is to round up the value generated
from Equation (4) to the nearest index. Using this relaxed
continuous sampling allows the algorithm to take in consid-
eration the order of the attribute values.

3.2.3 Categorical variables

Categorical variables are treated differently by ACOMV.
Suppose a categorical variable i that has t possible values,

each ant has to choose vl where vil ∈ {vi1, v1, .., vit}. The
probability P i

l to choose vl is given by

P
i
l =

αl

tP

l=1

αj

(6)

where the variable αl is weight function for each value of
the categorical variable, based on the weight of the solution,
calculated as

αl =

8

><

>:
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q

κ
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(7)

where αl represents the weight associated with vl, wji is
the weight of the first solution that uses the value vj in the
archive, uj is the number of solutions that use the value vj in
the archive, κ is the number of values in this attribute that
are not used in the archive, and q is a variable that is used
to control the extend of the top-ranked solution influence on
the construction of new solutions.

The categorical sampling procedure allow an ant to con-
sider two components when sampling a new value. The first
component biases the sampling towards values that are used
in high-quality solutions but do not occur very frequently in
the archive. The second component biases the sampling to-
wards unexplored values in that attribute.

4. MIXED-ATTRIBUTES IN ANT-MINER
The proposed algorithm Ant-MinerMA uses an ACOMV

procedure to handle mixed attributes types, eliminating the
need of an entropy-based discretisation when handling a con-
tinuous attribute, and also coping with ordinal attributes.
The archive is used to sample conditions for the creation of
the rules instead of traversing a construction graph. A high-
level pseudocode of Ant-MinerMA is shown in Algorithm 1.

Ant-MinerMA starts with an empty list of rules (line 1),
and iteratively (outer while loop in line 2) adds the best rule
found along the iterative process to the list of rules (line 20),
while the number of uncovered training examples is greater
than a maximum uncovered value in a sequential covering
fashion.

At each iteration, a single rule is created by an ACOMV

procedure (lines 3–18). It starts by initializing the archive
with R random generated rules (line 3). Then, each ant
generates a new rule (lines 6-11). Once m new rules have
been generated, where m is the number of ants, they are
added into the solution archive (line 12). The R and m

rules are sorted and the m worst ones are removed from the
archive. The procedure to create a new rule is repeated until
the maximum number of iterations has been reached, or a
restart procedure is once applied.

4.1 Archive and Rule Structure
As aforementioned, the archive consist of R rules. Each

rule consist of a vector of n-dimensional terms, where n is
the number of attributes in the dataset. Each term tj in
rule Ri contains a flag to indicate if this term is enabled or
not, an operator and value(s). For continuous attributes,
the operator could be either LESS THAN OR EQUAL, GREATER
THAN or IN RANGE; categorical attributes’ operator is always
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Figure 1: Archive Structure: example of 3 solutions of the archive, each solution showing a single example
of each attribute type. Ar is a real-valued (continuous) attribute, Ac is a categorical attribute and Ao is an
ordinal attribute.

Algorithm 1: High-level pseudocode of Ant-MinerMA

Data: training data
Result: list of rules

1 RuleList ← {}
2 while |TrainingData| < MaxUncovered do
3 A ← Generate Random Rules
4 while t < MaxIterations and not Restarted do
5 At ← {}
6 while i < number of ants do
7 Ri ← Create New Rule
8 Ri ← Prune(Ri)
9 i ← i+ 1

10 At ← Ri

11 end
12 A ← UpdateArchive(At)
13 t ← t+ 1
14 if stagnation() then
15 Restart(A)
16 Restarted ← True

17 end

18 end
19 Rbest ← BestRule(A)
20 RuleList ← RuleList + Rbest

21 TrainingData ← TrainingData − covered(Rbest)

22 end
23 return RuleList

EQUAL; and ordinal attributes have an operator of either LESS
THAN OR EQUAL or GREATER THAN OR EQUAL.

Figure 1 illustrates a solution archive with 3 solutions,
each solution showing a single example of each attribute
type. The solutions are stored according to their quality
in the archive, where the best is stored at the top (highest
ranking) and the worse at the bottom (worst ranking). The
archive stores the quality of each rule in f(S) and the weight
in w calculated by Equation (2).

