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Abstract

Herman’s self-stabilization algorithm, introduced 25 years ago, is a well-studied synchronous

randomized protocol for enabling a ring of N processes collectively holding any odd number

of tokens to reach a stable state in which a single token remains. Determining the worst-case

expected time to stabilization is the central outstanding open problem about this protocol. It is

known that there is a constant h such that any initial configuration has expected stabilization

time at most hN2. Ten years ago, McIver and Morgan established a lower bound of 4/27 ≈ 0.148

for h, achieved with three equally-spaced tokens, and conjectured this to be the optimal value

of h. A series of papers over the last decade gradually reduced the upper bound on h, with

the present record (achieved in 2014) standing at approximately 0.156. In this paper, we prove

McIver and Morgan’s conjecture and establish that h = 4/27 is indeed optimal.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases randomized protocols, self-stabilization, Lyapunov function, expected

time

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.XXX

1 Introduction

The notion of self-stabilization was introduced in a seminal paper of Dijkstra [10], and rose to

prominence a decade later, following (among others) an invited talk of Lamport during which

he pointed out that “self-stabilization [is] a very important concept in fault tolerance” [21].

Both self-stabilization and fault tolerance have since become central themes in distributed

computing (see, e.g., [11]), as recently witnessed by the award of the 2015 Edsger W. Dijkstra

Prize in Distributed Computing to Michael Ben-Or and Michael Rabin for “starting the field

of fault-tolerant randomized distributed algorithms” in the early 1980s.

In this paper, we examine an early self-stabilization algorithm known as Herman’s

Protocol [18], whose exact mathematical analysis has proven remarkably challenging over the

two-and-a-half decades since its inception. This algorithm considers a ring of N processes

(or nodes), where each process either holds or doesn’t hold a token. Starting from any initial

configuration of K tokens, where K is required to be odd, Herman’s algorithm proceeds

as follows: at each time step, every process that holds a token either keeps it or passes it

to its clockwise neighbor with probability 1/2. All updates happen synchronously, and if a

process finds itself with two tokens (having simultaneously kept one and received one from

its counterclockwise neighbor) then both tokens are annihilated. It is straightforward to see

that, starting from an odd number of tokens and following this procedure, almost surely only

one token eventually remains, at which point the ring is said to have stabilized.

Herman’s original paper [18] presents the algorithm in a form amenable to implementation.

Each process possesses a bit, which the process can read and write. Each process can also
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read the bit of its counterclockwise neighbor. In this representation, having the same bit

as one’s counterclockwise neighbor is interpreted as having a token. At each time step,

each process compares its bit with the bit of its counterclockwise neighbor; if the bits differ,

the process keeps its bit, whereas if the bits are the same, the process flips its bit with

probability 1/2 and keeps it with probability 1/2. It is straightforward to verify that the

bit-flipping version is an implementation of the token-passing version: in particular, a process

flipping its bit corresponds to passing its token to its clockwise neighbor. If the number of

processes is odd, by construction this bit representation forces the number of tokens to be

odd as well, which justifies the assumption that K, the number of tokens, is always odd.

In this paper we make no assumption about the parity of the number of processes, as we

abstract from the bit implementation, and simply assume that the number of tokens is odd

throughout.

Herman’s original paper [18] showed that the expected time (number of synchronous steps)

to stabilization is O(N2 log N). The same paper also mentions an improved upper bound

of O(N2) due to Dolev, Israeli, and Moran, without giving a proof or a further reference.

In 2004, Fribourg et al. [15] established an upper bound of 2N2, and the following year

Nakata [23] gave a tighter upper bound of 0.936N2 and exhibited an initial configuration

with expected stablization time Ω(N2). At the same time and independently, McIver and

Morgan showed in [22] that the initial configuration consisting of three equally-spaced tokens

has an expected stabilization time of exactly 4
27 N2, and conjectured that this value is an

upper bound on the expected time to stabilization starting from any initial configuration

with any (odd) number of tokens. The conjecture is intriguing since increasing the initial

number of tokens might be thought to lengthen the expected time to stabilization, due to

the larger number of collisions required to achieve stabilization.

Nevertheless, McIver and Morgan’s Herman-Protocol Conjecture is supported by consid-

erable amount of experimental evidence [4], and in the intervening years a series of papers

have gradually reduced the upper bound on the constant h such that stabilization from any

initial configuration takes expected time at most hN2: upper bounds of approximately 0.64,

0.521, 0.167, and 0.156 are given respectively in [20, 12, 13, 17], the last one provided last

year by Haslegrave, and coming relatively close to McIver and Morgan’s lower bound of

4/27 ≈ 0.148.

In this paper, we prove McIver and Morgan’s conjecture and establish that h = 4/27 is

indeed optimal. Writing Tz for the stabilization time starting from an initial configuration z,

we seek to prove that ETz ≤ 4
27 N2. To this end, one of the key ideas is to work with

a Lyapunov function V (z) in lieu of the (more complicated) function ETz. The domain

of the function V is continuous: a domain element describes a configuration in terms of

the distances between adjacent tokens. Combinatorial arguments exploiting the highly

symmetrical structure of V (z) enable us to establish that, for an arbitrary configuration z,

we have ETz ≤ V (z), with equality holding for all three-token configurations. Finally, in

what constitutes the most technically challenging part of this paper, we combine induction

on the number of tokens with analytical techniques to show that V is bounded by 4
27 N2.

Taken together, we obtain ETz ≤ 4
27 N2, entailing the Herman-Protocol Conjecture.

