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Abstract—In the path planning problem for autonomous mo-
bile robots, robots have to plan their path from the start position
to the goal. In this paper, we investigate the application of the
MMAS algorithm to the exploratory path planning problem, in
which the robots should explore the environment at the same
time they plan the path. Max-min ant system is an ant colony
optimization algorithm that exploits the best solutions found.
In addition, to analyze the quality of solutions obtained, we also
analyze the traveled distance spent by robots in the first iteration
of the algorithm. The environment is previously unknown to the
robots, although it is represented by a topological map, that
does not require precise information from the environment and
provides a simple way to execute the navigation of the path.
Thus, the paths are represented by a sequence of actions that the
robots should execute to reach the goal. The navigation of the best
solution found was implemented in a realistic robotic simulator.
The proposed algorithm provides a very good performance in
relation to a genetic algorithm and the well-known A* algorithm
that deal with this problem.

I. INTRODUCTION

The path planning problem for autonomous mobile robots

is a task in which the robots must plan the path from start

position and reach the goal. In exploratory path planning, the

environment is unknown by the robots. Therefore, they have to

plan the path as they discover the environment. Furthermore,

the robots should be able to execute the path safely, avoiding

collisions with obstacles.

In essence, there are two kinds of maps to represent the

environment: metric and topological. Metric maps represent

detailed information from the environment, such as coor-

dinates and angles. Therefore, the path is composed by a

sequence of points that the robots should follow precisely. On

the other hand, the main objective of topological maps is to

represent the structure of the environment, the relative position

among characteristic points.

Topological maps can be represented by a graph, in which

the nodes are characteristic points of the environment and the

edges represent the navigability among them. We adopted the

topological map representation since it does not require precise

information from the environment: we can represent the path

as a sequence of actions that the robot should execute (e.g.,

turn right, go straight), considering the current characteristic

point.

According to [1], heuristic algorithms that implement search

in the solution space can be classified as instance-based or

model-based. The instance-based algorithms generate new

candidate solutions using the current solution or the cur-

rent population of solutions, such as genetic algorithms. The

model-based search algorithms generate candidate solutions

using a parameterized probabilistic model, which is updated

according to previous solutions, allowing the search to con-

centrate in regions containing high quality solutions.

Ant Colony Optimization (ACO) is a well established

model-based search technique [1]. ACO is a metaheuristic

inspired by the foraging behavior of ants. Ants build their path

to the goal by a probabilistic choice to move to a neighbor

node. The probabilistic choice is based on pheromone de-

posited by other ants and on the heuristic function. Then, ants

move backward in a deterministic way, depositing pheromone

in the graph. The amount of pheromone depends on the quality

of solutions. Thus, artificial ants take two important roles of

generating solutions and updating the parameters of the model.

Ant System (AS) was the first ACO algorithm applied to

the traveling salesman problem (TSP) [2]. As the AS did

not achieve good performance when compared to state-of-art

algorithms for TSP problem, other improvements of the AS,

such as the Max-Min Ant System (MMAS), were proposed

[3][4]. MMAS provides four main modifications to AS: (i) it

exploits the best tours found, in which just the ant that finds

the best global solution or the best solution of an iteration is

allowed to deposit pheromone; (ii) it limits the possible range

of pheromone trail values to an interval; (iii) the pheromone

trails are initialized to the upper pheromone trail limit in order

to increase the exploration of tours at the start of the search;

(iv) pheromone trails are reinitialized each time the system

approaches stagnation.

Most works applying ACO to the path planning problem

adopt the metric map (e.g., occupation grid) to represent

the environment. Consequently, the path is represented by a

sequence of points that the robots should follow precisely to

reach the goal, which requires robust localization algorithms.

As aforementioned, we adopt a topological map, which just

requires an approximated representation of the environment

and provides a simpler way to execute the navigation of the



path.