In Figure 1, Ar is an example of a real-valued (contin-
uous) attribute in the dataset, Ac is an example of a cat-
egorical attribute in the dataset and Ao is an example of
an ordinal attribute in the dataset. The solution S1 is an

example in which the continuous attribute Ar is enabled
(Flag = T), the operator is GREATER THAN and value v1 is
set—representing the term Ar > v1. The categorical at-
tribute Ac is enabled (Flag = T), the default operator is
EQUAL and value v2 is set—representing the term Ac = v2.
The ordinal attribute Ao is not enabled (Flag = F) and so
it has no values for operator and value.

The solution S2 is an example in which the continuous at-
tribute Ar is enabled (Flag = T), the operator is IN RANGE

and two values v3 and v4 are set—representing the term
v3 ≤ Ar < v4. The categorical attribute Ac is not enabled
showing (Flag = F) and so it has no values for operator
and value. The ordinal attribute Ao is enabled (Flag = T),
the operator is LESS THAN OR EQUAL and value v5 is set—
representing the term Ao ≤ v5. Solution S3 follows a similar
representation.

4.2 Archive Initialization
In the archive initialization procedure, each rule is ran-

domly initialized. Rule initialization starts with an unbiased
random probability to enable each the term, then according
to its type it continues the rule initialization. If it is a contin-
uous term, it uses an unbiased random probability to set the
operator from the set {LESS THAN OR EQUAL, GREATER THAN,
IN RANGE}. The value of the continuous attribute is gener-
ated using a random value from a normal distribution in the
range of values of the attribute. In case of the IN RANGE

operator, two values are generated and the values will only
be accepted if they make the operator valid.

Ordinal terms also use an unbiased random probability
to choose the operator from the set {LESS THAN OR EQUAL,
GREATER THAN OR EQUAL}, then an unbiased random value
for the index is generated. For categorical terms, a default
EQUAL operator is added, then an unbiased random value for
the index is generated.

After the random initialization of each rule, a rule is pru-
ned to remove irrelevant terms enabled by the stochastic
nature of the initialization. Then, if the number of of covered
instances is greater or equal to the user-defined minimum
limit, it will be added to the archive. Finally, the rules in
the archive are ordered according to their quality, so that
f(S1) ≥ f(S2) ≥ · · · ≥ f(SR).



4.3 Rule Creation
Rule creation follow the following steps:

1. For each term, we start by considering the probability
to include the term or not. The decision is handled as a
categorical variable, since we are dealing with boolean
{TRUE, FALSE} values. We use the same procedure in
Section 3.2.3 to probabilistic sample a boolean value.

2. If the term is enabled, we set the operator according
to the attribute type. If the attribute type is categor-
ical, we set the operator to EQUAL. If it is continuous,
the decision is handled as a categorical attribute of
three values {LESS THAN OR EQUAL, GREATER THAN, IN
RANGE}, using the same procedure in Section 3.2.3 to
probabilistic sample an operator based on the subset
of the archive rules that have this term enabled. While
for ordinal attributes, the decision is handled as a cate-
gorical attribute of two values {LESS THAN OR EQUAL,
GREATER THAN OR EQUAL}, using the same procedure
in Section 3.2.3 to probabilistic sample an operator
based on the subset of the archive rules that have this
term enabled.

3. The value of each attribute is then sampled. If the at-
tribute type is continuous, we use the continuous sam-
pling procedure in Section 3.2.1 based on the subset
of the archive rules that have this term enabled and
using the same operator. If the attribute is ordinal,
we use the continuous sampling procedure in Section
3.2.2 to benefit from the order of the attribute, based
on the subset of the archive rules that have this term
enabled and using the same operator. While for cate-
gorical terms we use the discrete sampling procedure in
Section 3.2.3 based on the subset of the archive terms
that are enabled.

4. After the creation of each term, we apply the rule to
the training set. If the rule covered less than the mini-
mum instances, the term is disabled. If it covers more
than the minimum instances, the term is added and the
process is repeated for the next term, until all terms
are considered.