The case of there being an even number K of tokens is equally natural from a mathematical

point of view, although it does not correspond to a concrete bit-flipping protocol. It was

established in [13] that the worst-case configuration in this variant is the equidistant two-token

configuration, with an expected stabilization time of 1
2 N2; the analysis underlying that result

is considerably simpler than what is required in case the number of tokens is odd, as in the

present paper.
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Herman’s protocol is also related to the notion of coalescing random walks [2, 7, 1]. There,

one considers multiple independent random walks on Z
d (or on the vertices of a connected

graph). When two walks meet, they coalesce into a new random walk. A protocol for

self-stabilizing mutual exclusion based on such random walks was proposed in [19]. The

expected coalescence time was studied in [6, 24, 5].

It is interesting to note that Herman’s ring is closely related to widely-studied models

of random walks and Brownian motion in statistical physics. Observe that by a simple

modification of the formalism, one may equivalently view Herman’s model as a ring in which

tokens randomly move in discrete step in any direction, with pairwise collisions leading to

annihilation; this precisely corresponds to Fisher’s vicious drunks model [14] (with periodic

boundary conditions). Similar models have been studied in chemical physics [9, 3, 27] and

statistical mechanics [16, 25, 26], among others.

The rest of the paper is organized as follows. In Section 2 we review previous results in

the literature that are relevant to our proof. In Section 3 we outline the structure of our

proof, identifying two key lemmas, Lemma 8 and Lemma 9. Those are proved in Appendix A

and Section 4, respectively.

Another solution of the conjecture, using different techniques, is independently shown

in [8].

2 Relevant Previous Results

For the rest of the paper we fix the number N of processes. We assume that the number K

of tokens is odd, and both N and K are at least 3.

Processes are numbered from 1 to N , clockwise, according to their position in the ring.

A configuration with K tokens is formalized as a function z : {1, . . . , K} → {1, . . . , N} with

z(1) < · · · < z(K), where the ith token (i ∈ {1, . . . , K}) is held by the processor with the

number z(i). We write ZK for the set of configurations with K tokens, and Z for the set of

all possible configurations, that is, Z = Z1 ∪ Z3 ∪ Z5 ∪ . . .

For a fixed initial configuration z = z0 we write (zt)t≥0 for the stochastic process of

configurations emanating from z. The stabilization time Tz is the smallest t ≥ 0 such

that zt ∈ Z1, i.e., the time until only one token is left. In this paper we focus on the

expectation ETz. It is shown in [22] that if N is odd and a multiple of 3, then there is a

configuration z ∈ Z3 (with the 3 tokens maximally separated in an equilateral triangle) such

that ETz = 4
27 N2.

In this paper we show:

◮ Theorem 1. We have ETz ≤ 4
27 N2 for all z ∈ Z.

Equivalently, the Herman conjecture states that for all odd K ≥ 3 and all z ∈ ZK we have

ETz ≤ 4
27 N2. Only the case K = 3 was previously known [22].

The following proposition has been used in a similar form in various papers on Herman’s

protocol, for instance in [22, Lemma 5]. It bounds the stabilization time by a Lyapunov

function V .

◮ Proposition 2 (Bound by a Lyapunov function). Given z ∈ Z, denote by z′ ∈ Z the random

successor configuration of z. Let V : Z → R be a function with

E(V (z′) | z) ≤ V (z) − 1 for all z ∈ Z \ Z1, and (1)

0 ≤ V (z) for all z ∈ Z1. (2)

Then ETz ≤ V (z) for all z ∈ Z. In particular, V (z) ≥ 0 for all z ∈ Z.
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Although this result is not new, we give a short proof based on a martingale argument. The

proof is inspired by [17], and may provide some intuition.

Proof. Let z ∈ Z. Consider the stochastic process (zt)t≥0 of configurations emanating

from z = z0. Define Wt := V (zt) + t. By (1) the process (Wt)t≥0 is a supermartingale. The

stabilization time Tz = Tz0
is a stopping time with finite expectation, and the differences

|Wt+1 − Wt| are bounded as the Markov chain reachable from z has finitely many states.

Hence, the optional stopping theorem applies, yielding EWTz
≤ EW0 = V (z). By definition

of Wt we have EWTz
= EV (zTz

) + ETz. Since zTz
∈ Z1, we have ETz ≤ EWTz

by (2). By

combining the previous two inequalities, we obtain ETz ≤ V (z). ◭

Following [13, 17] we associate with a configuration z ∈ ZK the gap vector g(z) =

(g0, . . . , gK−1) ∈ N
K by setting g0 := N + z(1) − z(K), and gi := z(i + 1) − z(i) for

i ∈ {1, . . . , K − 1}. Then g(z)/N lives in the so-called standard (K − 1)-simplex D(K),

defined by

D(K) :=
{

x = (x0, . . . , xK−1) ∈ [0, 1]K | x0 + · · · + xK−1 = 1
}

.

Towards a suitable Lyapunov function V we define the cubic polynomial f
(K)
3 : D(K) → [0, ∞)

by

f
(K)
3 (x) :=

∑

0≤i0<i1<i2<K
i2 − i1, i1 − i0 odd

xi0xi1xi2 .

For instance, we have f
(5)
3 (x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4.