In this paper, we propose the application of a Max-Min Ant

System algorithm to the exploratory path planning problem for

autonomous mobile robots in a topological map. The results

show that the MMAS is a promising approach to quickly

reach the goal (in relation to the traveled distance spent

by the robots) and to optimize the path. The main original

contribution of this paper is the proposition of a mobile robot

path planning algorithm adopting MMAS, using a topological

environment representation. The generated path is based on

topological map and can be executed by a sequence of reactive

behaviors, like the navigation method proposed by [5] and [6].

This paper is organized as follows: in Section II, related

work is presented; Section III presents the max-min ant system

algorithm; in Section IV, the experiments and results are

discussed and in Section V, the conclusion and future work

are presented.

II. RELATED WORK

Many heuristic and meta-heuristic algorithms have been ap-

plied to the path planning problem, such as genetic algorithms,

simulated annealing, particle swarm intelligence, ant colony

optimization, among others. Further information about these

approaches can be found in [7]. This paper addresses an ACO

algorithm applied to the path planning problem for mobile

robots. In this section, similar recent studies about this subject

are presented.

A robot navigation algorithm for dynamic unknown envi-

ronments based on an improvement ant-based algorithm was

proposed in [8]. Two bidirectional groups of scout ants cooper-

ate with each other to find a local optimal static navigation path

within the visual domain of the robot. In the robot navigation

ant algorithm, which is based on principles of scout ants during

the food search process, the global target position is mapped

to a sub-goal. Then, robots plan a static local navigation path

using the multi-scout ants cooperation (MSAC) algorithm. The

environment is represented by a metric map, such as a set of

grid cells. According to the authors, the robot navigation ant

algorithm is very fast and could generate optimal or near-

optimal, collision free paths in complex, unknown, dynamic

environments. Although they explained that the visual domain

of robots is based on their sensors, they calculated this region

based on the grid map; no robotic simulator or realistic sensors

were used.

The MSAC algorithm was applied to moving target inter-

ception with a fast local path planning algorithm in [9]. The

algorithm allows the global path to be recomputed when a

change is detected in the trajectory of the target. The intercep-

tion point is the sub-goal, then the MSAC algorithm is used

to plan the local navigation path. As in [8], the environment

is represented by a set of grid cells. The experiments showed

that the robot could successfully intercept the moving target.

An approach to solve the problem of path planning for

mobile robots based on Simple Ant Colony Optimization

Meta-Heuristic (SACO-MH) is presented in [10]. The authors

named the algorithm as SACOdm, in which d is distance and

m is memory. The decision making process is influenced by

the distance between the source and target nodes. The memory

is used for the ants to remember the visited nodes, which are

temporarily marked as obstacles. The selection of optimal path

uses a Fuzzy Inference System, that considers the length of

the path and the difficulty for navigation. The environment

is represented by a matrix of interconnected nodes, such that

each node can be marked as free or occupied (obstacle). The

algorithm was evaluated in the ACO Test Center simulator,

also proposed by the authors.

An ACO algorithm was applied to the path planning prob-

lem of robots in dynamic environment in [11], in which two

schemes for the reinitialization of pheromone were compared.

The purpose of the work is to find the collision-free shortest

path, if it exists, between an initial and a final point in

a grid map. The dynamic environment was simulated with

obstacles of different shapes and lengths which were put

in the environment after the optimal solution was found in

the original one. According to the simulation results, the

algorithm was able to replan the optimal path in the dynamic

environment.

A method that combines Cellular Automata (CA) and Ant

Colony Optimization for path planning is presented in [12].

The method creates collision-free paths for every robot of

a team and, at the same time, keeps their formation. The

CA is a grid structure which is updated in that method by

ACO to generate collision free paths. The authors created a

simulation environment to evaluate the algorithm and it was

also implemented in Webots [13], a real world simulation envi-

ronment. The experiments showed that the proposed algorithm

was effective at creating collision free paths.

A heterogeneous feature ant colony optimization algorithm

for the path planning problem for robots was presented in [14].