4.4 Rule Pruning
Ant-MinerMA applies different heuristics for the rule re-

finement and rule selection following a similar approach pro-
posed in [20]. We use the m-estimate measure in the rule
selection and archive ordering, given by

Q =
TP +m · ( P

P+N
)

TP + FP +m
(8)

where TP and FP are number of the correct classified and
misclassified instances by the rule, respectively; P and N

are the total number of instances that are in the positive
and negative class in training dataset, respectively.1 The
value m = 22.466 used in our approach has been determined
experimentally in [2] to be optimum value for them-estimate
measure.

For the pruning function, we use the sensitivity specificity
function, as employed in Ant-Miner, given by

1An instance is considered negative if it is from a class dif-
ferent than the class predicted by the rule

Table 1: Parameters: Ant-MinerMA uses the first
three parameters in table, while remaining are used
by both Ant-MinerMA and cAnt-Miner.

Parameters Value

q 0.025495
ξ 0.6795
R 90
Minimum Covered 10
Max Uncovered 10
Max Iterations 1500
Number of Ants 60
Stagnation Test 10

QPruning =
TP

TP + FN
· TN

FP + TN
(9)

where TP , FP , TN and FN stand for true positives, false
positives, true negatives and false negatives, respectively.

The pruning function starts by disabling the last term in
the rule and if the quality of the rule does not decrease,
it permanently removes the term; this process is repeated
to disable the next one until disabling a term decreases the
quality of the rule or the rule has only one term enabled.
In this case, the pruning stops, returning the rule without
removing the last term. This is the same pruning procedure
used by cAnt-Miner [14].

4.5 Restart Strategy
Ant-MinerMA uses a simple restart strategy to avoid stag-

nation. The restart strategy is triggered if the best rule of
the current iteration is exactly the same as the best rule
constructed by a user defined number of previous iterations,
which works as stagnation test. When the restart strategy is
triggered, all the rules in the archive are reinitialized except
the best-so-far rule. The restart is performance only once.

5. COMPUTATIONAL RESULTS
Our computational results are calculated using 30 publicly

available dataset from the UCI Machine Learning Reposi-
tory [4], presented in Table 2. Ant-MinerMA uses the first
three parameters in Table 1 for the archive settings, while
the rest of the parameters are used by both Ant-MinerMA

and cAnt-Miner. The archive settings parameters were em-
pirical chosen based on preliminary experiments. The re-
maining parameters were based on cAnt-Miner default val-
ues [14]. The cAnt-Miner implementation used in the exper-
iments is cAnt-Miner2MDL [14]2, which can create intervals
with lower and upper bounds for continuous attributes.

We ran both algorithms for 15 times in a tenfold cross-
validation settings, the average results (over the 150 individ-
ual runs) are shown in Table 3. We ran Wilcoxon rank sum
test on the 30 datasets to show if there are statistically sig-
nificant differences in terms of both predictive accuracy and
computational time. For a fair comparison, both algorithms
are implemented in Java running on the same environment.

2We used the cAnt-Miner2MDL variation available from
https://github.com/febo/myra.



Table 2: Summary of the datasets used in the experiments: datasets from 1 to 18 are considered small
datasets, while the remaining ones are considered large datasets due to either the large number of attributes
or the large number of instances.

Attributes

# Dataset Size #Classes Total #Ordinal #Categorical #Continuous

1 breast-tissue 106 6 9 0 0 9
2 iris 150 3 4 0 0 4
3 wine 178 3 13 0 0 13
4 parkinsons 195 2 22 0 0 22
5 glass 214 7 9 0 0 9
6 breast-l 286 2 9 4 5 0
7 heart-h 294 5 13 3 3 7
8 heart-c 303 5 13 3 3 7
9 liver-disorders 345 2 6 0 0 6
10 ionosphere 351 2 34 0 0 34
11 dermatology 366 6 34 33 0 1
12 cylinder-bands 540 2 35 2 14 19
13 breast-w 569 2 30 0 0 30
14 balance-scale 625 3 4 4 0 0
15 credit-a 690 2 14 4 4 6
16 pima 768 2 8 0 0 8
17 annealing 898 6 38 0 29 9
18 credit-g 1000 2 20 11 2 7
19 MiceProtein 1080 8 80 0 3 77
20 HillValley 1212 2 100 0 0 100
21 Magic 19020 2 10 0 0 10
22 Nomao 34465 2 118 0 29 89
23 bank-additional 41188 2 20 0 10 10
24 eb 45781 31 3 0 1 2
25 adult 48842 2 14 0 8 6
26 connect4 67557 3 42 0 42 0
27 diabetes 101766 3 47 2 34 11
28 SkinNonSkin 245057 2 3 0 0 3
29 ForestType 581012 7 54 0 44 10
30 PokerHand 1025010 10 10 5 0 5