The following lemma was implicitly proved in previous works:

◮ Lemma 3 (Lyapunov function V3 [13, Page 240, Proof of Theorem 1] and [17, Theorem

4]). Let V3 : Z → [0, ∞) be defined by V3(z) := 4N2f
(K)
3 (g(z)/N) for z ∈ ZK . Denote by

z′ ∈ Z1 ∪ Z3 ∪ . . . ∪ ZK the random successor configuration of z ∈ ZK . Then E(V3(z′) | z) =

V3(z) − K−1
2 for all z ∈ ZK . Hence, by Proposition 2, ETz ≤ 4N2f

(K)
3 (g(z)/N).

For K = 3 Lemma 3 gives ETz ≤ 4N2f
(K)
3 (g(z)/N) = 4

N g0g1g2. In fact, for K = 3 it was

shown before in [22] that ETz is identically equal to 4
N g0g1g2, providing an exact formula

for the expected stabilization time of configurations with three tokens. Lemma 3 suggests

analyzing f3:

◮ Lemma 4 (Maximum of f3 [13, Proof of Theorem 2], [17, Theorem 3]). For all K ≥ 3 odd

we have

max
x∈D

f
(K)
3 (x) = f

(K)
3

(

1

K
, . . . ,

1

K

)

=
1

24

(

1 −
1

K2

)

.

By combining Lemmas 3 and 4 one obtains ETz ≤ N2

6 (1 − 1
K2 ), which is the bound obtained

in [13]. A slightly better bound is given in [17].

3 Proof of the Herman Conjecture

The function V3 from Lemma 3 leaves room for improvement since E(V3(z′) | z) = V3(z)− K−1
2 ,

which is strictly less than V3(z) − 1 for K > 3. The idea for obtaining an optimal bound

is to decrease the gap between K−1
2 and 1, by decreasing the Lyapunov function V . One

could think that the scaled function 2
K−1 V3 is also a Lyapunov function satisfying (1), but
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this is not true; in particular, note that the number of tokens K might be different for a

configuration z and its successor z′. Since scaling does not work, we decrease the Lyapunov

function by subtracting a quintic polynomial, as follows. Define a quintic polynomial

f
(K)
5 : D(K) → [0, ∞), similar to f

(K)
3 :

f
(K)
5 (x) =

∑

0≤i0<i1<···<i4<K
i4 − i3, . . . , i1 − i0 odd

xi0xi1xi2xi3xi4

For instance, f
(3)
5 (x) = 0, f

(5)
5 (x) = x0x1x2x3x4, and f

(7)
5 (x) = x0x1x2x3x4 + x0x1x2x3x6 +

x0x1x2x5x6 + x0x1x4x5x6 + x0x3x4x5x6 + x1x2x3x4x5 + x2x3x4x5x6. We also define a

polynomial f (K) : D(K) → [0, ∞):

f (K)(x) := f
(K)
3 (x) − αf

(K)
5 (x) with α := 24 (3)

For example, f (5)(x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 − αx0x1x2x3x4.

Throughout the paper we use α in the expression of f (K) for notational convenience. From

now onwards we may drop the superscript K from the domain D(K) of the functions f
(K)
3 ,

f
(K)
5 and f (K) to avoid notational clutter when K is understood.

The following properties of f are fundamental:

◮ Lemma 5 (Symmetry and continuity properties). The function f has the following properties.

(a) It is symmetric with respect to rotation:

f(x0, . . . , xK−1) = f(x1, . . . , xK−1, x0)

(b) It is continuous: For K ≥ 5 we have

f (K)(x0, 0, x2, x3, . . . , xK−1) = f (K−2)(x0 + x2, x3, . . . , xK−1).

Analogous properties were shown for f3 in [13]. Their proof carries over to f5 and hence to f .

The following lemma uses f to define a tighter Lyapunov function.

◮ Lemma 6 (Lyapunov function V ). Define V : Z → [0, ∞) by V (z) := 4N2f(g(z)/N). Let

z ∈ Z and denote by z′ the random successor configuration of z. Then E(V (z′) | z) ≤ V (z)−1.

Hence, by Proposition 2, ETz ≤ 4N2f(g(z)/N).

We remark that a similar Lyapunov function has been investigated in [13, Equation (15)],

but did not lead to a proof of the Herman conjecture. It seems that V (z) needs to be chosen

with great care, since even slight variations do not work.

Lemma 6 suggests analyzing f :

◮ Lemma 7 (Maximum of f). For all K ≥ 3 odd we have

max
x∈D

f (K)(x) =
1

27
.

With this in hand our main result follows:

Proof of Theorem 1. Immediate by combining Lemmas 6 and 7. ◭

It remains to prove Lemmas 6 and 7.
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3.1 Proof of Lemma 6

Towards Lemma 6 we show:

◮ Lemma 8 (Lyapunov function V5). Define V5 : Z → [0, ∞) by V5(z) := 4N2f5(g(z)/N).

Let K ≥ 5 and z ∈ Z and denote by z′ the random successor configuration of z. Then

E(V5(z′) | z) = V5(z) +
1

32

(K − 1)(K − 3)

N2
−

1

2
(K − 3)f3

(

g(z)

N

)

.