The authors defined two types of ants: Ant A, dedicated to

exploration and Ant B, dedicated to exploitation. They manage

the number of each kind of ants to control the convergence rate

of the algorithm. The environment is represented by a grid map

model, in which a grid can be an available or an obstacle grid.

The maps used in the experiments are complex in relation to

the number of obstacles and the proposed algorithm could find

good solutions. However, the authors do not mention how a

robot can navigate in these maps. The algorithm also presented

better solutions in a shorter period of time when compared to

classical ACO algorithms.

An exploratory path planning method based on genetic

algorithms for autonomous mobile robots was proposed in

[15]. In that scenario, paths are constructed using the evo-

lutionary process, such that robots do not previously know the

environment. They start at same position and have to reach

the goal as fast as possible. A genetic algorithm was applied

to generate the sequence of actions that the robots need to

execute to reach the goal. At the beginning, a set of actions

are generated randomly. The robots execute those actions, then

their fitness are evaluated. The fitness function is based on

the traveled distance and the euclidean distance to the goal.

Individuals are selected by tournament to reproduce. Then, a



new sequence of actions are generated applying crossover and

mutation operators. When a generated action is not possible to

be executed (e.g., the robot has to turn right but it just possible

turn right or go straight), a different action is randomly chosen

among the possible ones. The proposed GA was compared

with A* algorithm considering the distance traveled by the

robots. The average performance of the GA is better than A*

and the smaller distances traveled of the solutions found by

GA executions are always better than the solutions returned

by A* algorithm. This GA approach is used as a benchmark

in this paper.

In this paper, the Max-Min Ant System Algorithm is used

to find optimal or near-optimal path between the start position

of the robots and the goal. The main contribution of this paper

is the application of the algorithm in a topological map, which

provides a simple way to control the robot navigation during

the path. The path consists of a sequence of actions, such that

a robot just needs to identify the moment of executing each

one. Most works using a grid representation do not present

how the path would be executed in a real world. If the path

is composed by a sequence of points, the robot would need

a localization algorithm to execute this. Furthermore, based

on the study proposed in [15], we also adopt a topological

environment representation and analyze the traveled distance

by the ants in the first iteration of the algorithm. This approach

can be applied in a search and rescue task, in which multiple

robots need to reach the target quickly and come back to the

source point.

III. THE PROPOSED APPROACH BASED ON MMAS

In this paper, we propose an approach based on the MMAS

algorithm, in which the robots have to search for an optimal

path from start position to the goal. In order to compare

our results with the GA approach proposed in [15], we also

analyze the traveled distance spent by the ants to find the goal

in the first iteration of the algorithm.

The max-min ant system was executed in a graph, extracted

from a maze map, as illustrated in Figure 1. The characteristic

points of the map are the nodes in the graph and the edges

represent the navigability among these points. Each node has

an approximated coordinate of its position, where the exact

distances are not relevant as long as the relative distance

among nodes are. For example, the distance between nodes

1 and 7 is bigger than the one between nodes 1 and 2. When

an ant is in a node, it can access the neighbor nodes, simulating

the sensor in a real environment.

The path generated by the algorithm is converted into a

sequence of actions that the robots should execute to reach

the goal. For this kind of map, the possible actions are: 0 - go

west, 1 - go northwest, 2 - go north, 3 - go northeast, 4 - go

east, 5 - go southeast, 6 - go south and 7 - go southwest. The

actions depend on the robot current position and orientation.

The steps of the MMAS algorithm can be followed in

Algorithm 1. Line 1 indicates the initialization step, in which

all ants are positioned in the same start point. As proposed in

the MMAS algorithm, pheromone trails are initialized with

Fig. 1. An example of a map and its correspondent graph.

a large amount of pheromone on all edges. After the first

iteration, this amount will be set as the upper pheromone trail

limit.