Table 3 shows that Ant-MinerMA has a higher average
rank of 1.43 for the predictive accuracy, where cAnt-Miner
has an average rank of 1.57. In terms of computational
time, Ant-MinerMA has a rank of 1.10, while cAnt-Miner
has a rank of 1.87. Most of the datasets show an order of
magnitude improvement of Ant-MinerMA over cAnt-Miner
in terms of computational time. Considering both number of
attributes and instances size, the largest datasets are forest
type, poker hand and diabetes, respectively. Most notably,
cAnt-Miner running a single diabetes execution takes up to
3.5 days, while Ant-MinerMA takes just over 1 hour. Ant-
MinerMA would take 45 minutes for a single run in poker
hand, while cAnt-Miner almost 8 hours. These results show
that the use of the solution archive as pheromone model does
not affect the accuracy, while improving the computational
time since the discretisation procedure can be eliminated.

Our approach seems to show a small limitation when the
number of attributes increases over 50, where we could ob-
serve an improvement in computational time of only around
25% in forest type dataset. In cases where there is a large
number of attributes but a smaller number of instances—
which means that the discretisation overhead is less notice-

able—such as in the datasets Nomao (119 attributes, 34465
instances), Hill Valley (101 attributes, 1212 instances) and
Mice Protein (81 attributes, 1080 instances), Ant-MinerMA

running time increases in relation to cAnt-Miner. We hy-
pothesised that this is due to the use of heuristic informa-
tion in cAnt-Miner, which allows the algorithm to quickly
identify irrelevant attributes and not use them in the rule
creation process.

Table 4 indicates that there is no statistically significantly
differences between Ant-MinerMA and cAnt-Miner in term
of predictive accuracy (p = 0.24200). In the case of com-
putational time, Ant-MinerMA improvement is statistically
significant (p = 0.00036). Overall, we consider these re-
sults positive. The use of a rule creation process inspired by
ACOMV led to a statistically significant computational time
improvement in Ant-MinerMA compared to cAnt-Miner, wi-
thout affecting the predictive accuracy.

6. CONCLUSION
We introduced Ant-MinerMA to tackle mixed-attribute

classification problems, based on ACOMV. The use of a
solution archive allows the algorithm to deal with categor-



Table 3: Average predictive accuracy and computational time (average [standard deviation]) of cAnt-Miner
and Ant-MinerMA over 15 runs of tenfold cross-validation. The last row of the table shows the average rank
of the algorithm. The best value of a given dataset is shown in bold.

Accuracy Computational time (seconds)