The proof in Appendix A requires an analysis of correlations among the changes in gaps

between tokens in each step of the protocol. Using Lemma 8 one can readily prove Lemma 6:

Proof of Lemma 6. For K = 3 the statement follows from Lemma 3. For K ≥ 5 we have:

E(V (z′) | z) = E((V3(z′) − 24V5(z′)) | z) by the definitions

= E(V3(z′) | z) − 24E(V5(z′) | z) linearity of expectation

= V3(z) −
K − 1

2
− 24V5(z) −

3

4

(K − 1)(K − 3)

N2

+ 12(K − 3)f3

(

g(z)

N

)

Lemmas 3 and 8

≤ V (z) −
K − 1

2
+ 12(K − 3)f3

(

g(z)

N

)

since K ≥ 3

≤ V (z) −
K − 1

2
+

K − 3

2
Lemma 4

= V (z) − 1

◭

3.2 Proof of Lemma 7

Towards Lemma 7 we show:

◮ Lemma 9 (Local maxima of f). Let K ≥ 5 and odd. There is no v ∈ D(K) in the interior

of D(K) such that v is a local maximum and f (K)(v) > 1
27 .

The proof in Section 4 involves a combinatorial analysis of inequalities arising from conditions

on the derivatives of f (K). Using Lemma 9 one can readily prove Lemma 7:

Proof of Lemma 7. We proceed by induction on K. For the induction base we have K =

3. It is straightforward to check that the maximum of f (3)(x) = f
(3)
3 (x) = x0x1x2 is

f (3)( 1
3 , 1

3 , 1
3 ) = 1

27 .

For the induction step we have K ≥ 5. Let v ∈ D(K) with f (K)(v) = max
x∈D(K) f (K)(x).

If v is in the interior of D(K), then by Lemma 9 we have f (K)(v) ≤ 1
27 . If v is at the

boundary of D(K), then vi = 0 for some i. By Lemma 5(a) we can assume that v1 = 0.

Using Lemma 5(b) the statement follows from the induction hypothesis. ◭

4 Proof of Lemma 9

In this section we prove Lemma 9. In Section 4.1 we state several properties that an interior

local maximum of f (K) would have to satisfy. In Section 4.2 we prove Lemma 9 for K = 5

for a first taste of the general argument. In Section 4.3 we prove Lemma 9 for K = 7 to

illustrate some fine points that occur only for larger values of K. In Section 4.4 we state some

combinatorial facts needed for the general case. Finally, in Section 4.5 we prove Lemma 9.
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4.1 Properties of an Interior Local Maximum

The following lemma is obtained by considering first and second derivatives of f evaluated

at an interior local maximum.

◮ Lemma 10. Let v be a local maximum of f (K) in the interior of D(K) and define c ∈ R by

c =
∑

1<i2<K
i2 even

vi2
− α

∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

vi2
vi3

vi4
. (4)

This expression holds for the same value of c if the indices are rotated by an arbitrary k: for

all j the index ij becomes (ij + k) mod K. Further, we have

∑

3≤i3<i4<K
i3 odd
i4 even

vi3
vi4

≤
1

α
. (5)

Again, this inequality also holds when indices are rotated.

For example, for K = 7 we have c = v2 + v4 + v6 − α(v2v3v4 + v2v3v6 + v2v5v6 + v4v5v6) =

v1 + v3 + v5 − α(v1v2v3 + v1v2v5 + v1v4v5 + v3v4v5).

Proof of Lemma 10. The idea of the proof is as follows. We pick a particular direction in

D(K), namely d = (−1, 0, 1, 0, 0, . . . , 0), and consider the function f(v + ǫd) as a univariate

function of ǫ. Since v is a local maximum, the first derivative must be zero and the second

derivative must be nonpositive. Exploiting the fact that vi > 0 for all i holds in the interior,

we obtain (4) and (5), respectively. See Appendix B for the detailed proof. ◭

Let S
(K)
j (x) denote the scalar product of x with a copy of itself rotated j times:

S
(K)
j (x) :=

K−1
∑

i=0

xixi+j

In all formulas it will be the case that the subscript of S is odd. Also, the superscript will be

omitted when unimportant or understood from context.

◮ Corollary 11. Let v be a local maximum of f (K) in the interior of D(K). Then the following

inequality holds:

∑

1≤i<K−2
i odd

K − i − 2

2
Si(v) ≤

K

α

For example, for K = 11 we have 4S1(v) + 3S3(v) + 2S5(v) + S7(v) ≤ 11/α.

◮ Lemma 12 (Bound for f5). Suppose that v ∈ D(K) satisfies f (K)(v) > 1
27 . Then αf5(v) <

1
216 .

Proof. By Lemma 4 we have f3(v) ≤ 1
24 and hence αf5(v) = f3(v) − f(v) < 1

24 − 1
27 =

1
216 . ◭
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4.2 Proof of Lemma 9 for K = 5

Let K = 5. Then

f(x) = f3(x) − αf5(x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 − αx0x1x2x3x4

Towards a contradiction, suppose that there is a local maximum v with f(v) > 1
27 in the

interior of D. By (4), the value

c = v2 + v4 − αv2v3v4 (6)

is invariant under rotations. Indeed, v2+k + v4+k − αv2+kv3+kv4+k ≡ c for all k, but we

shall avoid explicitly mentioning rotations, for notational simplicity. Summing (6) over all

K rotations we obtain:

5c = 2 − αf3(v) (7)

By (6) we have v0v1c = v0v1v2 + v0v1v4 − αf5(v) and, summing over all K rotations,

cS1(v) = 2f(v) − 3αf5(v) (8)

Moreover,

cS1(v)
Cor. 11

≤
5c

α

(7)
=

2

α
− f3(v) =

2

α
− f(v) − αf5(v).