Algorithm 1 MMAS algorithm

1: initialization();
2: pathgb ← ∅;
3: while (stop criteria is not reached) do

4: pathib ← ∅;
5: for i← 1 to numberOfAnts do

6: pathi ← constructPath();
7: localSearch(pathi);
8: if quality(pathi) > quality(pathib) then

9: pathib ← pathi;
10: end if

11: end for

12: pheromoneEvaporation();
13: pheromoneUpdate();
14: if quality(pathib) > quality(pathgb) then

15: pathgb ← pathib;
16: end if

17: end while

18: return pathgb;

In the construction phase, lines 4− 11, each ant constructs

the path pathi from the start to the goal position. In each

step of the construction phase, an ant k in the current node

i calculates the probability to move to a neighbor node j,

except the predecessor of node i. For example, in the map

in Figure 1, if the current node is 3 and the ant comes from

node 2, the feasible nodes to move are nodes 5 and 6. The

predecessor node just can be an option in a dead end, where

the only option is turn around.

The probability pkij of an ant k to move from node i to

node j is given by Equation 1 [4], where τij is the amount

of pheromone in the edge that links nodes i and j; ηij is the

heuristic value to move from node i to j; α and β defines the



influence of the pheromone trail and the heuristic information,

respectively; Nk
i is the set of neighbors of city i.

pkij =
[τij ]

α[ηij ]
β

∑
l∈Nk

i

[τil]α[ηil]β
, ifj ∈ Nk

i (1)

The heuristic function adopted in this study is the inverse

of the euclidean distance between the current and the goal

node (ηij = 1/dij), such that this calculation is based on

the approximated coordinates of the topological map. During

the construction phase, the traveled distance by each ant is

calculated in the first iteration, in order to compare the results

with the GA approach proposed in [15].

This approach can still generate loops in the paths because

there is no control over nodes previously visited, apart from

the current previous node. To cope with this, a local search

procedure (line 7) to remove loops is applied after ants reach

the goal. In this procedure, the loops are identified by repeated

nodes in the same path. Thus, the ants go back to the start

position, depositing pheromone in improved paths. The best

solution found after the construction phase is kept in pathib

variable (lines 8− 10).

After that, the pheromone evaporation step (line 12) is exe-

cuted according to Equation 2, where ρ is the evaporation rate.

Evaporation rate plays an important role in the convergence

speed of the algorithm. As higher is this value, quicker the

convergence is reached, but suboptimal solutions can be found.

τij = (1− ρ)τij (2)

After the evaporation, ants go back to the start position,

depositing pheromone to reinforce the created path. This is the

pheromone update step (line 13). MMAS algorithm proposes

that just the ant which found the best path during an iteration

or during the whole execution deposits pheromone. In this

problem, we use the best path during an iteration to explore

more the space search. The pheromone update is defined in

Equation 3, where ∆τ bestij = 1/Cbest and Cbest is the length

of the best solution of an iteration. If the best solution of an

iteration is this one found, it is kept in the pathgb variable

(lines 14 − 16). At the end, all ants follow the same path in

the backward step and the traveled distance is added to each

ant.

τij = τij +∆τ bestij (3)

In MMAS, values of the pheromone on each edge in the trail

is limited by a range to avoid stagnation. τmaxis the maximum

pheromone trail value, that is defined as 1/ρCbs, where Cbs

is the length of the best solution found in the whole execution

of the algorithm. The lower pheromone trail is set to τmin =
τmax/a, where a is a parameter [4][2].

The process is repeated until the stop criteria is satisfied.

We adopt two stop criteria: the best solution is not improved

by a fixed number of iterations or a maximum number of

iterations is reached. The algorithm returns the best solution

pathgb found (line 18). Experiments and results are discussed

in the next section.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup and

results of our proposed algorithm. Furthermore, we compare

our results with the ones obtained by a genetic algorithm

[15], subsequently referred to as the GA approach. We used

the same map used to evaluate the GA approach from [15]

to evaluate our proposed MMAS algorithm, illustrated in

Figure 2. S1 and G1 are adopted as initial and final point,

respectively. The algorithm was run 100 times in this map,

the same number of times as the GA algorithm.