Dataset Ant-MinerMA cAnt-Miner Ant-MinerMA cAnt-Miner

breast-tissue 60.24 [0.97] 64.24 [0.24] 0.38 [0.01] 0.67 [0.02]
iris 93.6 [0.31] 94.27 [0.11] 0.28 [0.00] 0.49 [0.00]
wine 90.78 [0.40] 93.52 [0.07] 0.33 [0.01] 0.56 [0.04]
parkinsons 86.29 [0.64] 85.22 [0.40] 0.78 [0.01] 2.87 [0.25]
glass 63.24 [0.50] 59.18 [0.32] 0.50 [0.00] 2.66 [0.42]
breast-l 71.46 [0.34] 76.17 [0.11] 0.54 [0.01] 1.28 [0.14]
heart-h 64.37 [0.29] 64.81 [0.33] 0.72 [0.00] 12.61 [0.62]
heart-c 56.94 [0.54] 57.42 [0.32] 0.76 [0.02] 10.91 [0.64]
liver-disorders 63.13 [0.49] 62.26 [0.18] 0.47 [0.01] 1.81 [0.08]
ionosphere 89.28 [0.37] 88.84 [0.25] 1.27 [0.03] 5.97 [0.65]
dermatology 89.42 [0.47] 89.02 [0.25] 1.31 [0.02] 16.67 [1.49]
cylinder-bands 69.32 [0.35] 70.28 [0.22] 3.15 [0.08] 29.54 [1.31]
breast-w 93.53 [0.22] 94.28 [0.11] 2.31 [0.04] 5.40 [0.29]
balance-scale 80.10 [0.22] 68.34 [0.08] 0.50 [0.01] 5.95 [0.38]
credit-a 85.19 [0.22] 85.74 [0.11] 1.10 [0.01] 11.57 [0.79]
pima 75.30 [0.21] 67.45 [0.07] 0.93 [0.01] 3.69 [0.42]
annealing 96.68 [0.14] 97.02 [0.09] 4.79 [0.16] 10.76 [0.77]
credit-g 74.19 [0.14] 69.39 [0.17] 1.69 [0.02] 39.1 [2.11]
MiceProtein 62.57 [0.37] 99.07 [0.43] 26.79 [0.61] 8.53 [0.65]
HillValley 52.65 [0.19] 51.35 [0.11] 37.93 [0.71] 19.12 [0.91]
Magic 82.67 [0.05] 70.41 [0.01] 25.56 [0.61] 155.07 [2.01]
Nomao 87.56 [0.05] 90.66 [0.02] 2308.57 [98.25] 779.77 [28.15]
bank-additional 89.49 [0.02] 89.87 [0.01] 185.27 [2.49] 1970.72 [60.55]
eb 65.00 [0.05] 64.58 [0.01] 25.38 [0.36] 321.58 [1.11]
adult 84.74 [0.03] 79.73 [0.04] 236.54 [3.83] 5048.44 [165.33]
connect4 68.18 [0.02] 67.83 [0.01] 1273.66 [7.97] 14380.04 [535.72]
diabetes 55.83 [0.09] 54.23 [0.13] 4008.11 [141.34] ∗ 388023.6 [3580.67]
SkinNonSkin 98.91 [0.02] 97.54 [0.00] 125.41 [1.56] 1484.52 [5.27]
ForestType 68.55 [0.07] 63.09 [0.07] 30649.92 [695.20] 53336.53 [3946.86]
PokerHand 51.97 [0.04] 50.2 [0.00] 2577.19 [43.07] 27872.59 [2286.18]

Rank 1.43 1.57 1.10 1.87

∗ Result of a single tenfold execution due to high computational time.

Table 4: Wilcoxon rank sum tests (at the α =
0.05 level) on predictive accuracy and computational
time. Statistically significant differences are shown
in bold.

Size W+ W- Z p

Accuracy 30 289.5 175.5 -1.1724 0.24200
Time 30 59 406 -3.5686 0.00036

ical, continuous and ordinal attributes directly, without re-
quired a discretisation procedure. The rule creation then
uses ACOMV strategies to sample values for each attribute
to create the antecedent of a rule.

We compared Ant-MinerMA against cAnt-Miner using pu-
blicly available datasets, an ACO-based classification algo-
rithm capable of dealing with continuous attributes using a
dynamic discretisation procedure. Our results show that the
proposed Ant-MinerMA statistically significantly improves

the computational time of the algorithm with no negative
effects on its accuracy—in most cases, an order of magni-
tude improvements were observed. This would enable Ant-
MinerMA to be applied to much larger datasets, mitigating
the restriction on computational time.

There are several interesting directions for future research.
First, it would be interesting to further investigate the ef-
fect of the number of attributes in the rule creation pro-
cess. Our current results indicates that a large number of
attributes might affect Ant-MinerMA computational time.
Second, ACOMV does not provide an explicit mechanism
to incorporate heuristic information, which can be used to
quickly identify irrelevant attributes. Therefore, incorporat-
ing heuristic information into Ant-MinerMA can potentially
improve its computational time by allowing the algorithm
quickly identify irrelevant attributes. In addition, an exten-
sion to create a complete list of rules instead of one rule at
a time is a research direction worth further exploration.
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