Combining this with (8) gives:

2

α
≥ 3f(v) − 2αf5(v)

Lemma 12
≥

3

27
− 2 ·

1

216

This implies α ≤ 216/11 ≈ 19.6, which is a contradiction as required (since α = 24). ◭

4.3 Proof of Lemma 9 for K = 7

Let K = 7. Towards a contradiction, we suppose again that there is a local maximum v

with f(v) > 1
27 in the interior of D. By (4), all K rotations of the following hold with the

same c ∈ R:

c = v2 + v4 + v6 − α(v2v3v4 + v2v3v6 + v2v5v6 + v4v5v6) (9)

Summing (9) over K rotations we obtain:

7c = 3 − 2αf3(v) (10)

By (9) we have

v0v1c = v0v1v2+v0v1v4+v0v1v6−α(v0v1v2v3v4+v0v1v2v3v6+v0v1v2v5v6+v0v1v4v5v6) (11)

and

v0v3c = v0v3v4 + v0v3v6 − αv0v3v4v5v6 + v0v2v3(1 − α(v3v4 + v3v6 + v5v6))

≥ v0v3v4 + v0v3v6 − αv0v3v4v5v6

(12)

where the last inequality is by (5). Summing (11) and (12) over K rotations we obtain:

c
(

2S1(v) + S3(v)
)

≥ 4f3(v) − 9αf5(v) = 4f(v) − 5αf5(v) (13)
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Further we have:

c
(

2S1(v) + S3(v)
) Cor. 11

≤
7c

α

(10)
=

3

α
− 2f3(v) =

3

α
− 2f(v) − 2αf5(v)

Combining this with (13) gives:

3

α
≥ 6f(v) − 3αf5(v)

Lemma 12
≥

6

27
− 3 ·

1

216

This leads to α ≤ 14.4, which is a contradiction as desired. ◭

4.4 Combinatorial Lemmas

In order to generalize the proofs from Sections 4.2 and 4.3 to any odd K, we state some

combinatorial lemmas in this subsection. They are proved in Appendix C.

In order to generalize (7) and (10) we show the following lemma:

◮ Lemma 13. We have:

K−1
∑

k=0

∑

1<i′

0<i′

1<i′

2<K

i′

0, i′

2 even

i′

1 odd

xi′

0+kxi′

1+kxi′

2+k =
K − 3

2

∑

0≤i0<i1<i2<K
i2 − i1, i1 − i0 odd

xi0
xi1

xi2
=

K − 3

2
f

(K)
3 (x)

For example, if K = 5, then we obtain that summing the 5 rotations of x2x3x4 gives

f
(5)
3 (x). As another example, if K = 7, then we obtain that summing the 7 rotations of

x2x3x4 + x2x3x6 + x2x5x6 + x4x5x6 gives 2f
(7)
3 (x). These two instances of Lemma 13 help

establish (7) and (10).

In order to generalize the inequality in (12) we need the following lemma:

◮ Lemma 14. Let v be a local maximum of f (K) in the interior of D(K). If i1 is odd and

0 < i1 < K, then the following inequality holds:

v0vi1

(

∑

1<i2<K
i2 even

vi2
−

∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2
vi3

vi4

)

≥ v0vi1

(

∑

i1<i2<K
i2 even

vi2
−

∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2
vi3

vi4

)

The inequality says that if we drop those terms that do not occur in f
(K)
3 or f

(K)
5 , then we

obtain a lower bound. The proof groups those terms that are not in either of f
(K)
3 or f

(K)
5 ,

and then invokes (5) to show that their sum is nonnegative.

In order to generalize (8) and (13) we need Corollary 16 below, which is a consequence of

the following lemma:

◮ Lemma 15. Let l be an odd, positive integer. Then:

K−1
∑

k=0

∑

1≤i′

1<K−2

i′

1 odd

K − i′
1 − 2

2

∑

i′

1<i′

2<···<i′

l−1<K

∀j, i′

j≡j (mod 2)

xkxi′

1+k

∏

1<j<l

xi′

j
+k =

=
( l − 1

2
K − l

)

∑

0≤i0<···<il−1<K
ij − ij−1 odd for 0 < j < l

l−1
∏

j=0

xij
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For example, if K = 5 and l = 3, then we have that summing 5 rotations of x0x1x2 + x0x1x4

gives 2f
(5)
3 (x). As another example, if K = 9 and l = 3, then summing 9 rotations of

3x0x1(x2 + x4 + x6 + x8) + 2x0x3(x4 + x6 + x8) + x0x5(x6 + x8) gives 6f
(9)
3 (x).

◮ Corollary 16. We have:

K−1
∑

k=0

∑

1≤i1<K−2
i1 odd

K − i1 − 2

2

∑

i1<i2<K
i2 even

x0+kxi1+kxi2+k = (K − 3)f
(K)
3 (x)

and also

K−1
∑

k=0

∑

1≤i1<K−2
i1 odd

K − i1 − 2

2

∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

x0+kxi1+kxi2+kxi3+kxi4+k = (2K − 5)f
(K)
5 (x)

Proof. Instantiate Lemma 15 with l = 3 and, respectively, l = 5. ◭

4.5 Proof of Lemma 9

Towards a contradiction, suppose that there is a local maximum v with f(v) > 1
27 in the

interior of D, i.e., vi > 0 for all i ∈ {0, . . . , K − 1}. Summing up the K rotations of (4) and

using Lemma 13, we obtain:

Kc =
K − 1

2
−

K − 3

2
αf3(v) (14)

Multiplying (4) on both sides by
∑

1≤i1<K−2
i1 odd

K−i1−2
2 v0vi1

we obtain:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2

2
v0vi1

=
∑

1≤i1<K−2
i1 odd

K − i1 − 2

2
v0vi1

(

∑

1<i2<K
i2 even

vi2
−

∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2
vi3

vi4

)