Fig. 2. The map used to evaluate the MMAS performance, extracted from
[15]. The highlighted black line shows the optimal path for this map.

In the following Tables I and II, first goal refers to the best

traveled distance spent by the ant that reached the goal first

in the first iteration of the algorithm from all executions; avg

first goal is the average of the first goal in all executions; avg

travel dist best is the average of the traveled distance spent by

the ant that found the best solution in all executions during the

whole running of the ACO; avg dist it refers to the average

of the traveled distance spent by each ant in one iteration;

percentage refers to how many times the algorithm found the

optimal solution among 100 executions; and avg best path is

the average of the best solutions found by the algorithm.

Table I shows the analysis of the first stop criteria: the

best solution is not improved by a number of iterations. The

other parameters of the algorithm were defined as: maximum

iteration number = 1000; α = 1; β = 0.1; number of ants

= 20, a = 10. Maximum iteration number is the second stop

criteria, α and β are parameters of Equation 1, a is used to

define the lower pheromone trail.

The number of iterations has no influence on the first

iteration. The higher the number of iterations, the higher is

the traveled distance to find the best solution, although better



solutions are found. The average distance per iteration also

shows that better solutions are found as higher is the number

of iterations. Based on these results, we have chosen to fix the

number of iterations to 50 since it provides a good trade-off

between the quality of the solution and the average traveled

distance compared to other values.

In the next experiment, we investigate the influence of num-

ber of ants. Table II shows the results of the experiments. The

other parameters of the algorithm were defined as: maximum

iteration number = 1000; α = 1; β = 0.1; number of iterations

= 50; a = 10. Using a larger number of ants does not improve

substantially the best first goal time for an ant reach the goal,

but it improves the avg first goal. It interesting to note that

using more ants the average traveled distance to find the best

solution decreases. This suggests that the higher the number of

ants, the easier is to find the optimal solution because of their

collaborative work. From five ants, avg distance per iteration

value is almost the same, i. e., the ants spent approximately

the same distance to leave their start position and reach the

goal. Moreover, with five ants, this average value is smaller

than the average of best values reached by the GA approach,

as can be observed in the first row in Table III.

As higher is the number of ants, the MMAS could improve

the quality of solutions. By using 100 ants, the optimal solution

was always found. Despite this observation, we fixed number

of ants as 20 since it provided the smallest value of the

average distance per iteration and it is the same value used

as the population size in the GA approach, which makes the

comparison between MMAS and the GA approach fair.

In [15], the authors evaluated their proposed GA in a

scenario where the robots should reach the goal as soon as

possible, based on the lowest traveled distance from each run

of the algorithm. They also compared their results with the A*

algorithm [16], a well-known search heuristic [17]. In the A*

algorithm, each node is evaluated to be expanded, according to

the function f(n) = g(n)+h(n). g(n) is the real cost to leave

the start position and reach the current node n and h(n) is a

heuristic function that estimates the cost to leave the current

node n and reach the goal.

Table III shows the results of the A* algorithm, GA ap-

proach and MMAS algorithm for different start and goal points

in the map illustrated in Figure 2. S-G refers to the start and the

goal points; best path dist shows the traveled distance spent

by the A* algorithm to find the optimal solution and reach

the goal; worst path dist shows the best traveled distance of

100 executions of the GA algorithm; avg best fitness shows the

worst traveled distance of 100 executions of the GA algorithm;

avg best fitness shows the average of the best traveled distance

of 100 executions of the GA algorithm. first goal and last show

the best and worst traveled distance to the MMAS algorithm

to find the goal; avg first goal shows the average of the best

traveled distance in the first iteration of 100 executions of the

MMAS algorithm and avg dist it shows the average of traveled

distance spent by each ant per iteration.

We can observe that the ACO algorithm spent the smallest

traveled distances to reach the goal at the first iteration for

different start and goal positions. Even the worst distances are

much lower than the results achieved by GA approach. The

average of the best distance is also much better than the GA

approach. The average distance per iteration shows that, on

average, the ACO spent the smaller distance to reach the goal

compared to the A* and the GA algorithms.

The algorithms were also evaluated in two other maps,

with trap, illustrated in Figures 3 and 4. These maps have

a trap since the path in the middle of the map seems shorter,

considering the euclidean distance, but it has no connection

with the goal point. Table IV presents the A*, GA and MMAS

algorithms on these maps.

As can be seen, the MMAS could reach the goal in the

first iteration spending a lower traveled distance than the

GA approach in both maps. This result is unexpected into

a trap since MMAS uses the euclidean distance to the goal as

heuristic, as the A* algorithm, MMAS also could fall in trap,

mainly in the first iteration, when the pheromone amount is

the same for all edges. But even being the same amount, the

influence of the pheromone in the probabilistic choice helped

the algorithm to balance the decision of the next node, during

the construction phase. The MMAS also obtained better results

in the average of the first goal than the average of the best

traveled distance obtained by GA and the traveled distance

spent by A* algorithm. Moreover, the MMAS could find the

optimal solution in all executions in these maps.

Fig. 3. Map 2, extracted from [15]. S and G are the start and goal positions.
The highlighted black line shows the optimal path for this map.

The navigation of the best path obtained in the map il-

lustrated in Figure 2, between S1 and G1, was executed in

the Player/Stage, a realistic robotic simulator [18], using a

Pioneer P3-AT robot with a 180◦ SICK Lidar sensor. The path

provided by our approach could be represented by a sequence



TABLE I
ANALYSIS OF NUMBER OF STEPS IN THE STOP CRITERIA.

Number
of steps

First goal Avg first goal Avg travel dist best Avg dist it Percentage Avg best path

5 1424.54 4762.11± 1773.90 144288.83± 80948.04 17625.68± 1998.52 10% 1205.31± 63.64

10 1618.13 4585.44± 1607.36 210664.12± 102608.24 14705.20± 1353.40 31% 1164.64± 72.22

20 1427.88 4667.01± 1848.38 249341.84± 128513.64 12257.86± 961.51 42% 1161.34± 70.74

30 1836.58 4588.88± 1416.40 302796.47± 171794.79 11279.91± 996.36 47% 1151.78± 62.28

50 1765.57 4741.35 ± 1906.60 372306.82 ± 206199.95 10048.43 ± 693.50 56% 1136.22 ± 57.86

100 1634.46 4545.71± 1863.68 621405.83± 522241.55 8991.95± 462.52 72% 1118.07± 45.17

TABLE II
ANALYSIS OF NUMBER OF ANTS.

Number
of ants

First
goal

Avg first goal Avg travel dist best Avg dist it Percentage Avg best path

1 3288.25 31507.21± 23980.87 815297.95± 504828.20 15670.93± 2406.07 0 1258.38± 46.60

5 2412.07 9205.97± 4596.54 406735.76± 254652.78 10453.24± 1031.97 6% 1216.92± 51.68

10 1648.65 6635.75± 3524.54 332228.36± 205154.26 10133.92± 772.10 25% 1175.57± 64.33

20 1487.06 4702.57 ± 1801.84 389604.33 ± 239650.44 10065.26 ± 675.70 60% 1132.06 ± 59.33

30 1742.55 4354.05± 1805.32 318430.24± 180433.27 10097.23± 586.22 78% 1115.26± 46.14

40 1369.32 3968.88± 1310.82 313190.23± 180117.21 10114.84± 515.35 90% 1103.53± 34.13

50 1498.35 3377.00± 1134.47 294487.96± 156961.04 10141.91± 421.27 95% 1097.39± 18.20

100 1527.82 3049.75± 681.70 187401.35± 79433.51 10182.05± 221.74 100% 1093.27

TABLE III
RESULTS OF A*, GA AND MMAS ALGORITHMS FOR DIFFERENT START AND GOAL POSITIONS SHOWED IN FIGURE 2.