≥
∑

1≤i1<K−2
i1 odd

K − i1 − 2

2
v0vi1

(

∑

i1<i2<K
i2 even

vi2 −
∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)

using Lemma 14. Summing K rotations of this inequality yields:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2

2
Si1(v) ≥ (K − 3)f3(v) − (2K − 5)αf5(v) = (K − 3)f(v) − (K − 2)αf5(v).

(15)

using Corollary 16. Further we have:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2

2
Si1

(v)
Cor. 11

≤
Kc

α

(14)
=

K − 1

2α
−

K − 3

2
f3(v)

Combining this with (15) gives:

K − 1

2α
≥

3K − 9

2
f(v) −

K − 1

2
αf5(v)

Lemma 12
≥

K − 3

2
·

1

9
−

K − 1

2
·

1

216
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This implies

α ≤
216(K − 1)

23K − 71
< 19.7

Since α = 24, this leads to a contradiction as desired. ◭

5 Conclusions

In this paper we have proved the Herman-Protocol Conjecture formulated by McIver and

Morgan in [22] a decade ago, which says that the worst-case initial configuration consists of

three maximally-separated tokens, for N multiple of 3. This follows from our result that the

worst-case self-stabilization time is at most 4
27 N2, for any number of processes N and any

odd number of tokens K.

The proof uses a Lyapunov function approach. To do so, we first find a suitable Lyapunov

function and then show that its maximum is 4
27 N2. Then we show that this function gives

an upper bound for the self-stabilization time for each possible configuration in Herman’s

algorithm.
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A Proof of Lemma 8

Let z : {1, . . . , K} → {1, . . . , N} be a K-token configuration on a ring with N processes.

Recall that the associated gap vector g(z) = (g0, . . . , gK−1) ∈ N
K is defined by g0 :=

N + z(1) − z(K) and gi := z(i + 1) − z(i) for i = 1, . . . , K − 1.

Given z, consider the gap-increment vector ∆ := g(z′) − g(z), where z′ is the random

successor configuration of z. This is a random variable taking values in {−1, 0, +1}K where,

for each i ∈ {0, . . . , K − 1}, ∆i = 0 with probability 1/2 (the two tokens adjacent to the i-th

gap both stay or both move clockwise), and ∆i = ±1 with probability 1/4 (one token stays

and the other moves clockwise).

We will need the following two properties (16) and (17) concerning the expectation of

the random variable ∆. First, it is straightforward to verify by direct calculation that for

0 ≤ k < K,

E(∆i∆i+1 . . . ∆i+k) =

{

0 if k is even
(

− 1
4

)(k+1)/2
if k is odd

(16)

Secondly, suppose that 0 ≤ i1 ≤ i2 < i3 ≤ i4 < K, with i3 6≡ i2 + 1 and i1 6≡ i4 + 1 modulo

K, that is, {i1, . . . , i2} and {i3, . . . , i4} form two non-adjacent intervals (treating K − 1 and

0 as adjacent). Then

E(∆i1 . . . ∆i2∆i3 . . . ∆i4) = E(∆i1 . . . ∆i2)E(∆i3 . . . ∆i4) . (17)

because ∆i1
, . . . , ∆i2

and ∆i3
, . . . , ∆i4

are determined by the movements of disjoints sets of

tokens, and hence are independent.

For a given configuration z we want to compute E[f5(g(z) + ∆)]. From the definition of

f5 and the linearity of expectation, this is a sum of expressions of the form

E(gi0
+ ∆i0

)(gi1
+ ∆i1

)(gi2
+ ∆i2

)(gi3
+ ∆i3

)(gi4
+ ∆i4

) (18)

over the set of indices 0 ≤ i0 < i1 < i2 < i3 < i4 < K of alternating parity.

Expression (18) evaluates to a degree-5 polynomial in the variables g. Observe that

this polynomial has no monomials of even degree. For example, all degree-2 monomials

have coefficients of the form E(∆i∆j∆k) with i < j < k. These coefficients are zero by

(16) and (17). Degrees 0 and 4 are proved similarly.

There is a single degree-5 monomial in (18)—namely gi0
. . . gi4

. Summing all such terms

over indices 0 ≤ i0 < i1 < i2 < i3 < i4 < K of alternating parity yields f5(g(z)).

Expanding the expression (18) yields degree-3 monomials of the form

gj0gj1gj2E(∆j3∆j4)

for distinct indices j0 < j1 < j2. The coefficient of such a term is −1/4 if j4 ≡ j3 + 1

or j3 ≡ j4 + 1 and 0 otherwise. Moreover, if j0, j1, j2 have alternating parity there are

(K − 3)/2 choices of j3 such that gj0
gj1

gj2
E(∆j3

∆j3+1) appears in (18). If j0, j1, j2 do not

have alternating parity then there are no such terms in (18). We conclude that the sum of

all degree-3 monomials in E(f5(g(z) + ∆) is

−
(K − 3)

8
f3(g(z)) .