A* GA MMAS

S-G Path dist
Best
path dist

Worst
path dist

Avg best fitness First goal Last goal Avg first goal Avg dist it

1-1 45280.79 2274.31 45071.13 14408.04± 7694.13 1487.06 11140.33 4702.57± 1801.84 10065.26± 675.70

1-2 32131.09 1754.73 44286.19 13644.98± 8741.68 1286.81 9376.22 4762.40± 1901.44 8921.65± 314.44

1-3 51457.50 2258.97 42198.94 15843.37± 8803.28 1352.34 12442.80 5055.63± 2377.28 9687.88± 442.94

2-1 13620.92 1704.65 32323.74 8024.73± 6317.97 1379.28 9053.54 3392.73± 1458.43 8596.14± 666.91

2-2 32450.60 1652.06 40425.91 9622.97± 6706.14 1556.17 12724.38 4462.96± 1875.78 10260.56± 712.98

2-3 30934.27 2377.52 38511.96 12056.61± 7443.25 1613.36 13864.48 5071.99± 2336.05 10687.96± 744.64

3-1 34728.54 1963.24 36969.64 11576.61± 6227.41 1727.32 9516.46 4359.05± 1570.80 10583.75± 0.59

3-2 48322.65 2072.22 46529.57 10244.78± 7284.58 1694.27 16885.51 5040.17± 2535.35 10422.69± 883.81

3-3 64915.37 2904.60 59931.26 13821.54± 10146.31 1419.51 18481.61 5276.38± 2868.52 11244.90± 874.20

TABLE IV
RESULTS OF A*, GA AND MMAS ALGORITHMS FOR THE MAPS 2 AND 3 (FIGURES 3 AND 4).

A* GA MMAS

Map Path dist
Best
path dist

Worst
path dist

Avg best fitness First goal Last goal Avg first goal Avg dist it

2 85697.93 1681.84 40019.44 10040.29± 7310.81 1471.31 14437.46 3755.42± 2376.22 12487.02± 744.63

3 63137.15 2751.85 68972.28 20278.02± 15441.98 2036.38 26634.66 6425.56± 4339 13132.97± 593.21

of actions, as proposed by [6]. In the navigation of this path,

the robot starts walking in a corridor. When it detects a change

of state, i. e., when the robot leaves the corridor, the next action

is activated. The state recognizer described in [19] was applied

to identify when the robot state changes, based on the sensors

of the robot. The robot does not have previous information

about the environment, it just knows the sequence of actions

it should execute. The sequences of actions are: go east, go

west, go east, go straight, go straight, go straight, go west, go

straight, go east, go west, go straight, go straight, go east, go

west, go straight, go straight, go straight, go east, go west, go

east, go straight, go west, go east, go west, go east, go west,

go east, go straight and go west.

V. CONCLUSIONS

In this paper we investigated the application of the the min-

max ant system algorithm applied to the exploratory path

planning problem for autonomous mobile robots. The path

was planned based on a topological map and the robots do

not previously have information about the environment. In

order to compare our proposed MMAS algorithm against a

GA algorithm, we evaluated the traveled distance spent by the

ants to reach the goal in the first iteration of the algorithm.

The results showed that the MMAS approach is much more

effective in this task. Moreover, the MMAS could find optimal

solutions for all maps evaluated, including the maps with traps.

As future research directions, we intend to improve the

results of the algorithm to find the optimal solution more

times and do a more analytical comparison among the other



Fig. 4. Map 3, extracted from [15]. S and G are the start and goal positions.
The highlighted black line shows the optimal path for this map.

algorithms from the literature. We will also improve the

navigation control method to allow the robots to identify the

possible states in a map automatically. Furthermore, we will

execute simulations with all robots in the environment.

An extension of the current algorithm to deal with dynamic

environment is a research direction worth further exploration.
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[4] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA,
USA: Bradford Company, 2004.
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