Finally, consider the degree-1 monomials. These have the form

gj0
E(∆j1

∆j2
∆j3

∆j4
)

© Maria Bruna and Radu Grigore and Stefan Kiefer and Joël Ouaknine and James Worrell;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi; Article No. XXX;
pp. XXX:13–XXX:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


for distinct indices j0 and j1 < j2 < j3 < j4. By Property (17), such terms are only non-zero

if {j1, j2, j3, j4} comprises either a single block of adjacent indices or two non-adjacent blocks

of length 2 (considering K − 1 and 0 to be adjacent). In this case E(∆j1
∆j2

∆j3
∆j4

) = 1/16,

and there are
(

(K−1)/2
2

)

= (K − 1)(K − 3)/8 such choices of {j1, j2, j3, j4} for each choice of

j0. Thus gj0
has total coefficient (K − 1)(K − 3)/128 in E(f5(g(z) + ∆)). Moreover, since

g0 + . . . + gK−1 = N , the degree-1 terms in E(f5(g(z) + ∆)) sum to N(K − 1)(K − 3)/128.

In summary, we have proved:

◮ Proposition 17. For each K-token configuration z,

E(f5(g(z) + ∆)) = f5(g(z)) −
K − 3

8
f3(g(z)) +

(K − 1)(K − 3)N

128
.

Lemma 8 follows immediately from Proposition 17 by scaling, since V5(z) = 4N2f5(g(z)/N) =
4

N3 f5(g(z)) is a linear multiple of f5(g(z)).

B Proofs of Properties of an Interior Local Maximum

Lemma 10. Let v be a local maximum of f (K) in the interior of D(K) and define c ∈ R by

c =
∑

1<i2<K
i2 even

vi2
− α

∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

vi2
vi3

vi4
. (19)

This expression holds for the same value of c if the indices are rotated by an arbitrary k: for

all j the index ij becomes (ij + k) mod K. Further, we have

∑

3≤i3<i4<K
i3 odd
i4 even

vi3
vi4

≤
1

α
(20)

Again, this inequality also holds when indices are rotated.

Proof. We consider the second-order Taylor expansion of f (K) along the direction d =

(−1, 0, 1, 0, . . . , 0) (which is tangent to D(K)):

f (K)(x + ǫd) = f (K)(x) + ǫQ(x) + ǫ2R(x) + O(ǫ3) .

Since v is a local maximum, we have Q(v) = 0 and R(v) ≤ 0. Proving (19) boils down to

calculating Q(x); proving (20) boils down to calculating R(x).

First, we prove (19). Let

f (K)(x0 + ǫ, x1, . . . , xK−1) = f (K)(x) + ǫP (x) + O(ǫ2).

By the chain rule and using the rotational symmetry of f (K) (Lemma 5(a)), we find that

Q(x0, . . . , xK−1) = P (x0+2, x1+2, . . . , xK−1+2) − P (x0, x1, . . . , xK−1).

Now recall the definition of f (K):

f (K)(x) :=
∑

0≤i0<i1<i2<K
i2 − i1 and i1 − i0 odd

xi0xi1xi2 −
∑

0≤i0<···<i4<K
i4 − i3, . . . , i1 − i0 all odd

αxi0xi1xi2xi3xi4 (21)
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We differentiate f (K) with respect to x0 to obtain

P (x) =
∑

0<i1<i2<K
i1 odd
i2 even

xi1
xi2

−
∑

0<i1<···<i4<K
i1, i3 odd
i2, i4 even

αxi1
xi2

xi3
xi4

. (22)

Since v is a local maximum, Q(v) = 0 and we have

∑

0<i1<i2<K
i1 odd
i2 even

vi1
vi2

−
∑

0<i1<···<i4<K
i1, i3 odd
i2, i4 even

αvi1
vi2

vi3
vi4

=
∑

0<i1<i2<K
i1 odd
i2 even

vi1+2vi2+2 −
∑

0<i1<···<i4<K
i1, i3 odd
i2, i4 even

αvi1+2vi2+2vi3+2vi4+2

Observe that the monomials not containing v1 cancel each other out. Dividing by v1 = v1+K

(since v1 > 0), we have

∑

1<i2<K
i2 even

vi2
−

∑

1<i2<i3<i4<K
i3 odd

i2, i4 even

αvi2
vi3

vi4
=

∑

0<i1<K−1
i1 odd

vi1+2 −
∑

0<i1<i2<i3<K−1
i1, i3 odd

i2 even

αvi1+2vi2+2vi3+2

Now we observe that the right hand side can be obtained from the left hand side by changing

each index i into i + 1. Taking into account rotations of the above equality, we conclude (19).

Next, we prove (20). To do so, we first calculate the terms of order ǫ2 of f (K)(x + ǫd).

Such terms occur only when i0 = 0, i1 = 1, and i2 = 2. In this case, the first sum reduces to

(x0 − ǫ)x1(x2 + ǫ), and the second sum reduces to

α(x0 − ǫ)x1(x2 + ǫ)
∑

2<i3<i4<K
i3 odd, i4 even

xi3
xi4

.

Thus,

R(x) = −x1 + αx1

∑

2<i3<i4<K
i3 odd, i4 even

xi3
xi4

.

Since the assumed interior local maximum v is in the interior of D(K), we have that v1 > 0,

and so the condition R(v) ≤ 0 is equivalent to R(v)/v1 ≤ 0:

−1 +
∑

2<i3<i4<K
i3 odd, i4 even

αvi3
vi4

≤ 0

Up to trivial rearrangement, we obtained (20). ◭

Corollary 11. Let v be a local maximum of f (K) in the interior of D(K). Then the

following inequality holds:

∑

1≤i<K−2
i odd

K − i − 2

2
Si(v) ≤

K

α
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Proof. We sum (20) over all K rotations:

K

α
≥

K−1
∑

i=0

∑

3≤i3<i4<K
i3 odd
i4 even

vi3+ivi4+i =
∑

3≤i3<i4<K
i3 odd
i4 even

K−1
∑

i=0

vi3+ivi4+i =
∑

3≤i3<i4<K
i3 odd
i4 even

Si4−i3
(v)

=
∑

3≤i3<i3+i<K
i odd, i3 odd

Si(v) =
∑

1≤i
i odd

∑

3≤i3<K−i
i3 odd

Si(v) =
∑

1≤i<K−2
i odd

K − i − 2

2
Si(v)

◭

C Proofs of Combinatorial Lemmas

We repeat the combinatorial facts of Section 4.4, this time with proofs.

Lemma 13. We have:

K−1
∑

k=0

∑

1<i′

0<i′

1<i′

2<K

i′

0, i′

2 even

i′

1 odd

xi′

0+kxi′

1+kxi′

2+k =
K − 3

2

∑

0≤i0<i1<i2<K
i2 − i1, i1 − i0 odd

xi0xi1xi2 =
K − 3

2
f

(K)
3 (x)

Proof. Let us fix 0 ≤ i0 < i1 < i2 < K such that both i2 − i1 and i1 − i0 are odd. We

want to show that the term xi0xi1xi2 occurs (K − 3)/2 times in each side of the equality.

The middle and right sides are trivial; it remains to check the left side. Let us now fix an

arbitrary k. For a term on the left hand side to equal xi0xi1xi2 , it must be that the sets

{(i′
0 + k) mod K, (i′

1 + k) mod K, (i′
2 + k) mod K} and {i0, i1, i2} are equal. In other words,

once i0, i1, i2, k are fixed, the set {i′
0, i′

1, i′
2} is uniquely determined. Since, i′

0 < i′
1 < i′

2, the

potential values of i′
0, i′

1, i′
2 are also uniquely determined. The remaining question is for how

many k ∈ {0, . . . , K − 1} it is the case that the values i′
0, i′

1, i′
2 so determined obey the other

constraints.

There are three disjoint cases: The smallest value in the set {i′
0, i′

1, i′
2}, namely i′

0, is

(i0 − k) mod K or (i1 − k) mod K or (i2 − k) mod K. The case i′
0 = (i1 − k) mod K occurs

exactly when (a) i0 < k < i1, and (b) k has the same parity as i1. Let δ0 denote the size of

the gap between i0 and i1. Then, there are (δ0 − 1)/2 values of k that obey both (a) and (b).

The other two cases are similar, and so we conclude that the term xi0
xi1

xi2
occurs on the

left hand side

δ0 − 1

2
+

δ1 − 1

2
+

δ2 − 1

2
=

K − 3

2

times. ◭

Lemma 14. Let v be a local maximum of f (K) in the interior of D(K). If i1 is odd and

0 < i1 < K, then the following inequality holds:

v0vi1

(

∑

1<i2<K
i2 even

vi2 −
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)

≥ v0vi1

(

∑

i1<i2<K
i2 even

vi2 −
∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)
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Proof. The proof below is a case analysis of where i1 can be inserted in-between 0 < i2 <

i3 < i4 < K. As noted before, the task is to show that retaining the terms that occur in f5

gives a lower bound. In other words, we want to show that those terms not occurring in f5

have a positive sum. We calculate this sum:

∑

1<i2<i1
i2 even

v0vi2vi1 −
∑

1<i2<i3<i4<K
i2<i1

αv0vi2vi1vi3vi4

=
∑

1<i2<i1
i2 even

v0vi2
vi1

(

1 −
∑

i2<i3<i4<K
i3 odd, i4 even

αvi3
vi4

)

≥
∑

1<i2<i1
i2 even

v0vi2vi1

(

1 −
∑

3≤i3<i4<K
i3 odd, i4 even

αvi3vi4

) by (5)

≥ 0

◭

Lemma 15. Let l be an odd, positive integer. Then:

K−1
∑

k=0

∑

1≤i′

1<K−2

i′

1 odd

K − i′
1 − 2

2

∑

i′

1<i′

2<···<i′

l−1<K

∀j, i′

j≡j (mod 2)

xkxi′

1+k

∏

1<j<l

xi′

j
+k =

=
( l − 1

2
K − l

)

∑

0≤i0<···<il−1<K
ij − ij−1 odd for 0 < j < l

l−1
∏

j=0

xij

The proof is similar to that of Lemma 13.

Proof. Let us fix 0 ≤ i0 < · · · < il−1 < K with odd gaps in-between. We want to show that

the term xi0
. . . xil−1

occurs (l − 1)K/2 − l times on each side of the equation. For the right

side, it is trivial. The general form of a term on the left side is xkxi′

1+kxi′

2+k . . . xi′

l−1
+k. It

must be that k is one of i0, . . . , il−1. Let us consider the case k = i0; the others are similar.

If k = i0, then, in fact,

(k, i′
1 + k, i′

2 + k, . . . , i′
l−1 + k) mod K = (i0, i1, . . . , il−1).

In particular, i′
1 equals the size of the gap between i0 and i1. Let us denote this gap by δ0.

On the left hand side, the term is multiplied by (K − i′
1 − 2)/2, which is (K − δ0 − 2)/2. The

cases k = i1, k = i2, . . . are similar. Because δ0 + · · · + δl−1 = K, we conclude that the term

xi0 . . . xil−1
occurs

K − δ0 − 2

2
+ · · · +

K − δl−1 − 2

2
=

l − 1

2
K − l

times on the left side. ◭
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